Upload train4.py with huggingface_hub
Browse files
train4.py
ADDED
|
@@ -0,0 +1,539 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import pdb
|
| 3 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
| 4 |
+
from transformers.models.auto.modeling_auto import MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES
|
| 5 |
+
import copy
|
| 6 |
+
from transformers.modeling_outputs import (
|
| 7 |
+
MoeCausalLMOutputWithPast,
|
| 8 |
+
MoeModelOutputWithPast,
|
| 9 |
+
)
|
| 10 |
+
from collections import defaultdict
|
| 11 |
+
import numpy as np
|
| 12 |
+
import math
|
| 13 |
+
from torch import nn
|
| 14 |
+
# import pandas as pd
|
| 15 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
| 16 |
+
from dataclasses import dataclass
|
| 17 |
+
# from transformers.models.olmoe.configuration_olmoe import OlmoeConfig
|
| 18 |
+
# from transformers.models.olmoe.modeling_olmoe import OlmoeMLP, OlmoeAttention, OlmoeFlashAttention2, OlmoeSdpaAttention, OlmoeRMSNorm, OlmoeSparseMoeBlock, apply_rotary_pos_emb, repeat_kv, OlmoeRotaryEmbedding
|
| 19 |
+
import os
|
| 20 |
+
import sys
|
| 21 |
+
import torch.distributed as dist
|
| 22 |
+
from tqdm import tqdm
|
| 23 |
+
from torch.utils.data import DataLoader
|
| 24 |
+
from torch.utils.data.distributed import DistributedSampler
|
| 25 |
+
import transformers
|
| 26 |
+
import pickle
|
| 27 |
+
|
| 28 |
+
# from transformers.models.olmoe.configuration_olmoe import OlmoeConfig
|
| 29 |
+
from dataset import *
|
| 30 |
+
# from utils import flash_attn_forward, flash_attn_prepare_decoder_attention_mask, get_multiround_data
|
| 31 |
+
# from peft import (get_peft_model, PeftModel)
|
| 32 |
+
import random
|
| 33 |
+
# from config import *
|
| 34 |
+
from datasets import Dataset, DatasetDict, load_dataset
|
| 35 |
+
import wandb
|
| 36 |
+
import gc
|
| 37 |
+
import os
|
| 38 |
+
import argparse
|
| 39 |
+
import torch
|
| 40 |
+
import torch.nn as nn
|
| 41 |
+
import torch.nn.functional as F
|
| 42 |
+
import torch.optim as optim
|
| 43 |
+
import functools
|
| 44 |
+
from torch.optim.lr_scheduler import StepLR
|
| 45 |
+
import torch.nn.functional as F
|
| 46 |
+
import torch.distributed as dist
|
| 47 |
+
import torch.multiprocessing as mp
|
| 48 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
| 49 |
+
from torch.utils.data.distributed import DistributedSampler
|
| 50 |
+
|
| 51 |
+
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
|
| 52 |
+
checkpoint_wrapper, CheckpointImpl)
|
| 53 |
+
|
| 54 |
+
from torch.distributed.fsdp import (
|
| 55 |
+
FullyShardedDataParallel as FSDP,
|
| 56 |
+
MixedPrecision,
|
| 57 |
+
BackwardPrefetch,
|
| 58 |
+
ShardingStrategy,
|
| 59 |
+
FullStateDictConfig,
|
| 60 |
+
StateDictType,
|
| 61 |
+
)
|
| 62 |
+
from torch.distributed.fsdp.wrap import (
|
| 63 |
+
transformer_auto_wrap_policy,
|
| 64 |
+
enable_wrap,
|
| 65 |
+
wrap,
|
| 66 |
+
)
|
| 67 |
+
from functools import partial
|
| 68 |
+
