Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code:   DatasetGenerationError
Exception:    ArrowInvalid
Message:      JSON parse error: Invalid value. in row 0
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 160, in _generate_tables
                  df = pandas_read_json(f)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 38, in pandas_read_json
                  return pd.read_json(path_or_buf, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 791, in read_json
                  json_reader = JsonReader(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 905, in __init__
                  self.data = self._preprocess_data(data)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 917, in _preprocess_data
                  data = data.read()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/utils/file_utils.py", line 827, in read_with_retries
                  out = read(*args, **kwargs)
                File "/usr/local/lib/python3.9/codecs.py", line 322, in decode
                  (result, consumed) = self._buffer_decode(data, self.errors, final)
              UnicodeDecodeError: 'utf-8' codec can't decode byte 0x89 in position 0: invalid start byte
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1855, in _prepare_split_single
                  for _, table in generator:
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 687, in wrapped
                  for item in generator(*args, **kwargs):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 163, in _generate_tables
                  raise e
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 137, in _generate_tables
                  pa_table = paj.read_json(
                File "pyarrow/_json.pyx", line 308, in pyarrow._json.read_json
                File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: JSON parse error: Invalid value. in row 0
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1428, in compute_config_parquet_and_info_response
                  parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 989, in stream_convert_to_parquet
                  builder._prepare_split(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1898, in _prepare_split_single
                  raise DatasetGenerationError("An error occurred while generating the dataset") from e
              datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

