Dataset Preview
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code:   DatasetGenerationError
Exception:    ArrowInvalid
Message:      Failed to parse string: 'WEIGHT' as a scalar of type int64
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 622, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2245, in cast_table_to_schema
                  arrays = [
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2246, in <listcomp>
                  cast_array_to_feature(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1795, in wrapper
                  return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1795, in <listcomp>
                  return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2102, in cast_array_to_feature
                  return array_cast(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1797, in wrapper
                  return func(array, *args, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1949, in array_cast
                  return array.cast(pa_type)
                File "pyarrow/array.pxi", line 996, in pyarrow.lib.Array.cast
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow/compute.py", line 404, in cast
                  return call_function("cast", [arr], options, memory_pool)
                File "pyarrow/_compute.pyx", line 590, in pyarrow._compute.call_function
                File "pyarrow/_compute.pyx", line 385, in pyarrow._compute.Function.call
                File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Failed to parse string: 'WEIGHT' as a scalar of type int64
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1420, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1052, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 924, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1000, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1897, in _prepare_split_single
                  raise DatasetGenerationError("An error occurred while generating the dataset") from e
              datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

FLIGHT
int64
FLTDATE
string
TYPE
string
DEST
string
WEIGHT
int64
FLOOR TYPE
string
POS
int64
CONT
null
PRIORITY
int64
2,186,212,029
2024/7/19
A320
CMB
1,730
B
1
null
1
2,186,212,029
2024/7/19
A320
CMB
345
C
3
null
1
2,186,212,029
2024/7/19
A320
CMB
580
C
3
null
1
2,186,212,029
2024/7/19
A320
CMB
315
C
4
null
1
2,186,212,029
2024/7/19
A320
CMB
165
C
4
null
1
6,978,578,039
2024/7/19
A320
BKK
980
B
1
null
1
6,212,699,786
2024/7/19
A320
TFU
1,100
B
1
null
1
5,409,448,599
2024/7/19
A320
CGK
800
B
1
null
1
5,409,448,599
2024/7/19
A320
CGK
800
B
4
null
1
5,409,448,599
2024/7/19
A320
CGK
800
B
1
null
1
5,409,448,599
2024/7/19
A320
CGK
800
B
4
null
1
9,914,004,553
2024/7/19
A320
MNL
1,400
B
1
null
1
9,914,004,553
2024/7/19
A320
MNL
680
C
3
null
1
9,914,004,553
2024/7/19
A320
MNL
225
C
3
null
1
9,914,004,553
2024/7/19
A320
MNL
215
C
4
null
1
9,914,004,553
2024/7/19
A320
MNL
675
C
4
null
1
9,914,004,553
2024/7/19
A320
MNL
340
C
5
null
1
3,909,125,209
2024/7/19
A320
KUL
1,199
B
1
null
1
1,975,878,596
2024/7/19
A320
SIN
700
B
1
null
1
1,975,878,596
2024/7/19
A320
SIN
700
B
3
null
1
3,111,125,869
2024/7/19
A320
BKK
1,604
B
1
null
1
6,276,527,390
2024/7/19
A320
HGH
1,500
B
1
null
1
9,879,732,013
2024/7/19
A320
HKT
1,145
B
1
null
1
7,190,023,376
2024/7/19
A320
HGH
1,600
B
1
null
1
3,519,095,353
2024/7/19
A320
ICN
1,132
B
1
null
1
6,403,146,378
2024/7/19
A320
WNZ
1,240
B
1
null
1
6,403,146,378
2024/7/19
A320