from torch.utils.data import DataLoader
|
| 69 |
+
from pathlib import Path
|
| 70 |
+
from typing import Type, List, Optional, Tuple, Union
|
| 71 |
+
from modelforseminat_v5 import *
|
| 72 |
+
from transformers import get_cosine_schedule_with_warmup
|
| 73 |
+
# from torch.optim.lr_scheduler import _LRScheduler
|
| 74 |
+
|
| 75 |
+
# class WarmupCosineScheduler(_LRScheduler):
|
| 76 |
+
|
| 77 |
+
# def __init__(self,
|
| 78 |
+
# optimizer,
|
| 79 |
+
# warmup_steps,
|
| 80 |
+
# total_steps,
|
| 81 |
+
# min_lr=0.0,
|
| 82 |
+
# last_epoch=-1):
|
| 83 |
+
# # self.warmup_steps = warmup_steps
|
| 84 |
+
# self.total_steps = total_steps
|
| 85 |
+
# self.min_lr = min_lr
|
| 86 |
+
# if isinstance(warmup_steps, float) and 0 < warmup_steps < 1:
|
| 87 |
+
# self.warmup_steps = int(warmup_steps * total_steps)
|
| 88 |
+
# else:
|
| 89 |
+
# self.warmup_steps = int(warmup_steps)
|
| 90 |
+
# super().__init__(optimizer, last_epoch)
|
| 91 |
+
|
| 92 |
+
# def get_lr(self):
|
| 93 |
+
# step = self.last_epoch + 1
|
| 94 |
+
# lrs = []
|
| 95 |
+
|
| 96 |
+
# for base_lr in self.base_lrs:
|
| 97 |
+
# if step < self.warmup_steps:
|
| 98 |
+
# # Linear warmup
|
| 99 |
+
# lr = base_lr * step / self.warmup_steps
|
| 100 |
+
# else:
|
| 101 |
+
# # Cosine decay
|
| 102 |
+
# progress = (step - self.warmup_steps) / max(
|
| 103 |
+
# 1, self.total_steps - self.warmup_steps)
|
| 104 |
+
# cosine_decay = 0.5 * (1 + math.cos(math.pi * progress))
|
| 105 |
+
# lr = self.min_lr + (base_lr - self.min_lr) * cosine_decay
|
| 106 |
+
|
| 107 |
+
# lrs.append(lr)
|
| 108 |
+
|
| 109 |
+
# return lrs
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
################################# FSDP Config #####################################
|
| 117 |
+
def setup():
|
| 118 |
+
# initialize the process group
|
| 119 |
+
local_rank = int(os.environ['LOCAL_RANK'])
|
| 120 |
+
torch.cuda.set_device(local_rank)
|
| 121 |
+
dist.init_process_group(
|
| 122 |
+
backend='nccl',
|
| 123 |
+
init_method='env://',
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def cleanup():
|
| 128 |
+
gc.collect()
|
| 129 |
+
torch.cuda.empty_cache()
|
| 130 |
+
dist.destroy_process_group()
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def get_fsdp_device():
|
| 134 |
+
# 每个进程初始化分布式环境后调用
|
| 135 |
+
local_rank = int(os.environ.get("LOCAL_RANK", 0)) # torchrun 自动设置
|
| 136 |
+
device = torch.device(f"cuda:{local_rank}")
|
| 137 |
+
torch.cuda.set_device(device)
|
| 138 |
+
return device
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
# def load_trained_model(model_name):
|
| 142 |
+
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 143 |
+
|
| 144 |
+
# olmo_path = "/AIRvePFS/ai4science/users/ai4science/users/zyk/seminat_backup/model/OLMo-2-0425-1B"
|
| 145 |
+
# pt_path = "/AIRvePFS/ai4science/users/ai4science/users/zyk/seminat/ckp/sft-v4-0616-1w-1e3-chunklimit5-jueduipos/sft-v4-1e3-len4-fc-chunklimit4-jueduipos-epoch_136.pt"
