File size: 18,841 Bytes
d966684 d437286 d966684 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
import json
import pdb
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
from transformers.models.auto.modeling_auto import MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES
import copy
from transformers.modeling_outputs import (
MoeCausalLMOutputWithPast,
MoeModelOutputWithPast,
)
from collections import defaultdict
import numpy as np
import math
from torch import nn
# import pandas as pd
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from dataclasses import dataclass
# from transformers.models.olmoe.configuration_olmoe import OlmoeConfig
# from transformers.models.olmoe.modeling_olmoe import OlmoeMLP, OlmoeAttention, OlmoeFlashAttention2, OlmoeSdpaAttention, OlmoeRMSNorm, OlmoeSparseMoeBlock, apply_rotary_pos_emb, repeat_kv, OlmoeRotaryEmbedding
import os
import sys
import torch.distributed as dist
from tqdm import tqdm
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
import transformers
import pickle
# from transformers.models.olmoe.configuration_olmoe import OlmoeConfig
from dataset import *
# from utils import flash_attn_forward, flash_attn_prepare_decoder_attention_mask, get_multiround_data
# from peft import (get_peft_model, PeftModel)
import random
# from config import *
from datasets import Dataset, DatasetDict, load_dataset
import wandb
import gc
import os
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import functools
from torch.optim.lr_scheduler import StepLR
import torch.nn.functional as F
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper, CheckpointImpl)
from torch.distributed.fsdp import (
FullyShardedDataParallel as FSDP,
MixedPrecision,
BackwardPrefetch,
ShardingStrategy,
FullStateDictConfig,
StateDictType,
)
from torch.distributed.fsdp.wrap import (
transformer_auto_wrap_policy,
enable_wrap,
wrap,
)
from functools import partial
from torch.utils.data import DataLoader
from pathlib import Path
from typing import Type, List, Optional, Tuple, Union
from modelforseminat_v5 import *
from transformers import get_cosine_schedule_with_warmup
# from torch.optim.lr_scheduler import _LRScheduler
# class WarmupCosineScheduler(_LRScheduler):
# def __init__(self,
# optimizer,
# warmup_steps,
# total_steps,
# min_lr=0.0,
# last_epoch=-1):
# # self.warmup_steps = warmup_steps
# self.total_steps = total_steps
# self.min_lr = min_lr
# if isinstance(warmup_steps, float) and 0 < warmup_steps < 1:
# self.warmup_steps = int(warmup_steps * total_steps)
# else:
# self.warmup_steps = int(warmup_steps)
# super().__init__(optimizer, last_epoch)
# def get_lr(self):
# step = self.last_epoch + 1
# lrs = []
# for base_lr in self.base_lrs:
# if step < self.warmup_steps:
# # Linear warmup
# lr = base_lr * step / self.warmup_steps
# else:
# # Cosine decay
# progress = (step - self.warmup_steps) / max(
# 1, self.total_steps - self.warmup_steps)
# cosine_decay = 0.5 * (1 + math.cos(math.pi * progress))
# lr = self.min_lr + (base_lr - self.min_lr) * cosine_decay
# lrs.append(lr)
# return lrs
################################# FSDP Config #####################################
def setup():
# initialize the process group
local_rank = int(os.environ['LOCAL_RANK'])
torch.cuda.set_device(local_rank)
dist.init_process_group(
backend='nccl',
init_method='env://',
)
def cleanup():
gc.collect()
torch.cuda.empty_cache()
dist.destroy_process_group()
def get_fsdp_device():
# 每个进程初始化分布式环境后调用
local_rank = int(os.environ.get("LOCAL_RANK", 0)) # torchrun 自动设置
device = torch.device(f"cuda:{local_rank}")
torch.cuda.set_device(device)
return device
# def load_trained_model(model_name):
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# olmo_path = "/AIRvePFS/ai4science/users/ai4science/users/zyk/seminat_backup/model/OLMo-2-0425-1B"
# pt_path = "/AIRvePFS/ai4science/users/ai4science/users/zyk/seminat/ckp/sft-v4-0616-1w-1e3-chunklimit5-jueduipos/sft-v4-1e3-len4-fc-chunklimit4-jueduipos-epoch_136.pt"
