File size: 6,762 Bytes
a8906c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.common_parser import load_conll_data
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@INPROCEEDINGS{9212879,
author={Akmal, Muhammad and Romadhony, Ade},
booktitle={2020 International Conference on Data Science and Its Applications (ICoDSA)},
title={Corpus Development for Indonesian Product Named Entity Recognition Using Semi-supervised Approach},
year={2020},
volume={},
number={},
pages={1-5},
keywords={Feature extraction;Labeling;Buildings;Semisupervised learning;Training data;Text recognition;Manuals;proner;semi-supervised learning;crf},
doi={10.1109/ICoDSA50139.2020.9212879}
}
"""
_DATASETNAME = "ind_proner"
_DESCRIPTION = """\
Indonesian PRONER is a corpus for Indonesian product named entity recognition . It contains data was labeled manually
and data that was labeled automatically through a semi-supervised learning approach of conditional random fields (CRF).
"""
_HOMEPAGE = "https://github.com/dziem/proner-labeled-text"
_LANGUAGES = {"ind": "id"}
_LANGUAGE_CODES = list(_LANGUAGES.values())
_LICENSE = Licenses.CC_BY_4_0.value
_LOCAL = False
_URLS = {
"automatic": "https://raw.githubusercontent.com/dziem/proner-labeled-text/master/automatically_labeled.tsv",
"manual": "https://raw.githubusercontent.com/dziem/proner-labeled-text/master/manually_labeled.tsv",
}
_ANNOTATION_TYPES = list(_URLS.keys())
_ANNOTATION_IDXS = {"l1": 0, "l2": 1}
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
logger = datasets.logging.get_logger(__name__)
class IndPRONERDataset(datasets.GeneratorBasedBuilder):
"""
Indonesian PRONER is a product named entity recognition dataset from https://github.com/dziem/proner-labeled-text.
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = (
[
SEACrowdConfig(
name=f"{_DATASETNAME}_{annotation_type}_source",
version=datasets.Version(_SOURCE_VERSION),
description=f"{_DATASETNAME}_{annotation_type} source schema",
schema="source",
subset_id=f"{_DATASETNAME}_{annotation_type}",
)
for annotation_type in _ANNOTATION_TYPES
]
+ [
SEACrowdConfig(
name=f"{_DATASETNAME}_{annotation_type}_l1_seacrowd_seq_label",
version=datasets.Version(_SEACROWD_VERSION),
description=f"{_DATASETNAME}_{annotation_type}_l1 SEACrowd schema",
schema="seacrowd_seq_label",
subset_id=f"{_DATASETNAME}_{annotation_type}_l1",
)
for annotation_type in _ANNOTATION_TYPES
]
+ [
SEACrowdConfig(
name=f"{_DATASETNAME}_{annotation_type}_l2_seacrowd_seq_label",
version=datasets.Version(_SEACROWD_VERSION),
description=f"{_DATASETNAME}_{annotation_type}_l2 SEACrowd schema",
schema="seacrowd_seq_label",
subset_id=f"{_DATASETNAME}_{annotation_type}_l2",
)
for annotation_type in _ANNOTATION_TYPES
]
)
label_classes = [
"B-PRO",
"B-BRA",
"B-TYP",
"I-PRO",
"I-BRA",
"I-TYP",
"O",
]
def _extract_label(self, text: str, idx: int) -> str:
split = text.split("|")
if len(split) > 1 and idx != -1:
return split[idx]
else:
return text
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(datasets.Value("string")),
}
)
elif self.config.schema == "seacrowd_seq_label":
features = schemas.seq_label_features(label_names=self.label_classes)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""
Returns SplitGenerators.
"""
annotation_type = self.config.subset_id.split("_")[2]
path = dl_manager.download_and_extract(_URLS[annotation_type])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": path,
"split": "train",
},
)
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""
Yields examples as (key, example) tuples.
"""
label_idx = -1
subset_id = self.config.subset_id.split("_")
if len(subset_id) > 3:
if subset_id[3] in _ANNOTATION_IDXS:
label_idx = _ANNOTATION_IDXS[subset_id[3]]
idx = 0
conll_dataset = load_conll_data(filepath)
if self.config.schema == "source":
for _, row in enumerate(conll_dataset):
x = {"id": str(idx), "tokens": row["sentence"], "ner_tags": list(map(self._extract_label, row["label"], [label_idx] * len(row["label"])))}
yield idx, x
idx += 1
elif self.config.schema == "seacrowd_seq_label":
for _, row in enumerate(conll_dataset):
x = {"id": str(idx), "tokens": row["sentence"], "labels": list(map(self._extract_label, row["label"], [label_idx] * len(row["label"])))}
yield idx, x
idx += 1
|