Upload modelforseminat_v5.py with huggingface_hub
Browse files- modelforseminat_v5.py +2156 -0
modelforseminat_v5.py
ADDED
|
@@ -0,0 +1,2156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import Olmo2Model, Olmo2ForCausalLM, AutoTokenizer, logging
|
| 2 |
+
from transformers.models.auto.modeling_auto import MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES
|
| 3 |
+
from transformers.modeling_outputs import (
|
| 4 |
+
CausalLMOutputWithPast,
|
| 5 |
+
BaseModelOutputWithPast,
|
| 6 |
+
)
|
| 7 |
+
import numpy as np
|
| 8 |
+
import math
|
| 9 |
+
from torch import nn
|
| 10 |
+
import pandas as pd
|
| 11 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
| 12 |
+
from dataclasses import dataclass
|
| 13 |
+
|
| 14 |
+
# Olmo2
|
| 15 |
+
from transformers.models.olmo2.modeling_olmo2 import Olmo2RotaryEmbedding, Olmo2Attention, Olmo2MLP, Olmo2RMSNorm, apply_rotary_pos_emb, eager_attention_forward, Olmo2DecoderLayer
|
| 16 |
+
from transformers.models.olmo2.configuration_olmo2 import Olmo2Config
|
| 17 |
+
from transformers.processing_utils import Unpack
|
| 18 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
| 19 |
+
from transformers.utils import LossKwargs
|
| 20 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS
|
| 21 |
+
|
| 22 |
+
from torch.nn.functional import cosine_similarity
|
| 23 |
+
import time
|
| 24 |
+
import os
|
| 25 |
+
import sys
|
| 26 |
+
import json
|
| 27 |
+
import pdb
|
| 28 |
+
import torch.distributed as dist
|
| 29 |
+
from tqdm import tqdm
|
| 30 |
+
from torch.utils.data.distributed import DistributedSampler
|
| 31 |
+
import transformers
|
| 32 |
+
import pickle
|
| 33 |
+
from dataset import *
|
| 34 |
+
# from peft import (get_peft_model, PeftModel)
|
| 35 |
+
import random
|
| 36 |
+
from config import *
|
| 37 |
+
from datasets import Dataset, DatasetDict, load_dataset
|
| 38 |
+
import wandb
|
| 39 |
+
import argparse
|
| 40 |
+
import torch
|
| 41 |
+
import torch.nn as nn
|
| 42 |
+
import torch.nn.functional as F
|
| 43 |
+
import torch.optim as optim
|
| 44 |
+
import functools
|
| 45 |
+
from torch.optim.lr_scheduler import StepLR
|
| 46 |
+
import torch.nn.functional as F
|
| 47 |
+
import torch.distributed as dist
|
| 48 |
+
import torch.multiprocessing as mp
|
| 49 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
| 50 |
+
from torch.utils.data.distributed import DistributedSampler
|
| 51 |
+
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
|
| 52 |
+
checkpoint_wrapper, CheckpointImpl)
|
| 53 |
+
from torch.distributed.fsdp import (
|
| 54 |
+
FullyShardedDataParallel as FSDP,
|
| 55 |
+
MixedPrecision,
|
| 56 |
+
BackwardPrefetch,
|
| 57 |
+
ShardingStrategy,
|
| 58 |
+
FullStateDictConfig,
|
| 59 |
+
StateDictType,
|
| 60 |
+
)
|
| 61 |
+
from torch.distributed.fsdp.wrap import (
|
| 62 |
+
transformer_auto_wrap_policy,
|
| 63 |
+
enable_wrap,
|
| 64 |
+
wrap,
|
| 65 |
+
)
|
| 66 |
+
from functools import partial
|
| 67 |
+
from torch.utils.data import DataLoader
|
| 68 |
+
from pathlib import Path
|
| 69 |
+
from typing import Type, List, Optional, Tuple, Union, Callable, Dict, Any
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
############ specially for generate() #################
|
| 73 |
+
import inspect
|
| 74 |
+
from transformers.generation.configuration_utils import (
|
| 75 |
+
NEED_SETUP_CACHE_CLASSES_MAPPING,
|
| 76 |
+
QUANT_BACKEND_CLASSES_MAPPING,
|
| 77 |
+
GenerationConfig,
|
| 78 |
+
GenerationMode,
|
| 79 |
+
)
|
| 80 |
+
from transformers.generation.logits_process import LogitsProcessorList
|
| 81 |
+
from transformers.generation.stopping_criteria import StoppingCriteriaList
|
| 82 |
+
from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled
|
| 83 |
+
from transformers.integrations.fsdp import is_fsdp_managed_module
|
| 84 |
+
|
| 85 |
+
from transformers.generation.utils import (
|
| 86 |
+
is_torchdynamo_compiling, ModelOutput, GenerateDecoderOnlyOutput,
|
| 87 |
+
GenerateEncoderDecoderOutput, GenerateBeamDecoderOnlyOutput,
|
| 88 |
+
GenerateBeamEncoderDecoderOutput, GreedySearchDecoderOnlyOutput,
|
| 89 |
+
ContrastiveSearchDecoderOnlyOutput, SampleDecoderOnlyOutput,
|
| 90 |
+
ContrastiveSearchEncoderDecoderOutput, GreedySearchEncoderDecoderOutput,
|
| 91 |
+
SampleEncoderDecoderOutput, BeamSearchDecoderOnlyOutput,
|
| 92 |
+
BeamSampleDecoderOnlyOutput, BeamSearchEncoderDecoderOutput,
|
| 93 |
+
BeamSampleEncoderDecoderOutput, GreedySearchOutput, SampleOutput,
|
| 94 |
+
BeamSearchOutput, BeamSampleOutput, ContrastiveSearchOutput,
|
| 95 |
+
GenerateNonBeamOutput, GenerateBeamOutput, GenerateOutput)
|
| 96 |
+
from transformers.generation.stopping_criteria import (
|
| 97 |
+
ConfidenceCriteria,
|
| 98 |
+
EosTokenCriteria,
|
| 99 |
+
MaxLengthCriteria,
|
| 100 |
+
MaxTimeCriteria,
|
| 101 |
+
StoppingCriteria,
|
| 102 |
+
StoppingCriteriaList,
|
| 103 |
+
StopStringCriteria,
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
from transformers.generation.stopping_criteria import STOPPING_CRITERIA_INPUTS_DOCSTRING
|
| 107 |
+
from transformers.pytorch_utils import isin_mps_friendly
|
| 108 |
+
from transformers.utils import add_start_docstrings
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
class EosTokenCriteriaForSemiNAT(StoppingCriteria):
|
| 112 |
+
"""
|
| 113 |
+
This class can be used to stop generation whenever the "end-of-sequence" token is generated.
|
| 114 |
+
By default, it uses the `model.generation_config.eos_token_id`.
|
| 115 |
+
|
| 116 |
+
Args:
|
| 117 |
+
eos_token_id (`Union[int, List[int], torch.Tensor]`):
|
| 118 |
+
The id(s) of the *end-of-sequence* token.
|
| 119 |
+
"""
|
| 120 |
+
|
| 121 |
+
def __init__(self, eos_token_id: Union[int, List[int], torch.Tensor]):
|
| 122 |
+
if not isinstance(eos_token_id, torch.Tensor):
|
| 123 |
+
if isinstance(eos_token_id, int):
|
| 124 |
+
eos_token_id = [eos_token_id]
|
| 125 |
+
eos_token_id = torch.tensor(eos_token_id)
|
| 126 |
+
self.eos_token_id = eos_token_id
|
| 127 |
+
|
| 128 |
+
@add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING)
|
| 129 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, last_k: int, **kwargs) -> torch.BoolTensor:
|
| 130 |
+
# pdb.set_trace()
|
| 131 |
+
# if torch.any(input_ids == 100257):
|
| 132 |
+
# pdb.set_trace()
|
| 133 |
+
self.eos_token_id = self.eos_token_id.to(input_ids.device)
|
| 134 |
+
token_is_eos = isin_mps_friendly(input_ids[:, -last_k:], self.eos_token_id)
|
| 135 |
+
is_done = torch.any(token_is_eos, dim=1)
|
| 136 |
+
return is_done
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
############ specially for generate() #################
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
@dataclass
|
| 147 |
+
class ModelOutputWithPastForSemiNAT(BaseModelOutputWithPast):
|
| 148 |
+
|
| 149 |
+
chunk_hidden_state: torch.FloatTensor = None
|
| 150 |
+
length_ground_truth: Optional[torch.FloatTensor] = None
|
| 151 |
+
length_logits: Optional[torch.FloatTensor] = None
|
| 152 |
+
position_embeddings: Optional[torch.FloatTensor] = None # ?
|
| 153 |
+
nar_hidden_state: torch.FloatTensor = None # ?
|
| 154 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
| 155 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 156 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
class TwoLayerMLP(nn.Module):
|
| 162 |
+
def __init__(self, hidden_size: int, dropout_rate: float = 0.1):
|
| 163 |
+
"""
|
| 164 |
+
初始化两层MLP,支持任意批处理维度
|
| 165 |
+
|
| 166 |
+
参数:
|
| 167 |
+
hidden_size (int): 隐藏层维度
|
| 168 |
+
dropout_rate (float): dropout比率,默认0.1
|
| 169 |
+
"""
|
| 170 |
+
super().__init__()
|
| 171 |
+
|
| 172 |
+
self.fc1 = nn.Linear(hidden_size, 4 * hidden_size) # 第一层将维度扩大4倍
|
| 173 |
+
self.fc2 = nn.Linear(4 * hidden_size, hidden_size) # 第二层将维度恢复
|
| 174 |
+
self.dropout = nn.Dropout(p=dropout_rate)
|
| 175 |
+
self.activation = nn.GELU() # 使用GELU激活函数
|
| 176 |
+
|
| 177 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 178 |
+
"""
|
| 179 |
+
前向传播,支持任意批处理维度
|
| 180 |
+
|
| 181 |
+
参数:
|
| 182 |
+
x (torch.Tensor): 输入张量,形状为 (..., hidden_size),支持任意前置维度
|
| 183 |
+
|
| 184 |
+
返回:
|
| 185 |
+
torch.Tensor: 输出张量,形状与输入相同
|
| 186 |
+
"""
|
| 187 |
+
# 获取原始形状
|
| 188 |
+
original_shape = x.shape
|
| 189 |
+
hidden_size = original_shape[-1]
|
| 190 |
+
|
| 191 |
+
# 将输入重塑为2D: (batch_size, hidden_size),其中batch_size包含了所有前置维度
|
| 192 |
+
x_2d = x.view(-1, hidden_size)
|
| 193 |
+
|
| 194 |
+
# pdb.set_trace()
|
| 195 |
+
# 第一层:线性变换 -> 激活函数 -> dropout
|
| 196 |
+
x_2d = self.fc1(x_2d)
|
| 197 |
+
x_2d = self.activation(x_2d)
|
| 198 |
+
x_2d = self.dropout(x_2d)
|
| 199 |
+
|
| 200 |
+
# 第二层:线性变换
|
| 201 |
+
x_2d = self.fc2(x_2d)
|
| 202 |
+
# pdb.set_trace()
|
| 203 |
+
# 恢复原始形状
|
| 204 |
+
x = x_2d.view(*original_shape)
|
| 205 |
+
# pdb.set_trace()
|
| 206 |
+
return x
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
class Olmo2AttentionForSemiNAT(nn.Module):
|
| 225 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 226 |
+
|
| 227 |
+
def __init__(self, config: Olmo2Config, layer_idx: Optional[int] = None, is_causal: bool = True):
|
| 228 |
+
super().__init__()
|
| 229 |
+
self.config = config
|
| 230 |
+
self.layer_idx = layer_idx
|
| 231 |
+
self.head_dim = getattr(
|
| 232 |
+
config, "head_dim",
|
| 233 |
+
config.hidden_size // config.num_attention_heads)
|
| 234 |
+
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
| 235 |
+
self.scaling = self.head_dim**-0.5
|
| 236 |
+
self.attention_dropout = config.attention_dropout
|
| 237 |
+
self.is_causal = is_causal
|
| 238 |
+
|
| 239 |
+
self.q_proj = nn.Linear(config.hidden_size,
|
| 240 |
+
config.num_attention_heads * self.head_dim,
|
| 241 |
+
bias=config.attention_bias)
|
| 242 |
+
self.k_proj = nn.Linear(config.hidden_size,
|
| 243 |
+
config.num_key_value_heads * self.head_dim,
|
| 244 |
+
bias=config.attention_bias)
|
| 245 |
+
self.v_proj = nn.Linear(config.hidden_size,
|
| 246 |
+
config.num_key_value_heads * self.head_dim,
|
| 247 |
+
bias=config.attention_bias)
|
| 248 |
+
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim,
|
| 249 |
+
config.hidden_size,
|
| 250 |
+
bias=config.attention_bias)
|
| 251 |
+
self.q_norm = Olmo2RMSNorm(config.num_attention_heads * self.head_dim,
|
| 252 |
+
config.rms_norm_eps)
|
| 253 |
+
self.k_norm = Olmo2RMSNorm(config.num_key_value_heads * self.head_dim,
|
| 254 |
+
config.rms_norm_eps)
|
| 255 |
+
|
| 256 |
+
def forward(
|
| 257 |
+
self,
|
| 258 |
+
hidden_states: torch.Tensor,
|
| 259 |
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
| 260 |
+
attention_mask: Optional[torch.Tensor],
|
| 261 |
+
past_key_value: Optional[Cache] = None,
|
| 262 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 263 |
+
**kwargs,
|
| 264 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
|
| 265 |
+
Optional[Tuple[torch.Tensor]]]:
|
| 266 |
+
input_shape = hidden_states.shape[:-1]
|
| 267 |
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
| 268 |
+
|
| 269 |
+
query_states = self.q_norm(self.q_proj(hidden_states))
|
