|
import pdb |
|
from transformers import AutoTokenizer |
|
from torch import nn |
|
import os |
|
import time |
|
import torch.distributed as dist |
|
from tqdm import tqdm |
|
from torch.utils.data import DataLoader |
|
from torch.utils.data.distributed import DistributedSampler |
|
from dataset import * |
|
import wandb |
|
import gc |
|
import os |
|
import argparse |
|
import torch |
|
import torch.optim as optim |
|
import functools |
|
import torch.distributed as dist |
|
from torch.utils.data.distributed import DistributedSampler |
|
from torch.distributed.fsdp import ( |
|
FullyShardedDataParallel as FSDP, |
|
MixedPrecision, |
|
ShardingStrategy, |
|
FullStateDictConfig, |
|
StateDictType, |
|
) |
|
from torch.distributed.fsdp.wrap import ( |
|
transformer_auto_wrap_policy, |
|
) |
|
from modelforseminat_v5 import * |
|
from transformers import get_cosine_schedule_with_warmup |
|
|
|
|
|
|
|
def setup(): |
|
|
|
local_rank = int(os.environ['LOCAL_RANK']) |
|
torch.cuda.set_device(local_rank) |
|
dist.init_process_group( |
|
backend='nccl', |
|
init_method='env://', |
|
) |
|
|
|
|
|
def cleanup(): |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
dist.destroy_process_group() |
|
|
|
|
|
def get_fsdp_device(): |
|
|
|
local_rank = int(os.environ.get("LOCAL_RANK", 0)) |
|
device = torch.device(f"cuda:{local_rank}") |
|
torch.cuda.set_device(device) |
|
return device |
|
|
|
|
|
def setup_model( |
|
model_name: str, |
|
dtype: str = "bf16", |
|
chunk_size_limit: int = 5, |
|
attn_impl: str = "flash_attention_2", |
|
load_model_dir: str | None = None, |
|
decoder_layers: int = 1, |
|
encoder_layer: int = 1, |
|
mlp: bool = False, |
|
position_embedding_type: str = "absolute", |
|
base: str = None, |
|
length_loss_type: str = "ce" |
|
): |
|
|
|
config = Olmo2ConfigForSemiNAT.from_pretrained( |
|
model_name, |
|
chunk_size_limit=chunk_size_limit, |
|
attn_implementation=attn_impl, |
|
decoder_layers=decoder_layers, |
|
encoder_layer=encoder_layer, |
|
mlp=mlp, |
|
position_embedding_type=position_embedding_type, |
|
length_loss_type=length_loss_type |
|
) |
|
|
|
|
|
dtype_map = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32} |
|
torch_dtype = dtype_map.get(dtype, torch.float32) |
|
|
|
if base == "scratch": |
|
model = Olmo2ForCausalLMForSemiNAT(config).to(torch_dtype) |
|
|
|
elif base == "pretrained": |
|
model = Olmo2ForCausalLMForSemiNAT.from_pretrained( |
|
model_name, |
|
config=config, |
|
torch_dtype=torch_dtype |
|
) |
|
|
|
|
|
if load_model_dir and os.path.isfile(load_model_dir) and load_model_dir.endswith(".pt"): |
|
ckpt = torch.load(load_model_dir, map_location="cpu", weights_only=True) |
|
|
|
missing_keys, unexpected_keys = model.load_state_dict(ckpt, strict=False) |
|
print(f"[INFO] Loaded weights from {load_model_dir}") |
|
print( |
|
f"Loaded with {len(missing_keys)} missing keys and {len(unexpected_keys)} unexpected keys." |
|
) |
|
if missing_keys: |
|
print("Missing keys:", missing_keys) |
|
if unexpected_keys: |
|
print("Unexpected keys:", unexpected_keys) |
|
|
|
else: |
|
print("[INFO] No extra .pt weights loaded") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
|
|
|
|
|
|
|
|
|
|
return model, tokenizer |
|
|
|
def reduce_mean(tensor: torch.Tensor) -> torch.Tensor: |
|
|
|
dist.all_reduce(tensor, op=dist.ReduceOp.SUM) |
|
tensor /= dist.get_world_size() |
|
return tensor |
|
|
|
def collate_fn(batch): |
|
|
|
batch = [x for x in batch if x is not None] |
|
if len(batch) == 0: |
|
return None |
|
|
|
input_ids, labels, attention_mask, slice_arr, slice_label = zip(*batch) |
|
|
|
return ( |
|
torch.stack(input_ids), |
|
torch.stack(labels), |
|
torch.stack(attention_mask), |
|
torch.stack(slice_arr), |
|
torch.stack(slice_label) |
|
) |
|
|
|
def fsdp_main(args): |
|
local_rank = int(os.environ['LOCAL_RANK']) |
|
rank = int(os.environ['RANK']) |
|
world_size = int(os.environ['WORLD_SIZE']) |
|
if args.use_wandb and rank == 0: |
|
wandb.init(entity="SemiNAT", project=args.project_name, name=args.run_name) |
