|
--- |
|
license: cc |
|
task_categories: |
|
- translation |
|
- text-generation |
|
- text2text-generation |
|
language: |
|
- en |
|
- si |
|
tags: |
|
- translation |
|
- transliteration |
|
- Sinhala |
|
- English |
|
- Singlish |
|
- NLP |
|
- dataset |
|
- low-resource |
|
pretty_name: Sinhala–English–Singlish Translation Dataset |
|
size_categories: |
|
- 10K<n<100K |
|
--- |
|
|
|
# Sinhala–English–Singlish Translation Dataset |
|
|
|
> A parallel corpus of Sinhala sentences, their English translations, and romanized Sinhala (“Singlish”) transliterations. |
|
|
|
--- |
|
|
|
## 📋 Table of Contents |
|
|
|
1. [Dataset Overview](#dataset-overview) |
|
2. [Installation](#installation) |
|
3. [Quick Start](#quick-start) |
|
4. [Dataset Structure](#dataset-structure) |
|
5. [Usage Examples](#usage-examples) |
|
6. [Citation](#citation) |
|
7. [License](#license) |
|
8. [Credits](#credits) |
|
|
|
--- |
|
|
|
## Dataset Overview |
|
|
|
- **Description**: 34,500 aligned triplets of |
|
- Sinhala (native script) |
|
- English (human translation) |
|
- Singlish (romanized Sinhala) |
|
- **Source**: |
|
- 📊 Kaggle dataset: `programmerrdai/sinhala-english-singlish-translation-dataset` |
|
- 🛠️ Collection pipeline: GitHub [Sinenglish-LLM-Data-Collection](https://github.com/Programmer-RD-AI-Archive/Sinenglish-LLM-Data-Collection) |
|
- **DOI**: 10.57967/hf/5605 |
|
- **Released**: 2025 (Revision `c6560ff`) |
|
- **License**: MIT |
|
|
|
--- |
|
|
|
## Installation |
|
|
|
```bash |
|
pip install datasets |
|
```` |
|
|
|
--- |
|
|
|
## Quick Start |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
ds = load_dataset( |
|
"Programmer-RD-AI/sinhala-english-singlish-translation", |
|
split="train" |
|
) |
|
print(ds[0]) |
|
# { |
|
# "sinhala": "මෙය මගේ ප්රධාන අයිතියයි", |
|
# "english": "This is my headright.", |
|
# "singlish": "meya mage pradhana ayithiyayi" |
|
# } |
|
``` |
|
|
|
--- |
|
|
|
## Dataset Structure |
|
|
|
| Column | Type | Description | |
|
| ---------- | -------- | -------------------------------------- | |
|
| `sinhala` | `string` | Original sentence in Sinhala script | |
|
| `english` | `string` | Corresponding English translation | |
|
| `singlish` | `string` | Romanized (“Singlish”) transliteration | |
|
|
|
* **Rows**: 34,500 |
|
* **Format**: CSV (viewed as Parquet on HF) |
|
|
|
--- |
|
|
|
## Usage Examples |
|
|
|
### Load into Pandas |
|
|
|
```python |
|
import pandas as pd |
|
from datasets import load_dataset |
|
|
|
df = load_dataset( |
|
"Programmer-RD-AI/sinhala-english-singlish-translation", |
|
split="train" |
|
).to_pandas() |
|
|
|
print(df.head()) |
|
``` |
|
|
|
### Fine-tuning a Translation Model |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, Trainer, TrainingArguments |
|
|
|
# 1. Tokenizer & model |
|
tokenizer = AutoTokenizer.from_pretrained("t5-small") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("t5-small") |
|
|
|
# 2. Preprocess |
|
def preprocess(ex): |
|
inputs = "translate Sinhala to English: " + ex["sinhala"] |
|
targets = ex["english"] |
|
tokenized = tokenizer(inputs, text_target=targets, truncation=True) |
|
return tokenized |
|
|
|
train_dataset = ds.map(preprocess, remove_columns=ds.column_names) |
|
|
|
# 3. Training |
|
args = TrainingArguments( |
|
output_dir="outputs", |
|
num_train_epochs=3, |
|
per_device_train_batch_size=16, |
|
) |
|
trainer = Trainer( |
|
model=model, |
|
args=args, |
|
train_dataset=train_dataset, |
|
tokenizer=tokenizer |
|
) |
|
trainer.train() |
|
``` |
|
|
|
--- |
|
|
|
## Citation |
|
|
|
```bibtex |
|
@misc{ranuga_disansa_gamage_2025, |
|
author = { Ranuga Disansa Gamage and Sasvidu Abesinghe and Sheneli Fernando and Thulana Vithanage }, |
|
title = { sinhala-english-singlish-translation (Revision b6bde25) }, |
|
year = 2025, |
|
url = { https://huggingface.co/datasets/Programmer-RD-AI/sinhala-english-singlish-translation }, |
|
doi = { 10.57967/hf/5626 }, |
|
publisher = { Hugging Face } |
|
} |
|
``` |
|
|
|
--- |
|
|
|
## License |
|
|
|
This dataset is released under the **CC License**. See the [LICENSE](LICENSE) file for details. |