| 270 |
+
key_states = self.k_norm(self.k_proj(hidden_states))
|
| 271 |
+
value_states = self.v_proj(hidden_states)
|
| 272 |
+
|
| 273 |
+
query_states = query_states.view(hidden_shape).transpose(1, 2)
|
| 274 |
+
key_states = key_states.view(hidden_shape).transpose(1, 2)
|
| 275 |
+
value_states = value_states.view(hidden_shape).transpose(1, 2)
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
if position_embeddings is not None:
|
| 280 |
+
cos, sin = position_embeddings
|
| 281 |
+
query_states, key_states = apply_rotary_pos_emb(
|
| 282 |
+
query_states, key_states, cos, sin)
|
| 283 |
+
|
| 284 |
+
if past_key_value is not None:
|
| 285 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 286 |
+
cache_kwargs = {
|
| 287 |
+
"sin": sin,
|
| 288 |
+
"cos": cos,
|
| 289 |
+
"cache_position": cache_position
|
| 290 |
+
}
|
| 291 |
+
key_states, value_states = past_key_value.update(
|
| 292 |
+
key_states, value_states, self.layer_idx, cache_kwargs)
|
| 293 |
+
|
| 294 |
+
attention_interface: Callable = eager_attention_forward
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
# pdb.set_trace()
|
| 298 |
+
|
| 299 |
+
self.config._attn_implementation = "sdpa"
|
| 300 |
+
if self.config._attn_implementation != "eager":
|
| 301 |
+
if self.config._attn_implementation == "sdpa" and kwargs.get(
|
| 302 |
+
"output_attentions", False):
|
| 303 |
+
logger.warning_once(
|
| 304 |
+
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
| 305 |
+
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 306 |
+
)
|
| 307 |
+
else:
|
| 308 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[
|
| 309 |
+
self.config._attn_implementation]
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
attn_output, attn_weights = attention_interface(
|
| 313 |
+
self,
|
| 314 |
+
query_states,
|
| 315 |
+
key_states,
|
| 316 |
+
value_states,
|
| 317 |
+
attention_mask,
|
| 318 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
| 319 |
+
scaling=self.scaling,
|
| 320 |
+
**kwargs,
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
| 324 |
+
attn_output = self.o_proj(attn_output)
|
| 325 |
+
return attn_output, attn_weights
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
class Olmo2DecoderLayerForSemiNAT(nn.Module):
|
| 330 |
+
|
| 331 |
+
def __init__(
|
| 332 |
+
self,
|
| 333 |
+
config: Olmo2Config,
|
| 334 |
+
layer_idx: int,
|
| 335 |
+
is_causal: bool = True,
|
| 336 |
+
):
|
| 337 |
+
super().__init__()
|
| 338 |
+
self.hidden_size = config.hidden_size
|
| 339 |
+
# pdb.set_trace()
|
| 340 |
+
self.self_attn = Olmo2AttentionForSemiNAT(config=config,
|
| 341 |
+
layer_idx=layer_idx,
|
| 342 |
+
is_causal=is_causal)
|
| 343 |
+
self.mlp = Olmo2MLP(config)
|
| 344 |
+
self.post_attention_layernorm = Olmo2RMSNorm(config.hidden_size,
|
| 345 |
+
eps=config.rms_norm_eps)
|
| 346 |
+
self.post_feedforward_layernorm = Olmo2RMSNorm(config.hidden_size,
|
| 347 |
+
eps=config.rms_norm_eps)
|
| 348 |
+
|
| 349 |
+
# pdb.set_trace()
|
| 350 |
+
|
| 351 |
+
def forward(
|
| 352 |
+
self,
|
| 353 |
+
hidden_states: torch.Tensor,
|
| 354 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 355 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 356 |
+
past_key_value: Optional[Cache] = None,
|
| 357 |
+
output_attentions: Optional[bool] = False,
|
| 358 |
+
use_cache: Optional[bool] = False,
|
| 359 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 360 |
+
position_embeddings: Optional[Tuple[torch.Tensor,
|
| 361 |
+
torch.Tensor]] = None,
|
| 362 |
+
**kwargs,
|
| 363 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor,
|
| 364 |
+
torch.FloatTensor]]]:
|
| 365 |
+
residual = hidden_states
|
| 366 |
+
|
| 367 |
+
# pdb.set_trace()
|
| 368 |
+
# Self Attention
|
| 369 |
+
hidden_states, self_attn_weights = self.self_attn(
|
| 370 |
+
hidden_states=hidden_states,
|
| 371 |
+
attention_mask=attention_mask,
|
| 372 |
+
position_ids=position_ids,
|
| 373 |
+
past_key_value=past_key_value,
|
| 374 |
+
output_attentions=output_attentions,
|
| 375 |
+
use_cache=use_cache,
|
| 376 |
+
cache_position=cache_position,
|
| 377 |
+
position_embeddings=position_embeddings,
|
| 378 |
+
**kwargs,
|
| 379 |
+
)
|
| 380 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 381 |
+
hidden_states = residual + hidden_states
|
| 382 |
+
|
| 383 |
+
# Fully Connected
|
| 384 |
+
residual = hidden_states
|
| 385 |
+
hidden_states = self.mlp(hidden_states)
|
| 386 |
+
hidden_states = self.post_feedforward_layernorm(hidden_states)
|
| 387 |
+
hidden_states = residual + hidden_states
|
| 388 |
+
|
| 389 |
+
outputs = (hidden_states, )
|
| 390 |
+
if output_attentions:
|
| 391 |
+
outputs += (self_attn_weights, )
|
| 392 |
+
|
| 393 |
+
return outputs
|
| 394 |
+
|
| 395 |
+
|
| 396 |
+
class NATEncoderForSemiNAT(nn.Module):
|
| 397 |
+
|
| 398 |
+
def __init__(self, config: Olmo2Config, num_layer: int = 1):
|
| 399 |
+
super().__init__()
|
| 400 |
+
self.num_layer = num_layer
|
| 401 |
+
self.encoder_layers = nn.ModuleList([
|
| 402 |
+
Olmo2DecoderLayerForSemiNAT(config, layer_idx)
|
| 403 |
+
for layer_idx in range(self.num_layer)
|
| 404 |
+
])
|
| 405 |
+
|
| 406 |
+
def forward(
|
| 407 |
+
self,
|
| 408 |
+
hidden_states: torch.Tensor,
|
| 409 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 410 |
+
past_key_value: Optional[Cache] = None,
|
| 411 |
+
output_attentions: Optional[bool] = False,
|
| 412 |
+
use_cache: Optional[bool] = False,
|
| 413 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 414 |
+
position_embeddings: Optional[Tuple[torch.Tensor,
|
| 415 |
+
torch.Tensor]] = None,
|
| 416 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor,
|
| 417 |
+
torch.FloatTensor]]]:
|
| 418 |
+
# pdb.set_trace()
|
| 419 |
+
for layer in self.encoder_layers:
|
| 420 |
+
outputs = layer(hidden_states=hidden_states,
|
| 421 |
+
output_attentions=output_attentions,
|
| 422 |
+
position_embeddings=position_embeddings,
|
| 423 |
+
attention_mask=attention_mask)
|
| 424 |
+
hidden_states = outputs[0]
|
| 425 |
+
# pdb.set_trace()
|
| 426 |
+
# only the last layer attn_weights and present_key_value are stored
|
| 427 |
+
# mean pool the hidden states across sequence (chunk)
|
| 428 |
+
# hidden_states = torch.mean(hidden_states, dim=1)
|
| 429 |
+
return hidden_states
|
| 430 |
+
|
| 431 |
+
|
| 432 |
+
class NATDecoderForSemiNAT(nn.Module):
|
| 433 |
+
|
| 434 |
+
def __init__(self, config: Olmo2Config, num_layer: int = 1):
|
| 435 |
+
super().__init__()
|
| 436 |
+
self.num_layer = num_layer
|
| 437 |
+
self.decoder_layers = nn.ModuleList([
|
| 438 |
+
Olmo2DecoderLayerForSemiNAT(config, layer_idx, False)
|
| 439 |
+
for layer_idx in range(self.num_layer)
|
| 440 |
+
])
|
| 441 |
+
|
| 442 |
+
def forward(
|
| 443 |
+
self,
|
| 444 |
+
hidden_states: torch.Tensor,
|
| 445 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 446 |
+
past_key_value: Optional[Cache] = None,
|
| 447 |
+
output_attentions: Optional[bool] = False,
|
| 448 |
+
use_cache: Optional[bool] = False,
|
| 449 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 450 |
+
position_embeddings: Optional[Tuple[torch.Tensor,
|
| 451 |
+
torch.Tensor]] = None,
|
| 452 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor,
|
| 453 |
+
torch.FloatTensor]]]:
|
| 454 |
+
|
| 455 |
+
for layer in self.decoder_layers:
|
| 456 |
+
# pdb.set_trace()
|
| 457 |
+
outputs = layer(hidden_states=hidden_states,
|
| 458 |
+
attention_mask=attention_mask,
|
| 459 |
+
output_attentions=output_attentions,
|
| 460 |
+
position_embeddings=position_embeddings)
|
| 461 |
+
hidden_states = outputs[0]
|
| 462 |
+
return hidden_states
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
class Olmo2ModelForSemiNAT(Olmo2Model):
|
| 466 |
+
|
| 467 |
+
def __init__(self, config):
|
| 468 |
+
super().__init__(config)
|
| 469 |
+
self.layers = nn.ModuleList([
|
| 470 |
+
Olmo2DecoderLayer(config, layer_idx)
|
| 471 |
+
for layer_idx in range(config.num_hidden_layers)
|
| 472 |
+
])
|
| 473 |
+
|
| 474 |
+
self.decoder = NATDecoderForSemiNAT(config, 1)
|
| 475 |
+
self.encoder = NATEncoderForSemiNAT(config, 1)
|
| 476 |
+
|
| 477 |
+
|
| 478 |
+
# pdb.set_trace()
|
| 479 |
+
self.chunk_size_limit = config.chunk_size_limit
|
| 480 |
+
self.norm = Olmo2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 481 |
+
self.rotary_emb = Olmo2RotaryEmbedding(config=config)
|
| 482 |
+
self.pos_encoder = AbsolutePositionalEncoding(config.hidden_size)
|
| 483 |
+
self.gradient_checkpointing = False
|
| 484 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size,
|
| 485 |
+
self.padding_idx)
|
| 486 |
+
|
| 487 |
+
|
| 488 |
+
self.length_predictor = nn.Linear(config.hidden_size,
|
| 489 |
+
self.chunk_size_limit)
|
| 490 |
+
|
| 491 |
+
# self.linear_projection = TwoLayerMLP(config.hidden_size)
|
| 492 |
+
|
| 493 |
+
|
| 494 |
+
def forward(
|
| 495 |
+
self,
|
| 496 |
+
input_ids: torch.LongTensor = None,
|
| 497 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 498 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 499 |
+
slice_pos: torch.Tensor = None,
|
| 500 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 501 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 502 |
+
use_cache: Optional[bool] = None,
|
| 503 |
+
output_attentions: Optional[bool] = None,
|
| 504 |
+
output_hidden_states: Optional[bool] = None,
|
| 505 |
+
return_dict: Optional[bool] = None,
|
| 506 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 507 |
+
inference: Optional[bool] = None,
|
| 508 |
+
padding: Optional[torch.Tensor] = None,
|
| 509 |
+
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
|
| 510 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 511 |
+
|
| 512 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 513 |
+
output_hidden_states = (output_hidden_states
|
| 514 |
+
if output_hidden_states is not None else
|
| 515 |
+
self.config.output_hidden_states)
|
| 516 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 517 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 518 |
+
|
| 519 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 520 |
+
raise ValueError(
|
| 521 |
+
"You must specify exactly one of input_ids or inputs_embeds")
|
| 522 |
+
|
| 523 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
| 524 |
+
logger.warning_once(
|
| 525 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
| 526 |
+
)
|
| 527 |
+
use_cache = False
|
| 528 |
+
|
| 529 |
+
if inputs_embeds is None:
|
| 530 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 531 |
+
|
| 532 |
+
if use_cache and past_key_values is None:
|
| 533 |
+
past_key_values = DynamicCache()
|
| 534 |
+
|
| 535 |
+
if cache_position is None:
|
| 536 |
+
past_seen_tokens = past_key_values.get_seq_length(
|
| 537 |
+
) if past_key_values is not None else 0
|
| 538 |
+
cache_position = torch.arange(past_seen_tokens,
|
| 539 |
+
past_seen_tokens +
|
| 540 |
+
inputs_embeds.shape[1],
|
| 541 |
+
device=inputs_embeds.device)
|
| 542 |
+
|
| 543 |
+
if position_ids is None:
|
| 544 |
+
