File size: 15,543 Bytes
00cf27f
 
 
 
f5bd390
00cf27f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8c941f
00cf27f
 
 
 
 
 
 
 
 
 
f8c941f
00cf27f
d7530ec
00cf27f
 
 
 
 
 
 
 
 
 
 
f8c941f
00cf27f
 
 
 
d7530ec
 
00cf27f
 
 
 
 
 
 
 
 
d7530ec
00cf27f
 
 
 
 
 
 
 
 
 
 
 
66622b2
 
 
 
 
 
00cf27f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5570b0e
00cf27f
 
 
d7530ec
 
 
f8c941f
00cf27f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66622b2
 
00cf27f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8c941f
00cf27f
 
 
 
 
 
 
 
 
ad2fdaa
 
 
 
 
 
 
 
00cf27f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5bd390
00cf27f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad2fdaa
66622b2
 
 
 
 
 
00cf27f
f8c941f
 
00cf27f
 
f5bd390
 
 
00cf27f
 
 
 
 
 
 
 
 
ad2fdaa
 
00cf27f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66622b2
 
 
00cf27f
 
 
ad2fdaa
 
 
00cf27f
 
f8c941f
00cf27f
f5bd390
 
00cf27f
f5bd390
00cf27f
 
 
 
f5bd390
00cf27f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5570b0e
00cf27f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7530ec
00cf27f
 
f8c941f
ad2fdaa
00cf27f
 
d7530ec
00cf27f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import pdb
from transformers import AutoTokenizer
from torch import nn
import os
import time
import torch.distributed as dist
from tqdm import tqdm
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from dataset import *
import wandb
import gc
import os
import argparse
import torch
import torch.optim as optim
import functools
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
from torch.distributed.fsdp import (
    FullyShardedDataParallel as FSDP,
    MixedPrecision,
    ShardingStrategy,
    FullStateDictConfig,
    StateDictType,
)
from torch.distributed.fsdp.wrap import (
    transformer_auto_wrap_policy,
    )
from modelforseminat_v5 import *
from transformers import get_cosine_schedule_with_warmup


################################# FSDP Config #####################################
def setup():
    # initialize the process group
    local_rank = int(os.environ['LOCAL_RANK'])
    torch.cuda.set_device(local_rank)
    dist.init_process_group(
          backend='nccl',
          init_method='env://',
           )


def cleanup():
    gc.collect()
    torch.cuda.empty_cache()
    dist.destroy_process_group()


def get_fsdp_device():
    # 每个进程初始化分布式环境后调用
    local_rank = int(os.environ.get("LOCAL_RANK", 0))  # torchrun 自动设置
    device = torch.device(f"cuda:{local_rank}")
    torch.cuda.set_device(device)
    return device


def setup_model(
    model_name: str,                  # HF 路径 / 本地目录
    dtype: str = "bf16",              # "bf16" | "fp16" | "fp32"
    chunk_size_limit: int = 5,
    attn_impl: str = "flash_attention_2",
    load_model_dir: str | None = None, # 可能的 .pt 权重文件
    decoder_layers: int = 1,
    encoder_layer: int = 1,
    mlp: bool = False,
    position_embedding_type: str = "absolute",
    base: str = None,
    length_loss_type: str = "ce"
):
    # --- 1. 构造 config -------------------------------------------------------
    config = Olmo2ConfigForSemiNAT.from_pretrained(
        model_name,
        chunk_size_limit=chunk_size_limit,
        attn_implementation=attn_impl,
        decoder_layers=decoder_layers,
        encoder_layer=encoder_layer,
        mlp=mlp,
        position_embedding_type=position_embedding_type,
        length_loss_type=length_loss_type
    )
    # pdb.set_trace()
    # --- 2. 按需设定 dtype ----------------------------------------------------
    dtype_map = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}
    torch_dtype = dtype_map.get(dtype, torch.float32)
    # --- 3. 加载基础模型 ------------------------------------------------------
    if base == "scratch":
        model = Olmo2ForCausalLMForSemiNAT(config).to(torch_dtype)
        # pdb.set_trace()
    elif base == "pretrained":
        model = Olmo2ForCausalLMForSemiNAT.from_pretrained(
            model_name,
            config=config,
            torch_dtype=torch_dtype
        )
        # pdb.set_trace()
    # --- 4. 若给定 .pt,则加载其参数 ----------------------------------------
    if load_model_dir and os.path.isfile(load_model_dir) and load_model_dir.endswith(".pt"):
        ckpt = torch.load(load_model_dir, map_location="cpu", weights_only=True)
        