WNZ
1,240
B
1
null
1
3,389,301,933
2024/7/19
A320
BKK
1,500
B
1
null
1
3,389,301,933
2024/7/19
A320
BKK
110
C
3
null
1
3,389,301,933
2024/7/19
A320
BKK
20
M
3
null
1
4,069,864,601
2024/7/19
A320
PVG
1,500
B
1
null
1
4,069,864,601
2024/7/19
A320
PVG
822
C
3
null
1
4,069,864,601
2024/7/19
A320
PVG
328
C
3
null
1
4,069,864,601
2024/7/19
A320
PVG
430
C
3
null
1
1,655,305,133
2024/7/19
A320
HKG
1,200
B
1
null
1
1,655,305,133
2024/7/19
A320
HKG
230
C
4
null
1
7,279,523,363
2024/7/19
A320
TFU
6
C
1
null
1
7,279,523,363
2024/7/19
A320
TFU
1,372
B
1
null
1
7,279,523,363
2024/7/19
A320
TFU
6
C
1
null
1
7,279,523,363
2024/7/19
A320
TFU
1,372
B
1
null
1
7,090,115,645
2024/7/19
A320
HKT
1,000
B
1
null
1
5,233,321,844
2024/7/19
A320
TFU
1,200
B
1
null
1
2,923,963,794
2024/7/19
A320
MFM
582
B
3
null
1
3,632,588,763
2024/7/19
A320
WUH
701
B
3
null
1
3,632,588,763
2024/7/19
A320
WUH
701
B
3
null
1
1,579,481,870
2024/6/4
A320
CSX
475
C
1
null
1
1,579,481,870
2024/6/4
A320
CSX
525
C
1
null
1
1,579,481,870
2024/6/4
A320
CSX
5
C
3
null
1
1,579,481,870
2024/6/4
A320
CSX
335
C
3
null
1
1,579,481,870
2024/6/4
A320
CSX
30
C
3
null
1
1,579,481,870
2024/6/4
A320
CSX
90
C
3
null
1
1,579,481,870
2024/6/4
A320
CSX
500
B
4
null
1
6,962,588,472
2024/6/4
A320
CTU
470
C
1
null
1
6,962,588,472
2024/6/4
A320
CTU
310
C
1
null
1
6,962,588,472
2024/6/4
A320
CTU
150
C
1
null
1
6,962,588,472
2024/6/4
A320
CTU
400
B
4
null
1
9,105,938,420
2024/6/4
A320
KMG
600
B
3
null
1
1,668,796,409
2024/6/4
A320
CTU
202
C
1
null
1
1,668,796,409
2024/6/4
A320
CTU
200
B
5
null
1
1,890,084,673
2024/6/4
A320
KMG
300
B
1
null
1
1,890,084,673
2024/6/4
A320
KMG
3
C
3
null
1
1,890,084,673
2024/6/4
A320
KMG
27
C
3
null
1
3,949,744,137
2024/6/4
A320
CTU
169
C
1
null
1
3,949,744,137
2024/6/4
A320
CTU
150
C
3
null
1
3,949,744,137
2024/6/4
A320
CTU
300
B
4
null
1
1,094,981,850
2024/6/4
A320
KMG
5
C
1
null
1
1,094,981,850
2024/6/4
A320
KMG
600
B
1
null
1
2,261,776,376
2024/6/4
A320
CTU
189
C
3
null
1
2,261,776,376
2024/6/4
A320
CTU
200
B
4
null
1
1,069,070,087
2024/6/4
A320
WNZ
450
C
1
null
2
1,069,070,087
2024/6/4
A320
WNZ
280
C
1
null
2
1,069,070,087
2024/6/4
A320
WNZ
620
C
1
null
2
1,069,070,087
2024/6/4
A320
WNZ
460
C
1
null
2
1,069,070,087
2024/6/4
A320
WNZ
395
C
3
null
2
1,069,070,087
2024/6/4
A320
WNZ
370
C
3
null
2
1,069,070,087
2024/6/4
A320
WNZ
645
B
4
null
1
1,069,070,087
2024/6/4
A320
WNZ
60
M
5
null
2
1,069,070,087
2024/6/4
A320
WNZ
365
C
5
null
1
7,205,852,491
2024/6/4
A320
CAN
344
C
1
null
1
7,205,852,491
2024/6/4
A320
CAN
333
C
1
null
1
7,205,852,491
2024/6/4
A320
CAN
518
B
1
null
1
7,205,852,491
2024/6/4
A320
CAN
373
C
3
null
1
7,205,852,491
2024/6/4
A320
CAN
125
M
3
null
1
7,205,852,491
2024/6/4
A320
CAN
430
C
4
null
1
7,205,852,491
2024/6/4
A320
CAN
249
C
5
null
1
2,902,155,805
2024/6/4
A320
CAN
490
C
1
null
1
2,902,155,805
2024/6/4
A320
CAN
717
B
1
null
1
8,364,982,591
2024/6/4
A320
YCU
930
C
1
null
2
8,364,982,591
2024/6/4
A320
YCU
130
C
1
null
2
8,364,982,591
2024/6/4
A320
YCU
300
C
3
null
1
8,364,982,591
2024/6/4
A320
YCU
700
B
4
null
1
8,462,116,532
2024/6/4
A320
PVG
667
B
1
null
1
8,462,116,532
2024/6/4
A320
PVG
295
C
1
null
1
8,462,116,532
2024/6/4
A320
PVG
380
C
1
null
1
8,462,116,532
2024/6/4
A320
PVG
95
C
1
null
1
8,462,116,532
2024/6/4
A320
PVG
195
M
3
null
1
8,462,116,532
2024/6/4
A320
PVG
600
C
3
null
1
8,462,116,532
2024/6/4
A320
PVG
450
C
4
null
1
8,462,116,532
2024/6/4
A320
PVG
180
C
5
null
1
1,409,155,519
2024/6/4
A320
CTU
62
C
1
null
1
End of preview.