position_ids = cache_position.unsqueeze(0)
|
| 545 |
+
|
| 546 |
+
if inference is not None:
|
| 547 |
+
position_ids = cache_position.unsqueeze(0)
|
| 548 |
+
|
| 549 |
+
|
| 550 |
+
|
| 551 |
+
position_embeddings = self.rotary_emb(inputs_embeds, position_ids)
|
| 552 |
+
all_hidden_states = () if output_hidden_states else None
|
| 553 |
+
all_self_attns = () if output_attentions else None
|
| 554 |
+
next_decoder_cache = None
|
| 555 |
+
max_chunk_num = (slice_pos != -1).sum(dim=1).max()
|
| 556 |
+
|
| 557 |
+
# pdb.set_trace()
|
| 558 |
+
|
| 559 |
+
################################ 并行处理 #################################
|
| 560 |
+
M_avg, attn_mask, length_ground_truth, chunk_attention_mask, slice_num = self.build_slice_matrix(slice_pos) # torch.Size([1, 111, 512])
|
| 561 |
+
|
| 562 |
+
# pdb.set_trace()
|
| 563 |
+
encoded_input = self.encoder(inputs_embeds,position_embeddings=position_embeddings,attention_mask=attn_mask) # torch.Size([1, 512, 2048])
|
| 564 |
+
# 这里attention_mask没有用,因为encoder没有attention层
|
| 565 |
+
|
| 566 |
+
M_avg = M_avg.contiguous()
|
| 567 |
+
encoded_input = encoded_input.contiguous()
|
| 568 |
+
M_avg = M_avg.to(torch.bfloat16)
|
| 569 |
+
encoded_input = encoded_input.to(torch.bfloat16)
|
| 570 |
+
|
| 571 |
+
chunk_inputs_embeds = torch.matmul(M_avg, encoded_input)
|
| 572 |
+
accumu_num = sum(slice_num)-encoded_input.shape[0]
|
| 573 |
+
# pdb.set_trace()
|
| 574 |
+
################################ 并行处理 #################################
|
| 575 |
+
|
| 576 |
+
|
| 577 |
+
################################ 串行处理 #################################
|
| 578 |
+
# initialize chunk inputs as embedding of [pad]
|
| 579 |
+
# pad_token_id = padding
|
| 580 |
+
# batch_size, seq_len, hidden_size = inputs_embeds.shape
|
| 581 |
+
# pad_embedding = self.embed_tokens(
|
| 582 |
+
# torch.tensor([pad_token_id]).to(inputs_embeds.device)) # 1, 2048
|
| 583 |
+
|
| 584 |
+
# # pdb.set_trace()
|
| 585 |
+
# chunk_inputs_embeds = pad_embedding.expand(
|
| 586 |
+
# batch_size, max_chunk_num, hidden_size).clone().to(
|
| 587 |
+
# inputs_embeds.device)
|
| 588 |
+
|
| 589 |
+
# length_ground_truth = []
|
| 590 |
+
# chunk_attention_mask = []
|
| 591 |
+
# chunk_labels = []
|
| 592 |
+
# # max_chunk_num = 0
|
| 593 |
+
# accumu_num = 0
|
| 594 |
+
# slice_nums = []
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
|
| 598 |
+
# for b in range(batch_size):
|
| 599 |
+
# slice_num = 0
|
| 600 |
+
# start_position = 0
|
| 601 |
+
# slice_length = []
|
| 602 |
+
# for i in range(seq_len):
|
| 603 |
+
# cut = slice_pos[b, i].item() # 获取切分点
|
| 604 |
+
# if cut == -1: # 如果切分点为 -1,表示不切分
|
| 605 |
+
# pass
|
| 606 |
+
# else:
|
| 607 |
+
# cut += 1 # +1表示在后面切一刀
|
| 608 |
+
# chunk_inputs_embeds[b, i] = self.encoder(
|
| 609 |
+
# inputs_embeds[b, start_position:cut].unsqueeze(0),
|
| 610 |
+
# position_embeddings=tuple(
|
| 611 |
+
# tensor[0, 0:cut -
|
| 612 |
+
# start_position, :].unsqueeze(0)
|
| 613 |
+
# for tensor in position_embeddings))
|
| 614 |
+
# slice_num += 1
|
| 615 |
+
# slice_length.append(cut - start_position)
|
| 616 |
+
# if cut - start_position > 10 or cut - start_position < 0:
|
| 617 |
+
# pdb.set_trace()
|
| 618 |
+
# start_position = cut # 更新切分起点
|
| 619 |
+
# slice_nums.append(slice_num) # 每个样本的 chunk 数量
|
| 620 |
+
# # max_chunk_num = max(max_chunk_num, slice_num) # 不用这个,直接用累计的chunk num
|
| 621 |
+
# accumu_num += slice_num
|
| 622 |
+
# chunk_attention_mask.append(
|
| 623 |
+
# torch.tensor([1] * slice_num + [0] *
|
| 624 |
+
# (seq_len - slice_num)).unsqueeze(
|
| 625 |
+
# 0)) # 1表示切分,0表示不切分
|
| 626 |
+
# length_ground_truth.append(
|
| 627 |
+
# torch.tensor(slice_length + [-100] *
|
| 628 |
+
# (seq_len - slice_num)).unsqueeze(0)) # -100表示不切分
|
| 629 |
+
# accumu_num -= batch_size
|
| 630 |
+
|
| 631 |
+
# # pdb.set_trace()
|
| 632 |
+
|
| 633 |
+
|
| 634 |
+
# chunk_attention_mask = torch.cat(chunk_attention_mask, dim=0).to(
|
| 635 |
+
# inputs_embeds.device) # torch.Size([1, 256]) bs * length
|
| 636 |
+
|
| 637 |
+
# length_ground_truth = torch.cat(length_ground_truth,
|
| 638 |
+
# dim=0).to(inputs_embeds.device)
|
| 639 |
+
|
| 640 |
+
|
| 641 |
+
################################ 串行处理 #################################
|
| 642 |
+
|
| 643 |
+
|
| 644 |
+
# 取最长chunk长度裁剪,加速计算
|
| 645 |
+
chunk_inputs_embeds = chunk_inputs_embeds[:, :max_chunk_num, :]
|
| 646 |
+
chunk_attention_mask = chunk_attention_mask[:, :max_chunk_num]
|
| 647 |
+
length_ground_truth = length_ground_truth[:,:max_chunk_num]
|
| 648 |
+
chunk_position_ids = position_ids[:,:max_chunk_num]
|
| 649 |
+
chunk_cache_position = cache_position[:max_chunk_num]
|
| 650 |
+
|
| 651 |
+
chunk_position_embeddings = self.rotary_emb(
|
| 652 |
+
chunk_inputs_embeds, chunk_position_ids
|
| 653 |
+
) # tuple, 第一个元素为 torch.Size([1, 256, 128]),最后一个维度是 hidden_size / head , cos 和 sin 各 64 维
|
| 654 |
+
|
| 655 |
+
hidden_states = chunk_inputs_embeds # bs * max_chunk_num * hidden_size
|
| 656 |
+
|
| 657 |
+
# pdb.set_trace()
|
| 658 |
+
|
| 659 |
+
|
| 660 |
+
# inference待check
|
| 661 |
+
if inference is not None:
|
| 662 |
+
|
| 663 |
+
# inference 把填充去掉
|
| 664 |
+
mask_bool = chunk_attention_mask.bool()
|
| 665 |
+
chunk_inputs_embeds = chunk_inputs_embeds[mask_bool.unsqueeze(
|
| 666 |
+
-1).expand_as(chunk_inputs_embeds)].view(
|
| 667 |
+
chunk_inputs_embeds.size(0), -1,
|
| 668 |
+
chunk_inputs_embeds.size(2))
|
| 669 |
+
chunk_attention_mask = chunk_attention_mask[mask_bool].view(
|
| 670 |
+
chunk_attention_mask.size(0), -1)
|
| 671 |
+
|
| 672 |
+
# pdb.set_trace()
|
| 673 |
+
chunk_inputs_embeds = chunk_inputs_embeds[:,
|
| 674 |
+
chunk_cache_position, :]
|
| 675 |
+
chunk_attention_mask = chunk_attention_mask[:,
|
| 676 |
+
chunk_cache_position]
|
| 677 |
+
|
| 678 |
+
hidden_states = chunk_inputs_embeds
|
| 679 |
+
|
| 680 |
+
|
| 681 |
+
# pdb.set_trace()
|
| 682 |
+
|
| 683 |
+
|
| 684 |
+
causal_mask = self._update_causal_mask(chunk_attention_mask,
|
| 685 |
+
chunk_inputs_embeds,
|
| 686 |
+
chunk_cache_position,
|
| 687 |
+
past_key_values,
|
| 688 |
+
output_attentions)
|
| 689 |
+
|
| 690 |
+
|
| 691 |
+
# pdb.set_trace()
|
| 692 |
+
for decoder_layer in self.layers:
|
| 693 |
+
if output_hidden_states:
|
| 694 |
+
all_hidden_states += (hidden_states, )
|
| 695 |
+
if self.gradient_checkpointing and self.training:
|
| 696 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 697 |
+
decoder_layer.__call__,
|
| 698 |
+
hidden_states,
|
| 699 |
+
causal_mask,
|
| 700 |
+
position_ids,
|
| 701 |
+
past_key_values,
|
| 702 |
+
output_attentions,
|
| 703 |
+
use_cache,
|
| 704 |
+
cache_position,
|
| 705 |
+
chunk_position_embeddings,
|
| 706 |
+
)
|
| 707 |
+
else:
|
| 708 |
+
layer_outputs = decoder_layer(
|
| 709 |
+
hidden_states,
|
| 710 |
+
attention_mask=causal_mask,
|
| 711 |
+
position_ids=position_ids,
|
| 712 |
+
past_key_value=past_key_values,
|
| 713 |
+
output_attentions=output_attentions,
|
| 714 |
+
use_cache=use_cache,
|
| 715 |
+
cache_position=cache_position,
|
| 716 |
+
position_embeddings=chunk_position_embeddings,
|
| 717 |
+
**flash_attn_kwargs,
|
| 718 |
+
)
|
| 719 |
+
|
| 720 |
+
hidden_states = layer_outputs[0]
|
| 721 |
+
|
| 722 |
+
if output_attentions:
|
| 723 |
+
all_self_attns += (layer_outputs[1], )
|
| 724 |
+
|
| 725 |
+
|
| 726 |
+
|
| 727 |
+
|
| 728 |
+
# pdb.set_trace()
|
| 729 |
+
# add hidden states from the last decoder layer
|
| 730 |
+
if output_hidden_states:
|
| 731 |
+
all_hidden_states += (hidden_states, )
|
| 732 |
+
|
| 733 |
+
hidden_states = self.norm(
|
| 734 |
+
hidden_states) # bs * max_chunk_num * hidden_size 所有chunk的hidden
|
| 735 |
+
|
| 736 |
+
# pdb.set_trace()
|
| 737 |
+
|
| 738 |
+
# 算长度预测loss
|
| 739 |
+
self.length_predictor = self.length_predictor.to(
|
| 740 |
+
hidden_states.device).to(hidden_states.dtype) #这里强行变成了bf16,因为训练是这个
|
| 741 |
+
length_logits = self.length_predictor(
|
| 742 |
+
hidden_states.to(
|
| 743 |
+
hidden_states.device)) # bs * length * chunk_size_limit
|
| 744 |
+
|
| 745 |
+
# pdb.set_trace()
|
| 746 |
+
|
| 747 |
+
next_cache = next_decoder_cache if use_cache else None # DynamicCache()
|
| 748 |
+
# if return_legacy_cache:
|
| 749 |
+
# next_cache = next_cache.to_legacy_cache()
|
| 750 |
+
|
| 751 |
+
|
| 752 |
+
# pdb.set_trace()
|
| 753 |
+
|
| 754 |
+
nar_hidden_states = None
|
| 755 |
+
if inference is None:
|
| 756 |
+
# NAR decoder
|
| 757 |
+
bs, length, hidden_size = hidden_states.size()
|
| 758 |
+
assert length == max_chunk_num
|
| 759 |
+
|
| 760 |
+
|
| 761 |
+
|
| 762 |
+
|
| 763 |
+
|
| 764 |
+
|
| 765 |
+
# shape: (bs * max_chunk_num) * chunk_size_limit * hidden_size
|
| 766 |
+
# try:
|
| 767 |
+
# nat_input_embeddings = torch.zeros(
|
| 768 |
+
# accumu_num, self.chunk_size_limit,
|
| 769 |
+
# hidden_size).to(hidden_states.device).to(hidden_states.dtype)
|
| 770 |
+
# except:
|
| 771 |
+
# pdb.set_trace()
|
| 772 |
+
# nat_attention_mask = torch.zeros(
|
| 773 |
+
# accumu_num, self.chunk_size_limit).to(hidden_states.device).to(
|
| 774 |
+
# hidden_states.dtype)
|
| 775 |
+
# tot_chunk_num = 0
|
| 776 |
+
|
| 777 |
+
|
| 778 |
+
|
| 779 |
+
nat_input_embeddings, nat_attention_mask = self.repeat_with_limit_and_pad(
|
| 780 |
+
hidden_states, length_ground_truth, self.chunk_size_limit, skip_val=-100)
|
| 781 |
+
|
| 782 |
+
|
| 783 |
+
|
| 784 |
+
|
| 785 |
+
|
| 786 |
+
|
| 787 |
+
|
| 788 |
+
|
| 789 |
+
|
| 790 |
+
# pdb.set_trace()
|
| 791 |
+
# for b in range(bs):
|
| 792 |
+
# for i in range(slice_num[b]):
|
| 793 |
+
# # slice_nums[b] 是每个样本的 chunk 数量
|
| 794 |
+
# # length_ground_truth[b] 是每个样本的真实长度
|
| 795 |
+
# # copy length_ground_truth 份的 hidden_states 到 nat_input_embeddings
|
| 796 |
+
|
| 797 |
+
# if length_ground_truth[b, i + 1] != -100:
|
| 798 |
+
# # pdb.set_trace()
|
| 799 |
+
# nat_input_embeddings[
|
| 800 |
+
# tot_chunk_num, :length_ground_truth[
|
| 801 |
+
# b, i +
|
| 802 |
+
# 1], :] = hidden_states[b, i:i + 1, :].expand(
|
| 803 |
+
# length_ground_truth[b, i + 1], hidden_size)
|
| 804 |
+
# nat_attention_mask[tot_chunk_num, :length_ground_truth[
|
| 805 |
+
# b, i + 1]] = torch.tensor(
|
| 806 |
+
# [1] * length_ground_truth[b, i + 1])
|
| 807 |
+
# tot_chunk_num += 1
|
| 808 |
+
# # pdb.set_trace()
|
| 809 |
+
# else:
|
| 810 |
+
# break
|
| 811 |
+
|
| 812 |
+
|
| 813 |
+
|
| 814 |
+
# pdb.set_trace()
|
| 815 |
+
# nar_chunk_position = torch.arange(
|
| 816 |
+
# 0, self.chunk_size_limit).unsqueeze(0).repeat(
|
| 817 |
+
# accumu_num,
|
| 818 |
+
# 1).to(hidden_states.device) # bs * max_chunk_num
|
| 819 |
+
|
| 820 |
+
# nar_position_embeddings = self.rotary_emb(nat_attention_mask,
|
| 821 |
+
# nar_chunk_position)
|
| 822 |
+
|
| 823 |
+
|
| 824 |
+
# pdb.set_trace()
|
| 825 |
+
|
| 826 |
+
nat_input_embeddings = self.pos_encoder(nat_input_embeddings) # 加上绝对位置编码
|
| 827 |
+
|
| 828 |
+
|
| 829 |
+
self.decoder = self.decoder.to(dtype=nat_input_embeddings.dtype)
|
| 830 |
+
|
| 831 |
+
|
| 832 |
+
# 处理attention
|
| 833 |
+
