metadata
language:
- zh
license: mit
pretty_name: RedNote Covert Advertisement Detection Dataset
tags:
- covert advertisement detection
- social-media
- image-text
- multimodal
- RedNote
- Xiaohongshu
datasets:
- Jingyi77/CHASM-Covert_Advertisement_on_RedNote
RedNote Covert Advertisement Detection Dataset
This dataset contains posts from the RedNote platform for covert advertisement detection tasks.
Dataset Overview
Split | Posts | Ad Posts | Non-Ad Posts | Total Images |
---|---|---|---|---|
Train | 3493 | 426 | 3067 | 18543 |
Validation | 499 | 57 | 442 | 2678 |
Test | 1000 | 130 | 870 | 5103 |
Total | 4992 | 613 | 4379 | 26324 |
Dataset Structure
The dataset is divided into three parts:
train.parquet
: Training setvalidation.parquet
: Validation settest.parquet
: Test set
Field Descriptions
Each parquet file contains the following fields:
id
: Unique identifier for each posttitle
: Post titledescription
: Post description contentdate
: Publication date (format: MM-DD)comments
: List of commentsimages
: List of base64-encoded imagesimage_count
: Number of imageslabel
: Label (0=non-advertisement, 1=advertisement)split
: Data split (train/validation/test)
Usage
import pandas as pd
# Load the training set
train_df = pd.read_parquet("train.parquet")
# View dataset statistics
print(f"Number of training samples: {len(train_df)}")
print(f"Label distribution: {train_df['label'].value_counts()}")
Image Processing
Images are stored as base64 encoded strings. You can decode them using:
import base64
import io
from PIL import Image
# Get the first image from the first sample
base64_str = train_df.iloc[0]['images'][0]
# Decode base64 and display the image
img_data = base64.b64decode(base64_str)
img = Image.open(io.BytesIO(img_data))
img.show()
Dataset Features
- Multimodal Data: Each post contains both text (title, description, comments) and images
- Real-world Data: Collected from actual social media posts on the RedNote platform
- Multiple Images: Each post may contain multiple images (average of 5.27 images per post)
Citation
If you use this dataset in your research, please cite:
@dataset{CHASM,
author = {Jingyi Zheng, Tianyi Hu, Yule Liu, Zhen Sun, Zongmin Zhang, Wenhan Dong, Zifan Peng},
title = {CHASM: Unveiling Covert Advertisements on Chinese Social Media},
year = {2025},
publisher = {Hugging Face},
journal = {Hugging Face Hub},
howpublished = {\url{https://huggingface.co/datasets/Jingyi77/CHASM-Covert_Advertisement_on_RedNote}}
}