|
| 146 |
+
# config_path = "/AIRvePFS/ai4science/users/ai4science/users/zyk/seminat_backup/model/OLMo-2-0425-1B/config.json"
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
# config = AutoConfig.from_pretrained(olmo_path)
|
| 150 |
+
# model = Olmo2ForCausalLMForSemiNAT.from_pretrained(olmo_path,
|
| 151 |
+
# config=config,
|
| 152 |
+
# torch_dtype=torch.bfloat16)
|
| 153 |
+
# state_dict = torch.load(pt_path, map_location=DEVICE, weights_only=True)
|
| 154 |
+
# missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
| 155 |
+
# print(
|
| 156 |
+
# f"Loaded with {len(missing_keys)} missing keys and {len(unexpected_keys)} unexpected keys."
|
| 157 |
+
# )
|
| 158 |
+
# if missing_keys:
|
| 159 |
+
# print("Missing keys:", missing_keys)
|
| 160 |
+
# if unexpected_keys:
|
| 161 |
+
# print("Unexpected keys:", unexpected_keys)
|
| 162 |
+
|
| 163 |
+
# model = model.to(DEVICE)
|
| 164 |
+
|
| 165 |
+
# tokenizer = AutoTokenizer.from_pretrained(olmo_path)
|
| 166 |
+
|
| 167 |
+
# return model, tokenizer
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
# def setup_model(model_name,device):
|
| 172 |
+
# model = Olmo2ForCausalLMForSemiNAT.from_pretrained(model_name,torch_dtype=torch.bfloat16,device_map=device)
|
| 173 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 174 |
+
# # config = AutoConfig.from_pretrained(model_name)
|
| 175 |
+
# # model = Olmo2ForCausalLMForSemiNAT(config) # 注意这里不用 from_pretrained
|
| 176 |
+
# # tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 177 |
+
# return model, tokenizer
|
| 178 |
+
|
| 179 |
+
def setup_model(model_name, type):
|
| 180 |
+
# pdb.set_trace()
|
| 181 |
+
if type == "bf16":
|
| 182 |
+
model = Olmo2ForCausalLMForSemiNAT.from_pretrained(
|
| 183 |
+
model_name,
|
| 184 |
+
torch_dtype=torch.bfloat16
|
| 185 |
+
)
|
| 186 |
+
elif type == "fp16":
|
| 187 |
+
model = Olmo2ForCausalLMForSemiNAT.from_pretrained(
|
| 188 |
+
model_name,
|
| 189 |
+
torch_dtype=torch.float16
|
| 190 |
+
)
|
| 191 |
+
else:
|
| 192 |
+
model = Olmo2ForCausalLMForSemiNAT.from_pretrained(
|
| 193 |
+
model_name
|
| 194 |
+
)
|
| 195 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 196 |
+
# config = AutoConfig.from_pretrained(model_name)
|
| 197 |
+
# model = Olmo2ForCausalLMForSemiNAT(config) # 注意这里不用 from_pretrained
|
| 198 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 199 |
+
return model, tokenizer
|
| 200 |
+
|
| 201 |
+
def collate_fn(batch):
|
| 202 |
+
# 过滤 None
|
| 203 |
+
batch = [x for x in batch if x is not None]
|
| 204 |
+
if len(batch) == 0:
|
| 205 |
+
return None # 如果整 batch 都无效
|
| 206 |
+
|
| 207 |
+
input_ids, labels, attention_mask, slice_arr, slice_label = zip(*batch)
|
| 208 |
+
|
| 209 |
+
return (
|
| 210 |
+
torch.stack(input_ids),
|
| 211 |
+
torch.stack(labels),
|
| 212 |
+
torch.stack(attention_mask),
|
| 213 |
+
torch.stack(slice_arr),
|
| 214 |
+
torch.stack(slice_label)
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
