Datasets:
text
stringlengths 2
113
| audio
audioduration (s) 0.28
10
| speaker_id
int64 0
1.11k
|
---|---|---|
اهذه المظله لك | 992 |
|
وتحقيق ما كان محتملا | 1,107 |
|
اعطيت كل الناس من نفسي الرضا | 974 |
|
لمن شاء منكم ان يستقيم | 1,105 |
|
اضيق من ثقب الابره | 1,107 |
|
وعلي طلبها مكب | 995 |
|
كان سامي يتناول اقراصه | 461 |
|
والان هناك كانت ايلين تنتظره | 765 |
|
فذمه عمرو وقال | 1,103 |
|
لم اعلم بهذا الامر | 1,028 |
|
ابلي في الامتحان بلاء حسنا | 1,091 |
|
رايت الناس قد مالوا الي من عنده مال | 1,092 |
|
والدي مشغول | 1,076 |
|
قد كان كل منهما | 130 |
|
هنالك هاتف عمومي عند الزاويه | 1,089 |
|
بامكانك المذاكره هنا | 1,093 |
|
لان مرتبه العلم قبل مرتبه القول | 1,106 |
|
وات ذا القربي حقه والمسكين وابن السبيل ولا تبذر تبذيرا | 1,083 |
|
وكواعب اترابا | 1,107 |
|
زرت شانغهاي لما زرت الصين المره الاخيره | 1,106 |
|
لم تقاوم لوقت طويل | 1,100 |
|
لا استطيع الانتظار الي الغد | 840 |
|
وقال انوشروان لابنه هرمز | 1,100 |
|
كان ابي عاملا فقيرا | 1,022 |
|
اذ تبرا الذين اتبعوا من الذين اتبعوا وراوا العذاب وتقطعت بهم الاسباب | 1,083 |
|
خذ نصيبا من عيشك المستعار | 529 |
|
فقط اخبريني ماذا تريدين | 961 |
|
وحكي ان بعض الزهاد وقف علي جمع فنادي باعلي صوته | 1,101 |
|
قم بتنصيب لينكس | 1,103 |
|
ولما فصلت العير قال ابوهم اني لاجد ريح يوسف لولا ان تفندون | 1,087 |
|
ونقلب افئدتهم وابصارهم كما لم يؤمنوا به اول مره ونذرهم في طغيانهم يعمهون | 1,104 |
|
اليوم ليس باردا | 1,084 |
|
ان الذين ياكلون اموال اليتامي ظلما انما ياكلون في بطونهم نارا وسيصلون سعيرا | 1,047 |
|
ام تامرهم احلامهم بهذا ام هم قوم طاغون | 1,089 |
|
ذهبت للنوم متاخرا اكثر من العاده | 1,054 |
|
سلام عليكم بما صبرتم فنعم عقبي الدار | 1,073 |
|
ولما جاز ورود الشرع باقرار اهل الذمه علي الكفر | 1,105 |
|
سنفرغ لكم ايه الثقلان | 1,107 |
|
زر مضجعا فيه قرينه فارس | 1,037 |
|
لم اجده في اي مكان | 1,091 |
|
عندما تتكلم مع الاعلام تذكر ان الكلمه الاخيره له | 962 |
|
كم هديه تتوقع انها استلمت في الاجازه الماضيه | 1,106 |
|
ولقد صبحهم بكره عذاب مستقر | 1,100 |
|
وجعله من عزائم التقوي فيما افترضه وحث عليه | 1,104 |
|
والليل اذا يسر | 1,106 |
|
الحياه جميله | 1,098 |
|
اقرا كتابا | 1,107 |
|
فلعلك باخع نفسك علي اثارهم ان لم يؤمنوا بهذا الحديث اسفا | 1,105 |
|
تجاهل ما قاله لقد كان يمزح فقط | 1,101 |
|
فانبتنا فيها حبا | 1,083 |
|
انا مستعد | 1,076 |
|
والذين اذا اصابهم البغي هم ينتصرون | 1,091 |
|
انهما من عبادنا المؤمنين | 1,096 |
|
بدل الطرف من النوم السهر | 1,037 |
|
هل املك سكينا | 911 |
|
توقف فاضل عن تناول دوائه | 1,104 |
|
لقد تردد قبل الاجابه | 1,087 |
|
حي ربع الغني واطلال حسن | 1,060 |
|
وزكريا ويحيي وعيسي والياس كل من الصالحين | 1,100 |
|
بين الاخوه كثير من التوتر | 1,101 |
|
هل كان كين في البيت بالامس | 1,087 |
|
ليس هناك اي مشاكل | 1,101 |
|
هل غيرت رايك | 1,099 |
|
ولا قصد المجدود منهم باشاره عائب | 1,043 |
|
من نبل الفقر انك لا تجد احدا يعصي الله ليفتقر | 1,104 |
|
الذين امنوا وتطمئن قلوبهم بذكر الله الا بذكر الله تطمئن القلوب | 1,095 |
|
لا يمكنك ان تخدعني | 160 |
|
علي ان ابقي في السرير طوال اليوم | 779 |
|
لم يعد سامي يريدك في حياته | 1,084 |
|
هذا بيته | 1,055 |
|
سالني توم ان كنت اعرف اين كانت تعيش ماري | 1,096 |
|
كتمان السر الفصل الرابع في كتمان السر | 1,102 |
|
اعطاني عمي سيارته | 1,067 |
|
اغضبني توم | 1,100 |
|
والدي يعيش في الريف | 1,084 |
|
ايمكنني استعاره هذا الكتاب | 378 |
|
عجبت لمن جري في مجري البول مرتين كيف يتكبر | 1,096 |
|
الا من اتي الله بقلب سليم | 1,105 |