# config_path = "/AIRvePFS/ai4science/users/ai4science/users/zyk/seminat_backup/model/OLMo-2-0425-1B/config.json"
# config = AutoConfig.from_pretrained(olmo_path)
# model = Olmo2ForCausalLMForSemiNAT.from_pretrained(olmo_path,
# config=config,
# torch_dtype=torch.bfloat16)
# state_dict = torch.load(pt_path, map_location=DEVICE, weights_only=True)
# missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
# print(
# f"Loaded with {len(missing_keys)} missing keys and {len(unexpected_keys)} unexpected keys."
# )
# if missing_keys:
# print("Missing keys:", missing_keys)
# if unexpected_keys:
# print("Unexpected keys:", unexpected_keys)
# model = model.to(DEVICE)
# tokenizer = AutoTokenizer.from_pretrained(olmo_path)
# return model, tokenizer
# def setup_model(model_name,device):
# model = Olmo2ForCausalLMForSemiNAT.from_pretrained(model_name,torch_dtype=torch.bfloat16,device_map=device)
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# # config = AutoConfig.from_pretrained(model_name)
# # model = Olmo2ForCausalLMForSemiNAT(config) # 注意这里不用 from_pretrained
# # tokenizer = AutoTokenizer.from_pretrained(model_name)
# return model, tokenizer
def setup_model(model_name, type):
# pdb.set_trace()
if type == "bf16":
model = Olmo2ForCausalLMForSemiNAT.from_pretrained(
model_name,
torch_dtype=torch.bfloat16
)
elif type == "fp16":
model = Olmo2ForCausalLMForSemiNAT.from_pretrained(
model_name,
torch_dtype=torch.float16
)
else:
model = Olmo2ForCausalLMForSemiNAT.from_pretrained(
model_name
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# config = AutoConfig.from_pretrained(model_name)
# model = Olmo2ForCausalLMForSemiNAT(config) # 注意这里不用 from_pretrained
# tokenizer = AutoTokenizer.from_pretrained(model_name)
return model, tokenizer
def collate_fn(batch):
# 过滤 None
batch = [x for x in batch if x is not None]
if len(batch) == 0:
return None # 如果整 batch 都无效
input_ids, labels, attention_mask, slice_arr, slice_label = zip(*batch)
return (
torch.stack(input_ids),
torch.stack(labels),
torch.stack(attention_mask),
torch.stack(slice_arr),
torch.stack(slice_label)
)
def fsdp_main(args):
local_rank = int(os.environ['LOCAL_RANK'])
rank = int(os.environ['RANK'])
world_size = int(os.environ['WORLD_SIZE'])
if args.use_wandb and rank == 0:
wandb.init(entity="SemiNAT", project="SemiNAT-SFT", name=args.run_name)
local_rank = int(os.environ['LOCAL_RANK'])
device = f"cuda:{local_rank}"
# model, tokenizer = setup_model(args.model_path, args.dtype, device)
model, tokenizer = setup_model(args.model_path,device)
# model, tokenizer = load_trained_model(args.model_path)
model.config.chunk_size_limit = args.chunk_size_limit
# if ".pkl" in args.data_path:
# train_dataset = pickle.load(open(args.data_path, "rb"))
# else:
# datasets = pd.read_parquet(args.data_path)
# train_dataset = eval(f"{args.data_type}")(
# tokenizer,
# datasets,
# args.max_length,
# args.data_processess_num)
# train_sampler = DistributedSampler(train_dataset,
# rank=rank,
# num_replicas=world_size,
# shuffle=True)
# train_dataloader = DataLoader(dataset=train_dataset,
# sampler=train_sampler,
# batch_size=args.batch_size)
train_dataset = eval(f"{args.data_type}")(
tokenizer,
args.data_path,
args.max_length
)
train_sampler = DistributedSampler(train_dataset,
rank=rank,
num_replicas=world_size,
shuffle=True)
train_dataloader = DataLoader(dataset=train_dataset,
sampler=train_sampler,
batch_size=args.batch_size,
num_workers=args.data_processess_num,
collate_fn=collate_fn)
# pdb.set_trace()
print(f"Size of train dataset: {len(train_dataset)}")