Dataset Download: https://huggingface.co/datasets/LINC-BIT/AirCa
Dataset Website: https://huggingface.co/datasets/LINC-BIT/AirCa
Code Link: https://huggingface.co/datasets/LINC-BIT/AirCa
Paper Link:

Contents

1. About Dataset

AirCa is a publicly available aircraft cargo loading dataset with millions of instances from industry. It has three unique characteristics: (1) Large-scale, AirCa contains in total 6,071k records and 1,092k flights generated by 491 aircraft fleets, covering 6 aircraft types and 425 airports over a total span of 9 months. (2) Comprehensive information, AirCa is delivered to provide rich information pertaining to aircraft cargo loading, including detailed cargo characteristic information, loading-event logs, flight destination, and comprehensive loading constraints in practical scenarios. (3) Diversity, AirCa aims to increase data diversity from three perspectives: destination diversity, Flight diversity, and Constraint diversity.

image/jpeg The figure depicts the process of air cargo loading, starting with terminal administration, where goods are processed and prepared for transportation. Cargo loading follows as goods are transferred to the aircraft, and then flight preparation and flying take place as the plane gets ready for departure. The cargo is carefully organized in the Unit Load Devices (ULD), which are containers or pallets used to carry the cargo efficiently. For wide-body aircraft cargo holds, like the B777, there are designated areas for both small ULD containers and larger pallets. Meanwhile, narrow-body aircraft cargo holds, like the A320, have a different arrangement suited for smaller loads. The cargo types include bulk cargo and special goods, which require specific handling due to their size, fragility, or value.

2. Download

AirCa can be used for research purposes. Before you download the dataset, please read these terms. Then put the data into "./data/raw/".
The structure of "./data/raw/" should be like:

* ./data/raw/  
    * split_by_aircraft_type    
        * A320.csv   
        * ...    
    * split_by_date  
        * BAKFLGITH_LOADDATA2024-10-12.csv  
        * ...
import pandas as pd
>>> import pandas as pd
>>> df = pd.read_csv("BAKFLGITH_LOADDATA2024-10-12.csv")
>>> df.head(3)
       FLIGHT  TYPE DEST  WEIGHT  ... CONT PRIORITY VOLUME  SPECIAL CARGO
0  3744617311  A320  SIN     177  ...  NaN        1    0.0            NaN
1  3744617311  A320  SIN     177  ...  NaN        1    0.0            NaN
2  3744617332  A320  SIN     560  ...  NaN        1    0.0            NaN

3. Description

Below is the detailed field of each sub-dataset.