|
قدم سامي ليلي لطالب مسلم | 1,104 |
|
سحب يده من الطاوله | 1,101 |
|
لدينا اذنان | 1,107 |
|
ذهب اليوم وقد ان الغروب | 648 |
|
سوف تنساني يوما ما | 1,103 |
|
واكيد كيدا | 1,080 |
|
او منحه الصفح والعفو | 1,104 |
|
واما الذين في قلوبهم مرض فزادتهم رجسا الي رجسهم وماتوا وهم كافرون | 999 |
|
فان انتهوا فان الله غفور رحيم | 1,107 |
|
ان يفوت نفسه غنما | 1,086 |
|
كان سامي طفلا مبدعا | 1,099 |
|
عاش سامي حياه رائعه | 1,104 |
|
والسماء رفعها ووضع الميزان | 1,065 |
|
واذا استعنت فاستعن بالله | 911 |
|
فيها فاكهه والنخل ذات الاكمام | 1,097 |
|
اذا استعمل العدل اغني عن الشجاعه | 1,106 |
|
مناع للخير معتد مريب | 1,033 |
|
وما كان لنا عليكم من سلطان بل كنتم قوما طاغين | 1,105 |
|
انت متاخر دائما | 1,095 |
|
اللجوء الي الله سيخفف عنك ويهبك المزيد من السكينه | 1,104 |
|
اقبح من زوال النعمه | 1,094 |
|
نار حاميه | 1,101 |
Curated Arabic Speech Dataset for Seasme (from MCV17)
Dataset Description
This dataset is a curated and preprocessed version of the Arabic (ar) subset from Mozilla Common Voice (MCV) 17.0. It has been specifically prepared for fine-tuning conversational speech models, with a primary focus on the Seasme-CSM model architecture. The dataset consists of audio clips in WAV format (24kHz, mono) and their corresponding transcripts, along with integer speaker IDs.
The original MCV data was subjected to an extensive cleaning, normalization, and filtering pipeline to improve data quality and ensure suitability for the target model.
Language: Arabic (ar) Source: Mozilla Common Voice 17.0 Approximate Total Duration (after filtering): 57.86 hours Approximate Number of Utterances (after filtering): 49,253
Dataset Structure
The dataset is provided as JSON Lines (.json) manifest files, one for training and one for validation. Each line in the manifest represents an audio-text-speaker triplet.
Data Fields
Each entry in the manifest files has the following structure:
text
(string): The Arabic transcription corresponding to the audio. This is derived from the original "sentence" field and has undergone cleaning and normalization. (Crucially, note if this text is ASR-ready (no punctuation/diacritics) or TTS-ready (potentially with punctuation if preserved from "sentence")).path
(string): The relative path to the corresponding audio file (24kHz, mono WAV format). The path is relative to the directory containing the manifest file (e.g.,clips_wav_24k/filename.wav
).speaker
(integer): A unique integer ID assigned to each speaker, derived from the originalclient_id
.
Data Splits
The dataset is split into:
train_manifest.json
: Contains approximately 90% of the data, intended for training.validation_manifest.json
: Contains approximately 10% of the data, intended for validation
The data was thoroughly shuffled before splitting.
Data Instances
An example from a manifest file:
{
"text": "ايا سعد قل للقس من داخل الدير",
"path": "clips_wav_24k/common_voice_ar_30452352.wav",
"speaker": 21
}
Dataset Creation
Curation Rationale
The primary goal of the curation process was to create a high-quality, clean, and consistently formatted dataset suitable for fine-tuning advanced conversational speech models like SESAWE. This involved addressing common issues found in large crowdsourced datasets, such as inconsistent text, problematic audio, and metadata inaccuracies.