def fsdp_main(args):
|
| 218 |
+
local_rank = int(os.environ['LOCAL_RANK'])
|
| 219 |
+
rank = int(os.environ['RANK'])
|
| 220 |
+
world_size = int(os.environ['WORLD_SIZE'])
|
| 221 |
+
if args.use_wandb and rank == 0:
|
| 222 |
+
wandb.init(entity="SemiNAT", project="SemiNAT-Debug", name=args.run_name)
|
| 223 |
+
|
| 224 |
+
local_rank = int(os.environ['LOCAL_RANK'])
|
| 225 |
+
device = f"cuda:{local_rank}"
|
| 226 |
+
|
| 227 |
+
# model, tokenizer = setup_model(args.model_path, args.dtype, device)
|
| 228 |
+
model, tokenizer = setup_model(args.model_path,device)
|
| 229 |
+
|
| 230 |
+
# model, tokenizer = load_trained_model(args.model_path)
|
| 231 |
+
|
| 232 |
+
model.config.chunk_size_limit = args.chunk_size_limit
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
# if ".pkl" in args.data_path:
|
| 237 |
+
# train_dataset = pickle.load(open(args.data_path, "rb"))
|
| 238 |
+
# else:
|
| 239 |
+
# datasets = pd.read_parquet(args.data_path)
|
| 240 |
+
# train_dataset = eval(f"{args.data_type}")(
|
| 241 |
+
# tokenizer,
|
| 242 |
+
# datasets,
|
| 243 |
+
# args.max_length,
|
| 244 |
+
# args.data_processess_num)
|
| 245 |
+
|
| 246 |
+
# train_sampler = DistributedSampler(train_dataset,
|
| 247 |
+
# rank=rank,
|
| 248 |
+
# num_replicas=world_size,
|
| 249 |
+
# shuffle=True)
|
| 250 |
+
# train_dataloader = DataLoader(dataset=train_dataset,
|
| 251 |
+
# sampler=train_sampler,
|
| 252 |
+
# batch_size=args.batch_size)
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
train_dataset = eval(f"{args.data_type}")(
|
| 256 |
+
tokenizer,
|
| 257 |
+
args.data_path,
|
| 258 |
+
args.max_length
|
| 259 |
+
)
|
| 260 |
+
train_sampler = DistributedSampler(train_dataset,
|
| 261 |
+
rank=rank,
|
| 262 |
+
num_replicas=world_size,
|
| 263 |
+
shuffle=True)
|
| 264 |
+
|
| 265 |
+
train_dataloader = DataLoader(dataset=train_dataset,
|
| 266 |
+
sampler=train_sampler,
|
| 267 |
+
batch_size=args.batch_size,
|
| 268 |
+
num_workers=args.data_processess_num,
|
| 269 |
+
collate_fn=collate_fn)
|
| 270 |
+
|
| 271 |
+
# pdb.set_trace()
|
| 272 |
+
|
| 273 |
+
print(f"Size of train dataset: {len(train_dataset)}")
|
| 274 |
+
|
| 275 |
+
setup()
|
| 276 |
+
|
| 277 |
+
# Olmo2DecoderLayerForSemiNAT_auto_wrap_policy = functools.partial(
|
| 278 |
+
# transformer_auto_wrap_policy,
|
| 279 |
+
# transformer_layer_cls={
|
| 280 |
+
# Olmo2DecoderLayerForSemiNAT,
|
| 281 |
+
# NATEncoderForSemiNAT,
|
| 282 |
+
# NATDecoderForSemiNAT,
|
| 283 |
+
# })
|
| 284 |
+
|
| 285 |
+
Olmo2DecoderLayerForSemiNAT_auto_wrap_policy = functools.partial(
|
| 286 |
+
transformer_auto_wrap_policy,
|
| 287 |
+
transformer_layer_cls={
|
| 288 |
+
Olmo2DecoderLayer,
|
| 289 |
+
Olmo2DecoderLayerForSemiNAT
|
| 290 |
+
}
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
sharding_strategy: ShardingStrategy = ShardingStrategy.FULL_SHARD #for Zero2 and FULL_SHARD for Zero3
|
| 296 |
+
torch.cuda.set_device(local_rank)
