annotations_creators:
- no-annotation
language_creators:
- found
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: Monash Time Series Forecasting Repository
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- time-series-forecasting
task_ids:
- univariate-time-series-forecasting
- multivariate-time-series-forecasting
dataset_info:
- config_name: weather
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 176893738
num_examples: 3010
- name: test
num_bytes: 177638713
num_examples: 3010
- name: validation
num_bytes: 177266226
num_examples: 3010
download_size: 38820451
dataset_size: 531798677
- config_name: tourism_yearly
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 54264
num_examples: 518
- name: test
num_bytes: 71358
num_examples: 518
- name: validation
num_bytes: 62811
num_examples: 518
download_size: 36749
dataset_size: 188433
- config_name: tourism_quarterly
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 162738
num_examples: 427
- name: test
num_bytes: 190920
num_examples: 427
- name: validation
num_bytes: 176829
num_examples: 427
download_size: 93833
dataset_size: 530487
- config_name: tourism_monthly
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 391518
num_examples: 366
- name: test
num_bytes: 463986
num_examples: 366
- name: validation
num_bytes: 427752
num_examples: 366
download_size: 199791
dataset_size: 1283256
- config_name: cif_2016
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 24731
num_examples: 72
- name: test
num_bytes: 31859
num_examples: 72
- name: validation
num_bytes: 28295
num_examples: 72
download_size: 53344
dataset_size: 84885
- config_name: london_smart_meters
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 684386194
num_examples: 5560
- name: test
num_bytes: 687138394
num_examples: 5560
- name: validation
num_bytes: 685762294
num_examples: 5560
download_size: 219673439
dataset_size: 2057286882
- config_name: australian_electricity_demand
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 4763162
num_examples: 5
- name: test
num_bytes: 4765637
num_examples: 5
- name: validation
num_bytes: 4764400
num_examples: 5
download_size: 5770526
dataset_size: 14293199
- config_name: wind_farms_minutely
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 710078918
num_examples: 339
- name: test
num_bytes: 710246723
num_examples: 339
- name: validation
num_bytes: 710162820
num_examples: 339
download_size: 71383130
dataset_size: 2130488461
- config_name: bitcoin
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 336511
num_examples: 18
- name: test
num_bytes: 340966
num_examples: 18
- name: validation
num_bytes: 338738
num_examples: 18
download_size: 220403
dataset_size: 1016215
- config_name: pedestrian_counts
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 12897120
num_examples: 66
- name: test
num_bytes: 12923256
num_examples: 66
- name: validation
num_bytes: 12910188
num_examples: 66
download_size: 4587054
dataset_size: 38730564
- config_name: vehicle_trips
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 105261
num_examples: 329
- name: test
num_bytes: 186688
num_examples: 329
- name: validation
num_bytes: 145974
num_examples: 329
download_size: 44914
dataset_size: 437923
- config_name: kdd_cup_2018
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 12040046
num_examples: 270
- name: test
num_bytes: 12146966
num_examples: 270
- name: validation
num_bytes: 12093506
num_examples: 270
download_size: 2456948
dataset_size: 36280518
- config_name: nn5_daily
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 314828
num_examples: 111
- name: test
num_bytes: 366110
num_examples: 111
- name: validation
num_bytes: 340469
num_examples: 111
download_size: 287708
dataset_size: 1021407
- config_name: nn5_weekly
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 48344
num_examples: 111
- name: test
num_bytes: 55670
num_examples: 111
- name: validation
num_bytes: 52007
num_examples: 111
download_size: 62043
dataset_size: 156021
- config_name: kaggle_web_traffic
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 415494391
num_examples: 145063
- name: test
num_bytes: 486103806
num_examples: 145063
- name: validation
num_bytes: 450799098
num_examples: 145063
download_size: 145485324
dataset_size: 1352397295
- config_name: kaggle_web_traffic_weekly
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 64242469
num_examples: 145063
- name: test
num_bytes: 73816627
num_examples: 145063
- name: validation
num_bytes: 69029548
num_examples: 145063
download_size: 28930900
dataset_size: 207088644
- config_name: solar_10_minutes
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 29640033
num_examples: 137
- name: test
num_bytes: 29707848
num_examples: 137
- name: validation
num_bytes: 29673941
num_examples: 137
download_size: 4559353
dataset_size: 89021822
- config_name: solar_weekly
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 28614
num_examples: 137
- name: test
num_bytes: 34265
num_examples: 137
