Dataset Viewer
Auto-converted to Parquet Duplicate
text
stringlengths
5
50
00000000000000000000000000000000000000000000B4031F
00000000000000000000000000000000000000000000B4031F
00000000000000000000000000000000000000000000B4031F
00000000000000000000000000000000000000000000B4031F
00000000000000000000000000000000000000000000B4031F
B0080005410A306011C0064108200016800D41082000B4031F
B0084005410A30601100074108200016C00D41082000B4031F
B0088005410A30601140074108200016000E41082000B4031F
B008C005410A309C1180074108203C16400E41082000B4031F
B0080006410A307E11C0074108201E16800E41082000B4031F
B0084006410A30601100084108200016C00E41082000B4031F
B0088006410A3042114008410820E215000F41082000B4031F
B008C006410A3024118008410820C415C00E41082000B4031F
B0080007410A304211C008410820E215800E41082000B4031F
B0084007410A30601100094108200016400E41082000B4031F
B0088007410A307E1140094108201E16000E41082000B4031F
B008C007410A309C1180094108203C16C00D41082000B4031F
B0080008410A306011C0094108200016800D41082000B4031F
B0084008410A306011000A4108200016400D41082000B4031F
B0088008410A306011400A4108200016000D41082000B4031F
B008C008410A302411800A410820C415C00C41082000B4031F
B0080009410A304211C00A410820E215800C41082000B4031F
B0084009410A306011000B4108200016400C41082000B4031F
B0088009410A307E11400B4108201E16000C41082000B4031F
B008C009410A309C11800B4108203C16C00B41082000B4031F
B008000A410A307E11C00B4108201E16800B41082000B4031F
B008400A410A306011000C4108200016400B41082000B4031F
B008800A410A304211400C410820E215000B41082000B4031F
B008C00A410A302411800C410820C415C00A41082000B4031F
B008000B410A306011C00C4108200016800A41082000B4031F
B008400B410A306011000D4108200016400A41082000B4031F
B008800B410A306011400D4108200016000A41082000B4031F
B008C00B410A309C11800D4108203C16C00941082000B4031F
B008000C410A307E11C00D4108201E16800941082000B4031F
B008400C410A306011000E4108200016400941082000B4031F
B008800C410A304211400E410820E215000941082000B4031F
B008C00C410A302411800E410820C415C00841082000B4031F
B008000D410A304211C00E410820E215800841082000B4031F
B008400D410A306011000F4108200016400841082000B4031F
B008800D410A307E11C00E4108201E16000841082000B4031F
B008C00D410A309C11800E4108203C16C00741082000B4031F
B008000E410A307010400E4108200016800741082000B4031F
B008400E410A307010000E4108200016400741082000B4031F
B008800E410A307010C00D4108200016000741082000B4031F
B008C00E410A303410800D410820C415C00641082000B4031F
B008000F410A305210400D410820E215800641082000B4031F
B008C00E410A307010000D4108200016400641082000B4031F
B008800E410A308E10C00C4108201E16000641082000B4031F
B008400E410A30AC10800C4108203C16C00541082000B4031F
B008000E410A308E10400C4108201E16800541082000B4031F
B008C00D410A307010000C4108200016400541082000B4031F
B008800D410A305210C00B410820E215000541082000B4031F
B008400D410A303410800B410820C415C00441082000B4031F
8406000D410A307010400B4108200016800441082000B4031F
8406C00C410A307010000B4108200016400441082000B4031F
8406800C410A307010C00A4108200016000441082000B4031F
8406400C410A30AC10800A4108203C16C00341082000B4031F
8406000C410A308E10400A4108201E16800341082000B4031F
8406C00B410A307010000A4108200016400341082000B4031F
8406800B410A305210C009410820E215000341082000B4031F
8406400B410A3034108009410820C415C00241082000B4031F
8406000B410A3052104009410820E215800241082000B4031F
8406C00A410A30701000094108200016400241082000B4031F
8406800A410A308E10C0084108201E16000241082000B4031F
8406400A410A30AC1080084108203C16C00141082000B4031F
8406000A410A30701040084108200016000241082000B4031F
8406C009410A30701000084108200016400241082000B4031F
84068009410A307010C0074108200016800241082000B4031F
84064009410A3034108007410820C415C00241082000B4031F
84060009410A3052104007410820E215000341082000B4031F
8406C008410A30701000074108200016400341082000B4031F
84068008410A308E10C0064108201E16800341082000B4031F
84064008410A30AC1080064108203C16C00341082000B4031F
84060008410A308E1040064108201E16000441082000B4031F
8406C007410A30701000064108200016400441082000B4031F
84068007410A305210C005410820E215800441082000B4031F
84064007410A3034108005410820C415C00441082000B4031F
84060007410A30701040054108200016000541082000B4031F
8406C006410A30701000054108200016400541082000B4031F
84068006410A307010C0044108200016800541082000B4031F
84064006410A30AC1080044108203C16C00541082000B4031F
84060006410A308E1040044108201E16000641082000B4031F
8406C005410A30701000044108200016400641082000B4031F
84068005410A305210C003410820E215800641082000B4031F
84064005410A3034108003410820C415C00641082000B4031F
84060005410A3052104003410820E215000741082000B4031F
8406C004410A30701000034108200016400741082000B4031F
84068004410A308E10C0024108201E16800741082000B4031F
84064004410A30AC1080024108203C16C00741082000B4031F
84060004410A30701040024108200016000841082000B4031F
8406C003410A30701000024108200016400841082000B4031F
84068003410A307010C0014108200016800841082000B4031F
84064003410A3034100002410820C415C00841082000B4031F
84060003410A3052104002410820E215000941082000B4031F
8406C002410A30701080024108200016400941082000B4031F
84068002410A308E10C0024108201E16800941082000B4031F
84064002410A30AC1000034108203C16C00941082000B4031F
84060002410A308E1040034108201E16000A41082000B4031F
8406C001410A30701080034108200016400A41082000B4031F
84060002410A305210C003410820E215800A41082000B4031F
End of preview. Expand in Data Studio

