Datasets:
dataset_info: | |
features: | |
- name: id | |
dtype: string | |
- name: hq_img | |
dtype: image | |
- name: lq_img | |
dtype: image | |
- name: text | |
sequence: string | |
- name: bbox | |
sequence: | |
array2_d: | |
shape: | |
- 2 | |
- 2 | |
dtype: int32 | |
- name: poly | |
sequence: | |
array2_d: | |
shape: | |
- 16 | |
- 2 | |
dtype: int32 | |
splits: | |
- name: test | |
num_bytes: 55089874.0 | |
num_examples: 847 | |
download_size: 54622145 | |
dataset_size: 55089874.0 | |
configs: | |
- config_name: default | |
data_files: | |
- split: test | |
path: data/test-* | |
language: | |
- en | |
size_categories: | |
- 10M<n<100M | |
task_categories: | |
- image-to-image | |
tags: | |
- image-restoration | |
- diffusion-models | |
- text-recognition | |
# Real-Text | |
**Text-Aware Image Restoration with Diffusion Models** (arXiv:2506.09993) | |
Real-world evaluation dataset for the TAIR task. | |
- π Paper: https://arxiv.org/abs/2506.09993 | |
- π Project Page: https://cvlab-kaist.github.io/TAIR/ | |
- π» GitHub: https://github.com/cvlab-kaist/TAIR | |
- π Dataset Pipeline: https://github.com/paulcho98/text_restoration_dataset | |
## Dataset Description | |
**Real-Text** is an evaluation dataset constructed from [RealSR](https://github.com/csjcai/RealSR) and [DrealSR](https://github.com/xiezw5/Component-Divide-and-Conquer-for-Real-World-Image-Super-Resolution) using the same pipeline as SA-Text. It reflects **real-world degradation and distortion**, making it suitable for robust benchmarking. | |
## Notes | |
- This dataset is designed for testing oour model, **TeReDiff**, under realistic settings. | |
- Check [SA-text](https://huggingface.co/datasets/Min-Jaewon/SA-Text) for training dataset. | |
- Please refer to our [dataset pipeline](https://github.com/paulcho98/text_restoration_dataset). | |
## Citation | |
Please cite the following paper if you use this dataset: | |
``` | |
{ | |
@article{min2024textaware, | |
title={Text-Aware Image Restoration with Diffusion Models}, | |
author={Min, Jaewon and Kim, Jin Hyeon and Cho, Paul Hyunbin and Lee, Jaeeun and Park, Jihye and Park, Minkyu and Kim, Sangpil and Park, Hyunhee and Kim, Seungryong}, | |
journal={arXiv preprint arXiv:2506.09993}, | |
year={2025} | |
} | |
``` |