mask_nat_attention_mask = self.nat_prepare_4d_full_attention_mask_without_causal(
|
| 834 |
+
attention_mask=nat_attention_mask,
|
| 835 |
+
dtype=nat_attention_mask.dtype,
|
| 836 |
+
device=nat_attention_mask.device)
|
| 837 |
+
|
| 838 |
+
|
| 839 |
+
# pdb.set_trace()
|
| 840 |
+
nar_hidden_states = self.decoder(
|
| 841 |
+
nat_input_embeddings,
|
| 842 |
+
attention_mask=mask_nat_attention_mask,
|
| 843 |
+
# attention_mask=None,
|
| 844 |
+
# position_embeddings=nar_position_embeddings,
|
| 845 |
+
position_embeddings=None, #使用绝对位置,不传相对位置
|
| 846 |
+
output_attentions=output_attentions,
|
| 847 |
+
use_cache=use_cache,
|
| 848 |
+
cache_position=None,
|
| 849 |
+
)
|
| 850 |
+
|
| 851 |
+
nar_hidden_states = self.norm(
|
| 852 |
+
nar_hidden_states) # bs * max_chunk_num * hidden_size
|
| 853 |
+
|
| 854 |
+
|
| 855 |
+
return ModelOutputWithPastForSemiNAT(
|
| 856 |
+
chunk_hidden_state=hidden_states,
|
| 857 |
+
length_ground_truth=length_ground_truth,
|
| 858 |
+
length_logits=length_logits,
|
| 859 |
+
position_embeddings=position_embeddings,
|
| 860 |
+
nar_hidden_state=nar_hidden_states,
|
| 861 |
+
past_key_values=next_cache,
|
| 862 |
+
hidden_states=all_hidden_states,
|
| 863 |
+
attentions=all_self_attns,
|
| 864 |
+
)
|
| 865 |
+
# @staticmethod
|
| 866 |
+
# def nat_prepare_4d_full_attention_mask_without_causal(
|
| 867 |
+
# self,
|
| 868 |
+
# attention_mask: torch.Tensor,
|
| 869 |
+
# dtype: torch.dtype,
|
| 870 |
+
# device: torch.device,
|
| 871 |
+
# ) -> torch.Tensor:
|
| 872 |
+
# """
|
| 873 |
+
# 构造一个非 causal 的 full attention mask,仅遮挡 padding token。
|
| 874 |
+
|
| 875 |
+
# Args:
|
| 876 |
+
# attention_mask (torch.Tensor): (batch_size, seq_len) 中 1 表示有效 token,0 表示 padding。
|
| 877 |
+
# dtype (torch.dtype): 生成的 mask 的数据类型(通常为 torch.float32/bfloat16)。
|
| 878 |
+
# device (torch.device): mask 所在设备。
|
| 879 |
+
|
| 880 |
+
# Returns:
|
| 881 |
+
# torch.Tensor: shape = (batch_size, 1, seq_len, seq_len),非 padding token 两两可见,padding 被遮挡。
|
| 882 |
+
# """
|
| 883 |
+
# if attention_mask.dim() != 2:
|
| 884 |
+
# raise ValueError("Expected 2D attention_mask of shape (batch_size, seq_len)")
|
| 885 |
+
|
| 886 |
+
# batch_size, seq_len = attention_mask.shape
|
| 887 |
+
# attention_mask = attention_mask.to(dtype=torch.float32) # 强制 float32 再做广播逻辑
|
| 888 |
+
# attention_mask = attention_mask.to(device)
|
| 889 |
+
|
| 890 |
+
# # outer product: only keep positions where both query and key are valid (1 * 1 = 1)
|
| 891 |
+
# visible_mask = attention_mask[:, None, :, None] * attention_mask[:, None, None, :] # (bs, 1, seq_len, seq_len)
|
| 892 |
+
|
| 893 |
+
# # 转为 additive mask:0 -> 0.0, 1 -> -inf(被遮住的位置是 -inf)
|
| 894 |
+
# min_dtype = torch.finfo(dtype).min
|
| 895 |
+
# full_attention_mask = (1.0 - visible_mask) * min_dtype # 有效区域是 0.0,其他是 -inf
|
| 896 |
+
|
| 897 |
+
# return full_attention_mask.to(dtype=dtype)
|
| 898 |
+
|
| 899 |
+
|
| 900 |
+
# def nat_prepare_4d_full_attention_mask_no_masking(
|
| 901 |
+
# self,
|
| 902 |
+
# attention_mask: torch.Tensor, # (bs, L),此处不会被使用
|
| 903 |
+
# dtype: torch.dtype, # torch.float32/bfloat16
|
| 904 |
+
# device: torch.device,
|
| 905 |
+
# mask_val: float = -1e4, # 不会被使用
|
| 906 |
+
# ) -> torch.Tensor:
|
| 907 |
+
# """
|
| 908 |
+
# 构造完全互看的 attention mask,包括 padding token。
|
| 909 |
+
# - 所有 query 可以看所有 key;
|
| 910 |
+
# - additive mask 全为 0(无任何遮挡);
|
| 911 |
+
# 返回 shape = (bs, 1, L, L)
|
| 912 |
+
# """
|
| 913 |
+
# if attention_mask.dim() != 2:
|
| 914 |
+
# raise ValueError(
|
| 915 |
+
# "Expected 2-D attention_mask with shape (batch, seq_len)")
|
| 916 |
+
|
| 917 |
+
# bs, L = attention_mask.shape
|
| 918 |
+
# additive_mask = torch.zeros((bs, 1, L, L), dtype=dtype,
|
| 919 |
+
# device=device) # 全 0,代表全可见
|
| 920 |
+
|
| 921 |
+
# return additive_mask
|
| 922 |
+
|
| 923 |
+
|
| 924 |
+
def repeat_with_limit_and_pad(self, x: torch.Tensor, repeat_counts: torch.Tensor, chunk_limit: int, skip_val: int = -100):
|
| 925 |
+
"""
|
| 926 |
+
对 x 中的每个位置复制若干次(最多 chunk_limit 次),不足则 padding,跳过 repeat=-100 的项。
|
| 927 |
+
|
| 928 |
+
参数:
|
| 929 |
+
- x: Tensor of shape (bs, length, hidden)
|
| 930 |
+
- repeat_counts: Tensor of shape (bs, length),每个位置的复制次数,-100 表示跳过
|
| 931 |
+
- chunk_limit: int,每个位置最多复制的次数,不足则 padding
|
| 932 |
+
- skip_val: int,跳过标记值,默认 -100
|
| 933 |
+
|
| 934 |
+
返回:
|
| 935 |
+
- Tensor of shape (chunk_num, chunk_limit, hidden)
|
| 936 |
+
"""
|
| 937 |
+
bs, length, hidden = x.shape
|
| 938 |
+
device = x.device
|
| 939 |
+
|
| 940 |
+
|
| 941 |
+
x = x[:,:-1,:]
|
| 942 |
+
repeat_counts = repeat_counts[:,1:]
|
| 943 |
+
|
| 944 |
+
# Step 1: 展平 & 过滤有效位置
|
| 945 |
+
x_flat = x.reshape(-1, hidden) # (bs * length, hidden)
|
| 946 |
+
repeat_flat = repeat_counts.reshape(-1) # (bs * length,)
|
| 947 |
+
|
| 948 |
+
valid_mask = repeat_flat != skip_val
|
| 949 |
+
x_valid = x_flat[valid_mask] # (chunk_num, hidden)
|
| 950 |
+
repeat_valid = repeat_flat[valid_mask].clamp_max(chunk_limit) # (chunk_num,)
|
| 951 |
+
|
| 952 |
+
# Step 2: 扩展向量
|
| 953 |
+
# chunk_num = x_valid.size(0)
|
| 954 |
+
repeated = x_valid.unsqueeze(1).expand(-1, chunk_limit, -1) # (chunk_num, chunk_limit, hidden)
|
| 955 |
+
|
| 956 |
+
# Step 3: 构造 mask,并乘以 mask 进行 padding
|
| 957 |
+
range_k = torch.arange(chunk_limit, device=device).unsqueeze(0) # (1, chunk_limit)
|
| 958 |
+
mask = (range_k < repeat_valid.unsqueeze(1)).unsqueeze(-1) # (chunk_num, chunk_limit, 1)
|
| 959 |
+
|
| 960 |
+
# Step 4: 应用 mask,padding
|
| 961 |
+
out = repeated * mask # masked 填 0
|
| 962 |
+
|
| 963 |
+
mask = mask.squeeze(-1).to(x.dtype)
|
| 964 |
+
# pdb.set_trace()
|
| 965 |
+
return out, mask # shape: (chunk_num, chunk_limit, hidden)
|
| 966 |
+
|
| 967 |
+
|
| 968 |
+
# def build_slice_matrix(self, slice_pos: torch.Tensor) -> torch.Tensor:
|
| 969 |
+
# bs, num_slices = slice_pos.shape
|
| 970 |
+
# seq_len = num_slices
|
| 971 |
+
|
| 972 |
+
# # 替换 -1 为 0 用于 prev 计算
|
| 973 |
+
# slice_pos_clipped = slice_pos.clone()
|
| 974 |
+
# slice_pos_clipped[slice_pos_clipped == -1] = 0
|
| 975 |
+
|
| 976 |
+
# # prevs (a) 和 currents (b)
|
| 977 |
+
# prevs = torch.cat([
|
| 978 |
+
# torch.zeros((bs,1), device=slice_pos.device, dtype=slice_pos.dtype),
|
| 979 |
+
# slice_pos_clipped[:, :-1] + 1
|
| 980 |
+
# ], dim=1)
|
| 981 |
+
# currents = slice_pos_clipped + 1
|
| 982 |
+
|
| 983 |
+
# # valid mask
|
| 984 |
+
# valid_mask = (slice_pos != -1)
|
| 985 |
+
# lengths = currents - prevs # (bs, num_slices)
|
| 986 |
+
# lengths[lengths <= 0] = -100 # 将0元素替换为-100
|
| 987 |
+
|
| 988 |
+
# # 统计每行非-100元素个数
|
| 989 |
+
# slice_num = (lengths != -100).sum(dim=1).tolist() # 每行非-100元素个数
|
| 990 |
+
|
| 991 |
+
# # 生成chunk_mask
|
| 992 |
+
# chunk_mask = torch.zeros_like(lengths, dtype=torch.long)
|
| 993 |
+
# for i in range(lengths.size(0)):
|
| 994 |
+
# chunk_mask[i, :slice_num[i]] = 1 # 前slice_num[i]个元素置1
|
| 995 |
+
# values = torch.zeros_like(lengths, dtype=torch.float)
|
| 996 |
+
# values[valid_mask] = 1.0 / lengths[valid_mask]
|
| 997 |
+
|
| 998 |
+
# chunk_nums = valid_mask.sum(dim=1) # (bs,)
|
| 999 |
+
# max_chunk_num = chunk_nums.max().item()
|
| 1000 |
+
|
| 1001 |
+
# # 初始化输出
|
| 1002 |
+
# M = torch.zeros((bs, max_chunk_num, seq_len), device=slice_pos.device)
|
| 1003 |
+
|
| 1004 |
+
# # 遍历 batch 填充
|
| 1005 |
+
# for b in range(bs):
|
| 1006 |
+
# a_b = prevs[b] # (num_slices,)
|
| 1007 |
+
# b_b = currents[b] # (num_slices,)
|
| 1008 |
+
# v_b = values[b] # (num_slices,)
|
| 1009 |
+
|
| 1010 |
+
# for i in range(num_slices):
|
| 1011 |
+
# if not valid_mask[b, i]:
|
| 1012 |
+
# continue
|
| 1013 |
+
# a = a_b[i].item()
|
| 1014 |
+
# b_ = b_b[i].item()
|
| 1015 |
+
# if b_ > a:
|
| 1016 |
+
# M[b, i, a:b_] = v_b[i]
|
| 1017 |
+
|
| 1018 |
+
# return M, lengths, chunk_mask, slice_num
|
| 1019 |
+
|
| 1020 |
+
def build_slice_matrix(self, slice_pos: torch.Tensor):
|
| 1021 |
+
bs, num_slices = slice_pos.shape
|
| 1022 |
+
seq_len = num_slices
|
| 1023 |
+
|
| 1024 |
+
# 替换 -1 为 0 用于 prev 计算
|
| 1025 |
+
slice_pos_clipped = slice_pos.clone()
|
| 1026 |
+
slice_pos_clipped[slice_pos_clipped == -1] = 0
|
| 1027 |
+
|
| 1028 |
+
# prevs (a) 和 currents (b)
|
| 1029 |
+
prevs = torch.cat([
|
| 1030 |
+
torch.zeros((bs, 1), device=slice_pos.device, dtype=slice_pos.dtype),
|
| 1031 |
+
slice_pos_clipped[:, :-1] + 1
|
| 1032 |
+
], dim=1)
|
| 1033 |
+
currents = slice_pos_clipped + 1
|
| 1034 |
+
|
| 1035 |
+
# valid mask
|
| 1036 |
+
valid_mask = (slice_pos != -1)
|
| 1037 |
+
lengths = currents - prevs # (bs, num_slices)
|
| 1038 |
+
lengths[lengths <= 0] = -100 # invalid values
|
| 1039 |
+
|
| 1040 |
+
# 每行非 -100 元素个数
|
| 1041 |
+
slice_num = (lengths != -100).sum(dim=1).tolist()
|
| 1042 |
+
|
| 1043 |
+
# chunk mask
|
| 1044 |
+
chunk_mask = torch.zeros_like(lengths, dtype=torch.long)
|
| 1045 |
+
for i in range(lengths.size(0)):
|
| 1046 |
+
chunk_mask[i, :slice_num[i]] = 1
|
| 1047 |
+
values = torch.zeros_like(lengths, dtype=torch.float)
|
| 1048 |
+
values[valid_mask] = 1.0 / lengths[valid_mask]
|
| 1049 |
+
|
| 1050 |
+
chunk_nums = valid_mask.sum(dim=1)
|
| 1051 |
+
max_chunk_num = chunk_nums.max().item()
|
| 1052 |
+
|
| 1053 |
+
# 初始化输出矩阵 M
|
| 1054 |
+
M = torch.zeros((bs, max_chunk_num, seq_len), device=slice_pos.device)
|
| 1055 |
+
|
| 1056 |
+
# 初始化 attention mask (bs, seq_len, seq_len),默认全部 mask 掉(True)
|
| 1057 |
+
attn_mask = torch.ones((bs, 1, seq_len, seq_len), dtype=torch.bool, device=slice_pos.device)
|
| 1058 |
+
|
| 1059 |
+
# 遍历填充 M 和 attention mask
|
| 1060 |
+
for b in range(bs):
|
| 1061 |
+
a_b = prevs[b]
|
| 1062 |
+
b_b = currents[b]
|
| 1063 |
+
v_b = values[b]
|
| 1064 |
+
|
| 1065 |
+
for i in range(num_slices):
|
| 1066 |
+
if not valid_mask[b, i]:
|
| 1067 |
+
continue
|
| 1068 |
+
a = a_b[i].item()
|
| 1069 |
+
b_ = b_b[i].item()
|
| 1070 |
+
if b_ > a:
|
| 1071 |
+
# 填充 chunk average matrix
|
| 1072 |
+
M[b, i, a:b_] = v_b[i]
|
| 1073 |
+
# 更新 attention mask,chunk 内不 mask(False)
|
| 1074 |
+
attn_mask[b, :, a:b_, a:b_] = False
|
| 1075 |
+
# pdb.set_trace()
|
| 1076 |
+
return M, attn_mask, lengths, chunk_mask, slice_num
|
| 1077 |
+
|
| 1078 |
+
|
| 1079 |
+
def nat_prepare_4d_full_attention_mask_without_causal(
|
| 1080 |
+
self,
|
| 1081 |
+
attention_mask: torch.Tensor, # (bs, L) 1=real, 0=pad
|
| 1082 |
+
dtype: torch.dtype, # torch.float32/bfloat16
|
| 1083 |
+
device: torch.device,
|
| 1084 |
+
mask_val: float = -1e4, # additive mask的遮挡值
|
| 1085 |
+
) -> torch.Tensor:
|
| 1086 |
+
"""
|
| 1087 |
+
- 对于 query 为有效 token (attention_mask==1) 的行:
|
| 1088 |
+
仅允许观看 key 也是有效 token 的列 -> 完全互看
|
| 1089 |
+
- 对于 query 为 padding 的行:
|
| 1090 |
+
采用 causal 下三角 (j <= i) -> 避免整行 -inf
|
| 1091 |
+
返回 shape = (bs, 1, L, L) 的 additive mask
|
| 1092 |
+
"""
|
| 1093 |
+
if attention_mask.dim() != 2:
|
| 1094 |
+
raise ValueError(
|
| 1095 |
+
"Expected 2-D attention_mask with shape (batch, seq_len)"
|
| 1096 |
+
)
|
| 1097 |
+
|
| 1098 |
+
bs, L = attention_mask.shape
|
| 1099 |
+
attn_mask_f = attention_mask.to(device=device, dtype=torch.float32) # 方便广播