SID Music Dataset

Register dumps from 2,418 Commodore 64 SID files for training music generation models. 9000 frames for each file, corresponding to 3 minutes of the sid file.

Composers Included

Composer Songs
DRAX (Thomas Mogensen) 1042
Laxity (Thomas E. Petersen) 274
Jeroen Tel 163
Thomas Detert 162
Reyn Ouwehand 124
David Whittaker 98
Ben Daglish 86
Johannes Bjerregaard 84
Rob Hubbard 78
Jonathan Dunn 67
Matt Gray 47
Charles Deenen 46
Chris Hülsbeck 42
Mark Cooksey 39
Martin Galway 34
Total 2,418

Data Format

Each frame is 25 SID registers encoded as 50 hex characters:

B0080005410A306011C0064108200016800D41082000B4031F
B0084005410A30601100074108200016C00D41082000B4031F
B0088005410A30601140074108200016000E41082000B4031F
...
<end>
  • 50 hex characters = 25 bytes (SID registers $D400-$D418)
  • <end> marks song boundaries
  • 50 frames = 1 second of audio

Register Layout

Bytes 0-6:   Voice 1 (freq, pulse width, control, envelope)
Bytes 7-13:  Voice 2
Bytes 14-20: Voice 3
Bytes 21-24: Filter + Volume

Usage

Quick Start with SidGPT

# Clone SidGPT
git clone https://github.com/M64GitHub/SidGPT
cd SidGPT
pip install torch numpy tqdm

# Download this dataset
wget https://huggingface.co/datasets/M64/sid-music/resolve/main/training.txt.gz
gunzip training.txt.gz
mv training.txt training/data/sid/input.txt

# Tokenize & Train
cd training/data/sid && python prepare.py && cd ../..
python train.py config/train_sid.py

Or Use Pre-trained Model

Skip training entirely:

Manual / Custom Training

If using your own training setup:

  1. Download: training.txt.gz (~100MB compressed, ~1GB uncompressed)
  2. Format: Character-level, 22-token vocabulary
  3. Tokenize: Map characters to indices:
   vocab = ['\n', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 
            'A', 'B', 'C', 'D', 'E', 'F', '<', '>', 'd', 'e', 'n']
   char_to_idx = {c: i for i, c in enumerate(vocab)}
  1. Train: Any GPT/transformer architecture works. Recommended:
    • Block size: 1020+ tokens (20+ frames context)
    • Character-level prediction (no BPE)

Pre-trained Model

Skip training and use the pre-trained model directly:

Statistics

  • Total characters: ~1,000,000,000
  • Vocabulary: 22 tokens (0-9, A-F, <, >, d, e, n, \n)
  • Average song length: 9000 frames (~ 3 minutes)

License

MIT License.

Original SID files from HVSC are © their respective composers. This dataset contains derived register dumps for research purposes.

Citation

@misc{sidmusicdataset2026,
  author = {Mario Schallner},
  title = {SID Music Dataset: C64 Register Dumps for ML},
  year = {2026},
  publisher = {Hugging Face},
  url = {https://huggingface.co/datasets/M64/sid-music}
}

Related

Downloads last month
14