        missing_keys, unexpected_keys = model.load_state_dict(ckpt, strict=False)
        print(f"[INFO] Loaded weights from {load_model_dir}")
        print(
            f"Loaded with {len(missing_keys)} missing keys and {len(unexpected_keys)} unexpected keys."
        )
        if missing_keys:
            print("Missing keys:", missing_keys)
        if unexpected_keys:
            print("Unexpected keys:", unexpected_keys)
        # pdb.set_trace()
    else:
        print("[INFO] No extra .pt weights loaded")
    # --- 5. tokenizer --------------------------------------------------------
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    
    # pdb.set_trace()
    
    # config = AutoConfig.from_pretrained(model_name)
    # model = Olmo2ForCausalLMForSemiNAT(config)  # 注意这里不用 from_pretrained
    # tokenizer = AutoTokenizer.from_pretrained(model_name)
    return model, tokenizer

def reduce_mean(tensor: torch.Tensor) -> torch.Tensor:
    # 聚合所有 rank 的 tensor 并求平均
    dist.all_reduce(tensor, op=dist.ReduceOp.SUM)
    tensor /= dist.get_world_size()
    return tensor

def collate_fn(batch):
    # 过滤 None
    batch = [x for x in batch if x is not None]
    if len(batch) == 0:
        return None  # 如果整 batch 都无效

    input_ids, labels, attention_mask, slice_arr, slice_label = zip(*batch)

    return (
        torch.stack(input_ids),
        torch.stack(labels),
        torch.stack(attention_mask),
        torch.stack(slice_arr),
        torch.stack(slice_label)
    )

def fsdp_main(args):
    local_rank = int(os.environ['LOCAL_RANK'])
    rank = int(os.environ['RANK'])
    world_size = int(os.environ['WORLD_SIZE'])
    if args.use_wandb and rank == 0:
        wandb.init(entity="SemiNAT", project=args.project_name, name=args.run_name)

    local_rank = int(os.environ['LOCAL_RANK'])
    DEVICE = f"cuda:{local_rank}"
    
    
    # pdb.set_trace()
    model, tokenizer = setup_model(args.model_path,args.dtype,args.chunk_size_limit,args.attn_implementation,args.ptm_model_path,args.decoder_layers,args.encoder_layers,args.mlp,args.position_embedding_type,args.base,args.length_loss_type)
    
    optimizer = optim.AdamW(
        model.parameters(),
        lr=args.lr,
        betas=args.betas,
        weight_decay=args.weight_decay,
        eps=args.eps,
    )

    train_dataset = eval(f"{args.data_type}")(
        tokenizer,
        args.data_path,
        args.max_length
    )
    train_sampler = DistributedSampler(train_dataset,
                                   rank=rank,
                                   num_replicas=world_size,
                                   shuffle=True,
                                   drop_last=True)

    train_dataloader = DataLoader(dataset=train_dataset,
                                sampler=train_sampler,
                                batch_size=args.batch_size,
                                num_workers=args.data_processess_num,
                                collate_fn=collate_fn)


    num_training_steps = args.epochs * len(train_dataloader) # 总训练步数
    num_warmup_steps = num_training_steps * args.warmup_ratio
    scheduler = get_cosine_schedule_with_warmup(
            optimizer,
            num_warmup_steps=num_warmup_steps,
            num_training_steps=num_training_steps
        )
    