|
| 1100 |
+
|
| 1101 |
+
# ---------- ① 有效 token 间的互看 ----------
|
| 1102 |
+
# valid2valid[b,i,j] = 1 ⇔ query_i 与 key_j 均为 real
|
| 1103 |
+
valid2valid = attn_mask_f[:, :, None] * attn_mask_f[:, None, :] # (bs, L, L)
|
| 1104 |
+
|
| 1105 |
+
# ---------- ② padding 行的因果下三角 ----------
|
| 1106 |
+
# lower_tri[i,j] = 1 ⇔ j ≤ i
|
| 1107 |
+
lower_tri = torch.tril(torch.ones(L, L, device=device))
|
| 1108 |
+
# query_is_pad: (bs, L, 1) 1=pad
|
| 1109 |
+
query_is_pad = (1.0 - attn_mask_f)[:, :, None]
|
| 1110 |
+
causal_part = query_is_pad * lower_tri # (bs, L, L)
|
| 1111 |
+
|
| 1112 |
+
# ---------- ③ 合并两部分 ----------
|
| 1113 |
+
visible = torch.clamp(valid2valid + causal_part, 0.0, 1.0) # (bs, L, L)
|
| 1114 |
+
|
| 1115 |
+
# ---------- ④ 变 additive mask ----------
|
| 1116 |
+
additive_mask = (1.0 - visible) * mask_val # 0->0, 1->mask_val
|
| 1117 |
+
additive_mask = additive_mask[:, None, :, :] # (bs,1,L,L)
|
| 1118 |
+
|
| 1119 |
+
return additive_mask.to(dtype=dtype)
|
| 1120 |
+
|
| 1121 |
+
|
| 1122 |
+
|
| 1123 |
+
def compute_chunk_lengths(slice_pos: torch.Tensor, pad_value: int = -100):
|
| 1124 |
+
"""
|
| 1125 |
+
Args:
|
| 1126 |
+
slice_pos: [B, L] 切分点,表示当前位置的 token 后面切一刀,-1 表示 padding
|
| 1127 |
+
Returns:
|
| 1128 |
+
length_gt: [B, max_chunk_num], 每个 chunk 的长度,不足部分填 pad_value
|
| 1129 |
+
"""
|
| 1130 |
+
B, L = slice_pos.shape
|
| 1131 |
+
device = slice_pos.device
|
| 1132 |
+
|
| 1133 |
+
length_ground_truth = []
|
| 1134 |
+
|
| 1135 |
+
for b in range(B):
|
| 1136 |
+
pos = slice_pos[b]
|
| 1137 |
+
pos = pos[pos != -1] + 1 # 获取有效切分点并 +1(实际切在后面)
|
| 1138 |
+
cuts = torch.cat([
|
| 1139 |
+
torch.tensor([0], device=device), # 起始点
|
| 1140 |
+
pos,
|
| 1141 |
+
])
|
| 1142 |
+
lens = cuts[1:] - cuts[:-1] # 计算每段长度
|
| 1143 |
+
|
| 1144 |
+
# 补齐到 max_chunk_num(L)
|
| 1145 |
+
padded = torch.full((L,), pad_value, device=device, dtype=torch.long)
|
| 1146 |
+
padded[:lens.shape[0]] = lens
|
| 1147 |
+
length_ground_truth.append(padded)
|
| 1148 |
+
|
| 1149 |
+
return torch.stack(length_ground_truth) # [B, L]
|
| 1150 |
+
|
| 1151 |
+
|
| 1152 |
+
|
| 1153 |
+
|
| 1154 |
+
class Olmo2ForCausalLMForSemiNAT(Olmo2ForCausalLM):
|
| 1155 |
+
|
| 1156 |
+
def __init__(self, config, *args, **kwargs):
|
| 1157 |
+
super().__init__(config, *args, **kwargs)
|
| 1158 |
+
self.pos_encoder = AbsolutePositionalEncoding(config.hidden_size)
|
| 1159 |
+
self.config = config
|
| 1160 |
+
self.padding_idx = config.pad_token_id
|
| 1161 |
+
self.vocab_size = config.vocab_size
|
| 1162 |
+
|
| 1163 |
+
self.chunk_size_limit = config.chunk_size_limit
|
| 1164 |
+
self.model = Olmo2ModelForSemiNAT(config)
|
| 1165 |
+
self.vocab_size = config.vocab_size
|
| 1166 |
+
self.lm_head = nn.Linear(config.hidden_size,
|
| 1167 |
+
config.vocab_size,
|
| 1168 |
+
bias=False)
|
| 1169 |
+
|
| 1170 |
+
# Initialize weights and apply final processing
|
| 1171 |
+
self.post_init()
|
| 1172 |
+
|
| 1173 |
+
def forward(
|
| 1174 |
+
self,
|
| 1175 |
+
input_ids: torch.LongTensor = None,
|
| 1176 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1177 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1178 |
+
slice_pos: Optional[torch.Tensor] = None,
|
| 1179 |
+
slice_label: Optional[torch.Tensor] = None,
|
| 1180 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1181 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1182 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1183 |
+
use_cache: Optional[bool] = None,
|
| 1184 |
+
output_attentions: Optional[bool] = None,
|
| 1185 |
+
output_hidden_states: Optional[bool] = None,
|
| 1186 |
+
return_dict: Optional[bool] = None,
|
| 1187 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1188 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
| 1189 |
+
# padding: Optional[torch.Tensor] = None,
|
| 1190 |
+
**kwargs: Unpack[KwargsForCausalLM],
|
| 1191 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1192 |
+
|
| 1193 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1194 |
+
output_hidden_states = (output_hidden_states
|
| 1195 |
+
if output_hidden_states is not None else
|
| 1196 |
+
self.config.output_hidden_states)
|
| 1197 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1198 |
+
|
| 1199 |
+
# pdb.set_trace()
|
| 1200 |
+
|
| 1201 |
+
# start = time.time()
|
| 1202 |
+
|
| 1203 |
+
|
| 1204 |
+
if labels is not None:
|
| 1205 |
+
outputs = self.model(
|
| 1206 |
+
input_ids=input_ids, # bs * length
|
| 1207 |
+
attention_mask=attention_mask, # bs * length
|
| 1208 |
+
position_ids=position_ids,
|
| 1209 |
+
slice_pos=slice_pos,
|
| 1210 |
+
past_key_values=past_key_values,
|
| 1211 |
+
inputs_embeds=inputs_embeds,
|
| 1212 |
+
use_cache=use_cache,
|
| 1213 |
+
output_attentions=output_attentions,
|
| 1214 |
+
output_hidden_states=output_hidden_states,
|
| 1215 |
+
return_dict=return_dict,
|
| 1216 |
+
cache_position=cache_position,
|
| 1217 |
+
padding=self.padding_idx,
|
| 1218 |
+
**kwargs,
|
| 1219 |
+
)
|
| 1220 |
+
else:
|
| 1221 |
+
outputs = self.model(
|
| 1222 |
+
input_ids=input_ids, # bs * length
|
| 1223 |
+
attention_mask=attention_mask, # bs * length
|
| 1224 |
+
position_ids=position_ids,
|
| 1225 |
+
slice_pos=slice_pos,
|
| 1226 |
+
past_key_values=past_key_values,
|
| 1227 |
+
inputs_embeds=inputs_embeds,
|
| 1228 |
+
use_cache=use_cache,
|
| 1229 |
+
output_attentions=output_attentions,
|
| 1230 |
+
output_hidden_states=output_hidden_states,
|
| 1231 |
+
return_dict=return_dict,
|
| 1232 |
+
cache_position=cache_position,
|
| 1233 |
+
padding=self.padding_idx,
|
| 1234 |
+
inference=True,
|
| 1235 |
+
)
|
| 1236 |
+
|
| 1237 |
+
# end1 = time.time()
|
| 1238 |
+
# print(f"end1 time: {end1 - start:.4f} 秒")
|
| 1239 |
+
|
| 1240 |
+
|
| 1241 |
+
|
| 1242 |
+
# pdb.set_trace()
|
| 1243 |
+
|
| 1244 |
+
|
| 1245 |
+
|
| 1246 |
+
chunk_hidden_states = outputs.chunk_hidden_state
|
| 1247 |
+
bs, length, hidden_size = chunk_hidden_states.size()
|
| 1248 |
+
|
| 1249 |
+
|
| 1250 |
+
############################# loss 计算,分两部分 #############################
|
| 1251 |
+
loss = None
|
| 1252 |
+
loss1 = None
|
| 1253 |
+
loss2 = None
|
| 1254 |
+
############################# 首先, 接上mlp,预测长度的loss,维度是10#############################
|
| 1255 |
+
|
| 1256 |
+
if labels is not None:
|
| 1257 |
+
|
| 1258 |
+
length_ground_truth = outputs.length_ground_truth
|
| 1259 |
+
length_logits = outputs.length_logits
|
| 1260 |
+
|
| 1261 |
+
new_length_ground_truth = torch.where(
|
| 1262 |
+
length_ground_truth != -100, # 条件:不等于 -100
|
| 1263 |
+
length_ground_truth - 1, # 如果条件为真,执行 labels - 1
|
| 1264 |
+
length_ground_truth # 否则保持原值
|
| 1265 |
+
)
|
| 1266 |
+
|
| 1267 |
+
# pdb.set_trace()
|
| 1268 |
+
|
| 1269 |
+
shift_length_logits = length_logits[:, :-1, :]
|
| 1270 |
+
shift_new_length_ground_truth = new_length_ground_truth[:, 1:]
|
| 1271 |
+
|
| 1272 |
+
logits_flat = shift_length_logits.reshape(
|
| 1273 |
+
-1,
|
| 1274 |
+
self.chunk_size_limit) # 形状变为 [bs * length, chunk_size_limit]
|
| 1275 |
+
labels_flat = shift_new_length_ground_truth.reshape(
|
| 1276 |
+
-1) # [bs * length]
|
| 1277 |
+
|
| 1278 |
+
# softmax logits to get probability
|
| 1279 |
+
logits_flat = torch.nn.functional.softmax(logits_flat, dim=-1)
|
| 1280 |
+
|
| 1281 |
+
# 修改 loss 为 MSE: 首先根据 logits 加权得到预测长度(注意不是 argmax),之后与 label 计算 MSE
|
| 1282 |
+
|
| 1283 |
+
# pdb.set_trace()
|
| 1284 |
+
# 计算预测长度
|
| 1285 |
+
predicted_lengths = torch.sum(
|
| 1286 |
+
logits_flat * torch.arange(self.chunk_size_limit).to(
|
| 1287 |
+
chunk_hidden_states.device).to(chunk_hidden_states.dtype),
|
| 1288 |
+
dim=1)
|
| 1289 |
+
# 计算预测长度与真实长度之间的均方误差
|
| 1290 |
+
|
| 1291 |
+
|
| 1292 |
+
|
| 1293 |
+
|
| 1294 |
+
shift_slice_label = slice_label[:, 1:length_logits.size(1)] #用最大chunk数阶段
|
| 1295 |
+
slice_label_flat = shift_slice_label.reshape(-1)
|
| 1296 |
+
|
| 1297 |
+
# 对应 labels_flat 的 global indices
|
| 1298 |
+
indices = torch.arange(0, labels_flat.size(0), device=labels_flat.device)
|
| 1299 |
+
mask = (slice_label_flat == -1)
|
| 1300 |
+
|
| 1301 |
+
# pdb.set_trace()
|
| 1302 |
+
# labels_not_ignored = (labels_flat[indices] != -100)
|
| 1303 |
+
# final_mask = mask & labels_not_ignored
|
| 1304 |
+
labels_flat[indices[mask]] = -100
|
| 1305 |
+
|
| 1306 |
+
|
| 1307 |
+
|
| 1308 |
+
|
| 1309 |
+
loss1 = torch.mean((predicted_lengths[labels_flat != -100] -
|
| 1310 |
+
labels_flat[labels_flat != -100].float())**2)
|
| 1311 |
+
|
| 1312 |
+
# pdb.set_trace()
|
| 1313 |
+
|
| 1314 |
+
nar_hidden_state = outputs.nar_hidden_state
|
| 1315 |
+
|
| 1316 |
+
############################# 其次,用chunk的hidden recover所有token,跟gt计算loss #############################
|
| 1317 |
+
|
| 1318 |
+
nar_labels = torch.full(
|
| 1319 |
+
(nar_hidden_state.size(0), nar_hidden_state.size(1)),
|
| 1320 |
+
-100).to(nar_hidden_state.device) # bs * length
|
| 1321 |
+
|
| 1322 |
+
nar_labels = self.update_nar_labels(nar_labels, labels, slice_pos,
|
| 1323 |
+
length_ground_truth, input_ids,
|
| 1324 |
+
self.chunk_size_limit)
|
| 1325 |
+
|
| 1326 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
| 1327 |
+
slice_indices = slice(-logits_to_keep, None) if isinstance(
|
| 1328 |
+
logits_to_keep, int) else logits_to_keep
|
| 1329 |
+
logits = self.lm_head(
|
| 1330 |
+
nar_hidden_state[:, slice_indices, :]) # 1* seq_len * 50304
|
| 1331 |
+
# logits = logits.float()
|
| 1332 |
+
# pdb.set_trace()
|
| 1333 |
+
# if labels is not None:
|
| 1334 |
+
|
| 1335 |
+
|
| 1336 |
+
loss2 = self.loss_function_seminat(
|
| 1337 |
+
logits,
|
| 1338 |
+
nar_labels,
|
| 1339 |
+
self.vocab_size,
|
| 1340 |
+
)
|
| 1341 |
+
|
| 1342 |
+
# grad1 = torch.autograd.grad(loss1, outputs.chunk_hidden_state, retain_graph=True)[0]
|
| 1343 |
+
# grad2 = torch.autograd.grad(loss2, outputs.chunk_hidden_state, retain_graph=True)[0]
|
| 1344 |
+
# cos_sim = cosine_similarity(grad1.flatten(), grad2.flatten(), dim=0)
|
| 1345 |
+
|
| 1346 |
+
|
| 1347 |
+
# pdb.set_trace()
|
| 1348 |
+
|
| 1349 |
+
|
| 1350 |
+
|
| 1351 |
+
else: # for inference
|
| 1352 |
+
softmaxed = torch.softmax(outputs.length_logits[:, -1, :], dim=-1)
|
| 1353 |
+
length = torch.argmax(softmaxed, dim=-1).item() + 1
|
| 1354 |
+
# pdb.set_trace()
|
| 1355 |
+
|
| 1356 |
+
# nat_input_embeddings = torch.zeros(
|
| 1357 |
+
# 1, self.chunk_size_limit, hidden_size).to(input_ids.device).to(
|
| 1358 |
+
# outputs.chunk_hidden_state.dtype)
|
| 1359 |
+
|
| 1360 |
+
nat_input_embeddings = torch.zeros(
|
| 1361 |
+
1, length, hidden_size).to(input_ids.device).to(
|
| 1362 |
+
outputs.chunk_hidden_state.dtype)
|
| 1363 |
+
nat_attention_mask = torch.zeros(1, self.chunk_size_limit).to(
|
| 1364 |
+
input_ids.device).to(outputs.chunk_hidden_state.dtype)
|
| 1365 |
+
|
| 1366 |
+
|
| 1367 |
+
# pdb.set_trace()
|
| 1368 |
+
|
| 1369 |
+
nat_input_embeddings[:, :
|
| 1370 |
+
length, :] = outputs.chunk_hidden_state[:, -1, :].expand(
|
| 1371 |
+
length, -1).to(input_ids.device).to(
|
| 1372 |
+
outputs.chunk_hidden_state.dtype)