|
|
|
local_rank = int(os.environ['LOCAL_RANK']) |
|
DEVICE = f"cuda:{local_rank}" |
|
|
|
|
|
|
|
model, tokenizer = setup_model(args.model_path,args.dtype,args.chunk_size_limit,args.attn_implementation,args.ptm_model_path,args.decoder_layers,args.encoder_layers,args.mlp,args.position_embedding_type,args.base,args.length_loss_type) |
|
|
|
optimizer = optim.AdamW( |
|
model.parameters(), |
|
lr=args.lr, |
|
betas=args.betas, |
|
weight_decay=args.weight_decay, |
|
eps=args.eps, |
|
) |
|
|
|
train_dataset = eval(f"{args.data_type}")( |
|
tokenizer, |
|
args.data_path, |
|
args.max_length |
|
) |
|
train_sampler = DistributedSampler(train_dataset, |
|
rank=rank, |
|
num_replicas=world_size, |
|
shuffle=True, |
|
drop_last=True) |
|
|
|
train_dataloader = DataLoader(dataset=train_dataset, |
|
sampler=train_sampler, |
|
batch_size=args.batch_size, |
|
num_workers=args.data_processess_num, |
|
collate_fn=collate_fn) |
|
|
|
|
|
num_training_steps = args.epochs * len(train_dataloader) |
|
num_warmup_steps = num_training_steps * args.warmup_ratio |
|
scheduler = get_cosine_schedule_with_warmup( |
|
optimizer, |
|
num_warmup_steps=num_warmup_steps, |
|
num_training_steps=num_training_steps |
|
) |
|
|
|
|
|
if args.resume_path: |
|
checkpoint = torch.load(args.resume_path, map_location=DEVICE, weights_only=True) |
|
missing_keys, unexpected_keys = model.load_state_dict(checkpoint["model"], strict=False) |
|
print( |
|
f"Loaded with {len(missing_keys)} missing keys and {len(unexpected_keys)} unexpected keys." |
|
) |
|
if missing_keys: |
|
print("Missing keys:", missing_keys) |
|
if unexpected_keys: |
|
print("Unexpected keys:", unexpected_keys) |
|
|
|
full_optim_state = checkpoint["optimizer"] |
|
sharded_state = FSDP.shard_full_optim_state_dict(full_optim_state, model) |
|
FSDP.optim_state_dict_to_device( |
|
sharded_state, |
|
device=torch.cuda.current_device(), |
|
dtype=torch.bfloat16 |
|
) |
|
optimizer.load_state_dict(sharded_state) |
|
scheduler.load_state_dict(checkpoint["scheduler"]) |
|
global_step = checkpoint.get("global_step", 0) |
|
|
|
print(f"Size of train dataset: {len(train_dataset)}") |
|
|
|
setup() |
|
|
|
Olmo2DecoderLayerForSemiNAT_auto_wrap_policy = functools.partial( |
|
transformer_auto_wrap_policy, |
|
transformer_layer_cls={ |
|
Olmo2DecoderLayer, |
|
Olmo2DecoderLayerForSemiNAT |
|
} |
|
) |
|
|
|
sharding_strategy: ShardingStrategy = ShardingStrategy.FULL_SHARD |
|
torch.cuda.set_device(local_rank) |
|
|
|
|
|
mp_policy = MixedPrecision( |
|
param_dtype=torch.bfloat16, |
|
reduce_dtype=torch.bfloat16, |
|
buffer_dtype=torch.bfloat16, |
|
) |
|
|
|
model = FSDP(model, |
|
auto_wrap_policy=Olmo2DecoderLayerForSemiNAT_auto_wrap_policy, |
|
mixed_precision=mp_policy, |
|
sharding_strategy=sharding_strategy, |
|
device_id=torch.cuda.current_device(), |
|
use_orig_params=True) |
|
|
|
|
|
torch.autograd.set_detect_anomaly(True) |
|
|
|
loss1_list = [] |
|
loss2_list = [] |
|
loss_list = [] |
|
|
|
global_step = 0 |
|
|
|
|
|
|
|
start_time = time.time() |
|
|
|
for epoch in range(1, args.epochs + 1): |
|
model.train() |
|
local_rank = int(os.environ['LOCAL_RANK']) |
|
|
|
if train_sampler: |
|
train_sampler.set_epoch(epoch) |
|
|
|
if rank == 0: |
|
inner_pbar = tqdm(range(len(train_dataloader)), |
|
colour="blue", |
|
desc="r0 Training Epoch") |
|
|
|
memories = [] |
|
|
|
for batch in train_dataloader: |
|
if batch is None: |
|
continue |
|
optimizer.zero_grad() |
|
loss1, loss2 = model(input_ids=batch[0], |
|
labels=batch[1], |
|
attention_mask=batch[2], |
|
slice_pos=batch[3], |
|
slice_label=batch[4], |
|
use_cache=False).loss |
|
loss = args.alpha * loss1 + loss2 |
|
|
|
|
|
|
|
loss1_scalar = reduce_mean(loss1.detach()).item() |
|
loss2_scalar = reduce_mean(loss2.detach()).item() |
|
total_loss_scalar = reduce_mean(loss.detach()).item() |
|
|
|
|
|
|
|
loss.backward() |
|
optimizer.step() |
|
scheduler.step() |
|
|
|
|
|
global_step += 1 |
|
|
|