setup()
# Olmo2DecoderLayerForSemiNAT_auto_wrap_policy = functools.partial(
# transformer_auto_wrap_policy,
# transformer_layer_cls={
# Olmo2DecoderLayerForSemiNAT,
# NATEncoderForSemiNAT,
# NATDecoderForSemiNAT,
# })
Olmo2DecoderLayerForSemiNAT_auto_wrap_policy = functools.partial(
transformer_auto_wrap_policy,
transformer_layer_cls={
Olmo2DecoderLayer,
Olmo2DecoderLayerForSemiNAT
}
)
sharding_strategy: ShardingStrategy = ShardingStrategy.FULL_SHARD #for Zero2 and FULL_SHARD for Zero3
torch.cuda.set_device(local_rank)
# local_rank = int(os.environ['LOCAL_RANK'])
# device = torch.device(f"cuda:{local_rank}")
# model = model.to(device)
# if bf16_ready:
mp_policy = MixedPrecision(
param_dtype=torch.bfloat16,
reduce_dtype=torch.bfloat16,
buffer_dtype=torch.bfloat16,
)
# else:
# mp_policy = None # defaults to fp32
# if args.use_lora:
# model = get_peft_model(model, lora_config)
# pdb.set_trace()
# model is on CPU before input to FSDP
model = FSDP(model,
auto_wrap_policy=Olmo2DecoderLayerForSemiNAT_auto_wrap_policy,
mixed_precision=mp_policy,
sharding_strategy=sharding_strategy,
device_id=torch.cuda.current_device(),
use_orig_params=True)
optimizer = optim.AdamW(
model.parameters(),
lr=args.lr,
betas=args.betas,
weight_decay=args.weight_decay,
eps=args.eps,
)
# pdb.set_trace()
# scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
# scheduler = WarmupCosineScheduler(
# optimizer=optimizer, # 优化器对象
# warmup_steps=args.warmup_steps, # warmup 步数(或比例)
# total_steps=args.total_steps, # 总训练步数
# min_lr=args.min_lr # 最小学习率
# )
num_training_steps = args.epochs * len(train_dataloader) # 总训练步数
num_warmup_steps = num_training_steps * args.warmup_ratio
scheduler = get_cosine_schedule_with_warmup(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps
)
torch.autograd.set_detect_anomaly(True)
loss1_list = []
loss2_list = []
loss_list = []
global_step = 0
start_time = time.time()
for epoch in range(1, args.epochs + 1):
# t0 = time.time()
model.train()
local_rank = int(os.environ['LOCAL_RANK'])
# fsdp_loss = torch.zeros(2).to(local_rank)
if train_sampler:
train_sampler.set_epoch(epoch)
if rank == 0:
inner_pbar = tqdm(range(len(train_dataloader)),
colour="blue",
desc="r0 Training Epoch")
memories = []
for batch in train_dataloader:
if batch is None:
continue
optimizer.zero_grad()
loss1, loss2 = model(input_ids=batch[0],
labels=batch[1],
attention_mask=batch[2],
slice_pos=batch[3],
slice_label=batch[4],
use_cache=False).loss
loss = loss1 + loss2
# loss = loss2
loss1_list.append(loss1.item())
loss2_list.append(loss2.item())
loss_list.append(loss.item())
# pdb.set_trace()
# if torch.isnan(loss):
# print(f"Step {global_step}: loss is NaN, entering pdb …")
# pdb.set_trace()
# print(f"loss1:{loss1},loss2:{loss2}")
loss.backward()
# 按参数计算
# for name, module in model.named_modules():
# total_norm = 0.0
# param_count = 0
# for param in module.parameters(recurse=False):
# if param.grad is not None:
# total_norm += param.grad.data.norm(2).item()**2
# param_count += 1
# if param_count > 0:
# if args.use_wandb and rank == 0:
# total_norm = total_norm**0.5
# wandb.log({f"grad_norm/{name}": total_norm},
# step=global_step)
optimizer.step()
mem = torch.cuda.memory_allocated() / (1024 ** 2)
memories.append(mem)
global_step += 1
if global_step % args.save_steps == 0:
save_policy = FullStateDictConfig(offload_to_cpu=True,
rank0_only=True)
with FSDP.state_dict_type(model, StateDictType.FULL_STATE_DICT,
save_policy):
cpu_state = model.state_dict()
if rank == 0:
print(f"--> steps: {str(global_step)} saving model ...")
