Jingyi77's picture
Upload README.md with huggingface_hub
ae50c81 verified
|
raw
history blame
2.69 kB
metadata
language:
  - zh
license: mit
pretty_name: RedNote Covert Advertisement Detection Dataset
tags:
  - covert advertisement detection
  - social-media
  - image-text
  - multimodal
  - RedNote
  - Xiaohongshu
datasets:
  - Jingyi77/CHASM-Covert_Advertisement_on_RedNote

RedNote Covert Advertisement Detection Dataset

This dataset contains posts from the RedNote platform for covert advertisement detection tasks.

Dataset Overview

Split Posts Ad Posts Non-Ad Posts Total Images
Train 3493 426 3067 18543
Validation 499 57 442 2678
Test 1000 130 870 5103
Total 4992 613 4379 26324

Dataset Structure

The dataset is divided into three parts:

  • train.parquet: Training set
  • validation.parquet: Validation set
  • test.parquet: Test set

Field Descriptions

Each parquet file contains the following fields:

  • id: Unique identifier for each post
  • title: Post title
  • description: Post description content
  • date: Publication date (format: MM-DD)
  • comments: List of comments
  • images: List of base64-encoded images
  • image_count: Number of images
  • label: Label (0=non-advertisement, 1=advertisement)
  • split: Data split (train/validation/test)

Usage

import pandas as pd

# Load the training set
train_df = pd.read_parquet("train.parquet")

# View dataset statistics
print(f"Number of training samples: {len(train_df)}")
print(f"Label distribution: {train_df['label'].value_counts()}")

Image Processing

Images are stored as base64 encoded strings. You can decode them using:

import base64
import io
from PIL import Image

# Get the first image from the first sample
base64_str = train_df.iloc[0]['images'][0]

# Decode base64 and display the image
img_data = base64.b64decode(base64_str)
img = Image.open(io.BytesIO(img_data))
img.show()

Dataset Features

  • Multimodal Data: Each post contains both text (title, description, comments) and images
  • Real-world Data: Collected from actual social media posts on the RedNote platform
  • Multiple Images: Each post may contain multiple images (average of 5.27 images per post)

Citation

If you use this dataset in your research, please cite:

@dataset{CHASM,
  author = {Jingyi Zheng, Tianyi Hu, Yule Liu, Zhen Sun, Zongmin Zhang, Wenhan Dong, Zifan Peng},
  title = {CHASM: Unveiling Covert Advertisements on Chinese Social Media},
  year = {2025},
  publisher = {Hugging Face},
  journal = {Hugging Face Hub},
  howpublished = {\url{https://huggingface.co/datasets/Jingyi77/CHASM-Covert_Advertisement_on_RedNote}}
}