JoaoMigSilva commited on
Commit
0bed397
·
verified ·
1 Parent(s): c0c1581

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -26
README.md CHANGED
@@ -1,26 +1,18 @@
1
- ---
2
- dataset_info:
3
- features:
4
- - name: instruction
5
- dtype: string
6
- - name: input
7
- dtype: string
8
- - name: output
9
- dtype: string
10
- splits:
11
- - name: train
12
- num_bytes: 219748692
13
- num_examples: 90148
14
- - name: test
15
- num_bytes: 121634
16
- num_examples: 50
17
- download_size: 39406500
18
- dataset_size: 219870326
19
- configs:
20
- - config_name: default
21
- data_files:
22
- - split: train
23
- path: data/train-*
24
- - split: test
25
- path: data/test-*
26
- ---
 
1
+ # Dataset Card for Masked Floorplans (Alpaca-style)
2
+
3
+ ## Summary
4
+
5
+ This dataset contains structured JSON representations of residential floorplans where **one room has been removed (masked)**. Each example follows the **Alpaca-style instruction format** to fine-tune a language model to **predict the missing room's geometric attributes** based on a partial plan and a semantic conditioning signal.
6
+
7
+ ## Format
8
+
9
+ Each sample is a JSON object with the following fields:
10
+
11
+ - **instruction**: A prompt like `"Predict the geometry of the missing room."`
12
+ - **input**: A JSON-encoded partial floorplan with visible rooms and the type of the masked room.
13
+ - **output**: The ground-truth geometry of the missing room, including polygon coordinates, area, orientation, and adjacency.
14
+
15
+ ## Use Cases
16
+ - Instruction-tuning of LLMs for geometric reasoning
17
+ - Floorplan infill or layout prediction
18
+ - Generative design based on semantic layout context