|
| 297 |
+
# local_rank = int(os.environ['LOCAL_RANK'])
|
| 298 |
+
# device = torch.device(f"cuda:{local_rank}")
|
| 299 |
+
# model = model.to(device)
|
| 300 |
+
|
| 301 |
+
# if bf16_ready:
|
| 302 |
+
mp_policy = MixedPrecision(
|
| 303 |
+
param_dtype=torch.bfloat16,
|
| 304 |
+
reduce_dtype=torch.bfloat16,
|
| 305 |
+
buffer_dtype=torch.bfloat16,
|
| 306 |
+
)
|
| 307 |
+
# else:
|
| 308 |
+
# mp_policy = None # defaults to fp32
|
| 309 |
+
|
| 310 |
+
# if args.use_lora:
|
| 311 |
+
# model = get_peft_model(model, lora_config)
|
| 312 |
+
|
| 313 |
+
# pdb.set_trace()
|
| 314 |
+
# model is on CPU before input to FSDP
|
| 315 |
+
model = FSDP(model,
|
| 316 |
+
auto_wrap_policy=Olmo2DecoderLayerForSemiNAT_auto_wrap_policy,
|
| 317 |
+
mixed_precision=mp_policy,
|
| 318 |
+
sharding_strategy=sharding_strategy,
|
| 319 |
+
device_id=torch.cuda.current_device(),
|
| 320 |
+
use_orig_params=True)
|
| 321 |
+
|
| 322 |
+
optimizer = optim.AdamW(
|
| 323 |
+
model.parameters(),
|
| 324 |
+
lr=args.lr,
|
| 325 |
+
betas=args.betas,
|
| 326 |
+
weight_decay=args.weight_decay,
|
| 327 |
+
eps=args.eps,
|
| 328 |
+
)
|
| 329 |
+
|
| 330 |
+
# pdb.set_trace()
|
| 331 |
+
|
| 332 |
+
# scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
|
| 333 |
+
# scheduler = WarmupCosineScheduler(
|
| 334 |
+
# optimizer=optimizer, # 优化器对象
|
| 335 |
+
# warmup_steps=args.warmup_steps, # warmup 步数(或比例)
|
| 336 |
+
# total_steps=args.total_steps, # 总训练步数
|
| 337 |
+
# min_lr=args.min_lr # 最小学习率
|
| 338 |
+
# )
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
num_training_steps = args.epochs * len(train_dataloader) # 总训练步数
|
| 343 |
+
num_warmup_steps = num_training_steps * args.warmup_ratio
|
| 344 |
+
|
| 345 |
+
scheduler = get_cosine_schedule_with_warmup(
|
| 346 |
+
optimizer,
|
| 347 |
+
num_warmup_steps=num_warmup_steps,
|
| 348 |
+
num_training_steps=num_training_steps
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
torch.autograd.set_detect_anomaly(True)
|
| 352 |
+
|
| 353 |
+
loss1_list = []
|
| 354 |
+
loss2_list = []
|
| 355 |
+
loss_list = []
|
| 356 |
+
|
| 357 |
+
global_step = 0
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
start_time = time.time()
|
| 362 |
+
|
| 363 |
+
for epoch in range(1, args.epochs + 1):
|
| 364 |
+
# t0 = time.time()
|
| 365 |
+
model.train()
|
| 366 |
+
local_rank = int(os.environ['LOCAL_RANK'])
|
| 367 |
+
# fsdp_loss = torch.zeros(2).to(local_rank)
|
| 368 |
+
|
| 369 |
+
if train_sampler:
|
| 370 |
+
train_sampler.set_epoch(epoch)
|
| 371 |
+
if rank == 0:
|
| 372 |
+
inner_pbar = tqdm(range(len(train_dataloader)),
|
| 373 |
+
colour="blue",
|
| 374 |
+
desc="r0 Training Epoch")
|
| 375 |
+
|
| 376 |
+
memories = []
|
| 377 |
+
|
| 378 |
+
for batch in train_dataloader:
|
| 379 |
+
if batch is None:
|
| 380 |
+
continue
|
| 381 |
+
optimizer.zero_grad()
|
| 382 |
+
loss1, loss2 = model(input_ids=batch[0],
|
| 383 |
+
labels=batch[1],
