"""# %% [markdown]
# Web Scraping, Processing, and Embedding Project
This notebook demonstrates a workflow for web scraping text data from a website, processing it into manageable chunks, and then creating numerical representations (embeddings) of these chunks using a sentence transformer model. Finally, the embedded data is saved to Google Drive.
%% [markdown]
# Install necessary libraries
This cell installs all the required Python packages.
%%
!pip install -q ipywidgets google-colab python-docx pypdf pandas nltk sentence-transformers torch tqdm pyarrow httpx beautifulsoup4 datasets requests
%% [markdown]
# Web scraping and data extraction script
This script crawls a website and extracts text content from each page.
%%
prompt: write a script to navigate to the link https://learn.microsoft.com/en-us/ and start web scrapping and data extraction automatically on every page must scrap and extract all data, 100% data
import requests from bs4 import BeautifulSoup from urllib.parse import urljoin, urlparse
def is_valid(url):
'''Checks whether url
is a valid URL.'''
try:
result = urlparse(url)
return all([result.scheme, result.netloc])
except:
return False
def get_all_website_links(url):
'''
Returns all URLs that is found on url
in which it belongs to the same website
'''
urls = set()
domain_name = urlparse(url).netloc
try:
soup = BeautifulSoup(requests.get(url).content, "html.parser")
for a_tag in soup.findAll("a"):
href = a_tag.attrs.get("href")
if href == "" or href is None:
continue
href = urljoin(url, href)
parsed_href = urlparse(href)
href = parsed_href.scheme + "://" + parsed_href.netloc + parsed_href.path
if not is_valid(href):
continue
if parsed_href.netloc == domain_name:
urls.add(href)
except Exception as e:
print(f"Error processing {url}: {e}")
return urls
def scrape_page_data(url): '''Scrapes all text content from a given URL.''' try: response = requests.get(url) soup = BeautifulSoup(response.content, 'html.parser') # Extract all text from the page text = soup.get_text(separator='\n', strip=True) return text except Exception as e: print(f"Error scraping {url}: {e}") return None
def crawl_website(start_url, max_pages=100): '''Crawls a website and scrapes data from each page.''' visited_urls = set() urls_to_visit = {start_url} scraped_data = {}
while urls_to_visit and len(visited_urls) < max_pages:
current_url = urls_to_visit.pop()
if current_url in visited_urls:
continue
print(f"Visiting: {current_url}")
visited_urls.add(current_url)
# Scrape data
data = scrape_page_data(current_url)
if data:
scraped_data[current_url] = data
# Find new links
new_links = get_all_website_links(current_url)
for link in new_links:
if link not in visited_urls:
urls_to_visit.add(link)
return scraped_data
Start the crawling process
start_url = "https://learn.microsoft.com/en-us/" all_scraped_data = crawl_website(start_url)
You can now process the all_scraped_data
dictionary
For example, print the number of pages scraped and the data from one page:
print(f"\nScraped data from {len(all_scraped_data)} pages.") if all_scraped_data: first_url = list(all_scraped_data.keys())[0] print(f"\nData from the first scraped page ({first_url}):") # print(all_scraped_data[first_url][:500]) # Print first 500 characters
%% [markdown]
# Data processing and embedding script
This script takes the scraped data, chunks it, and creates embeddings using a sentence transformer model.
%%
prompt: write a script to convert, format, embed the full scrapped and extracted data to structured, embedded data chunks
import torch from sentence_transformers import SentenceTransformer from datasets import Dataset from tqdm.auto import tqdm
Check for GPU availability
device = 'cuda' if torch.cuda.is_available() else 'cpu' print(f"Using device: {device}")
Load a pre-trained sentence transformer model
model = SentenceTransformer('all-MiniLM-L6-v2').to(device)
def chunk_text(text, chunk_size=500, chunk_overlap=50): '''Splits text into chunks with overlap.''' words = text.split() chunks = [] i = 0 while i < len(words): chunk = words[i:i + chunk_size] chunks.append(" ".join(chunk)) i += chunk_size - chunk_overlap if i >= len(words) - chunk_overlap and i < len(words): # Handle the last chunk chunks.append(" ".join(words[i:])) break
return chunks
def process_scraped_data(scraped_data, chunk_size=500, chunk_overlap=50): ''' Converts scraped data into formatted chunks and embeds them. Returns a list of dictionaries, each containing chunk text, source URL, and embedding. ''' processed_chunks = [] for url, text in tqdm(scraped_data.items(), desc="Processing scraped data"): if text: chunks = chunk_text(text, chunk_size=chunk_size, chunk_overlap=chunk_overlap) for chunk in chunks: processed_chunks.append({ 'text': chunk, 'source': url, }) return processed_chunks
def embed_chunks(processed_chunks, model, batch_size=32): '''Embeds the text chunks using the sentence transformer model.''' # Extract texts for embedding texts_to_embed = [chunk['text'] for chunk in processed_chunks]
# Create a Hugging Face Dataset
dataset = Dataset.from_dict({'text': texts_to_embed})
# Define a function to apply embeddings
def get_embeddings(batch):
return {'embedding': model.encode(batch['text'], convert_to_tensor=True).tolist()}
# Apply the embedding function in batches
dataset = dataset.map(get_embeddings, batched=True, batch_size=batch_size)
# Update the original processed_chunks list with embeddings
for i, item in enumerate(processed_chunks):
item['embedding'] = dataset[i]['embedding']
return processed_chunks
--- Main script for processing and embedding ---
Process the scraped data into chunks
formatted_chunks = process_scraped_data(all_scraped_data)
Embed the chunks
embedded_data = embed_chunks(formatted_chunks, model)
embedded_data
is now a list of dictionaries, where each dictionary
represents a chunk with its text, source URL, and embedding.
You can now use this data for similarity search, indexing, etc.
print(f"\nCreated {len(embedded_data)} embedded chunks.") if embedded_data: print("\nExample of an embedded chunk:") embedded_data[0]
%% [markdown]
# Save the embedded dataset to Google Drive
This script saves the processed and embedded data to a JSON file in your Google Drive.
%%
prompt: write a script to save all converted, formatted, embedded dataset to the "Output" file on My Drive
import json from google.colab import drive
Mount Google Drive
drive.mount('/content/drive')
Define the output file path
output_file_path = '/content/drive/My Drive/Output/embedded_dataset.json'
Ensure the output directory exists
import os output_dir = os.path.dirname(output_file_path) os.makedirs(output_dir, exist_ok=True)
Save the embedded data to a JSON file
with open(output_file_path, 'w') as f: json.dump(embedded_data, f, indent=2)
print(f"\nSaved embedded dataset to: {output_file_path}") """