|
| 1373 |
+
|
| 1374 |
+
nat_attention_mask[:, :length] = torch.tensor([1] * length).to(
|
| 1375 |
+
input_ids.device).to(outputs.chunk_hidden_state.dtype)
|
| 1376 |
+
|
| 1377 |
+
nar_chunk_position = torch.arange(
|
| 1378 |
+
0, self.chunk_size_limit).unsqueeze(0).to(input_ids.device).to(
|
| 1379 |
+
outputs.chunk_hidden_state.dtype) # bs * max_chunk_num
|
| 1380 |
+
|
| 1381 |
+
# nar_position_embeddings = self.pos_encoder(nat_attention_mask,
|
| 1382 |
+
# nar_chunk_position)
|
| 1383 |
+
|
| 1384 |
+
# pdb.set_trace()
|
| 1385 |
+
nat_input_embeddings = self.pos_encoder(nat_input_embeddings) # 加上绝对位置编码
|
| 1386 |
+
|
| 1387 |
+
# pdb.set_trace()
|
| 1388 |
+
nar_hidden_states = self.model.decoder(
|
| 1389 |
+
nat_input_embeddings,
|
| 1390 |
+
# attention_mask=nat_attention_mask,
|
| 1391 |
+
attention_mask=None,
|
| 1392 |
+
# position_embeddings=nar_position_embeddings,
|
| 1393 |
+
position_embeddings=None,
|
| 1394 |
+
output_attentions=output_attentions,
|
| 1395 |
+
use_cache=False,
|
| 1396 |
+
cache_position=None,
|
| 1397 |
+
)
|
| 1398 |
+
|
| 1399 |
+
nar_hidden_states = self.model.norm(nar_hidden_states)
|
| 1400 |
+
# slice_indices = slice(-logits_to_keep, None) if isinstance(
|
| 1401 |
+
# logits_to_keep, int) else logits_to_keep
|
| 1402 |
+
logits = self.lm_head(
|
| 1403 |
+
nar_hidden_states[:, :, :])
|
| 1404 |
+
|
| 1405 |
+
# end2 = time.time()
|
| 1406 |
+
# print(f"end2 time: {end2 - end1:.4f} 秒")
|
| 1407 |
+
|
| 1408 |
+
# pdb.set_trace()
|
| 1409 |
+
return CausalLMOutputWithPast(
|
| 1410 |
+
loss=(loss1, loss2),
|
| 1411 |
+
logits=logits,
|
| 1412 |
+
past_key_values=outputs.past_key_values,
|
| 1413 |
+
hidden_states=outputs.hidden_states,
|
| 1414 |
+
attentions=outputs.attentions,
|
| 1415 |
+
)
|
| 1416 |
+
|
| 1417 |
+
############################# loss 计算,分两部分 #############################
|
| 1418 |
+
|
| 1419 |
+
# if not return_dict:
|
| 1420 |
+
# output = (logits, ) + outputs[1:]
|
| 1421 |
+
# if output_router_logits:
|
| 1422 |
+
# output = (aux_loss, ) + output
|
| 1423 |
+
# return (loss, ) + output if loss is not None else output
|
| 1424 |
+
# pdb.set_trace()
|
| 1425 |
+
return CausalLMOutputWithPast(
|
| 1426 |
+
loss=(loss1, loss2),
|
| 1427 |
+
logits=logits,
|
| 1428 |
+
past_key_values=outputs.past_key_values,
|
| 1429 |
+
hidden_states=outputs.hidden_states,
|
| 1430 |
+
attentions=outputs.attentions,
|
| 1431 |
+
)
|
| 1432 |
+
|
| 1433 |
+
|
| 1434 |
+
|
| 1435 |
+
|
| 1436 |
+
|
| 1437 |
+
|
| 1438 |
+
def update_nar_labels(self, nar_labels, labels, slice_pos,
|
| 1439 |
+
length_ground_truth, input_ids, chunk_size_limit):
|
| 1440 |
+
bs, length = input_ids.size()
|
| 1441 |
+
chunk = 0
|
| 1442 |
+
for b in range(bs):
|
| 1443 |
+
last_cut = slice_pos[b][0] #第一次切分位置
|
| 1444 |
+
for i in range(1, length):
|
| 1445 |
+
if slice_pos[b, i] != -1:
|
| 1446 |
+
# pdb.set_trace()
|
| 1447 |
+
try:
|
| 1448 |
+
nar_labels[chunk, :length_ground_truth[b, i]] = labels[
|
| 1449 |
+
b, last_cut + 1:slice_pos[b, i] + 1]
|
| 1450 |
+
except:
|
| 1451 |
+
pdb.set_trace()
|
| 1452 |
+
last_cut = slice_pos[b, i]
|
| 1453 |
+
chunk += 1
|
| 1454 |
+
else:
|
| 1455 |
+
break
|
| 1456 |
+
# pdb.set_trace()
|
| 1457 |
+
return nar_labels
|
| 1458 |
+
|
| 1459 |
+
def fixed_cross_entropy(self,
|
| 1460 |
+
source,
|
| 1461 |
+
target,
|
| 1462 |
+
num_items_in_batch: int = None,
|
| 1463 |
+
ignore_index: int = -100,
|
| 1464 |
+
**kwargs):
|
| 1465 |
+
reduction = "sum" if num_items_in_batch is not None else "mean"
|
| 1466 |
+
loss = F.cross_entropy(source,
|
| 1467 |
+
target,
|
| 1468 |
+
ignore_index=ignore_index,
|
| 1469 |
+
reduction=reduction)
|
| 1470 |
+
if torch.isnan(loss):
|
| 1471 |
+
# print(f"Step {global_step}: loss is NaN, entering pdb …")
|
| 1472 |
+
pdb.set_trace()
|
| 1473 |
+
# pdb.set_trace()
|
| 1474 |
+
if reduction == "sum":
|
| 1475 |
+
loss = loss / num_items_in_batch
|
| 1476 |
+
return loss
|
| 1477 |
+
|
| 1478 |
+
def loss_function_seminat(self,
|
| 1479 |
+
logits,
|
| 1480 |
+
labels,
|
| 1481 |
+
vocab_size: int,
|
| 1482 |
+
num_items_in_batch: int = None,
|
| 1483 |
+
ignore_index: int = -100,
|
| 1484 |
+
**kwargs):
|
| 1485 |
+
# logits: (B, L, V)
|
| 1486 |
+
# labels: (B, L)
|
| 1487 |
+
|
| 1488 |
+
|
| 1489 |
+
logits = logits.float()
|
| 1490 |
+
labels = labels.to(logits.device)
|
| 1491 |
+
|
| 1492 |
+
# Flatten the tokens (无 shift)
|
| 1493 |
+
logits = logits.view(-1, vocab_size) # (B*L, V)
|
| 1494 |
+
labels = labels.view(-1) # (B*L)
|
| 1495 |
+
|
| 1496 |
+
# Ensure device alignment
|
| 1497 |
+
labels = labels.to(logits.device)
|
| 1498 |
+
|
| 1499 |
+
# Compute loss
|
| 1500 |
+
loss = self.fixed_cross_entropy(logits, labels, num_items_in_batch,
|
| 1501 |
+
ignore_index, **kwargs)
|
| 1502 |
+
return loss
|
| 1503 |
+
|
| 1504 |
+
def generate(
|
| 1505 |
+
self,
|
| 1506 |
+
inputs: Optional[torch.Tensor] = None,
|
| 1507 |
+
generation_config: Optional[GenerationConfig] = None,
|
| 1508 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
| 1509 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
| 1510 |
+
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor],
|
| 1511 |
+
List[int]]] = None,
|
| 1512 |
+
synced_gpus: Optional[bool] = None,
|
| 1513 |
+
assistant_model: Optional["PreTrainedModel"] = None,
|
| 1514 |
+
streamer: Optional["BaseStreamer"] = None,
|
| 1515 |
+
negative_prompt_ids: Optional[torch.Tensor] = None,
|
| 1516 |
+
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
| 1517 |
+
prefilling_length: int = 0,
|
| 1518 |
+
**kwargs,
|
| 1519 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
| 1520 |
+
|
| 1521 |
+
# 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
|
| 1522 |
+
self._validate_model_class()
|
| 1523 |
+
tokenizer = kwargs.pop(
|
| 1524 |
+
"tokenizer",
|
| 1525 |
+
None) # Pull this out first, we only use it for stopping criteria
|
| 1526 |
+
assistant_tokenizer = kwargs.pop(
|
| 1527 |
+
"assistant_tokenizer", None) # only used for assisted generation
|
| 1528 |
+
|
| 1529 |
+
generation_config, model_kwargs = self._prepare_generation_config(
|
| 1530 |
+
generation_config, **kwargs)
|
| 1531 |
+
|
| 1532 |
+
# GenerationConfig {
|
| 1533 |
+
# "eos_token_id": 50279,
|
| 1534 |
+
# "max_length": 2048,
|
| 1535 |
+
# "pad_token_id": 1
|
| 1536 |
+
# }
|
| 1537 |
+
|
| 1538 |
+
self._validate_model_kwargs(model_kwargs.copy())
|
| 1539 |
+
self._validate_assistant(assistant_model, tokenizer,
|
| 1540 |
+
assistant_tokenizer)
|
| 1541 |
+
|
| 1542 |
+
# 2. Set generation parameters if not already defined
|
| 1543 |
+
# 判断是否在多GPU环境下同步生成(如DeepSpeed ZeRO-3或FSDP)
|
| 1544 |
+
if synced_gpus is None:
|
| 1545 |
+
synced_gpus = (
|
| 1546 |
+
is_deepspeed_zero3_enabled()
|
| 1547 |
+
or is_fsdp_managed_module(self)) and dist.get_world_size() > 1
|
| 1548 |
+
|
| 1549 |
+
# 初始化logits处理器和停止条件
|
| 1550 |
+
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList(
|
| 1551 |
+
) # 定义对模型输出logits的修改规则(如禁止重复词、强制特定token等)。
|
| 1552 |
+
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList(
|
| 1553 |
+
) # 定义生成停止条件(如达到最大长度、检测到终止符等)。
|
| 1554 |
+
|
| 1555 |
+
accepts_attention_mask = "attention_mask" in set(
|
| 1556 |
+
inspect.signature(self.forward).parameters.keys()) # True
|
| 1557 |
+
requires_attention_mask = "encoder_outputs" not in model_kwargs # True
|
| 1558 |
+
kwargs_has_attention_mask = model_kwargs.get("attention_mask",
|
| 1559 |
+
None) is not None # False
|
| 1560 |
+
|
| 1561 |
+
# pdb.set_trace()
|
| 1562 |
+
|
| 1563 |
+
# 3. Define model inputs
|
| 1564 |
+
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
|
| 1565 |
+
inputs, generation_config.bos_token_id, model_kwargs)
|
| 1566 |
+
batch_size = inputs_tensor.shape[0]
|
| 1567 |
+
|
| 1568 |
+
# inputs_tensor bs * input_length; model_input_name:"input_ids";
|
| 1569 |
+
|
| 1570 |
+
device = inputs_tensor.device
|
| 1571 |
+
self._prepare_special_tokens(generation_config,
|
| 1572 |
+
kwargs_has_attention_mask,
|
| 1573 |
+
device=device)
|
| 1574 |
+
|
| 1575 |
+
# decoder-only models must use left-padding for batched generation.
|
| 1576 |
+
# batch generation用的
|
| 1577 |
+
if not self.config.is_encoder_decoder and not is_torchdynamo_compiling(
|
| 1578 |
+
):
|
| 1579 |
+
# If `input_ids` was given, check if the last id in any sequence is `pad_token_id`
|
| 1580 |
+
# Note: If using, `inputs_embeds` this check does not work, because we want to be more hands-off.
|
| 1581 |
+
if (generation_config._pad_token_tensor is not None
|
| 1582 |
+
and batch_size > 1 and len(inputs_tensor.shape) == 2
|
| 1583 |
+
and torch.sum(inputs_tensor[:, -1] ==
|
| 1584 |
+
generation_config._pad_token_tensor) > 0):
|
| 1585 |
+
logger.warning(
|
| 1586 |
+
"A decoder-only architecture is being used, but right-padding was detected! For correct "
|
| 1587 |
+
"generation results, please set `padding_side='left'` when initializing the tokenizer."
|
| 1588 |
+
)
|
| 1589 |
+
# pdb.set_trace()
|
| 1590 |
+
# 4. Define other model kwargs
|
| 1591 |
+
# decoder-only models with inputs_embeds forwarding must use caching (otherwise we can't detect whether we are
|
| 1592 |
+
# generating the first new token or not, and we only want to use the embeddings for the first new token)
|
| 1593 |
+
if not self.config.is_encoder_decoder and model_input_name == "inputs_embeds":
|
| 1594 |
+
generation_config.use_cache = True
|
| 1595 |
+
# 生成第一个新token时需要依赖缓存判断是否处于生成阶段,后续token生成依赖缓存加速。
|
| 1596 |
+
|
| 1597 |
+
# 生成attention mask
|
| 1598 |
+
if not kwargs_has_attention_mask and requires_attention_mask and accepts_attention_mask:
|
| 1599 |
+
model_kwargs[
|
| 1600 |
+
"attention_mask"] = self._prepare_attention_mask_for_generation(
|
| 1601 |
+
inputs_tensor, generation_config, model_kwargs)
|
| 1602 |
+
|
| 1603 |
+
# 输入了attention,检查一下对不对
|
| 1604 |
+
elif kwargs_has_attention_mask:
|
| 1605 |
+
# TODO (joao): generalize this check with other types of inputs
|
| 1606 |
+
if model_input_name == "input_ids" and len(
|
| 1607 |
+
model_kwargs["attention_mask"].shape) > 2:
|
| 1608 |
+
raise ValueError(
|
| 1609 |
+
"`attention_mask` passed to `generate` must be 2D.")
|
| 1610 |
+
|
| 1611 |
+
# encoder-decoder model设定
|
| 1612 |
+
if self.config.is_encoder_decoder and "encoder_outputs" not in model_kwargs:
|
| 1613 |
+
# if model is encoder decoder encoder_outputs are created and added to `model_kwargs`
|
| 1614 |
+
model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(
|
| 1615 |
+
inputs_tensor, model_kwargs, model_input_name,
|
| 1616 |
+
generation_config)
|
| 1617 |
+
|
| 1618 |
+
# 5. Prepare `input_ids` which will be used for auto-regressive generation
|
| 1619 |
+
# encoder-decoder model
|
| 1620 |
+
if self.config.is_encoder_decoder:
|
| 1621 |
+
input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
|
| 1622 |
+
batch_size=batch_size,
|
| 1623 |
+
model_input_name=model_input_name,
|
| 1624 |
+
model_kwargs=model_kwargs,
|
| 1625 |
+
decoder_start_token_id=generation_config.
