Dataset Viewer
Auto-converted to Parquet
text
stringlengths
2
113
audio
audioduration (s)
0.28
10
speaker_id
int64
0
1.11k
اهذه المظله لك
992
وتحقيق ما كان محتملا
1,107
اعطيت كل الناس من نفسي الرضا
974
لمن شاء منكم ان يستقيم
1,105
اضيق من ثقب الابره
1,107
وعلي طلبها مكب
995
كان سامي يتناول اقراصه
461
والان هناك كانت ايلين تنتظره
765
فذمه عمرو وقال
1,103
لم اعلم بهذا الامر
1,028
ابلي في الامتحان بلاء حسنا
1,091
رايت الناس قد مالوا الي من عنده مال
1,092
والدي مشغول
1,076
قد كان كل منهما
130
هنالك هاتف عمومي عند الزاويه
1,089
بامكانك المذاكره هنا
1,093
لان مرتبه العلم قبل مرتبه القول
1,106
وات ذا القربي حقه والمسكين وابن السبيل ولا تبذر تبذيرا
1,083
وكواعب اترابا
1,107
زرت شانغهاي لما زرت الصين المره الاخيره
1,106
لم تقاوم لوقت طويل
1,100
لا استطيع الانتظار الي الغد
840
وقال انوشروان لابنه هرمز
1,100
كان ابي عاملا فقيرا
1,022
اذ تبرا الذين اتبعوا من الذين اتبعوا وراوا العذاب وتقطعت بهم الاسباب
1,083
خذ نصيبا من عيشك المستعار
529
فقط اخبريني ماذا تريدين
961
وحكي ان بعض الزهاد وقف علي جمع فنادي باعلي صوته
1,101
قم بتنصيب لينكس
1,103
ولما فصلت العير قال ابوهم اني لاجد ريح يوسف لولا ان تفندون
1,087
ونقلب افئدتهم وابصارهم كما لم يؤمنوا به اول مره ونذرهم في طغيانهم يعمهون
1,104
اليوم ليس باردا
1,084
ان الذين ياكلون اموال اليتامي ظلما انما ياكلون في بطونهم نارا وسيصلون سعيرا
1,047
ام تامرهم احلامهم بهذا ام هم قوم طاغون
1,089
ذهبت للنوم متاخرا اكثر من العاده
1,054
سلام عليكم بما صبرتم فنعم عقبي الدار
1,073
ولما جاز ورود الشرع باقرار اهل الذمه علي الكفر
1,105
سنفرغ لكم ايه الثقلان
1,107
زر مضجعا فيه قرينه فارس
1,037
لم اجده في اي مكان
1,091
عندما تتكلم مع الاعلام تذكر ان الكلمه الاخيره له
962
كم هديه تتوقع انها استلمت في الاجازه الماضيه
1,106
ولقد صبحهم بكره عذاب مستقر
1,100
وجعله من عزائم التقوي فيما افترضه وحث عليه
1,104
والليل اذا يسر
1,106
الحياه جميله
1,098
اقرا كتابا
1,107
فلعلك باخع نفسك علي اثارهم ان لم يؤمنوا بهذا الحديث اسفا
1,105
تجاهل ما قاله لقد كان يمزح فقط
1,101
فانبتنا فيها حبا
1,083
انا مستعد
1,076
والذين اذا اصابهم البغي هم ينتصرون
1,091
انهما من عبادنا المؤمنين
1,096
بدل الطرف من النوم السهر
1,037
هل املك سكينا
911
توقف فاضل عن تناول دوائه
1,104
لقد تردد قبل الاجابه
1,087
حي ربع الغني واطلال حسن
1,060
وزكريا ويحيي وعيسي والياس كل من الصالحين
1,100
بين الاخوه كثير من التوتر
1,101
هل كان كين في البيت بالامس
1,087
ليس هناك اي مشاكل
1,101
هل غيرت رايك
1,099
ولا قصد المجدود منهم باشاره عائب
1,043
من نبل الفقر انك لا تجد احدا يعصي الله ليفتقر
1,104
الذين امنوا وتطمئن قلوبهم بذكر الله الا بذكر الله تطمئن القلوب
1,095
لا يمكنك ان تخدعني
160
علي ان ابقي في السرير طوال اليوم
779
لم يعد سامي يريدك في حياته
1,084
هذا بيته
1,055
سالني توم ان كنت اعرف اين كانت تعيش ماري
1,096
كتمان السر الفصل الرابع في كتمان السر
1,102
اعطاني عمي سيارته
1,067
اغضبني توم
1,100
والدي يعيش في الريف
1,084
ايمكنني استعاره هذا الكتاب
378
عجبت لمن جري في مجري البول مرتين كيف يتكبر
1,096
الا من اتي الله بقلب سليم
1,105
قدم سامي ليلي لطالب مسلم
1,104
سحب يده من الطاوله
1,101
لدينا اذنان
1,107
ذهب اليوم وقد ان الغروب
648
سوف تنساني يوما ما
1,103
واكيد كيدا
1,080
او منحه الصفح والعفو
1,104
واما الذين في قلوبهم مرض فزادتهم رجسا الي رجسهم وماتوا وهم كافرون
999
فان انتهوا فان الله غفور رحيم
1,107
ان يفوت نفسه غنما
1,086
كان سامي طفلا مبدعا
1,099
عاش سامي حياه رائعه
1,104
والسماء رفعها ووضع الميزان
1,065
واذا استعنت فاستعن بالله
911
فيها فاكهه والنخل ذات الاكمام
1,097
اذا استعمل العدل اغني عن الشجاعه
1,106
مناع للخير معتد مريب
1,033
وما كان لنا عليكم من سلطان بل كنتم قوما طاغين
1,105
انت متاخر دائما
1,095
اللجوء الي الله سيخفف عنك ويهبك المزيد من السكينه
1,104
اقبح من زوال النعمه
1,094
نار حاميه
1,101
End of preview. Expand in Data Studio

