|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.common_parser import load_conll_data |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@INPROCEEDINGS{9212879, |
|
author={Akmal, Muhammad and Romadhony, Ade}, |
|
booktitle={2020 International Conference on Data Science and Its Applications (ICoDSA)}, |
|
title={Corpus Development for Indonesian Product Named Entity Recognition Using Semi-supervised Approach}, |
|
year={2020}, |
|
volume={}, |
|
number={}, |
|
pages={1-5}, |
|
keywords={Feature extraction;Labeling;Buildings;Semisupervised learning;Training data;Text recognition;Manuals;proner;semi-supervised learning;crf}, |
|
doi={10.1109/ICoDSA50139.2020.9212879} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "ind_proner" |
|
|
|
_DESCRIPTION = """\ |
|
Indonesian PRONER is a corpus for Indonesian product named entity recognition . It contains data was labeled manually |
|
and data that was labeled automatically through a semi-supervised learning approach of conditional random fields (CRF). |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/dziem/proner-labeled-text" |
|
|
|
_LANGUAGES = {"ind": "id"} |
|
|
|
_LANGUAGE_CODES = list(_LANGUAGES.values()) |
|
|
|
_LICENSE = Licenses.CC_BY_4_0.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
"automatic": "https://raw.githubusercontent.com/dziem/proner-labeled-text/master/automatically_labeled.tsv", |
|
"manual": "https://raw.githubusercontent.com/dziem/proner-labeled-text/master/manually_labeled.tsv", |
|
} |
|
|
|
_ANNOTATION_TYPES = list(_URLS.keys()) |
|
_ANNOTATION_IDXS = {"l1": 0, "l2": 1} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
class IndPRONERDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
Indonesian PRONER is a product named entity recognition dataset from https://github.com/dziem/proner-labeled-text. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = ( |
|
[ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{annotation_type}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME}_{annotation_type} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}_{annotation_type}", |
|
) |
|
for annotation_type in _ANNOTATION_TYPES |
|
] |
|
+ [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{annotation_type}_l1_seacrowd_seq_label", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"{_DATASETNAME}_{annotation_type}_l1 SEACrowd schema", |
|
schema="seacrowd_seq_label", |
|
subset_id=f"{_DATASETNAME}_{annotation_type}_l1", |
|
) |
|
for annotation_type in _ANNOTATION_TYPES |
|
] |
|
+ [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{annotation_type}_l2_seacrowd_seq_label", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"{_DATASETNAME}_{annotation_type}_l2 SEACrowd schema", |
|
schema="seacrowd_seq_label", |
|
subset_id=f"{_DATASETNAME}_{annotation_type}_l2", |
|
) |
|
for annotation_type in _ANNOTATION_TYPES |
|
] |
|
) |
|
|
|
label_classes = [ |
|
"B-PRO", |
|
"B-BRA", |
|
"B-TYP", |
|
"I-PRO", |
|
"I-BRA", |
|
"I-TYP", |
|
"O", |
|
] |
|
|
|
def _extract_label(self, text: str, idx: int) -> str: |
|
split = text.split("|") |
|
if len(split) > 1 and idx != -1: |
|
return split[idx] |
|
else: |
|
return text |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"ner_tags": datasets.Sequence(datasets.Value("string")), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_seq_label": |
|
features = schemas.seq_label_features(label_names=self.label_classes) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
""" |
|
Returns SplitGenerators. |
|
""" |
|
|
|
annotation_type = self.config.subset_id.split("_")[2] |
|
path = dl_manager.download_and_extract(_URLS[annotation_type]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": path, |
|
"split": "train", |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
""" |
|
Yields examples as (key, example) tuples. |
|
""" |
|
label_idx = -1 |
|
subset_id = self.config.subset_id.split("_") |
|
if len(subset_id) > 3: |
|
if subset_id[3] in _ANNOTATION_IDXS: |
|
label_idx = _ANNOTATION_IDXS[subset_id[3]] |
|
|
|
idx = 0 |
|
conll_dataset = load_conll_data(filepath) |
|
if self.config.schema == "source": |
|
for _, row in enumerate(conll_dataset): |
|
x = {"id": str(idx), "tokens": row["sentence"], "ner_tags": list(map(self._extract_label, row["label"], [label_idx] * len(row["label"])))} |
|
yield idx, x |
|
idx += 1 |
|
elif self.config.schema == "seacrowd_seq_label": |
|
for _, row in enumerate(conll_dataset): |
|
x = {"id": str(idx), "tokens": row["sentence"], "labels": list(map(self._extract_label, row["label"], [label_idx] * len(row["label"])))} |
|
yield idx, x |
|
idx += 1 |
|
|