metadata
language:
- zh
license: mit
pretty_name: RedNote Covert Advertisement Detection Dataset
tags:
- covert advertisement detection
- social-media
- image-text
- multimodal
- RedNote
- Xiaohongshu
datasets:
- Jingyi77/CHASM-Covert_Advertisement_on_RedNote
dataset_info:
- config_name: default
features:
- name: id
dtype: string
- name: title
dtype: string
- name: description
dtype: string
- name: date
dtype: string
- name: comments
sequence:
dtype: string
- name: images
sequence:
dtype: string
- name: image_count
dtype: int32
- name: label
dtype: int8
- name: split
dtype: string
configs:
- config_name: default
data_files:
- split: train
path: train/*.tar
- split: test
path: test/*.tar
- split: validation
path: val/*.tar
size_categories:
- 1K<n<10K
task_categories:
- text-classification
RedNote Covert Advertisement Detection Dataset
This dataset contains posts from the RedNote platform for covert advertisement detection tasks.
Dataset Overview
Split | Posts | Ad Posts | Non-Ad Posts | Total Images |
---|---|---|---|---|
Train | 3493 | 426 | 3067 | 18543 |
Validation | 499 | 57 | 442 | 2678 |
Test | 1000 | 130 | 870 | 5103 |
Total | 4992 | 613 | 4379 | 26324 |
Field Descriptions
Each parquet file contains the following fields:
id
: Unique identifier for each posttitle
: Post titledescription
: Post description contentdate
: Publication date (format: MM-DD)comments
: List of commentsimages
: List of images pathsimage_count
: Number of imageslabel
: Label (0=non-advertisement, 1=advertisement)split
: Data split (train/validation/test)
Dataset Features
- Multimodal Data: Each post contains both text (title, description, comments) and images
- Real-world Data: Collected from actual social media posts on the RedNote platform
- Multiple Images: Each post may contain multiple images (average of 5.27 images per post)
Data Format
The dataset is stored in WebDataset format, with each sample containing:
- One or more image files (.jpg format)
- A JSON metadata file with the following fields:
id
: Sample IDtitle
: Titledescription
: Descriptiondate
: Datecomments
: List of commentslabel
: Label (0: non-advertisement, 1: advertisement)
Loading the Dataset
from datasets import load_dataset
# Load training set
train_dataset = load_dataset("Jingyi77/CHASM-Covert_Advertisement_on_RedNote", split="train")
# Load validation set
val_dataset = load_dataset("Jingyi77/CHASM-Covert_Advertisement_on_RedNote", split="validation")
# Load test set
test_dataset = load_dataset("Jingyi77/CHASM-Covert_Advertisement_on_RedNote", split="test")
# Access a sample
example = train_dataset[0]
metadata = {
"id": example["id"],
"title": example["title"],
"description": example["description"],
"label": example["label"]
}
images = example["images"] # List of images
Citation
If you use this dataset in your research, please cite:
@dataset{CHASM,
author = {Jingyi Zheng, Tianyi Hu, Yule Liu, Zhen Sun, Zongmin Zhang, Wenhan Dong, Zifan Peng, Xinlei He},
title = {CHASM: Unveiling Covert Advertisements on Chinese Social Media},
year = {2025},
publisher = {Hugging Face},
journal = {Hugging Face Hub},
howpublished = {\url{https://huggingface.co/datasets/Jingyi77/CHASM-Covert_Advertisement_on_RedNote}}
}