ID
string
gender
int64
Asian
int64
Black
int64
Others
int64
teenager
int64
middle
int64
elderly
int64
wrinkles
int64
sideburns
int64
moustache/goatee
int64
beard
int64
clear_glasses
int64
sunglasses
int64
glasses
int64
open_eyes
int64
eyebrows
int64
open_mouth
int64
show_teeth
int64
smile_with_closed_lips
int64
smile_with_open_lips
int64
show_ears
int64
earring
int64
pointed_nose
int64
round_nose
int64
pointed_chin
int64
round_chin
int64
bald
int64
sparse_hair
int64
short_hair
int64
long_hair
int64
straight_hair
int64
curly_hair
int64
bangs
int64
one_braid
int64
≥2_braids
int64
braids
int64
hair_wear
int64
hat
int64
Attractive
int64
a00001
1
2
2
1
2
1
2
2
1
2
1
2
2
2
1
1
2
2
2
2
1
2
1
2
1
2
2
2
1
2
2
1
1
2
2
2
2
2
1
a00002
1
2
2
1
2
1
2
2
1
2
1
2
2
2
2
1
2
2
2
2
1
2
1
2
2
1
2
2
2
1
2
1
2
2
2
2
2
2
2
a00003
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
2
2
1
2
2
1
2
2
2
1
2
1
2
2
2
2
2
2
2
a00004
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
2
2
1
2
1
2
2
2
2
1
2
1
2
2
2
2
2
2
2
a00005
2
2
2
1
1
2
2
2
2
2
2
2
2
2
2
1
2
2
2
2
2
2
1
2
1
2
2
2
2
1
2
1
2
2
2
2
2
2
2
a00006
1
2
2
1
2
2
1
1
1
2
1
2
2
2
1
1
2
2
2
2
2
2
1
2
2
1
2
2
1
2
1
2
2
2
2
2
1
2
2
a00007
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
2
2
1
2
2
1
2
2
2
2
2
2
2
2
2
2
2
2
2
a00008
1
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
1
2
2
2
1
2
2
1
2
2
1
2
2
2
2
2
2
2
2
1
2
a00009
2
2
2
1
2
2
1
1
2
2
2
2
2
2
1
1
2
2
2
2
2
2
1
2
2
1
2
2
2
2
2
2
2
2
2
2
2
2
2
a00010
2
2
2
1
2
1
2
2
2
2
2
1
2
1
1
2
2
2
1
2
1
2
1
2
2
1
2
2
1
2
2
1
2
2
2
2
2
2
2
a00011
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
2
2
1
2
1
2
2
2
2
1
2
1
2
2
2
2
1
2
2
a00012
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
2
2
1
2
1
2
2
2
1
2
1
2
2
2
2
2
1
2
2
a00013
1
2
2
1
2
2
1
1
1
2
1
2
2
2
1
1
1
2
2
2
2
2
2
1
2
1
2
2
1
2
2
2
2
2
2
2
2
1
2
a00014
1
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
1
2
1
2
2
1
2
1
2
2
1
2
2
1
1
2
2
2
2
2
1
a00015
1
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
2
2
2
1
2
1
2
2
1
2
2
1
2
2
2
2
2
2
3
a00016
1
2
2
1
2
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
1
2
2
1
2
1
2
2
1
2
2
2
2
2
2
2
2
1
3
a00017
1
2
2
1
2
1
2
2
2
1
1
2
2
2
1
1
2
2
2
2
1
2
1
2
2
1
2
2
1
2
2
2
2
2
2
2
2
2
2
a00018
2
2
2
1
1
2
2
2
2
2
2
2
2
2
2
1
2
2
2
2
1
2
1
2
1
2
2
2
2
1
1
2
2
2
2
2
2
2
1
a00019
2
2
2
1
1
2
2
2
2
2
2
2
2
2
2
1
2
2
2
2
2
2
1
2
2
1
2
2
1
2
2
1
2
2
2
2
2
2
3
a00020
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