Curated Arabic Speech Dataset for Seasme (from MCV17)

Dataset Description

This dataset is a curated and preprocessed version of the Arabic (ar) subset from Mozilla Common Voice (MCV) 17.0. It has been specifically prepared for fine-tuning conversational speech models, with a primary focus on the Seasme-CSM model architecture. The dataset consists of audio clips in WAV format (24kHz, mono) and their corresponding transcripts, along with integer speaker IDs.

The original MCV data was subjected to an extensive cleaning, normalization, and filtering pipeline to improve data quality and ensure suitability for the target model.

Language: Arabic (ar) Source: Mozilla Common Voice 17.0 Approximate Total Duration (after filtering): 57.86 hours Approximate Number of Utterances (after filtering): 49,253

Dataset Structure

The dataset is provided as JSON Lines (.json) manifest files, one for training and one for validation. Each line in the manifest represents an audio-text-speaker triplet.

Data Fields

Each entry in the manifest files has the following structure:

  • text (string): The Arabic transcription corresponding to the audio. This is derived from the original "sentence" field and has undergone cleaning and normalization. (Crucially, note if this text is ASR-ready (no punctuation/diacritics) or TTS-ready (potentially with punctuation if preserved from "sentence")).
  • path (string): The relative path to the corresponding audio file (24kHz, mono WAV format). The path is relative to the directory containing the manifest file (e.g., clips_wav_24k/filename.wav).
  • speaker (integer): A unique integer ID assigned to each speaker, derived from the original client_id.

Data Splits

The dataset is split into:

  • train_manifest.json: Contains approximately 90% of the data, intended for training.
  • validation_manifest.json: Contains approximately 10% of the data, intended for validation

The data was thoroughly shuffled before splitting.

Data Instances

An example from a manifest file:

{
  "text": "ايا سعد قل للقس من داخل الدير",
  "path": "clips_wav_24k/common_voice_ar_30452352.wav",
  "speaker": 21
}

Dataset Creation

Curation Rationale

The primary goal of the curation process was to create a high-quality, clean, and consistently formatted dataset suitable for fine-tuning advanced conversational speech models like SESAWE. This involved addressing common issues found in large crowdsourced datasets, such as inconsistent text, problematic audio, and metadata inaccuracies.