    if args.resume_path:
        checkpoint = torch.load(args.resume_path, map_location=DEVICE, weights_only=True)
        missing_keys, unexpected_keys = model.load_state_dict(checkpoint["model"], strict=False)
        print(
            f"Loaded with {len(missing_keys)} missing keys and {len(unexpected_keys)} unexpected keys."
        )
        if missing_keys:
            print("Missing keys:", missing_keys)
        if unexpected_keys:
            print("Unexpected keys:", unexpected_keys)

        full_optim_state = checkpoint["optimizer"]
        sharded_state = FSDP.shard_full_optim_state_dict(full_optim_state, model)
        FSDP.optim_state_dict_to_device(
            sharded_state,
            device=torch.cuda.current_device(),         # 当前 GPU
            dtype=torch.bfloat16                        # 或 p.dtype,如果你混用 fp16/bf16
        )
        optimizer.load_state_dict(sharded_state)
        scheduler.load_state_dict(checkpoint["scheduler"])
        global_step = checkpoint.get("global_step", 0)

    print(f"Size of train dataset: {len(train_dataset)}")

    setup()

    Olmo2DecoderLayerForSemiNAT_auto_wrap_policy = functools.partial(
        transformer_auto_wrap_policy,
        transformer_layer_cls={
            Olmo2DecoderLayer,          
            Olmo2DecoderLayerForSemiNAT
            }
        )

    sharding_strategy: ShardingStrategy = ShardingStrategy.FULL_SHARD  #for Zero2 and FULL_SHARD for Zero3
    torch.cuda.set_device(local_rank)


    mp_policy = MixedPrecision(
        param_dtype=torch.bfloat16,
        reduce_dtype=torch.bfloat16,
        buffer_dtype=torch.bfloat16,
    )

    model = FSDP(model,
                 auto_wrap_policy=Olmo2DecoderLayerForSemiNAT_auto_wrap_policy,
                 mixed_precision=mp_policy,
                 sharding_strategy=sharding_strategy,
                 device_id=torch.cuda.current_device(),
                 use_orig_params=True)


    torch.autograd.set_detect_anomaly(True)

    loss1_list = []
    loss2_list = []
    loss_list = []

    global_step = 0



    start_time = time.time()

    for epoch in range(1, args.epochs + 1):
        model.train()
        local_rank = int(os.environ['LOCAL_RANK'])  

        if train_sampler:
            train_sampler.set_epoch(epoch)
            
        if rank == 0:
            inner_pbar = tqdm(range(len(train_dataloader)),
                              colour="blue",
                              desc="r0 Training Epoch")
        
        memories = []
        
        for batch in train_dataloader:
            if batch is None:
                continue
            optimizer.zero_grad()
            loss1, loss2 = model(input_ids=batch[0],
                                 labels=batch[1],
                                 attention_mask=batch[2],
                                 slice_pos=batch[3],
                                 slice_label=batch[4],
                                 use_cache=False).loss
            loss = args.alpha * loss1 + loss2
            # loss1_list.append(loss1.item())
            # loss2_list.append(loss2.item())
            # loss_list.append(loss.item())
            loss1_scalar = reduce_mean(loss1.detach()).item()
            loss2_scalar = reduce_mean(loss2.detach()).item()
            total_loss_scalar = reduce_mean(loss.detach()).item()


            # pdb.set_trace()
            loss.backward()
            optimizer.step()
            scheduler.step()
            # mem = torch.cuda.memory_allocated() / (1024 ** 2)
            # memories.append(mem)
            global_step += 1

            if global_step % args.save_steps == 0:
                save_policy = FullStateDictConfig(offload_to_cpu=True,
                                                  rank0_only=True)
                with FSDP.state_dict_type(model, StateDictType.FULL_STATE_DICT,
                                          save_policy):
                    cpu_state = model.state_dict()

                full_optim_state = FSDP.full_optim_state_dict(model, optimizer, rank0_only=True)