Source Data
- Dataset: Mozilla Common Voice (MCV)
- Version: 17.0
- Subset: Arabic (ar)
Preprocessing Steps
The dataset underwent the following preprocessing, cleaning, and filtering stages:
Phase 1: Text Cleaning & Normalization
- Unicode Normalization (NFKC): Standardized character representations.
- Arabic Character Variant Mapping: Mapped non-standard variants (e.g., Persian
ک
) to Arabic equivalents; removed others. - Ligature Decomposition: Decomposed common Arabic ligatures (e.g.,
ﻻ
toلا
). - Standard Arabic Normalization (
camel-tools
): Normalized Alef, Alef Maksura (ى
toي
), and Teh Marbuta (ة
toه
). - Numeral Processing: Transliterated Eastern Arabic numerals to Western, then substituted Western numerals with Arabic word spellings.
- Diacritic Removal: Removed all Arabic diacritics.
- Comprehensive Character Removal: Removed punctuation, symbols, Latin characters, Quranic marks, and Tatweel. Ensured standalone Hamza (
ء
) was kept. - Whitespace Cleanup: Ensured single spaces between words and removed leading/trailing whitespace.
Phase 2: Audio & Text Property Filtering, and Metadata Adjustments
9. Audio Path Correction: Ensured audio_filepath
in the manifest correctly pointed to local MP3 files.
10. Duration Filtering: Removed utterances shorter than 1.0 second and longer than 20.0 seconds.
11. Text Length Filtering: Removed utterances where cleaned text length was less than 2 characters.
12. Character/Word Rate Filtering: Filtered utterances based on word rate (0.2-3.0 words/sec) and character rate (0.65-15.5 chars/sec).
13. Metadata Column Filtering: Removed manifest columns with >99% null values (e.g., variant
, accents
).
14. Audio Property Filtering: Removed utterances with frequency bandwidth < 2000 Hz or peak level < -25 dB. (This step was planned after v15 path conversion and before SESAWE formatting in our discussion, ensure it's correctly placed if it happened before SESAWE formatting)
Phase 3: Vocabulary-Based Filtering & Final Preparation
15. Rare Word Utterance Removal: Removed utterances containing any of the 50 least frequent words.
16. Deduplication: Removed duplicate entries based on unique sentence_id
(keeping the first occurrence).
17. Audio Format Conversion: Converted MP3 audio files to WAV format (24kHz, mono).
18. Relative Path Conversion: Changed audio_filepath
to be relative to the manifest file's location (e.g., clips_wav_24k/filename.wav
).
19. Speaker ID Mapping: Mapped unique client_id
strings to sequential integer speaker IDs.
20. SESAWE Formatting: Reformatted manifest entries to the required {"text": ..., "path": ..., "speaker": ...}
structure.
21. Shuffling & Splitting: Thoroughly shuffled the dataset and split into training and validation sets.
Considerations for Using the Data
- Text for SESAWE: The
text
field is derived from the original "sentence" field from MCV. Depending on the Seasme's model's requirements (especially if it's a TTS model that benefits from natural prosody), this text might be too normalized (lacking punctuation, diacritics, original casing). If SESAWE expects more naturalistic text, users might need to adjust the text processing pipeline or use an earlier version of the "sentence" field before heavy ASR-focused normalization. - Audio Format: Audio is in 24kHz, 16-bit, mono WAV format.
- Speaker IDs: Speaker IDs are integers mapped from original
client_id
s and are consistent within this dataset. - Potential Biases: As a derivative of Common Voice, this dataset may inherit demographic or dialectal biases present in the source.
- No Test Set: This current preparation only includes
train
andvalidation
splits. A separate, held-out test set would be needed for final model evaluation.
Licensing Information
This dataset is a derivative of the Mozilla Common Voice 17.0 Arabic dataset, which is released under the Creative Commons CC0 license (public domain dedication). Any new contributions or substantial transformations in this version should also consider this licensing. Please refer to the original MCV license for full details.
Citation
If you use this dataset, please cite the original Mozilla Common Voice dataset:
@inproceedings{commonvoice:2020,
author = {Ardila, R. and Branson, M. and Davis, K. and Henretty, M. and Kohler, M. and Meyer, J. and Morais, R. and Saunders, L. and Tyers, F. M. and Weber, G.},
title = {Common Voice: A Massively-Multilingual Speech Corpus},
booktitle = {Proceedings of the 12th Language Resources and Evaluation Conference (LREC 2020)},
pages = {4211--4215},
year = {2020}
}
If this curated version is hosted and has a specific DOI or citation mechanism, include that here.
Dataset Curator
Created by M. Adel
Contact
- Downloads last month
- 106