if not os.path.exists(args.save_path):
os.makedirs(args.save_path)
save_name = f"{args.save_name}-steps_{str(global_step)}.pt"
print(f"--> saving as model name {save_name}")
save_path = os.path.join(args.save_path, save_name)
torch.save(cpu_state, save_path)
if rank == 0:
inner_pbar.update(1)
if args.use_wandb and rank == 0:
wandb.log({
"length prediction loss":
sum(loss1_list[-20:]) / len(loss1_list[-20:]),
"nat loss":
sum(loss2_list[-20:]) / len(loss2_list[-20:]),
"loss":
sum(loss_list[-20:]) / len(loss_list[-20:]),
"lr": scheduler.get_last_lr()[0]
})
avg_mem = sum(memories) / len(memories)
print(f"Average memory usage over {len(memories)} steps: {avg_mem:.2f} MB")
dist.all_reduce(loss, op=dist.ReduceOp.SUM)
if rank == 0:
inner_pbar.close()
scheduler.step()
# if rank == 0:
# print(f"--> entering save model state")
# save_policy = FullStateDictConfig(offload_to_cpu=True, rank0_only=True)
# with FSDP.state_dict_type(model, StateDictType.FULL_STATE_DICT,
# save_policy):
# cpu_state = model.state_dict()
# if rank == 0:
# print(f"--> epoch: {str(epoch)} saving model ...")
# if not os.path.exists(args.save_path):
# os.makedirs(args.save_path)
# save_name = f"{args.save_name}-epoch_{str(epoch)}.pt"
# print(f"--> saving as model name {save_name}")
# save_path = os.path.join(args.save_path, save_name)
# torch.save(cpu_state, save_path)
end_time = time.time()
print(f"Training time: {end_time - start_time} seconds")
dist.barrier()
cleanup()
################################# FSDP Config #####################################
if __name__ == "__main__":
# Training settings
parser = argparse.ArgumentParser()
parser.add_argument('--batch-size',
type=int,
default=4,
metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--model_path', type=str)
parser.add_argument('--save_path', type=str)
parser.add_argument('--save_name', type=str)
parser.add_argument('--data_path', type=str)
parser.add_argument('--data_type', type=str)
parser.add_argument('--run_name', type=str)
parser.add_argument('--max_length', type=int)
parser.add_argument('--chunk_size_limit', type=int)
parser.add_argument('--save_steps', type=int, default=5000)
parser.add_argument('--data_processess_num', type=int, default=8)
parser.add_argument('--epochs',
type=int,
default=2,
metavar='N',
help='number of epochs to train (default: 3)')
parser.add_argument('--lr',
type=float,
default=.002,
metavar='LR',
help='learning rate (default: .002)')
parser.add_argument('--weight_decay', type=float)
parser.add_argument('--betas', type=float, nargs=2)
parser.add_argument('--eps', type=float)
parser.add_argument('--warmup_ratio', type=float)
parser.add_argument('--seed',
type=int,
default=1,
metavar='S',
help='random seed (default: 1)')
parser.add_argument('--use_lora', action='store_true', default=False)
parser.add_argument("--use_wandb",
action="store_true",
help="whether to use wandb")
parser.add_argument('--dtype', type=str)
args = parser.parse_args()
torch.manual_seed(args.seed)
fsdp_main(args)
|