|
| 384 |
+
attention_mask=batch[2],
|
| 385 |
+
slice_pos=batch[3],
|
| 386 |
+
slice_label=batch[4],
|
| 387 |
+
use_cache=False).loss
|
| 388 |
+
loss = loss1 + loss2
|
| 389 |
+
# loss = loss2
|
| 390 |
+
loss1_list.append(loss1.item())
|
| 391 |
+
loss2_list.append(loss2.item())
|
| 392 |
+
loss_list.append(loss.item())
|
| 393 |
+
# pdb.set_trace()
|
| 394 |
+
|
| 395 |
+
# if torch.isnan(loss):
|
| 396 |
+
# print(f"Step {global_step}: loss is NaN, entering pdb …")
|
| 397 |
+
# pdb.set_trace()
|
| 398 |
+
|
| 399 |
+
# print(f"loss1:{loss1},loss2:{loss2}")
|
| 400 |
+
loss.backward()
|
| 401 |
+
|
| 402 |
+
# 按参数计算
|
| 403 |
+
# for name, module in model.named_modules():
|
| 404 |
+
# total_norm = 0.0
|
| 405 |
+
# param_count = 0
|
| 406 |
+
# for param in module.parameters(recurse=False):
|
| 407 |
+
# if param.grad is not None:
|
| 408 |
+
# total_norm += param.grad.data.norm(2).item()**2
|
| 409 |
+
# param_count += 1
|
| 410 |
+
# if param_count > 0:
|
| 411 |
+
# if args.use_wandb and rank == 0:
|
| 412 |
+
# total_norm = total_norm**0.5
|
| 413 |
+
# wandb.log({f"grad_norm/{name}": total_norm},
|
| 414 |
+
# step=global_step)
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
optimizer.step()
|
| 418 |
+
|
| 419 |
+
|
| 420 |
+
mem = torch.cuda.memory_allocated() / (1024 ** 2)
|
| 421 |
+
memories.append(mem)
|
| 422 |
+
|
| 423 |
+
global_step += 1
|
| 424 |
+
|
| 425 |
+
if global_step % args.save_steps == 0:
|
| 426 |
+
save_policy = FullStateDictConfig(offload_to_cpu=True,
|
| 427 |
+
rank0_only=True)
|
| 428 |
+
with FSDP.state_dict_type(model, StateDictType.FULL_STATE_DICT,
|
| 429 |
+
save_policy):
|
| 430 |
+
cpu_state = model.state_dict()
|
| 431 |
+
|
| 432 |
+
if rank == 0:
|
| 433 |
+
print(f"--> steps: {str(global_step)} saving model ...")
|
| 434 |
+
if not os.path.exists(args.save_path):
|
| 435 |
+
os.makedirs(args.save_path)
|
| 436 |
+
save_name = f"{args.save_name}-steps_{str(global_step)}.pt"
|
| 437 |
+
print(f"--> saving as model name {save_name}")
|
| 438 |
+
save_path = os.path.join(args.save_path, save_name)
|
| 439 |
+
torch.save(cpu_state, save_path)
|
| 440 |
+
|
| 441 |
+
if rank == 0:
|
| 442 |
+
inner_pbar.update(1)
|
| 443 |
+
if args.use_wandb and rank == 0:
|
| 444 |
+
wandb.log({
|
| 445 |
+
"length prediction loss":
|
| 446 |
+
sum(loss1_list[-20:]) / len(loss1_list[-20:]),
|
| 447 |
+
"nat loss":
|
| 448 |
+
sum(loss2_list[-20:]) / len(loss2_list[-20:]),
|
| 449 |
+
"loss":
|
| 450 |
+
sum(loss_list[-20:]) / len(loss_list[-20:]),
|
| 451 |
+
"lr": scheduler.get_last_lr()[0]
|
| 452 |
+
})
|
| 453 |
+
|
| 454 |
+
|
| 455 |
+
avg_mem = sum(memories) / len(memories)
|
| 456 |
+
print(f"Average memory usage over {len(memories)} steps: {avg_mem:.2f} MB")
|
| 457 |
+
|
| 458 |
+
|
| 459 |
+
dist.all_reduce(loss, op=dist.ReduceOp.SUM)
|
| 460 |
+
|
| 461 |
+
if rank == 0:
|
| 462 |
+
inner_pbar.close()
|
| 463 |
+
|
| 464 |
+
scheduler.step()