- name: validation
num_bytes: 31439
num_examples: 137
download_size: 24375
dataset_size: 94318
- config_name: car_parts
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 396653
num_examples: 2674
- name: test
num_bytes: 661379
num_examples: 2674
- name: validation
num_bytes: 529016
num_examples: 2674
download_size: 39656
dataset_size: 1587048
- config_name: fred_md
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 314514
num_examples: 107
- name: test
num_bytes: 325107
num_examples: 107
- name: validation
num_bytes: 319811
num_examples: 107
download_size: 169107
dataset_size: 959432
- config_name: traffic_hourly
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 62071974
num_examples: 862
- name: test
num_bytes: 62413326
num_examples: 862
- name: validation
num_bytes: 62242650
num_examples: 862
download_size: 22868806
dataset_size: 186727950
- config_name: traffic_weekly
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 344154
num_examples: 862
- name: test
num_bytes: 401046
num_examples: 862
- name: validation
num_bytes: 372600
num_examples: 862
download_size: 245126
dataset_size: 1117800
- config_name: hospital
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 217625
num_examples: 767
- name: test
num_bytes: 293558
num_examples: 767
- name: validation
num_bytes: 255591
num_examples: 767
download_size: 78110
dataset_size: 766774
- config_name: covid_deaths
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 176352
num_examples: 266
- name: test
num_bytes: 242187
num_examples: 266
- name: validation
num_bytes: 209270
num_examples: 266
download_size: 27335
dataset_size: 627809
- config_name: sunspot
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 304726
num_examples: 1
- name: test
num_bytes: 304974
num_examples: 1
- name: validation
num_bytes: 304850
num_examples: 1
download_size: 68865
dataset_size: 914550
- config_name: saugeenday
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 97722
num_examples: 1
- name: test
num_bytes: 97969
num_examples: 1
- name: validation
num_bytes: 97845
num_examples: 1
download_size: 28721
dataset_size: 293536
- config_name: us_births
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 29923
num_examples: 1
- name: test
num_bytes: 30171
num_examples: 1
- name: validation
num_bytes: 30047
num_examples: 1
download_size: 16332
dataset_size: 90141
- config_name: solar_4_seconds
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 30513083
num_examples: 1
- name: test
num_bytes: 30513578
num_examples: 1
- name: validation
num_bytes: 30513331
num_examples: 1
download_size: 794502
dataset_size: 91539992
- config_name: wind_4_seconds
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 30512774
num_examples: 1
- name: test
num_bytes: 30513269
num_examples: 1
- name: validation
num_bytes: 30513021
num_examples: 1
download_size: 2226184
dataset_size: 91539064
- config_name: rideshare
features:
- name: start
dtype: timestamp[s]
- name: target
sequence:
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 4249051
num_examples: 156
- name: test
num_bytes: 5161435
num_examples: 156
- name: validation
num_bytes: 4705243
num_examples: 156
download_size: 1031826
dataset_size: 14115729
- config_name: oikolab_weather
features:
- name: start
dtype: timestamp[s]
- name: target
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 3299142
num_examples: 8
- name: test
num_bytes: 3302310
num_examples: 8
- name: validation
num_bytes: 3300726
num_examples: 8
download_size: 1326101
dataset_size: 9902178
- config_name: temperature_rain
features:
- name: start
dtype: timestamp[s]
- name: target
sequence:
sequence: float32
- name: feat_static_cat
sequence: uint64
- name: feat_dynamic_real
sequence:
sequence: float32
- name: item_id
dtype: string
splits:
- name: train
num_bytes: 88121466
num_examples: 422
- name: test
num_bytes: 96059286
num_examples: 422
- name: validation
num_bytes: 92090376
num_examples: 422
download_size: 25747139
dataset_size: 276271128
Dataset Card for Monash Time Series Forecasting Repository
Table of Contents
- Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: Monash Time Series Forecasting Repository
- Repository: Monash Time Series Forecasting Repository code repository
- Paper: Monash Time Series Forecasting Archive
- Leaderboard: Baseline Results
- Point of Contact: Rakshitha Godahewa
Dataset Summary
The first comprehensive time series forecasting repository containing datasets of related time series to facilitate the evaluation of global forecasting models. All datasets are intended to use only for research purpose. Our repository contains 30 datasets including both publicly available time series datasets (in different formats) and datasets curated by us. Many datasets have different versions based on the frequency and the inclusion of missing values, making the total number of dataset variations to 58. Furthermore, it includes both real-world and competition time series datasets covering varied domains.