if global_step % args.save_steps == 0: |
|
save_policy = FullStateDictConfig(offload_to_cpu=True, |
|
rank0_only=True) |
|
with FSDP.state_dict_type(model, StateDictType.FULL_STATE_DICT, |
|
save_policy): |
|
cpu_state = model.state_dict() |
|
|
|
full_optim_state = FSDP.full_optim_state_dict(model, optimizer, rank0_only=True) |
|
|
|
if rank == 0: |
|
print(f"--> steps: {str(global_step)} saving model ...") |
|
if not os.path.exists(args.save_path): |
|
os.makedirs(args.save_path) |
|
save_name = f"{args.save_name}-steps_{str(global_step)}.pt" |
|
print(f"--> saving as model name {save_name}") |
|
save_path = os.path.join(args.save_path, save_name) |
|
torch.save({ |
|
"model": cpu_state, |
|
"optimizer": optimizer.state_dict(), |
|
"scheduler": scheduler.state_dict() if scheduler else None, |
|
"global_step": global_step, |
|
"args": vars(args), |
|
}, save_path) |
|
|
|
if rank == 0: |
|
loss1_list.append(loss1_scalar) |
|
loss2_list.append(loss2_scalar) |
|
loss_list.append(total_loss_scalar) |
|
inner_pbar.update(1) |
|
if args.use_wandb and rank == 0: |
|
wandb.log({ |
|
"Length prediction loss (L1)": sum(loss1_list[-20:]) / len(loss1_list[-20:]), |
|
"NAT loss (L2)": sum(loss2_list[-20:]) / len(loss2_list[-20:]), |
|
f"Loss {args.alpha} * L1 + L2": sum(loss_list[-20:]) / len(loss_list[-20:]), |
|
"lr": scheduler.get_last_lr()[0] |
|
}) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if rank == 0: |
|
inner_pbar.close() |
|
|
|
|
|
|
|
|
|
end_time = time.time() |
|
print(f"Training time: {end_time - start_time} seconds") |
|
|
|
dist.barrier() |
|
cleanup() |
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--batch-size', |
|
type=int, |
|
default=4, |
|
metavar='N', |
|
help='input batch size for training (default: 64)') |
|
parser.add_argument('--model_path', type=str) |
|
parser.add_argument('--save_path', type=str) |
|
parser.add_argument('--save_name', type=str) |
|
parser.add_argument('--data_path', type=str) |
|
parser.add_argument('--data_type', type=str) |
|
parser.add_argument('--project_name', type=str) |
|
parser.add_argument('--run_name', type=str) |
|
parser.add_argument('--max_length', type=int) |
|
parser.add_argument('--chunk_size_limit', type=int) |
|
parser.add_argument('--save_steps', type=int, default=5000) |
|
parser.add_argument('--data_processess_num', type=int, default=8) |
|
parser.add_argument('--epochs', |
|
type=int, |
|
default=2, |
|
metavar='N', |
|
help='number of epochs to train (default: 3)') |
|
parser.add_argument('--lr', |
|
type=float, |
|
default=.002, |
|
metavar='LR', |
|
help='learning rate (default: .002)') |
|
parser.add_argument('--weight_decay', type=float) |
|
parser.add_argument('--betas', type=float, nargs=2) |
|
parser.add_argument('--eps', type=float) |
|
parser.add_argument('--warmup_ratio', type=float) |
|
parser.add_argument('--seed', |
|
type=int, |
|
default=1, |
|
metavar='S', |
|
help='random seed (default: 1)') |
|
parser.add_argument('--use_lora', action='store_true', default=False) |
|
parser.add_argument("--use_wandb", |
|
action="store_true", |
|
help="whether to use wandb") |
|
parser.add_argument('--dtype', type=str) |
|
parser.add_argument('--resume_path', type=str,default=None) |
|
parser.add_argument('--attn_implementation', type=str) |
|
parser.add_argument('--ptm_model_path', type=str,default=None) |
|
parser.add_argument('--decoder_layers', type=int,default=1) |
|
parser.add_argument('--encoder_layers', type=int,default=1) |
|
parser.add_argument('--mlp', action='store_true', default=False) |
|
parser.add_argument('--position_embedding_type', type=str, default="absolute",choices=["absolute","relative"]) |
|
parser.add_argument('--base', type=str, default="scratch",choices=["scratch","pretrained"]) |
|
parser.add_argument('--length_loss_type', type=str, default="ce",choices=["mse","ce"]) |
|
parser.add_argument('--alpha', type=float, default=0.4) |
|
args = parser.parse_args() |
|
|
|
|
|
torch.manual_seed(args.seed) |
|
|
|
fsdp_main(args) |
|
|