|
| 465 |
+
|
| 466 |
+
# if rank == 0:
|
| 467 |
+
# print(f"--> entering save model state")
|
| 468 |
+
|
| 469 |
+
# save_policy = FullStateDictConfig(offload_to_cpu=True, rank0_only=True)
|
| 470 |
+
# with FSDP.state_dict_type(model, StateDictType.FULL_STATE_DICT,
|
| 471 |
+
# save_policy):
|
| 472 |
+
# cpu_state = model.state_dict()
|
| 473 |
+
|
| 474 |
+
# if rank == 0:
|
| 475 |
+
# print(f"--> epoch: {str(epoch)} saving model ...")
|
| 476 |
+
# if not os.path.exists(args.save_path):
|
| 477 |
+
# os.makedirs(args.save_path)
|
| 478 |
+
# save_name = f"{args.save_name}-epoch_{str(epoch)}.pt"
|
| 479 |
+
# print(f"--> saving as model name {save_name}")
|
| 480 |
+
# save_path = os.path.join(args.save_path, save_name)
|
| 481 |
+
# torch.save(cpu_state, save_path)
|
| 482 |
+
|
| 483 |
+
|
| 484 |
+
end_time = time.time()
|
| 485 |
+
print(f"Training time: {end_time - start_time} seconds")
|
| 486 |
+
|
| 487 |
+
dist.barrier()
|
| 488 |
+
cleanup()
|
| 489 |
+
|
| 490 |
+
|
| 491 |
+
################################# FSDP Config #####################################
|
| 492 |
+
|
| 493 |
+
if __name__ == "__main__":
|
| 494 |
+
# Training settings
|
| 495 |
+
parser = argparse.ArgumentParser()
|
| 496 |
+
parser.add_argument('--batch-size',
|
| 497 |
+
type=int,
|
| 498 |
+
default=4,
|
| 499 |
+
metavar='N',
|
| 500 |
+
help='input batch size for training (default: 64)')
|
| 501 |
+
parser.add_argument('--model_path', type=str)
|
| 502 |
+
parser.add_argument('--save_path', type=str)
|
| 503 |
+
parser.add_argument('--save_name', type=str)
|
| 504 |
+
parser.add_argument('--data_path', type=str)
|
| 505 |
+
parser.add_argument('--data_type', type=str)
|
| 506 |
+
parser.add_argument('--run_name', type=str)
|
| 507 |
+
parser.add_argument('--max_length', type=int)
|
| 508 |
+
parser.add_argument('--chunk_size_limit', type=int)
|
| 509 |
+
parser.add_argument('--save_steps', type=int, default=5000)
|
| 510 |
+
parser.add_argument('--data_processess_num', type=int, default=8)
|
| 511 |
+
parser.add_argument('--epochs',
|
| 512 |
+
type=int,
|
| 513 |
+
default=2,
|
| 514 |
+
metavar='N',
|
| 515 |
+
help='number of epochs to train (default: 3)')
|
| 516 |
+
parser.add_argument('--lr',
|
| 517 |
+
type=float,
|
| 518 |
+
default=.002,
|
| 519 |
+
metavar='LR',
|
| 520 |
+
help='learning rate (default: .002)')
|
| 521 |
+
parser.add_argument('--weight_decay', type=float)
|
| 522 |
+
parser.add_argument('--betas', type=float, nargs=2)
|
| 523 |
+
parser.add_argument('--eps', type=float)
|
| 524 |
+
parser.add_argument('--warmup_ratio', type=float)
|
| 525 |
+
parser.add_argument('--seed',
|
| 526 |
+
type=int,
|
| 527 |
+
default=1,
|
| 528 |
+
metavar='S',
|
| 529 |
+
help='random seed (default: 1)')
|
| 530 |
+
parser.add_argument('--use_lora', action='store_true', default=False)
|
| 531 |
+
parser.add_argument("--use_wandb",
|
| 532 |
+
action="store_true",
|
| 533 |
+
help="whether to use wandb")
|
| 534 |
+
parser.add_argument('--dtype', type=str)
|
| 535 |
+
args = parser.parse_args()
|
| 536 |
+
|
| 537 |
+
torch.manual_seed(args.seed)
|
| 538 |
+
|
| 539 |
+
fsdp_main(args)
|