Source Data

  • Dataset: Mozilla Common Voice (MCV)
  • Version: 17.0
  • Subset: Arabic (ar)

Preprocessing Steps

The dataset underwent the following preprocessing, cleaning, and filtering stages:

Phase 1: Text Cleaning & Normalization

  1. Unicode Normalization (NFKC): Standardized character representations.
  2. Arabic Character Variant Mapping: Mapped non-standard variants (e.g., Persian ک) to Arabic equivalents; removed others.
  3. Ligature Decomposition: Decomposed common Arabic ligatures (e.g., to لا).
  4. Standard Arabic Normalization (camel-tools): Normalized Alef, Alef Maksura (ى to ي), and Teh Marbuta (ة to ه).
  5. Numeral Processing: Transliterated Eastern Arabic numerals to Western, then substituted Western numerals with Arabic word spellings.
  6. Diacritic Removal: Removed all Arabic diacritics.
  7. Comprehensive Character Removal: Removed punctuation, symbols, Latin characters, Quranic marks, and Tatweel. Ensured standalone Hamza (ء) was kept.
  8. Whitespace Cleanup: Ensured single spaces between words and removed leading/trailing whitespace.

Phase 2: Audio & Text Property Filtering, and Metadata Adjustments 9. Audio Path Correction: Ensured audio_filepath in the manifest correctly pointed to local MP3 files. 10. Duration Filtering: Removed utterances shorter than 1.0 second and longer than 20.0 seconds. 11. Text Length Filtering: Removed utterances where cleaned text length was less than 2 characters. 12. Character/Word Rate Filtering: Filtered utterances based on word rate (0.2-3.0 words/sec) and character rate (0.65-15.5 chars/sec). 13. Metadata Column Filtering: Removed manifest columns with >99% null values (e.g., variant, accents). 14. Audio Property Filtering: Removed utterances with frequency bandwidth < 2000 Hz or peak level < -25 dB. (This step was planned after v15 path conversion and before SESAWE formatting in our discussion, ensure it's correctly placed if it happened before SESAWE formatting)

Phase 3: Vocabulary-Based Filtering & Final Preparation 15. Rare Word Utterance Removal: Removed utterances containing any of the 50 least frequent words. 16. Deduplication: Removed duplicate entries based on unique sentence_id (keeping the first occurrence). 17. Audio Format Conversion: Converted MP3 audio files to WAV format (24kHz, mono). 18. Relative Path Conversion: Changed audio_filepath to be relative to the manifest file's location (e.g., clips_wav_24k/filename.wav). 19. Speaker ID Mapping: Mapped unique client_id strings to sequential integer speaker IDs. 20. SESAWE Formatting: Reformatted manifest entries to the required {"text": ..., "path": ..., "speaker": ...} structure. 21. Shuffling & Splitting: Thoroughly shuffled the dataset and split into training and validation sets.

Considerations for Using the Data

  • Text for SESAWE: The text field is derived from the original "sentence" field from MCV. Depending on the Seasme's model's requirements (especially if it's a TTS model that benefits from natural prosody), this text might be too normalized (lacking punctuation, diacritics, original casing). If SESAWE expects more naturalistic text, users might need to adjust the text processing pipeline or use an earlier version of the "sentence" field before heavy ASR-focused normalization.
  • Audio Format: Audio is in 24kHz, 16-bit, mono WAV format.
  • Speaker IDs: Speaker IDs are integers mapped from original client_ids and are consistent within this dataset.
  • Potential Biases: As a derivative of Common Voice, this dataset may inherit demographic or dialectal biases present in the source.
  • No Test Set: This current preparation only includes train and validation splits. A separate, held-out test set would be needed for final model evaluation.

Licensing Information

This dataset is a derivative of the Mozilla Common Voice 17.0 Arabic dataset, which is released under the Creative Commons CC0 license (public domain dedication). Any new contributions or substantial transformations in this version should also consider this licensing. Please refer to the original MCV license for full details.

Citation

If you use this dataset, please cite the original Mozilla Common Voice dataset:

@inproceedings{commonvoice:2020,
  author = {Ardila, R. and Branson, M. and Davis, K. and Henretty, M. and Kohler, M. and Meyer, J. and Morais, R. and Saunders, L. and Tyers, F. M. and Weber, G.},
  title = {Common Voice: A Massively-Multilingual Speech Corpus},
  booktitle = {Proceedings of the 12th Language Resources and Evaluation Conference (LREC 2020)},
  pages = {4211--4215},
  year = {2020}
}

If this curated version is hosted and has a specific DOI or citation mechanism, include that here.

Dataset Curator

Created by M. Adel

Contact

[email protected]


Downloads last month
106

Collection including MAdel121/Common-Voice-17-Arabic-for-Seasme-CSM-Finetuning