3.1 AirCa-W

Data field Description Unit/format
Cargo information
loading time Record of the cargo loading day Time
id Unique identifier for ULD (Unit Load Device) ID
weight Weight of ULD String
types Types of ULD include general cargo, special cargo (fragile goods, temperature-controlled products, etc.) String
priority Cargo loading priority String
length Length of ULD Float
width Width of ULD Float
height Height of ULD Float
Flight information
loading order The exact location of the cargo in the cargo hold String
flight ID (anonymity) Record of the different flights ID
destination airport Record of the airport's name String
Aircraft information
weight constraint Maximum load weight of the cargo hold Float
CG constraint Ideal center of gravity range for airliner when zero fuel Float
ULD correspondence constraint Get the corresponding relationship of cargo types and verify each piece of cargo data String
dangerous cargo isolation constraint Any two special cargo loading locations need to maintain a specified distance String
joint weight constraint Total load weight constraints for multiple cargo holds Float
continuous loading constraint Some types of ULDs need to be loaded according to the load sequence String
cargo hold availability constraint Before loading, check whether the cargo hold is available String
number of ULD constraint The quantity of Uld cannot exceed this specified value Float
cargoType validity constraint Check whether cargoType is valid and belongs to predefined cargo types. String
cargoType consistency constraint Ensure that for cargo types C or M, estWeight and actWeight are equal. Float
ULD Type weight limit constraint Validate if estWeight and actWeight are within the allowed range for ULD type. Float
ULD Type and serial number relationship Check if the containerSerial starts with the correct ULD Code based on ULD type. String
Dangerous goods isolation constraint Ensure dangerous goods are separated by a minimum distance as defined. Float
Compartment weight and joint weight limit Ensure total weight in compartments does not exceed individual or joint weight limits. Float
Continuous loading sequence constraint Ensure loading follows the defined sequence, not ending with Non-end-position. String
Loading sequence constraint Ensure loading of Uld Floor1 goods before Uld Floor2 goods if within Load Sequence. String
Cargo hold availability constraint Check if the cargo hold is available for loading as per defined rules. String
Special cases exemption constraint Allow certain cargo positions to bypass rules 2.6, 2.7, and 2.8 as per special case rules. String
Mixed loading constraint Ensure cargo positions do not mix Uld Floor1 and Uld Floor2 types unless specified. String
ULD quantity constraint Ensure the number of specific ULD types in a compartment matches the defined count. Integer
Front/Rear compartment weight limit Ensure weight in the front (FWD) and rear (AFT) compartments do not exceed the defined limits. Float
Cargo hold type restriction Ensure cargo positions only accept specific ULD types as defined. String
Cargo hold weight limit Ensure the total weight in a cargo hold does not exceed the maximum weight limit. Float
Special cargo weight limit constraint Ensure special cargo weight does not exceed the maximum weight limit for the respective position. Float

3.2 AirCa-N

Data field Description Unit/format
Cargo information
loading time Record of the cargo loading day Time
id Unique identifier for ULD (Unit Load Device) ID
weight Weight of ULD String
types Types of ULD include general cargo, special cargo (fragile goods, temperature-controlled products, etc.) String
priority Cargo loading priority String
volume The volume of the cargo Float
Flight information
loading order The exact location of the cargo in the cargo hold String
flight ID (anonymity) Record of the different flights ID
destination airport Record of the airport's name String
Aircraft information
weight constraint Maximum load weight of the cargo hold Float
CG constraint Ideal center of gravity range for airliner when zero fuel Float
dangerous cargo isolation constraint Any two special cargo loading locations need to maintain a specified distance String
joint weight constraint Total load weight constraints for multiple cargo holds Float
volume constraint The volume of cargo cannot exceed this specified value Float
cargoType validity constraint Check whether cargoType is valid and belongs to predefined cargo types. String
cargoType consistency constraint Ensure that for cargo types C or M, estWeight and actWeight are equal. Float
ULD Type weight limit constraint Validate if estWeight and actWeight are within the allowed range for ULD type. Float
ULD Type and serial number relationship Check if the containerSerial starts with the correct ULD Code based on ULD type. String
Dangerous goods isolation constraint Ensure dangerous goods are separated by a minimum distance as defined. Float
Compartment weight and joint weight limit Ensure total weight in compartments does not exceed individual or joint weight limits. Float
Continuous loading sequence constraint Ensure loading follows the defined sequence, not ending with Non-end-position. String
Loading sequence constraint Ensure loading of Uld Floor1 goods before Uld Floor2 goods if within Load Sequence. String
Cargo hold availability constraint Check if the cargo hold is available for loading as per defined rules. String
Special cases exemption constraint Allow certain cargo positions to bypass rules 2.6, 2.7, and 2.8 as per special case rules. String
Mixed loading constraint Ensure cargo positions do not mix Uld Floor1 and Uld Floor2 types unless specified. String
ULD quantity constraint Ensure the number of specific ULD types in a compartment matches the defined count. Integer
Front/Rear compartment weight limit Ensure weight in the front (FWD) and rear (AFT) compartments do not exceed the defined limits. Float
Cargo hold type restriction Ensure cargo positions only accept specific ULD types as defined. String
Cargo hold weight limit Ensure the total weight in a cargo hold does not exceed the maximum weight limit. Float
Special cargo weight limit constraint Ensure special cargo weight does not exceed the maximum weight limit for the respective position. Float

