Microsoft_Learn / Scrapping.md
PetraAI's picture
Upload 4 files
b33ad61 verified

"""# %% [markdown]

# Web Scraping, Processing, and Embedding Project

This notebook demonstrates a workflow for web scraping text data from a website, processing it into manageable chunks, and then creating numerical representations (embeddings) of these chunks using a sentence transformer model. Finally, the embedded data is saved to Google Drive.

%% [markdown]

# Install necessary libraries

This cell installs all the required Python packages.

%%

!pip install -q ipywidgets google-colab python-docx pypdf pandas nltk sentence-transformers torch tqdm pyarrow httpx beautifulsoup4 datasets requests

%% [markdown]

# Web scraping and data extraction script

This script crawls a website and extracts text content from each page.

%%

prompt: write a script to navigate to the link https://learn.microsoft.com/en-us/ and start web scrapping and data extraction automatically on every page must scrap and extract all data, 100% data

import requests from bs4 import BeautifulSoup from urllib.parse import urljoin, urlparse

def is_valid(url): '''Checks whether url is a valid URL.''' try: result = urlparse(url) return all([result.scheme, result.netloc]) except: return False

def get_all_website_links(url): ''' Returns all URLs that is found on url in which it belongs to the same website ''' urls = set() domain_name = urlparse(url).netloc try: soup = BeautifulSoup(requests.get(url).content, "html.parser") for a_tag in soup.findAll("a"): href = a_tag.attrs.get("href") if href == "" or href is None: continue href = urljoin(url, href) parsed_href = urlparse(href) href = parsed_href.scheme + "://" + parsed_href.netloc + parsed_href.path if not is_valid(href): continue if parsed_href.netloc == domain_name: urls.add(href) except Exception as e: print(f"Error processing {url}: {e}") return urls

def scrape_page_data(url): '''Scrapes all text content from a given URL.''' try: response = requests.get(url) soup = BeautifulSoup(response.content, 'html.parser') # Extract all text from the page text = soup.get_text(separator='\n', strip=True) return text except Exception as e: print(f"Error scraping {url}: {e}") return None

def crawl_website(start_url, max_pages=100): '''Crawls a website and scrapes data from each page.''' visited_urls = set() urls_to_visit = {start_url} scraped_data = {}

while urls_to_visit and len(visited_urls) < max_pages:
    current_url = urls_to_visit.pop()
    if current_url in visited_urls:
        continue

    print(f"Visiting: {current_url}")
    visited_urls.add(current_url)

    # Scrape data
    data = scrape_page_data(current_url)
    if data:
        scraped_data[current_url] = data

    # Find new links
    new_links = get_all_website_links(current_url)
    for link in new_links:
        if link not in visited_urls:
            urls_to_visit.add(link)

return scraped_data

Start the crawling process

start_url = "https://learn.microsoft.com/en-us/" all_scraped_data = crawl_website(start_url)

You can now process the all_scraped_data dictionary

For example, print the number of pages scraped and the data from one page:

print(f"\nScraped data from {len(all_scraped_data)} pages.") if all_scraped_data: first_url = list(all_scraped_data.keys())[0] print(f"\nData from the first scraped page ({first_url}):") # print(all_scraped_data[first_url][:500]) # Print first 500 characters

%% [markdown]

# Data processing and embedding script

This script takes the scraped data, chunks it, and creates embeddings using a sentence transformer model.

%%

prompt: write a script to convert, format, embed the full scrapped and extracted data to structured, embedded data chunks

import torch from sentence_transformers import SentenceTransformer from datasets import Dataset from tqdm.auto import tqdm

Check for GPU availability

device = 'cuda' if torch.cuda.is_available() else 'cpu' print(f"Using device: {device}")

Load a pre-trained sentence transformer model

model = SentenceTransformer('all-MiniLM-L6-v2').to(device)

def chunk_text(text, chunk_size=500, chunk_overlap=50): '''Splits text into chunks with overlap.''' words = text.split() chunks = [] i = 0 while i < len(words): chunk = words[i:i + chunk_size] chunks.append(" ".join(chunk)) i += chunk_size - chunk_overlap if i >= len(words) - chunk_overlap and i < len(words): # Handle the last chunk chunks.append(" ".join(words[i:])) break

return chunks

def process_scraped_data(scraped_data, chunk_size=500, chunk_overlap=50): ''' Converts scraped data into formatted chunks and embeds them. Returns a list of dictionaries, each containing chunk text, source URL, and embedding. ''' processed_chunks = [] for url, text in tqdm(scraped_data.items(), desc="Processing scraped data"): if text: chunks = chunk_text(text, chunk_size=chunk_size, chunk_overlap=chunk_overlap) for chunk in chunks: processed_chunks.append({ 'text': chunk, 'source': url, }) return processed_chunks

def embed_chunks(processed_chunks, model, batch_size=32): '''Embeds the text chunks using the sentence transformer model.''' # Extract texts for embedding texts_to_embed = [chunk['text'] for chunk in processed_chunks]

# Create a Hugging Face Dataset
dataset = Dataset.from_dict({'text': texts_to_embed})

# Define a function to apply embeddings
def get_embeddings(batch):
    return {'embedding': model.encode(batch['text'], convert_to_tensor=True).tolist()}

# Apply the embedding function in batches
dataset = dataset.map(get_embeddings, batched=True, batch_size=batch_size)

# Update the original processed_chunks list with embeddings
for i, item in enumerate(processed_chunks):
    item['embedding'] = dataset[i]['embedding']

return processed_chunks

--- Main script for processing and embedding ---

Process the scraped data into chunks

formatted_chunks = process_scraped_data(all_scraped_data)

Embed the chunks

embedded_data = embed_chunks(formatted_chunks, model)

embedded_data is now a list of dictionaries, where each dictionary

represents a chunk with its text, source URL, and embedding.

You can now use this data for similarity search, indexing, etc.

print(f"\nCreated {len(embedded_data)} embedded chunks.") if embedded_data: print("\nExample of an embedded chunk:") embedded_data[0]

%% [markdown]

# Save the embedded dataset to Google Drive

This script saves the processed and embedded data to a JSON file in your Google Drive.

%%

prompt: write a script to save all converted, formatted, embedded dataset to the "Output" file on My Drive

import json from google.colab import drive

Mount Google Drive

drive.mount('/content/drive')

Define the output file path

output_file_path = '/content/drive/My Drive/Output/embedded_dataset.json'

Ensure the output directory exists

import os output_dir = os.path.dirname(output_file_path) os.makedirs(output_dir, exist_ok=True)

Save the embedded data to a JSON file

with open(output_file_path, 'w') as f: json.dump(embedded_data, f, indent=2)

print(f"\nSaved embedded dataset to: {output_file_path}") """