1
2
1
2
2
1
2
2
1
2
2
1
2
2
2
2
2
2
2
a00021
2
2
2
1
1
2
2
2
2
2
2
2
2
2
2
1
2
2
2
2
2
2
1
2
2
1
2
2
2
1
1
2
2
2
2
2
2
2
1
a00022
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
1
2
1
2
1
2
2
2
1
2
2
1
2
2
2
2
1
2
2
a00023
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
2
2
1
2
1
2
2
2
1
2
2
1
2
2
2
2
1
2
2
a00024
1
2
2
1
2
1
2
2
1
2
1
2
2
2
1
1
2
2
2
2
1
2
1
2
2
1
2
2
1
2
2
1
2
2
2
2
2
2
2
a00025
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
1
2
1
2
1
2
2
2
1
2
2
1
2
2
2
2
2
1
2
a00026
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
2
2
1
2
1
2
2
2
2
2
2
2
2
2
2
2
2
1
2
a00027
1
2
2
1
2
2
1
1
1
2
1
2
2
2
1
1
2
2
2
2
2
2
1
2
2
1
1
2
2
2
2
2
2
2
2
2
2
2
2
a00028
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
2
2
1
2
1
2
2
2
1
2
2
1
2
2
2
2
2
2
2
a00029
1
2
2
1
2
1
2
2
2
2
2
2
2
2
1
1
2
2
2
2
1
2
1
2
1
2
2
2
1
2
1
2
2
2
2
2
2
2
2
a00030
1
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
1
2
2
1
2
1
2
2
1
2
1
2
2
2
2
2
2
2
2
a00031
2
2
2
1
1
2
2
2
2
2
2
2
2
2
2
1
2
2
2
2
2
2
1
2
1
2
2
2
2
1
2
1
2
2
2
2
2
2
2
a00032
1
2
2
1
1
2
2
2
2
2
2
2
2
2
2
1
2
2
2
2
1
2
1
2
2
1
2
2
1
2
2
1
2
2
2
2
2
2
2
a00033
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
1
2
1
2
2
1
2
2
2
1
2
1
2
2
2
2
2
2
2
a00034
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
1
2
1
2
2
1
2
2
2
1
1
2
2
2
2
2
2
2
2
a00035
1
2
2
1
2
1
2
2
1
2
1
2
2
2
1
1
2
2
2
2
1
2
1
2
2
1
2
2
2
1
2
1
2
2
2
2
2
2
2
a00036
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
1
2
1
2
1
2
1
2
2
2
2
1
2
1
2
2
2
2
2
2
2
a00037
2
2
2
1
2
1
2
2
2
2
2
2
2
2
1
1
2
2
2
2
1
2
1
2
1
2
2
2
2
1
1
2
2
2
2
2
2
2
2
a00038
2
2
2
1
2
1
2
2
2
2
2
2
2
2
1
1
2
2
2
2
1
2
1
2
1
2
2
2
2
1
2
1
2
2
2
2
2
2
2
a00039
1
2
2
1
2
1
2
2
1
2
1
2
2
2
1
1
2
2
2
2
1
2
1
2
1
2
2
2
1
2
2
1
2
2
2
2
2
2
2
a00040
2
2
2
1
2
1
2
2
2
2
2
2
2
2
1
1
2
2
1
2
1
2
1
2
1
2
2
2
2
1
2
2
2
2
2
2
1
2
2
a00041
2
2
2
1
2
1
2
2
2
2
2
2
2
2
1
1
2
2
2
2
1
2
1
2
2
1
2
2
2
1
1
2
2
2
2
2
2
2
2
a00042
1
2
2
1
2
2
1
1
1
2
1
2
2
2
1
1
2
2
1
2
2
2
1
2
2
1
2
1
1
2
2
2
2
2
2
2
2
2
2
a00043
2
2
2
1
2
1
2
2
2
2
2
2
2
2
1
1
2
2
1
2
1
2
1
2
2
1
2
2
2
1
1
2
2
2
2
2
1
2
2
a00044
2
2
2
1
2
1
2
2
2
2
2
2
2
2
2
1
2
2
2
2
1
2
1
2
1
2
2
2
2
1
1
2
2
2
2
2
2
1
2
a00045
1
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
1
2
2
1
2
1
2
2
1
2
2
1
2
2
2
2
2
2
2
a00046
1
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
1
2
1
2
1
2
2
1
2
2
1
2
2
1
2
2
2
2
2
2
2
a00047
1
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
