metadata
dataset_info:
features:
- name: sentence_ant_ana
dtype: string
- name: antecedent_subtree
dtype: string
- name: antecedent_root
dtype: string
- name: anaphora
dtype: string
- name: category
dtype: string
- name: sempos
dtype: string
- name: corpus
dtype: string
- name: sentence_ant
dtype: string
- name: distance
dtype: int64
- name: sentence_ana
dtype: string
- name: sentence_clear
dtype: string
splits:
- name: train
num_bytes: 42462814
num_examples: 44960
- name: validation
num_bytes: 5272640
num_examples: 5620
- name: test
num_bytes: 5341909
num_examples: 5627
download_size: 34996304
dataset_size: 53077363
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
size_categories:
- 10K<n<100K
Dataset Card for pdt_anaphora_czech
This dataset is used for my thesis to fine-tune language models on Czech unstructured text for anaphora resolution.
Dataset Sources
The dataset is based on data from the Prague Dependency Treebank, specifically the PDTC 1.0 (https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3185)
How to cite
Stano P. and Horák A. Evaluating Prompt-Based and Fine-Tuned Approaches to Czech Anaphora Resolution. International Conference on Text, Speech, and Dialogue, 2025.
@article{stano_horak2025,
author = "Patrik Stano and Aleš Horák",
title = "Evaluating Prompt-Based and Fine-Tuned Approaches to Czech Anaphora Resolution",
journal= "International Conference on Text, Speech, and Dialogue",
year = "2025",
}