The following table shows a list of datasets available:
Name | Domain | No. of series | Freq. | Pred. Len. | Source |
---|---|---|---|---|---|
weather | Nature | 3010 | 1D | 30 | Sparks et al., 2020 |
tourism_yearly | Tourism | 1311 | 1Y | 4 | Athanasopoulos et al., 2011 |
tourism_quarterly | Tourism | 1311 | 1Q-JAN | 8 | Athanasopoulos et al., 2011 |
tourism_monthly | Tourism | 1311 | 1M | 24 | Athanasopoulos et al., 2011 |
cif_2016 | Banking | 72 | 1M | 12 | Stepnicka and Burda, 2017 |
london_smart_meters | Energy | 5560 | 30T | 60 | Jean-Michel, 2019 |
australian_electricity_demand | Energy | 5 | 30T | 60 | Godahewa et al. 2021 |
wind_farms_minutely | Energy | 339 | 1T | 60 | Godahewa et al. 2021 |
bitcoin | Economic | 18 | 1D | 30 | Godahewa et al. 2021 |
pedestrian_counts | Transport | 66 | 1H | 48 | City of Melbourne, 2020 |
vehicle_trips | Transport | 329 | 1D | 30 | fivethirtyeight, 2015 |
kdd_cup_2018 | Nature | 270 | 1H | 48 | KDD Cup, 2018 |
nn5_daily | Banking | 111 | 1D | 56 | Ben Taieb et al., 2012 |
nn5_weekly | Banking | 111 | 1W-MON | 8 | Ben Taieb et al., 2012 |
kaggle_web_traffic | Web | 145063 | 1D | 59 | Google, 2017 |
kaggle_web_traffic_weekly | Web | 145063 | 1W-WED | 8 | Google, 2017 |
solar_10_minutes | Energy | 137 | 10T | 60 | Solar, 2020 |
solar_weekly | Energy | 137 | 1W-SUN | 5 | Solar, 2020 |
car_parts | Sales | 2674 | 1M | 12 | Hyndman, 2015 |
fred_md | Economic | 107 | 1M | 12 | McCracken and Ng, 2016 |
traffic_hourly | Transport | 862 | 1H | 48 | Caltrans, 2020 |
traffic_weekly | Transport | 862 | 1W-WED | 8 | Caltrans, 2020 |
hospital | Health | 767 | 1M | 12 | Hyndman, 2015 |
covid_deaths | Health | 266 | 1D | 30 | Johns Hopkins University, 2020 |
sunspot | Nature | 1 | 1D | 30 | Sunspot, 2015 |
saugeenday | Nature | 1 | 1D | 30 | McLeod and Gweon, 2013 |
us_births | Health | 1 | 1D | 30 | Pruim et al., 2020 |
solar_4_seconds | Energy | 1 | 4S | 60 | Godahewa et al. 2021 |
wind_4_seconds | Energy | 1 | 4S | 60 | Godahewa et al. 2021 |
rideshare | Transport | 2304 | 1H | 48 | Godahewa et al. 2021 |
oikolab_weather | Nature | 8 | 1H | 48 | Oikolab |
temperature_rain | Nature | 32072 | 1D | 30 | Godahewa et al. 2021 |
Dataset Usage
To load a particular dataset just specify its name from the table above e.g.:
load_dataset("monash_tsf", "nn5_daily")
Notes:
- Data might contain missing values as in the original datasets.
- The prediction length is either specified in the dataset or a default value depending on the frequency is used as in the original repository benchmark.
Supported Tasks and Leaderboards
time-series-forecasting
univariate-time-series-forecasting
The univariate time series forecasting tasks involves learning the future one dimensional target
values of a time series in a dataset for some prediction_length
time steps. The performance of the forecast models can then be validated via the ground truth in the validation
split and tested via the test
split.
multivariate-time-series-forecasting
The multivariate time series forecasting task involves learning the future vector of target
values of a time series in a dataset for some prediction_length
time steps. Similar to the univariate setting the performance of a multivariate model can be validated via the ground truth in the validation
split and tested via the test
split.
Languages
Dataset Structure
Data Instances
A sample from the training set is provided below:
{
'start': datetime.datetime(2012, 1, 1, 0, 0),
'target': [14.0, 18.0, 21.0, 20.0, 22.0, 20.0, ...],
'feat_static_cat': [0],
'feat_dynamic_real': [[0.3, 0.4], [0.1, 0.6], ...],
'item_id': '0'
}
Data Fields
For the univariate regular time series each series has the following keys:
start
: a datetime of the first entry of each time series in the datasettarget
: an array[float32] of the actual target valuesfeat_static_cat
: an array[uint64] which contains a categorical identifier of each time series in the datasetfeat_dynamic_real
: optional array of covariate featuresitem_id
: a string identifier of each time series in a dataset for reference
For the multivariate time series the target
is a vector of the multivariate dimension for each time point.
Data Splits
The datasets are split in time depending on the prediction length specified in the datasets. In particular for each time series in a dataset there is a prediction length window of the future in the validation split and another prediction length more in the test split.
Dataset Creation
Curation Rationale
To facilitate the evaluation of global forecasting models. All datasets in our repository are intended for research purposes and to evaluate the performance of new forecasting algorithms.
Source Data
Initial Data Collection and Normalization
Out of the 30 datasets, 23 were already publicly available in different platforms with different data formats. The original sources of all datasets are mentioned in the datasets table above.
After extracting and curating these datasets, we analysed them individually to identify the datasets containing series with different frequencies and missing observations. Nine datasets contain time series belonging to different frequencies and the archive contains a separate dataset per each frequency.
Who are the source language producers?
The data comes from the datasets listed in the table above.
Annotations
Annotation process
The annotations come from the datasets listed in the table above.
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
Licensing Information
Creative Commons Attribution 4.0 International
Citation Information
@InProceedings{godahewa2021monash,
author = "Godahewa, Rakshitha and Bergmeir, Christoph and Webb, Geoffrey I. and Hyndman, Rob J. and Montero-Manso, Pablo",
title = "Monash Time Series Forecasting Archive",
booktitle = "Neural Information Processing Systems Track on Datasets and Benchmarks",
year = "2021",
note = "forthcoming"
}
Contributions
Thanks to @kashif for adding this dataset.