1
2
1
2
2
1
2
2
1
2
2
1
2
2
2
2
2
2
2
a00048
1
2
2
1
2
1
2
2
2
2
2
2
2
2
1
1
2
2
1
2
2
2
1
2
1
2
2
2
1
2
2
1
2
2
2
2
2
2
2
a00049
1
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
2
2
1
2
1
2
2
2
1
2
2
1
2
2
2
2
2
2
2
a00050
1
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
1
2
1
2
2
1
2
2
1
2
2
1
2
2
2
2
2
2
2
a00051
1
2
2
1
2
1
2
2
2
2
2
2
2
2
1
1
2
2
2
2
1
2
1
2
1
2
2
2
1
2
2
2
2
2
2
2
2
2
2
a00052
1
2
2
1
2
1
2
2
1
2
1
2
2
2
1
1
2
2
2
2
1
2
1
2
1
2
2
2
1
2
2
2
2
2
2
2
2
2
2
a00053
1
2
2
1
2
1
2
2
2
2
2
2
2
2
2
1
2
2
2
2
1
2
1
2
1
2
2
2
1
2
1
2
2
2
2
2
2
2
2
a00054
2
2
2
1
1
2
2
2
2
2
2
2
2
2
2
1
2
2
2
2
1
2
1
2
1
2
2
2
2
1
1
2
2
2
2
2
1
2
2
a00055
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
2
2
1
2
1
2
2
2
2
1
1
2
2
2
2
2
1
2
2
a00056
1
2
2
1
2
1
2
2
1
2
1
2
2
2
1
1
2
2
2
2
1
2
1
2
2
1
2
2
1
2
1
2
2
2
2
2
2
2
2
a00057
1
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
1
2
1
2
2
1
2
2
1
2
1
2
2
2
2
2
2
2
2
a00058
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
1
2
1
2
1
2
2
2
1
2
2
1
2
2
2
2
2
2
2
a00059
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
1
2
1
2
2
1
2
2
2
1
1
2
2
2
2
2
2
2
2
a00060
1
2
1
2
2
1
2
2
2
2
2
2
2
2
1
1
1
1
2
2
1
2
2
1
1
2
2
2
1
2
2
1
2
2
2
2
2
2
2
a00061
1
2
2
1
2
1
2
2
2
2
2
2
2
2
1
1
1
2
2
2
1
2
1
2
2
1
2
2
1
2
1
2
2
2
2
2
2
2
2
a00062
1
2
2
1
2
1
2
2
1
2
1
2
2
2
1
1
1
1
2
2
2
2
1
2
1
2
2
2
1
2
2
1
2
2
2
2
2
2
2
a00063
1
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
1
2
2
2
1
2
1
2
2
1
2
2
1
2
1
2
1
2
2
2
2
2
2
a00064
2
2
2
1
2
1
2
2
2
2
2
2
2
2
1
1
1
1
2
2
1
1
1
2
2
1
2
2
2
1
1
2
2
2
2
2
1
2
2
a00065
1
2
2
1
2
2
1
1
1
2
1
2
2
2
1
1
1
2
2
2
2
2
1
2
1
2
2
2
2
1
2
1
2
2
2
2
2
1
2
a00066
1
2
2
1
2
1
2
2
1
2
1
2
2
2
1
1
1
1
2
2
1
2
1
2
1
2
2
2
1
2
1
2
2
2
2
2
2
2
2
a00067
2
2
2
1
2
1
2
2
2
2
2
2
2
2
1
1
1
2
2
2
2
2
1
2
2
1
2
2
2
1
2
1
2
2
2
2
2
2
2
a00068
2
2
2
1
2
2
1
1
2
2
2
2
2
2
1
1
1
2
2
2
2
2
1
2
2
1
2
2
2
2
2
2
2
2
2
2
2
1
2
a00069
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
1
2
2
2
2
2
1
2
1
2
2
2
2
1
2
1
2
2
2
2
2
2
2
a00070
1
2
2
1
2
1
2
2
2
2
2
2
2
2
1
1
2
2
2
2
1
2
1
2
2
1
2
2
2
2
2
2
2
2
2
2
2
1
2
a00071
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
1
2
1
2
1
2
2
2
1
2
2
1
2
2
2
2
2
2
1
a00072
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
1
1
2
1
1
2
1
2
1
2
2
2
1
2
2
1
2
2
2
2
1
2
2
a00073
2
2
2
1
1
2
2
2
2
2
2
2
2
2
2
1
2
2
1
2
1
2
1
2
1
2
2
2
2
1
1
2
2
2
2
2
1
2
2
a00074
1