                if rank == 0:
                    print(f"--> steps: {str(global_step)} saving model ...")
                    if not os.path.exists(args.save_path):
                        os.makedirs(args.save_path)
                    save_name = f"{args.save_name}-steps_{str(global_step)}.pt"
                    print(f"--> saving as model name {save_name}")
                    save_path = os.path.join(args.save_path, save_name)
                    torch.save({
                        "model": cpu_state,
                        "optimizer": optimizer.state_dict(),
                        "scheduler": scheduler.state_dict() if scheduler else None,
                        "global_step": global_step,
                        "args": vars(args),
                    }, save_path)

            if rank == 0:
                loss1_list.append(loss1_scalar)
                loss2_list.append(loss2_scalar)
                loss_list.append(total_loss_scalar)
                inner_pbar.update(1)
                if args.use_wandb and rank == 0:
                    wandb.log({
                        "Length prediction loss (L1)": sum(loss1_list[-20:]) / len(loss1_list[-20:]),
                        "NAT loss (L2)": sum(loss2_list[-20:]) / len(loss2_list[-20:]),
                        f"Loss {args.alpha} * L1 + L2": sum(loss_list[-20:]) / len(loss_list[-20:]),
                        "lr": scheduler.get_last_lr()[0]
                    })
                    

        # avg_mem = sum(memories) / len(memories)
        # print(f"Average memory usage over {len(memories)} steps: {avg_mem:.2f} MB")

        # dist.all_reduce(loss, op=dist.ReduceOp.SUM)

        if rank == 0:
            inner_pbar.close()

        


    end_time = time.time()
    print(f"Training time: {end_time - start_time} seconds")

    dist.barrier()
    cleanup()


################################# FSDP Config #####################################

if __name__ == "__main__":
    # Training settings
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch-size',
                        type=int,
                        default=4,
                        metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument('--model_path', type=str)
    parser.add_argument('--save_path', type=str)
    parser.add_argument('--save_name', type=str)
    parser.add_argument('--data_path', type=str)
    parser.add_argument('--data_type', type=str)
    parser.add_argument('--project_name', type=str)
    parser.add_argument('--run_name', type=str)
    parser.add_argument('--max_length', type=int)
    parser.add_argument('--chunk_size_limit', type=int)
    parser.add_argument('--save_steps', type=int, default=5000)
    parser.add_argument('--data_processess_num', type=int, default=8)
    parser.add_argument('--epochs',
                        type=int,
                        default=2,
                        metavar='N',
                        help='number of epochs to train (default: 3)')
    parser.add_argument('--lr',
                        type=float,
                        default=.002,
                        metavar='LR',
                        help='learning rate (default: .002)')
    parser.add_argument('--weight_decay', type=float)
    parser.add_argument('--betas', type=float, nargs=2)
    parser.add_argument('--eps', type=float)
    parser.add_argument('--warmup_ratio', type=float)
    parser.add_argument('--seed',
                        type=int,
                        default=1,
                        metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--use_lora', action='store_true', default=False)
    parser.add_argument("--use_wandb",
                        action="store_true",
                        help="whether to use wandb")
    parser.add_argument('--dtype', type=str)
    parser.add_argument('--resume_path', type=str,default=None)
    parser.add_argument('--attn_implementation', type=str)
    parser.add_argument('--ptm_model_path', type=str,default=None)
    parser.add_argument('--decoder_layers', type=int,default=1)
    parser.add_argument('--encoder_layers', type=int,default=1)
    parser.add_argument('--mlp', action='store_true', default=False)
    parser.add_argument('--position_embedding_type', type=str, default="absolute",choices=["absolute","relative"])
    parser.add_argument('--base', type=str, default="scratch",choices=["scratch","pretrained"])
    parser.add_argument('--length_loss_type', type=str, default="ce",choices=["mse","ce"])
    parser.add_argument('--alpha', type=float, default=0.4)
    args = parser.parse_args()

    # pdb.set_trace()
    torch.manual_seed(args.seed)

    fsdp_main(args)