evie-8's picture
Remove rows with missing noise measurements and noise measurements >= 100
dcb7646 verified
metadata
dataset_info:
  - config_name: large
    features:
      - name: audio
        dtype: audio
      - name: class
        dtype: string
      - name: class_id
        dtype: int64
      - name: noise_measurement
        dtype: float64
      - name: latitude
        dtype: float64
      - name: longitude
        dtype: float64
      - name: altitude
        dtype: float64
      - name: accuracy
        dtype: float64
      - name: submitter_id
        dtype: int64
      - name: region
        dtype: string
      - name: timestamp
        dtype: string
    splits:
      - name: train
        num_bytes: 2987411640.5624475
        num_examples: 61685
    download_size: 2980281937
    dataset_size: 2987411640.5624475
  - config_name: small
    features:
      - name: audio
        dtype: audio
      - name: class
        dtype: string
      - name: class_id
        dtype: int64
      - name: noise_measurement
        dtype: float64
      - name: latitude
        dtype: float64
      - name: longitude
        dtype: float64
      - name: altitude
        dtype: float64
      - name: accuracy
        dtype: float64
      - name: submitter_id
        dtype: int64
      - name: region
        dtype: string
      - name: timestamp
        dtype: string
    splits:
      - name: train
        num_bytes: 48604940
        num_examples: 1000
    download_size: 48496047
    dataset_size: 48604940
configs:
  - config_name: large
    data_files:
      - split: train
        path: large/train-*
  - config_name: small
    data_files:
      - split: train
        path: small/train-*
task_categories:
  - audio-classification
tags:
  - audio
  - text
size_categories:
  - 10K<n<100K

The urban-noise-uganda-61k dataset consists of audio samples representing urban noise environments. It is designed for tasks such as noise classification, audio tagging, or machine learning applications in sound analysis. The dataset includes two configurations, large and small, with varying sizes of data.

Example Usage

from datasets import load_dataset

# Load the large configuration
large_dataset = load_dataset("Sunbird/urban-noise-uganda-61k", "large")

# Load the small configuration
small_dataset = load_dataset("Sunbird/urban-noise-uganda-61k", "small")