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
2
2
1
2
1
2
2
2
1
2
1
2
2
2
2
2
2
2
2
a00075
1
2
2
1
2
2
1
1
1
2
1
2
2
2
2
1
2
2
2
2
1
2
1
2
2
1
2
1
1
2
2
2
2
2
2
2
2
2
2
a00076
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
2
2
1
2
1
2
2
2
1
2
2
1
2
2
2
2
2
1
2
a00077
1
2
2
1
2
1
2
1
2
1
1
2
2
2
1
1
2
2
2
2
1
2
1
2
1
2
2
2
2
2
1
2
2
2
2
2
2
1
2
a00078
1
2
2
1
2
1
2
1
2
1
1
2
2
2
1
1
2
2
2
2
1
1
1
2
1
2
2
2
2
2
2
2
2
2
2
2
2
1
2
a00079
1
2
2
1
2
1
2
1
1
2
1
2
2
2
1
1
1
1
2
1
1
1
1
2
2
1
2
2
2
2
2
2
2
2
2
2
2
1
2
a00080
2
2
2
1
2
1
2
2
2
2
2
2
2
2
1
1
2
2
1
2
1
2
1
2
1
2
2
2
1
2
2
1
2
2
2
2
2
1
1
a00081
2
2
2
1
2
1
2
2
2
2
2
2
2
2
1
1
2
2
2
1
2
2
1
2
1
2
2
2
1
2
2
1
2
2
2
2
2
1
1
a00082
1
2
2
1
2
1
2
2
2
2
2
2
2
2
1
1
2
2
2
2
1
2
1
2
2
1
2
2
1
2
1
2
2
2
2
2
2
2
2
a00083
1
2
2
1
2
1
2
2
2
2
2
1
2
1
2
1
2
2
2
2
1
2
1
2
1
2
2
2
1
2
1
2
2
2
2
2
2
2
2
a00084
2
2
2
1
2
1
2
2
2
2
2
2
2
2
1
1
2
2
1
2
2
2
1
2
1
2
2
2
2
1
1
2
2
2
2
2
2
2
2
a00085
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
2
2
1
2
1
2
2
2
2
1
2
1
1
1
2
1
2
2
2
a00086
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
1
2
1
2
1
2
2
2
2
1
2
1
2
1
2
1
1
2
2
a00087
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
2
2
1
2
1
2
2
2
2
1
2
1
2
1
2
1
1
2
2
a00088
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
1
1
1
2
1
2
2
2
2
1
1
2
2
1
2
1
1
2
2
a00089
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
1
1
1
2
1
2
2
2
2
1
2
1
2
1
2
1
1
2
1
a00090
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
1
2
1
2
1
2
2
2
2
2
2
2
2
2
2
2
2
1
2
a00091
2
2
2
1
1
2
2
2
2
2
2
2
2
2
2
1
2
2
2
2
1
2
1
2
1
2
2
2
1
2
1
2
1
2
2
2
2
2
1
a00092
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
1
2
1
2
1
2
2
2
2
1
1
2
1
2
2
2
2
2
2
a00093
2
2
2
1
1
2
2
2
2
2
2
2
2
2
2
1
2
2
2
2
2
2
1
2
2
1
2
2
1
2
1
2
1
2
2
2
2
2
2
a00094
2
2
2
1
1
2
2
2
2
2
2
2
2
2
2
1
2
2
2
2
1
2
1
2
1
2
2
2
2
1
2
1
2
2
2
2
2
2
2
a00095
2
2
2
1
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
1
2
1
2
1
2
2
2
2
1
2
1
2
1
2
1
2
2
2
a00096
1
2
2
1
2
1
2
2
1
2
1
2
2
2
1
1
1
1
2
1
1
2
1
2
2
1
2
2
1
2
2
1
2
2
2
2
2
2
2
a00097
2
1
2
2
1
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
1
2
1
2
1
2
2
2
2
1
2
1
2
2
2
2
2
2
2
a00098
1
1
2
2
2
2
1
2
2
2
2
2
2
2
1
1
2
2
2
2
1
2
1
2
2
1
2
2
1
2
1
2
2
2
2
2
2
2
2
a00099
1
2
2
1
2
1
2
2
1
2
1
2
2
2
1
1
2
2
2
2
1
2
1
2
2
1
2
2
2
2
2
1
2
2
2
2
2
1
2
a00100
2
1
2
2
1
2
2
2
2
2
2
2
2
2
1
1
2
2
1
2
1
2
1
2
1
2
2
2
2
1
1
2
1
2
1
1
1
2
1
End of preview.