4. Leaderboard

Blow shows the performance of different methods in AirCa.

4.1 Long-term Cargo Capacity Prediction

image/png

4.2 Optimization of Cargo Loading

Experimental results of Optimization of Cargo Loading. The introduction of 12 baselines is shown as follows:

  • COM [1]: Combinatorial Optimization Model solves discrete optimization tasks by searching for an optimal arrangement among a finite set of feasible solutions.
  • IOM [2]: Improved Combinatorial Optimization Model obtains better solutions for discrete optimization tasks by refining search strategies to more effectively explore feasible configurations.
  • NL-CPLEX [3]: NL-CPLEX addresses nonlinear optimization tasks by leveraging branch-and-bound and cutting-plane techniques to efficiently explore the solution space.
  • SDCCLPM [4]: Stochastic-Demand Cargo Container Loading Plan Model optimizes container loading configurations under demand uncertainty by incorporating probabilistic approaches to balance capacity and cost requirements.
  • MLIP [5]: Mixed Integer Linear Program finds optimal solutions to discrete optimization problems by combining integer constraints with linear relationships in a branch-and-bound search process.
  • MLIP-WBP [6]: MLIP-WBP optimizes weighted bin packing by employing a Mixed Integer Linear Programming formulation to balance item distribution and capacity constraints.
  • MLIP-ACLPDD [7]: MLIP-ACLPDD solves advanced cargo loading planning under uncertain demand by incorporating robust constraints into a Mixed Integer Linear Programming framework.
  • HGA [8]: Hybrid Genetic Algorithm enhances solution quality by combining evolutionary operators with complementary search techniques to accelerate convergence and explore the solution space more thoroughly.
  • GA-normal [9]: GA-normal employs foundational genetic algorithm operations—selection, crossover, and mutation—to explore solutions within a population-based search framework.
  • DMOPSO [10]: Discrete Multi-Objective Particle Swarm Optimization locates Pareto-optimal solutions in discrete search spaces by adapting swarm-based velocity and position update mechanisms to address multiple conflicting objectives.
  • PSO-normal [11]: PSO-normal employs the basic velocity and position update rules, guided by personal and global best solutions, to iteratively converge on an optimal search space configuration.
  • RCH [12]: Randomized Constructive Heuristic incrementally constructs feasible solutions by integrating stochastic choices during each step, thus diversifying the search process and enhancing solution discovery.