|
| 1626 |
+
_decoder_start_token_tensor,
|
| 1627 |
+
device=inputs_tensor.device,
|
| 1628 |
+
)
|
| 1629 |
+
else:
|
| 1630 |
+
input_ids = inputs_tensor if model_input_name == "input_ids" else model_kwargs.pop(
|
| 1631 |
+
"input_ids") # torch.Size([1, 25]) # torch.Size([1, 25])
|
| 1632 |
+
|
| 1633 |
+
# 修复不完整的token
|
| 1634 |
+
if generation_config.token_healing:
|
| 1635 |
+
input_ids = self.heal_tokens(input_ids, tokenizer)
|
| 1636 |
+
|
| 1637 |
+
# 流式输出
|
| 1638 |
+
if streamer is not None:
|
| 1639 |
+
streamer.put(input_ids.cpu())
|
| 1640 |
+
|
| 1641 |
+
# pdb.set_trace()
|
| 1642 |
+
|
| 1643 |
+
# 6. Prepare `max_length` depending on other stopping criteria.
|
| 1644 |
+
input_ids_length = input_ids.shape[-1]
|
| 1645 |
+
has_default_max_length = kwargs.get(
|
| 1646 |
+
"max_length") is None and generation_config.max_length is not None
|
| 1647 |
+
has_default_min_length = kwargs.get(
|
| 1648 |
+
"min_length") is None and generation_config.min_length is not None
|
| 1649 |
+
# min_length是0
|
| 1650 |
+
|
| 1651 |
+
# 生成的一些config
|
| 1652 |
+
generation_config = self._prepare_generated_length(
|
| 1653 |
+
generation_config=generation_config,
|
| 1654 |
+
has_default_max_length=has_default_max_length,
|
| 1655 |
+
has_default_min_length=has_default_min_length,
|
| 1656 |
+
model_input_name=model_input_name, # "input_ids"
|
| 1657 |
+
inputs_tensor=inputs_tensor,
|
| 1658 |
+
input_ids_length=input_ids_length, #输入长度
|
| 1659 |
+
)
|
| 1660 |
+
|
| 1661 |
+
# If the model supports `logits_to_keep` in forward(), set it to 1 to avoid computing the whole
|
| 1662 |
+
# logit matrix. This can save a lot of memory during the first forward pass. Note that assisted decoding
|
| 1663 |
+
# dynamically overrides this value as it can need more than the last token logits
|
| 1664 |
+
if self._supports_logits_to_keep(
|
| 1665 |
+
) and "logits_to_keep" not in model_kwargs:
|
| 1666 |
+
model_kwargs["logits_to_keep"] = 1
|
| 1667 |
+
# 模型在计算时仅保留最后一个 token 的 logits,而非整个词汇表的 logits,从而大幅降低内存占用。若使用束搜索宽度为 5,辅助解码会覆盖 logits_to_keep=5,保留多个候选 token 的 logits 以支持多路径探索。
|
| 1668 |
+
|
| 1669 |
+
# 检查生成长度
|
| 1670 |
+
self._validate_generated_length(generation_config, input_ids_length,
|
| 1671 |
+
has_default_max_length)
|
| 1672 |
+
|
| 1673 |
+
# 7. Prepare the cache.
|
| 1674 |
+
# - `model_kwargs` may be updated in place with a cache as defined by the parameters in `generation_config`.
|
| 1675 |
+
# - different models have a different cache name expected by the model (default = "past_key_values")
|
| 1676 |
+
# - `max_length`, prepared above, is used to determine the maximum cache length
|
| 1677 |
+
max_cache_length = generation_config.max_length - 1 #存最长length-1个token cache
|
| 1678 |
+
|
| 1679 |
+
# 如果输入是emb
|
| 1680 |
+
if (inputs_tensor.shape[1] != input_ids_length
|
| 1681 |
+
and model_input_name == "inputs_embeds"
|
| 1682 |
+
and not self.config.is_encoder_decoder):
|
| 1683 |
+
max_cache_length += inputs_tensor.shape[1]
|
| 1684 |
+
self._prepare_cache_for_generation(generation_config, model_kwargs,
|
| 1685 |
+
assistant_model, batch_size,
|
| 1686 |
+
max_cache_length, device)
|
| 1687 |
+
|
| 1688 |
+
# 8. determine generation mode
|
| 1689 |
+
generation_mode = generation_config.get_generation_mode(
|
| 1690 |
+
assistant_model) # 辅助解码
|
| 1691 |
+
|
| 1692 |
+
if streamer is not None and (generation_config.num_beams > 1):
|
| 1693 |
+
raise ValueError(
|
| 1694 |
+
"`streamer` cannot be used with beam search (yet!). Make sure that `num_beams` is set to 1."
|
| 1695 |
+
)
|
| 1696 |
+
|
| 1697 |
+
# device检查
|
| 1698 |
+
if not is_torchdynamo_compiling(
|
| 1699 |
+
) and self.device.type != input_ids.device.type:
|
| 1700 |
+
warnings.warn(
|
| 1701 |
+
"You are calling .generate() with the `input_ids` being on a device type different"
|
| 1702 |
+
f" than your model's device. `input_ids` is on {input_ids.device.type}, whereas the model"
|
| 1703 |
+
f" is on {self.device.type}. You may experience unexpected behaviors or slower generation."
|
| 1704 |
+
" Please make sure that you have put `input_ids` to the"
|
| 1705 |
+
f" correct device by calling for example input_ids = input_ids.to('{self.device.type}') before"
|
| 1706 |
+
" running `.generate()`.",
|
| 1707 |
+
UserWarning,
|
| 1708 |
+
)
|
| 1709 |
+
|
| 1710 |
+
# pdb.set_trace()
|
| 1711 |
+
|
| 1712 |
+
# 9. prepare logits processors and stopping criteria
|
| 1713 |
+
prepared_logits_processor = self._get_logits_processor(
|
| 1714 |
+
generation_config=generation_config,
|
| 1715 |
+
input_ids_seq_length=input_ids_length,
|
| 1716 |
+
encoder_input_ids=inputs_tensor,
|
| 1717 |
+
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
| 1718 |
+
logits_processor=logits_processor,
|
| 1719 |
+
device=inputs_tensor.device,
|
| 1720 |
+
model_kwargs=model_kwargs,
|
| 1721 |
+
negative_prompt_ids=negative_prompt_ids,
|
| 1722 |
+
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
| 1723 |
+
)
|
| 1724 |
+
prepared_stopping_criteria = self._get_stopping_criteria_for_seminat(
|
| 1725 |
+
generation_config=generation_config,
|
| 1726 |
+
stopping_criteria=stopping_criteria,
|
| 1727 |
+
tokenizer=tokenizer,
|
| 1728 |
+
**kwargs)
|
| 1729 |
+
|
| 1730 |
+
# Set model_kwargs `use_cache` so we can use it later in forward runs
|
| 1731 |
+
model_kwargs["use_cache"] = generation_config.use_cache
|
| 1732 |
+
|
| 1733 |
+
input_ids, model_kwargs = self._expand_inputs_for_generation(
|
| 1734 |
+
input_ids=input_ids,
|
| 1735 |
+
expand_size=generation_config.num_return_sequences, # 1
|
| 1736 |
+
is_encoder_decoder=self.config.is_encoder_decoder, # false
|
| 1737 |
+
**model_kwargs,
|
| 1738 |
+
)
|
| 1739 |
+
|
| 1740 |
+
|
| 1741 |
+
pdb.set_trace()
|
| 1742 |
+
result = self._sampleforseminat(
|
| 1743 |
+
input_ids,
|
| 1744 |
+
logits_processor=prepared_logits_processor,
|
| 1745 |
+
stopping_criteria=prepared_stopping_criteria,
|
| 1746 |
+
generation_config=generation_config,
|
| 1747 |
+
synced_gpus=synced_gpus,
|
| 1748 |
+
streamer=streamer,
|
| 1749 |
+
prefilling_length=prefilling_length,
|
| 1750 |
+
**model_kwargs,
|
| 1751 |
+
)
|
| 1752 |
+
|
| 1753 |
+
# Convert to legacy cache format if requested
|
| 1754 |
+
if (generation_config.return_legacy_cache is True
|
| 1755 |
+
and not is_torchdynamo_compiling()
|
| 1756 |
+
and hasattr(result, "past_key_values") and getattr(
|
| 1757 |
+
result.past_key_values, "to_legacy_cache") is not None):
|
| 1758 |
+
result.past_key_values = result.past_key_values.to_legacy_cache()
|
| 1759 |
+
return result
|
| 1760 |
+
|
| 1761 |
+
def _get_stopping_criteria_for_seminat(
|
| 1762 |
+
self,
|
| 1763 |
+
generation_config: GenerationConfig,
|
| 1764 |
+
stopping_criteria: Optional[StoppingCriteriaList],
|
| 1765 |
+
tokenizer: Optional["PreTrainedTokenizerBase"] = None,
|
| 1766 |
+
**kwargs,
|
| 1767 |
+
) -> StoppingCriteriaList:
|
| 1768 |
+
criteria = StoppingCriteriaList()
|
| 1769 |
+
if generation_config.max_length is not None:
|
| 1770 |
+
max_position_embeddings = getattr(self.config, "max_position_embeddings", None)
|
| 1771 |
+
criteria.append(
|
| 1772 |
+
MaxLengthCriteria(
|
| 1773 |
+
max_length=generation_config.max_length,
|
| 1774 |
+
max_position_embeddings=max_position_embeddings,
|
| 1775 |
+
)
|
| 1776 |
+
)
|
| 1777 |
+
if generation_config.max_time is not None:
|
| 1778 |
+
criteria.append(MaxTimeCriteria(max_time=generation_config.max_time))
|
| 1779 |
+
if generation_config.stop_strings is not None:
|
| 1780 |
+
if tokenizer is None:
|
| 1781 |
+
raise ValueError(
|
| 1782 |
+
"There are one or more stop strings, either in the arguments to `generate` or in the "
|
| 1783 |
+
"model's generation config, but we could not locate a tokenizer. When generating with "
|
| 1784 |
+
"stop strings, you must pass the model's tokenizer to the `tokenizer` argument of `generate`."
|
| 1785 |
+
)
|
| 1786 |
+
criteria.append(StopStringCriteria(stop_strings=generation_config.stop_strings, tokenizer=tokenizer))
|
| 1787 |
+
if generation_config._eos_token_tensor is not None:
|
| 1788 |
+
criteria.append(EosTokenCriteriaForSemiNAT(eos_token_id=generation_config._eos_token_tensor))
|
| 1789 |
+
if (
|
| 1790 |
+
generation_config.is_assistant
|
| 1791 |
+
and generation_config.assistant_confidence_threshold is not None
|
| 1792 |
+
and generation_config.assistant_confidence_threshold > 0
|
| 1793 |
+
):
|
| 1794 |
+
criteria.append(
|
| 1795 |
+
ConfidenceCriteria(assistant_confidence_threshold=generation_config.assistant_confidence_threshold)
|
| 1796 |
+
)
|
| 1797 |
+
criteria = self._merge_criteria_processor_list(criteria, stopping_criteria)
|
| 1798 |
+
return criteria
|
| 1799 |
+
|
| 1800 |
+
|
| 1801 |
+
def _sampleforseminat(
|
| 1802 |
+
self,
|
| 1803 |
+
input_ids: torch.LongTensor,
|
| 1804 |
+
logits_processor: LogitsProcessorList,
|
| 1805 |
+
stopping_criteria: StoppingCriteriaList,
|
| 1806 |
+
generation_config: GenerationConfig,
|
| 1807 |
+
synced_gpus: bool,
|
| 1808 |
+
streamer: Optional["BaseStreamer"],
|
| 1809 |
+
prefilling_length: int,
|
| 1810 |
+
**model_kwargs,
|
| 1811 |
+
) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
|
| 1812 |
+
|
| 1813 |
+
# init values
|
| 1814 |
+
pad_token_id = generation_config._pad_token_tensor # 获取填充token的ID
|
| 1815 |
+
output_attentions = generation_config.output_attentions # 是否输出注意力权重
|
| 1816 |
+
output_hidden_states = generation_config.output_hidden_states # 是否输出隐藏状态
|
| 1817 |
+
output_scores = generation_config.output_scores # 是否输出分数
|
| 1818 |
+
output_logits = generation_config.output_logits # 是否输出原始logits
|
| 1819 |
+
return_dict_in_generate = generation_config.return_dict_in_generate # 是否返回结构化字典
|
| 1820 |
+
max_length = generation_config.max_length # 最大生成长度
|
| 1821 |
+
has_eos_stopping_criteria = any(
|
| 1822 |
+
hasattr(criteria, "eos_token_id")
|
| 1823 |
+
for criteria in stopping_criteria) # 检查停止条件是否包含EOS token
|
| 1824 |
+
do_sample = generation_config.do_sample # 是否使用采样方法
|
| 1825 |
+
|
| 1826 |
+
# 初始化结果收集容器
|
| 1827 |
+
# init attention / hidden states / scores tuples
|
| 1828 |
+
scores = () if (return_dict_in_generate and output_scores) else None
|
| 1829 |
+
raw_logits = () if (return_dict_in_generate
|
| 1830 |
+
and output_logits) else None
|
| 1831 |
+
decoder_attentions = () if (return_dict_in_generate
|
| 1832 |
+
and output_attentions) else None
|
| 1833 |
+
cross_attentions = () if (return_dict_in_generate
|
| 1834 |
+
and output_attentions) else None
|
| 1835 |
+
decoder_hidden_states = () if (return_dict_in_generate
|
| 1836 |
+
and output_hidden_states) else None
|
| 1837 |
+
|
| 1838 |
+
# # 编码器-解码器模型特殊处理 不用管
|
| 1839 |
+
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
|
| 1840 |
+
if return_dict_in_generate and self.config.is_encoder_decoder:
|
| 1841 |
+
encoder_attentions = model_kwargs["encoder_outputs"].get(
|
| 1842 |
+
"attentions") if output_attentions else None
|
| 1843 |
+
encoder_hidden_states = (
|
| 1844 |
+
model_kwargs["encoder_outputs"].get("hidden_states")
|
| 1845 |
+
if output_hidden_states else None)
|
| 1846 |
+
|
| 1847 |
+
# pdb.set_trace()
|
| 1848 |
+
|
| 1849 |
+
# 初始化序列跟踪
|
| 1850 |
+
# keep track of which sequences are already finished
|
| 1851 |
+
batch_size, cur_len = input_ids.shape
|
| 1852 |
+
this_peer_finished = False
|
| 1853 |
+
unfinished_sequences = torch.ones(
|
| 1854 |
+
batch_size, dtype=torch.long,
|
| 1855 |
+
device=input_ids.device) # 初始化未完成序列标记 torch.Size([1])
|
| 1856 |
+
model_kwargs = self._get_initial_cache_position(
|
| 1857 |
+
input_ids, model_kwargs) # 初始化缓存位置
|
| 1858 |
+
|
| 1859 |
+
model_forward = self.__call__ # 获取前向传播函数
|
| 1860 |
+
############ 换成新的forward
|
| 1861 |
+
# model_forward = self.forward
|
| 1862 |
+
|
| 1863 |
+
if isinstance(model_kwargs.get("past_key_values"), Cache):
|
| 1864 |
+
is_compileable = model_kwargs[
|
| 1865 |
+
"past_key_values"].is_compileable and self._supports_static_cache #编译优化
|
| 1866 |
+
is_compileable = is_compileable and not self.generation_config.disable_compile
|
| 1867 |
+
if is_compileable and (
|
| 1868 |
+
self.device.type == "cuda"
|
| 1869 |
+
or generation_config.compile_config._compile_all_devices):
|