Face4FairShifts: A Large Image Benchmark for Fairness and Robust Learning across Visual Domains

By Tianjin University

For more information about the dataset, visit the project website:

https://meviuslab.github.io/Face4FairShifts/

Please note that the use of this dataset is RESTRICTED to non-commercial research and educational purposes.

File Information

  • Face Images (Img/) 100,000 original face images across four domains: 30,000 in Photo, 25,000 each in Art and Cartoon, and 20,000 in Sketch. See Face Images section below for more info.

  • Attributes Annotations (Anno/) 42 annotations within 15 attributes Encompassing sensitive attributes related to fairness, such as gender, race, and age, as well as detailed facial attributes including beard, glasses, eyes, mouth, smile, nose, chin, hair, braids, accessories, and others, along with subjective traits like attractiveness. See Attributes Annotations section below for more info.

Face Images

  • Photo.zip
  • Art.zip
  • Cartoon.zip
  • Sketch.zip

Notes:

  1. Please unzip these files together.

Attributes Annotations

  • photo_attr.json
  • art_attr.json
  • cartoon_attr.json
  • sketch_attr.json

format:
{ "id":c00102, "gender":2, "Asian":1, "Black":2, "Others":2, "teenager":1, "middle":2, "elderly":2, "wrinkles":2, "sideburns":2, "mouthtache/goatee":2, "beard":2, "clear_glasses":2, "sunglasses":2, "glasses":2, "open_eyes":1, "eyebrows":1, "open_mouth":1, "show_teeth":1, "smile_with_closed_lips":2, "smile_with_open_lips":1, "show_ears":1, "earring":2, "pointed_nose":2, "round_nose":2, "pointed_chin":1, "round_chin":2, "bald":2, "sparse_hair":2, "short_hair":2, "long_hair":1, "straight_hair":2, "curly_hair":1, "bangs":1, "one_braid":2, "≥2_braids":1, "braids":1, "hair_wear":1, "hat":2 "appearance":1 }

Notes:

  1. For the "gender" attribute, "1" represents male while "2" represents female.
  2. For the "appearance" attribute, "1" represents attractive, "2" represents average, and "3" represents unattractive.
  3. For all other attributes, "1" represents positive, while "2" represents negative.

Attributes Description

  • Gender: This attribute includes male and female.
  • Race: Race is divided into Asian, Black, and Others. The main criterion for determining race is appearance, specifically facial features, not hair color, skin color, or eye color, and certainly not based on the brightness or darkness of the image.
  • Age: Age is diveded into teenager, middle and elderly. Teenagers include both young adults and children, covering all young age groups.
  • Wrinkles: Wrinkles are closely related to age. If the image only shows nasolabial folds, it does not count as having wrinkles. Only when there are numerous wrinkles overall can it be considered as having wrinkles.
  • Sideburns: Beard connecting the sides of the cheeks to the mouth is referred to as a sideburn beard.
  • Moustache/goatee: Van dyke refers to facial hair located only above or below the lips.
  • Beard: Beard includes both sideburns and van dykes.
  • Clear_glasses: Colorless transparent lens.
  • Sunglasses: Colored lens.
  • Glasses: Glasses include clear glasses and sunglasses.
  • Open_eyes: Open at least one eye.
  • Eyebrows: The person's at least one eyebrow is visible.
  • Open_mouth: The mouth is open.
  • Show_teeth: The person's teeth are visible.
  • Smile_with_closed_lips: This attribute represents a smile with a closed mouth.
  • Smile_with_open_lips: This attribute represents a smile with an open mouth.
  • Show_ears: The person's at least ear is visible.
  • Earring: This attribute indicates that there are accessories on the ears.
  • Pointed_nose: A pointed nose refers to a nose with a distinct tip that is relatively small and delicate.
  • Round_nose: A round nose refers to a nose with no distinct tip, and it appears more rounded and fleshy.
  • Pointed_chin: A pointed chin is a chin that is sharp and tapered, with a narrow, defined tip.
  • Round_chin: A round chin is a chin that is smooth and curved, lacking sharp angles, with a soft, rounded shape at the tip.
  • Bald: Not a single hair on the head.
  • Sparse_hair: Hair is rather sparse.
  • Short_hair: The hair length does not exceed the chin.
  • Long_hair: The hair length is below the chin.
  • Straight_hair: The hair is straight.
  • Curly_hair: The hair is curly.
  • Bangs: The person in the image has bangs.
  • One_braid: The person in the image has a braid.
  • ≥2_braids: The person in the image has more than two braids.
  • Braids: The person in the image has braids, regardless of the number. This attribute includes one braid and ≥2 braids.
  • Hari_wear: All head accessories excluding hats.
  • Hat: A headscarf is also considered a hat. It can cover part or all of the head.
  • Appearance: A subjective annotation including attractive, average, and unattractive.

Contact

Please contact Yumeng Lin ([email protected]) for questions about the dataset.

Downloads last month
25