Method B777 MAC(%)↓ B777 INDEX(%)↓ B777 TIME(s)↓ A320 MAC(%)↓ A320 INDEX(%)↓ A320 TIME(s)↓ B787 MAC(%)↓ B787 INDEX(%)↓ B787 TIME(s)↓
COM 23.93 ± 0.59 3.40 ± 1.64 0.06 ± 0.04 21.14 ± 0.28 6.46 ± 2.20 0.06 ± 0.05 23.71 ± 0.47 3.10 ± 1.58 0.03 ± 0.03
IOM 23.90 ± 0.59 3.40 ± 1.62 0.07 ± 0.08 21.16 ± 0.28 6.50 ± 2.16 0.07 ± 0.05 23.71 ± 0.46 3.08 ± 1.56 0.06 ± 0.05
NL-CPLEX 23.92 ± 0.58 3.45 ± 1.60 0.08 ± 0.06 21.15 ± 0.29 6.48 ± 2.18 0.08 ± 0.07 23.70 ± 0.47 3.07 ± 1.61 0.05 ± 0.04
SDCCLPM 23.91 ± 0.59 3.40 ± 1.63 0.07 ± 0.05 21.15 ± 0.28 6.46 ± 2.18 0.07 ± 0.06 23.70 ± 0.46 3.08 ± 1.57 0.05 ± 0.04
MLIP 23.92 ± 0.57 3.47 ± 1.59 0.06 ± 0.07 21.14 ± 0.29 6.45 ± 2.20 0.06 ± 0.05 23.69 ± 0.46 3.04 ± 1.63 0.03 ± 0.02
MLIP-WBP 23.92 ± 0.58 3.45 ± 1.60 3.53 ± 5.78 21.15 ± 0.29 6.47 ± 2.19 1.43 ± 0.78 23.70 ± 0.47 3.07 ± 1.61 1.43 ± 0.85
MLIP-ACLPDD 23.93 ± 0.59 3.44 ± 1.65 3.46 ± 1.61 21.14 ± 0.29 6.44 ± 2.20 1.46 ± 0.98 23.71 ± 0.47 3.12 ± 1.60 1.67 ± 1.02
HGA 23.37 ± 0.47 3.23 ± 1.06 253.30 ± 0.80 21.14 ± 0.22 6.69 ± 1.80 1.80 ± 0.84 23.46 ± 0.24 3.86 ± 1.74 193.62 ± 0.51
GA-normal 23.35 ± 0.48 3.13 ± 1.08 221.82 ± 0.52 21.14 ± 0.22 6.71 ± 1.80 1.81 ± 0.51 23.44 ± 0.23 3.73 ± 1.69 145.70 ± 0.17
DMOPSO 23.12 ± 0.49 1.56 ± 1.65 266.11 ± 2.61 21.10 ± 0.28 6.59 ± 2.43 2.60 ± 0.61 23.29 ± 0.29 3.00 ± 2.39 204.13 ± 2.02
PSO-normal 23.19 ± 0.44 2.13 ± 1.81 211.73 ± 2.70 21.09 ± 0.28 6.56 ± 2.43 2.61 ± 0.70 23.30 ± 0.27 3.09 ± 2.19 199.24 ± 1.80
RCH 23.35 ± 0.50 3.23 ± 1.23 200.63 ± 0.06 21.07 ± 0.24 6.55 ± 1.93 1.78 ± 0.06 23.41 ± 0.26 3.50 ± 1.93 200.20 ± 0.02
Method Segment 1 MAC(%)↓ Segment 1 INDEX(%)↓ Segment 1 TIME(s)↓ Segment 2 MAC(%)↓ Segment 2 INDEX(%)↓ Segment 2 TIME(s)↓
COM 23.59 ± 0.40 2.72 ± 1.56 0.73 ± 0.61 24.29 ± 0.74 3.89 ± 2.32 1.25 ± 0.92
IOM 23.65 ± 0.41 3.02 ± 1.62 1.19 ± 0.90 24.30 ± 0.73 4.02 ± 2.42 1.82 ± 1.19
NL-CPLEX 23.61 ± 0.41 2.65 ± 1.49 1.06 ± 0.94 24.30 ± 0.74 3.88 ± 2.27 1.96 ± 1.39
SDCCLPM 23.63 ± 0.41 2.96 ± 1.61 1.11 ± 0.95 24.28 ± 0.74 3.97 ± 2.38 1.81 ± 1.35
MLIP 23.63 ± 0.42 2.68 ± 1.48 0.84 ± 0.75 24.28 ± 0.74 3.87 ± 2.24 1.21 ± 0.85
MLIP-WBP 23.61 ± 0.41 2.65 ± 1.49 32.06 ± 22.02 24.30 ± 0.74 3.88 ± 2.27 44.32 ± 22.77
MLIP-ACLPDD 23.60 ± 0.40 2.73 ± 1.54 34.05 ± 22.46 24.28 ± 0.74 3.88 ± 2.33 51.55 ± 27.58
HGA 23.44 ± 0.23 3.73 ± 1.69 36.10 ± 8.55 23.39 ± 0.30 3.32 ± 2.15 23.86 ± 2.69
GA-normal 23.43 ± 0.24 3.65 ± 1.77 28.70 ± 3.45 23.25 ± 0.24 2.37 ± 1.74 23.57 ± 2.50
DMOPSO 23.30 ± 0.27 2.58 ± 2.19 38.12 ± 23.18 23.20 ± 0.27 2.24 ± 2.25 37.39 ± 20.79
PSO-normal 23.29 ± 0.28 2.54 ± 2.01 67.54 ± 57.82 23.34 ± 0.27 3.43 ± 2.25 31.77 ± 16.63
RCH 23.39 ± 0.27 3.38 ± 1.96 36.72 ± 0.55 23.25 ± 0.27 2.35 ± 1.96 35.27 ± 0.31