| 1870 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "0"
|
| 1871 |
+
model_forward = self.get_compiled_call(
|
| 1872 |
+
generation_config.compile_config)
|
| 1873 |
+
|
| 1874 |
+
############ prefilling ############
|
| 1875 |
+
start = prefilling_length-1
|
| 1876 |
+
chunk_length = prefilling_length
|
| 1877 |
+
|
| 1878 |
+
s_pos = [start]
|
| 1879 |
+
while True:
|
| 1880 |
+
start += chunk_length
|
| 1881 |
+
if start >= input_ids.shape[1] - 1:
|
| 1882 |
+
s_pos.append(input_ids.shape[1] - 1)
|
| 1883 |
+
break
|
| 1884 |
+
else:
|
| 1885 |
+
s_pos.append(start)
|
| 1886 |
+
|
| 1887 |
+
# pdb.set_trace()
|
| 1888 |
+
slice_pos = torch.tensor(s_pos + [-1] *
|
| 1889 |
+
(max_length - len(s_pos))).unsqueeze(0).to(
|
| 1890 |
+
input_ids.device)
|
| 1891 |
+
|
| 1892 |
+
model_kwargs['slice_pos'] = slice_pos
|
| 1893 |
+
count = (slice_pos != -1).sum().item()
|
| 1894 |
+
new_cache_position = torch.arange(0, count).to(input_ids.device)
|
| 1895 |
+
model_kwargs[
|
| 1896 |
+
'cache_position'] = new_cache_position # 更新一下cache position
|
| 1897 |
+
|
| 1898 |
+
# pdb.set_trace()
|
| 1899 |
+
############ prefilling ############
|
| 1900 |
+
|
| 1901 |
+
is_prefill = True
|
| 1902 |
+
while self._has_unfinished_sequences(
|
| 1903 |
+
this_peer_finished,
|
| 1904 |
+
synced_gpus,
|
| 1905 |
+
device=input_ids.device,
|
| 1906 |
+
cur_len=cur_len,
|
| 1907 |
+
max_length=max_length): # 循环知道序列生成完
|
| 1908 |
+
# prepare model inputs
|
| 1909 |
+
|
| 1910 |
+
# pdb.set_trace()
|
| 1911 |
+
|
| 1912 |
+
# model_kwargs.keys(): dict_keys(['attention_mask', 'logits_to_keep', 'past_key_values', 'use_cache', 'cache_position', 'nar_kv_cache', 'slice_pos'])
|
| 1913 |
+
model_inputs = self.prepare_inputs_for_generation( #加入position_id和input_id
|
| 1914 |
+
input_ids, **model_kwargs
|
| 1915 |
+
) #dict_keys(['cache_position', 'past_key_values', 'input_ids', 'inputs_embeds', 'position_ids', 'attention_mask', 'logits_to_keep', 'use_cache'])
|
| 1916 |
+
# pdb.set_trace()
|
| 1917 |
+
|
| 1918 |
+
# position_ids = torch.arange(
|
| 1919 |
+
# input_ids.shape[1], device=input_ids.device).unsqueeze(0).to(input_ids.device)
|
| 1920 |
+
# model_inputs.update({"position_ids": position_ids})
|
| 1921 |
+
|
| 1922 |
+
model_inputs.update({"input_ids": input_ids})
|
| 1923 |
+
|
| 1924 |
+
# prepare variable output controls (note: some models won't accept all output controls)
|
| 1925 |
+
model_inputs.update({"output_attentions": output_attentions}
|
| 1926 |
+
if output_attentions else {})
|
| 1927 |
+
model_inputs.update({"output_hidden_states": output_hidden_states}
|
| 1928 |
+
if output_hidden_states else {})
|
| 1929 |
+
|
| 1930 |
+
if is_prefill:
|
| 1931 |
+
# pdb.set_trace()
|
| 1932 |
+
# outputs = self(**model_inputs, return_dict=True)
|
| 1933 |
+
# dict_keys(['cache_position', 'past_key_values', 'input_ids', 'inputs_embeds', 'position_ids', 'attention_mask', 'logits_to_keep', 'use_cache'])
|
| 1934 |
+
outputs = self.forward(**model_inputs, return_dict=True)
|
| 1935 |
+
is_prefill = False
|
| 1936 |
+
else:
|
| 1937 |
+
# pdb.set_trace()
|
| 1938 |
+
outputs = model_forward(**model_inputs, return_dict=True)
|
| 1939 |
+
|
| 1940 |
+
# pdb.set_trace()
|
| 1941 |
+
|
| 1942 |
+
################ seminat ###########################
|
| 1943 |
+
# model_kwargs['slice_pos'] = outputs.slice_pos
|
| 1944 |
+
################ seminat ###########################
|
| 1945 |
+
|
| 1946 |
+
# synced_gpus: don't waste resources running the code we don't need; kwargs must be updated before skipping
|
| 1947 |
+
model_kwargs = self._update_model_kwargs_for_generation_for_seminat(
|
| 1948 |
+
outputs,
|
| 1949 |
+
model_kwargs,
|
| 1950 |
+
is_encoder_decoder=self.config.is_encoder_decoder,
|
| 1951 |
+
num_new_tokens=outputs.logits.size(1))
|
| 1952 |
+
if synced_gpus and this_peer_finished:
|
| 1953 |
+
continue
|
| 1954 |
+
|
| 1955 |
+
# pdb.set_trace()
|
| 1956 |
+
# Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for first iteration
|
| 1957 |
+
# (the clone itself is always small)
|
| 1958 |
+
|
| 1959 |
+
# next_token_logits = outputs.logits[:, -1, :].clone().float()
|
| 1960 |
+
next_token_logits = outputs.logits[:, :, :].clone().float(
|
| 1961 |
+
) # 新生成了k个token
|
| 1962 |
+
|
| 1963 |
+
next_token_logits = next_token_logits.to(input_ids.device)
|
| 1964 |
+
|
| 1965 |
+
# pre-process distribution
|
| 1966 |
+
next_token_scores = logits_processor(input_ids, next_token_logits)
|
| 1967 |
+
|
| 1968 |
+
# token selection
|
| 1969 |
+
if do_sample:
|
| 1970 |
+
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
| 1971 |
+
# TODO (joao): this OP throws "skipping cudagraphs due to ['incompatible ops']", find solution
|
| 1972 |
+
next_tokens = torch.multinomial(probs,
|
| 1973 |
+
num_samples=1).squeeze(1)
|
| 1974 |
+
else:
|
| 1975 |
+
next_tokens = torch.argmax(
|
| 1976 |
+
next_token_scores,
|
| 1977 |
+
dim=-1) # tensor([9281], device='cuda:0') token id
|
| 1978 |
+
|
| 1979 |
+
# pdb.set_trace()
|
| 1980 |
+
# 更新slice_pos
|
| 1981 |
+
count = (model_kwargs['slice_pos'] != -1).sum().item()
|
| 1982 |
+
model_kwargs['slice_pos'][:, count] = model_kwargs[
|
| 1983 |
+
'slice_pos'][:, count - 1] + outputs.logits.size(1)
|
| 1984 |
+
|
| 1985 |
+
# pdb.set_trace()
|
| 1986 |
+
|
| 1987 |
+
# finished sentences should have their next token be a padding token
|
| 1988 |
+
if has_eos_stopping_criteria:
|
| 1989 |
+
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (
|
| 1990 |
+
1 - unfinished_sequences
|
| 1991 |
+
) # 序列生成完的时候,unfinished_sequences为0,正好后面全填上padding
|
| 1992 |
+
|
| 1993 |
+
# pdb.set_trace()
|
| 1994 |
+
# update generated ids, model inputs, and length for next step
|
| 1995 |
+
# input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
| 1996 |
+
input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
| 1997 |
+
if streamer is not None:
|
| 1998 |
+
streamer.put(next_tokens.cpu())
|
| 1999 |
+
|
| 2000 |
+
# 更新完成状态
|
| 2001 |
+
unfinished_sequences = unfinished_sequences & ~stopping_criteria(
|
| 2002 |
+
input_ids, scores, last_k=next_tokens.size(1))
|
| 2003 |
+
this_peer_finished = unfinished_sequences.max() == 0
|
| 2004 |
+
cur_len += outputs.logits.size(1) # 长度 +1
|
| 2005 |
+
|
| 2006 |
+
# This is needed to properly delete outputs.logits which may be very large for first iteration
|
| 2007 |
+
# Otherwise a reference to outputs is kept which keeps the logits alive in the next iteration
|
| 2008 |
+
del outputs
|
| 2009 |
+
|
| 2010 |
+
if streamer is not None:
|
| 2011 |
+
streamer.end()
|
| 2012 |
+
|
| 2013 |
+
if return_dict_in_generate:
|
| 2014 |
+
if self.config.is_encoder_decoder:
|
| 2015 |
+
return GenerateEncoderDecoderOutput(
|
| 2016 |
+
sequences=input_ids,
|
| 2017 |
+
scores=scores,
|
| 2018 |
+
logits=raw_logits,
|
| 2019 |
+
encoder_attentions=encoder_attentions,
|
| 2020 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 2021 |
+
decoder_attentions=decoder_attentions,
|
| 2022 |
+
cross_attentions=cross_attentions,
|
| 2023 |
+
decoder_hidden_states=decoder_hidden_states,
|
| 2024 |
+
past_key_values=model_kwargs.get("past_key_values"),
|
| 2025 |
+
)
|
| 2026 |
+
else:
|
| 2027 |
+
return GenerateDecoderOnlyOutput(
|
| 2028 |
+
sequences=input_ids,
|
| 2029 |
+
scores=scores,
|
| 2030 |
+
logits=raw_logits,
|
| 2031 |
+
attentions=decoder_attentions,
|
| 2032 |
+
hidden_states=decoder_hidden_states,
|
| 2033 |
+
past_key_values=model_kwargs.get("past_key_values"),
|
| 2034 |
+
)
|
| 2035 |
+
else:
|
| 2036 |
+
return input_ids
|
| 2037 |
+
|
| 2038 |
+
def _update_model_kwargs_for_generation_for_seminat(
|
| 2039 |
+
self,
|
| 2040 |
+
outputs: ModelOutput,
|
| 2041 |
+
model_kwargs: Dict[str, Any],
|
| 2042 |
+
is_encoder_decoder: bool = False,
|
| 2043 |
+
num_new_tokens: int = 1,
|
| 2044 |
+
) -> Dict[str, Any]:
|
| 2045 |
+
ALL_CACHE_NAMES = [
|
| 2046 |
+
"past_key_values", # default
|
| 2047 |
+
"cache_params", # mamba-based models
|
| 2048 |
+
"state", # rwkv
|
| 2049 |
+
"mems", # xlnet
|
| 2050 |
+
"past_buckets_states", # reformer
|
| 2051 |
+
]
|
| 2052 |
+
# update past_key_values keeping its naming used in model code
|
| 2053 |
+
for possible_cache_name in ALL_CACHE_NAMES:
|
| 2054 |
+
if possible_cache_name in outputs:
|
| 2055 |
+
# TODO (joao): remove output/input mismatch when these old models (xlnet, reformer) are deprecated
|
| 2056 |
+
if possible_cache_name in ("past_buckets_states", "mems"):
|
| 2057 |
+
cache_name = "past_key_values"
|
| 2058 |
+
else:
|
| 2059 |
+
cache_name = possible_cache_name
|
| 2060 |
+
model_kwargs[cache_name] = getattr(outputs,
|
| 2061 |
+
possible_cache_name)
|
| 2062 |
+
break
|
| 2063 |
+
|
| 2064 |
+
# pdb.set_trace()
|
| 2065 |
+
|
| 2066 |
+
# update token_type_ids with last value
|
| 2067 |
+
# false
|
| 2068 |
+
if "token_type_ids" in model_kwargs:
|
| 2069 |
+
token_type_ids = model_kwargs["token_type_ids"]
|
| 2070 |
+
model_kwargs["token_type_ids"] = torch.cat(
|
| 2071 |
+
[token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)
|
| 2072 |
+
|
| 2073 |
+
if not is_encoder_decoder:
|
| 2074 |
+
# update attention mask
|
| 2075 |
+
# 重点看这个
|
| 2076 |
+
# pdb.set_trace()
|
| 2077 |
+
if "attention_mask" in model_kwargs:
|
| 2078 |
+
attention_mask = model_kwargs["attention_mask"]
|
| 2079 |
+
model_kwargs["attention_mask"] = torch.cat(
|
| 2080 |
+
[
|
| 2081 |
+
attention_mask,
|
| 2082 |
+
attention_mask.new_ones(
|
| 2083 |
+
(attention_mask.shape[0], num_new_tokens
|
| 2084 |
+
)) # 1 -> num_new_tokens 一次加多个token的attention
|
| 2085 |
+
],
|
| 2086 |
+
dim=-1)
|
| 2087 |
+
else:
|
| 2088 |
+
# update decoder attention mask
|
| 2089 |
+
if "decoder_attention_mask" in model_kwargs:
|
| 2090 |
+
decoder_attention_mask = model_kwargs["decoder_attention_mask"]
|
| 2091 |
+
model_kwargs["decoder_attention_mask"] = torch.cat(
|
| 2092 |
+
[
|
| 2093 |
+
decoder_attention_mask,
|
| 2094 |
+
decoder_attention_mask.new_ones(
|
| 2095 |
+
(decoder_attention_mask.shape[0], 1))
|
| 2096 |
+
],
|
| 2097 |
+
dim=-1,
|
| 2098 |
+
)
|
| 2099 |
+
|
| 2100 |
+
# pdb.set_trace()
|
| 2101 |
+
if model_kwargs.get("use_cache", True):
|
| 2102 |
+
# model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + num_new_tokens
|
| 2103 |
+
model_kwargs["cache_position"] = torch.tensor([
|
| 2104 |
+
model_kwargs["cache_position"][-1:].item() + 1
|
| 2105 |
+
]).to(model_kwargs["cache_position"].device)
|
| 2106 |
+
else:
|
| 2107 |
+
past_positions = model_kwargs.pop("cache_position")
|
| 2108 |
+
new_positions = torch.arange(
|
| 2109 |
+
past_positions[-1] + 1,
|
| 2110 |
+
past_positions[-1] + num_new_tokens + 1,
|
| 2111 |
+
dtype=past_positions.dtype).to(past_positions.device)
|
| 2112 |
+
model_kwargs["cache_position"] = torch.cat(
|
| 2113 |
+
(past_positions, new_positions))
|
| 2114 |
+
return model_kwargs
|
| 2115 |
+
|
| 2116 |
+
class AbsolutePositionalEncoding(nn.Module):
|
| 2117 |
+
def __init__(self, hidden_size: int, max_len: int = 2048):
|
| 2118 |
+
"""
|
| 2119 |
+
初始化绝对位置编码
|
| 2120 |
+
|
| 2121 |
+
参数:
|
| 2122 |
+
hidden_size (int): 隐藏层维度
|
| 2123 |
+
max_len (int): 最大序列长度
|
| 2124 |
+
"""
|
| 2125 |
+
super().__init__()
|
| 2126 |
+
|
| 2127 |
+
# 创建位置编码矩阵
|
| 2128 |
+
pe = torch.zeros(max_len, hidden_size)
|
| 2129 |
+
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
| 2130 |
+
div_term = torch.exp(torch.arange(0, hidden_size, 2).float() * (-math.log(10000.0) / hidden_size))
|
| 2131 |
+
|
| 2132 |
+
# 使用sin和cos函数计算位置编码
|
| 2133 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
| 2134 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
| 2135 |
+
pe = pe.unsqueeze(0) # [1, max_len, hidden_size]
|
| 2136 |
+
|
| 2137 |
+
# 注册为buffer(不参与训练)
|
| 2138 |
+
self.register_buffer('pe', pe)
|
| 2139 |
+
|
| 2140 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 2141 |
+
"""
|
| 2142 |
+
添加位置编码到输入张量
|
| 2143 |
+
|
| 2144 |
+
参数:
|
| 2145 |
+
x (torch.Tensor): 输入张量,形状为 (batch_size, seq_len, hidden_size)
|
| 2146 |
+
|
| 2147 |
+
返回:
|
| 2148 |
+
torch.Tensor: 添加位置编码后的张量,形状与输入相同
|
| 2149 |
+
"""
|
| 2150 |
+
seq_len = x.size(1)
|
| 2151 |
+
|
| 2152 |
+
|
| 2153 |
+
pos = x + self.pe[:, :seq_len]
|
| 2154 |
+
|
| 2155 |
+
# pdb.set_trace()
|
| 2156 |
+
return pos
|