Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
image
imagewidth (px)
256
2.18k
label
class label
3 classes
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
0test
End of preview. Expand in Data Studio

This dataset is proposed by the ICML 2024 paper "Diving into Underwater: Segment Anything Model Guided Underwater Salient Instance Segmentation and A Large-scale Dataset", specific parameters about the dataset can be viewed in the paper

In this paper, we construct the first large-scale USIS10K dataset for the underwater salient instance segmentation task, which contains 10,632 images and pixel-level annotations of 7 categories. As far as we know, this is the largest salient instance segmentation dataset available that simultaneously includes Class-Agnostic and Multi-Class labels.

Datasets

The dataset in USIS10K.zip follows the COCO format and is organized as follows:

data
  β”œβ”€β”€ USIS10K
  |   β”œβ”€β”€ foreground_annotations
  β”‚   β”‚   β”œβ”€β”€ foreground_train_annotations.json
  β”‚   β”‚   β”œβ”€β”€ foreground_val_annotations.json
  β”‚   β”‚   β”œβ”€β”€ foreground_test_annotations.json
  β”‚   β”œβ”€β”€ multi_class_annotations
  β”‚   β”‚   β”œβ”€β”€ multi_class_train_annotations.json
  β”‚   β”‚   β”œβ”€β”€ multi_class_val_annotations.json
  β”‚   β”‚   β”œβ”€β”€ multi_class_test_annotations.json
  β”‚   β”œβ”€β”€ train
  β”‚   β”‚   β”œβ”€β”€ train_00001.jpg
  β”‚   β”‚   β”œβ”€β”€ ...
  β”‚   β”œβ”€β”€ val
  β”‚   β”‚   β”œβ”€β”€ val_00001.jpg
  β”‚   β”‚   β”œβ”€β”€ ...
  β”‚   β”œβ”€β”€ test
  β”‚   β”‚   β”œβ”€β”€ test_00001.jpg
  β”‚   β”‚   β”œβ”€β”€ ...

Citation

If you find our repo or USIS10K dataset useful for your research, please cite us:

@inproceedings{lian2024diving,
  title     = {Diving into Underwater: Segment Anything Model Guided Underwater Salient Instance Segmentation and A Large-scale Dataset},
  author    = {Lian, Shijie and Zhang, Ziyi and Li, Hua and Li, Wenjie and Yang, Laurence Tianruo and Kwong, Sam and Cong, Runmin},
  booktitle = {Proceedings of the 41st International Conference on Machine Learning},
  pages     = {29545--29559},
  year      = {2024}
  url       = {https://proceedings.mlr.press/v235/lian24c.html},
}
Downloads last month
32