4.3 Cargo balancing/loading with Large Language Model optimization

Method B777 MAC(%)↓ B777 INDEX(%)↓ B777 TIME(s)↓ B787 MAC(%)↓ B787 INDEX(%)↓ B787 TIME(s)↓
HGA 23.44 ± 0.22 3.75 ± 1.65 4.91 ± 2.08 23.44 ± 0.21 3.73 ± 1.55 2.50 ± 1.12
GA-normal 23.43 ± 0.23 3.66 ± 1.67 2.39 ± 0.76 23.46 ± 0.21 3.89 ± 1.58 1.29 ± 0.17
DMOPSO 23.32 ± 0.28 3.21 ± 2.30 3.28 ± 2.23 23.39 ± 0.26 3.79 ± 2.10 1.60 ± 0.81
PSO-normal 23.39 ± 0.28 3.79 ± 2.30 5.80 ± 4.09 23.39 ± 0.29 3.78 ± 2.37 1.19 ± 0.74
RCH 23.39 ± 0.26 3.40 ± 1.91 3.66 ± 0.03 23.42 ± 0.24 3.61 ± 1.76 0.72 ± 0.01

5. References

[1] Zhao, X., Dong, Y., & Zuo, L. (2023). A combinatorial optimization approach for air cargo palletization and aircraft loading. Mathematics, 11(13), 2798.
[2] Mesquita, A. C. P., & Sanches, C. A. A. (2024). Air cargo load and route planning in pickup and delivery operations. Expert Systems with Applications, 249, 123711.
[3] Yan, S., Lo, C.-T., & Shih, Y.-L. (2006). Cargo container loading plan model and solution method for international air express carriers. Transportation Planning and Technology, 29(6), 445–470.
[4] Yan, S., Shih, Y.-L., & Shiao, F.-Y. (2008). Optimal cargo container loading plans under stochastic demands for air express carriers. Transportation Research Part E: Logistics and Transportation Review, 44(3), 555–575.
[5] Limbourg, S., Schyns, M., & Laporte, G. (2012). Automatic aircraft cargo load planning. Journal of the Operational Research Society, 63(9), 1271–1283.
[6] Zhao, X., Yuan, Y., Dong, Y., & Zhao, R. (2021). Optimization approach to the aircraft weight and balance problem with the centre of gravity envelope constraints. IET Intelligent Transport Systems, 15(10), 1269–1286.
[7] Lurkin, V., & Schyns, M. (2015). The airline container loading problem with pickup and delivery. European Journal of Operational Research, 244(3), 955–965.
[8] Zhu, L., Wu, Y., Smith, H., & Luo, J. (2023). Optimisation of containerised air cargo forwarding plans considering a hub consolidation process with cargo loading. Journal of the Operational Research Society, 74(3), 777–796.
[9] Chenguang, Y., Liu, H., & Yuan, G. (2018). Load planning of transport aircraft based on hybrid genetic algorithm. In MATEC’18, Vol. 179 (pp. 01007). EDP Sciences.
[10] Dahmani, N., & Krichen, S. (2016). Solving a load balancing problem with a multi-objective particle swarm optimisation approach: application to aircraft cargo transportation. International Journal of Operational Research, 27(1-2), 62–84.
[11] Dahmani, N., & Krichen, S. (2013). On solving the bi-objective aircraft cargo loading problem. In ICMSAO’13 (pp. 1–6). IEEE.
[12] Gajda, M., Trivella, A., Mansini, R., & Pisinger, D. (2022). An optimization approach for a complex real-life container loading problem. Omega, 107, 102559.

6. Citation

Downloads last month
12