Add task category and link to paper
Browse filesAdds `task_categories` metadata field and links the paper.
README.md
CHANGED
@@ -45,16 +45,19 @@ configs:
|
|
45 |
path: data/visual_metaphor-*
|
46 |
- split: visual_basic
|
47 |
path: data/visual_basic-*
|
48 |
-
|
|
|
|
|
|
|
49 |
---
|
50 |
|
|
|
51 |
|
52 |
-
|
53 |
-
# InfoChartQA: Benchmark for Multimodal Question Answering on Infographic Charts
|
54 |
|
55 |
🤗[Dataset](https://huggingface.co/datasets/Jietson/InfoChartQA)
|
56 |
|
57 |
-
# Dataset
|
58 |
You can find our dataset on huggingface: 🤗[InfoChartQA Dataset](https://huggingface.co/datasets/Jietson/InfoChartQA)
|
59 |
|
60 |
# Usage
|
@@ -89,11 +92,14 @@ You should store and evaluate model's response as:
|
|
89 |
def build_question(query):#to build the question
|
90 |
question = ""
|
91 |
if "prompt" in query:
|
92 |
-
question = question + f"{query["prompt"]}
|
93 |
-
|
|
|
|
|
94 |
if "options" in query:
|
95 |
for _ in query["options"]:
|
96 |
-
question = question + f"{_} {query['options'][_]}
|
|
|
97 |
if "instructions" in query:
|
98 |
question = question + query["instructions"]
|
99 |
return question
|
@@ -116,6 +122,71 @@ from checker import evaluate
|
|
116 |
evaluate("model_reponse.json", "path_to_save_the_result")
|
117 |
```
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
|
|
120 |
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
path: data/visual_metaphor-*
|
46 |
- split: visual_basic
|
47 |
path: data/visual_basic-*
|
48 |
+
task_categories:
|
49 |
+
- table-question-answering
|
50 |
+
language:
|
51 |
+
- en
|
52 |
---
|
53 |
|
54 |
+
# InfoChartQA: Benchmark for Multimodal Question Answering on Infographic Charts
|
55 |
|
56 |
+
[Paper](https://arxiv.org/abs/2505.19028)
|
|
|
57 |
|
58 |
🤗[Dataset](https://huggingface.co/datasets/Jietson/InfoChartQA)
|
59 |
|
60 |
+
# Dataset
|
61 |
You can find our dataset on huggingface: 🤗[InfoChartQA Dataset](https://huggingface.co/datasets/Jietson/InfoChartQA)
|
62 |
|
63 |
# Usage
|
|
|
92 |
def build_question(query):#to build the question
|
93 |
question = ""
|
94 |
if "prompt" in query:
|
95 |
+
question = question + f"{query["prompt"]}
|
96 |
+
"
|
97 |
+
question = question + f"{query["question"]}
|
98 |
+
"
|
99 |
if "options" in query:
|
100 |
for _ in query["options"]:
|
101 |
+
question = question + f"{_} {query['options'][_]}
|
102 |
+
"
|
103 |
if "instructions" in query:
|
104 |
question = question + query["instructions"]
|
105 |
return question
|
|
|
122 |
evaluate("model_reponse.json", "path_to_save_the_result")
|
123 |
```
|
124 |
|
125 |
+
Or simply use after your answer is generated:
|
126 |
+
|
127 |
+
```python
|
128 |
+
python -c "import checker; checker.evaluate(sys.argv[1], sys.argv[2])" PATH_TO_INPUT_FILE PATH_TO_INPUT_FILE
|
129 |
+
```
|
130 |
+
|
131 |
+
# LeaderBoard
|
132 |
+
|
133 |
+
| Model | Infographic | Plain | Δ | Basic | Metaphor | Avg. |
|
134 |
+
|------------------------------|-------------|---------|-------|--------|----------|--------|
|
135 |
+
| **Baselines** | | | | | | |
|
136 |
+
| Human | 95.35\* | 96.28\* | 0.93 | 93.17\*| 88.69 | 90.93 |
|
137 |
+
| **Proprietary Models** | | | | | | |
|
138 |
+
| OpenAI O4-mini | 79.41 | 94.61 | 15.20 | 92.12 | 54.76 | 73.44 | | GPT-4.1 | 70.01 | 83.36 | 13.35 | 88.47 | 50.87 | 69.67 |
|
139 |
+
| GPT-4o | 66.09 | 81.77 | 15.68 | 81.77 | 47.19 | 64.48 |
|
140 |
+
| Claude 3.5 Sonnet | 65.67 | 83.11 | 17.44 | 90.36 | 55.33 | 72.85 |
|
141 |
+
| Gemini 2.5 Pro Preview | 83.31 | 93.88 | 10.07 | 90.01 | 60.42 | 75.22 |
|
142 |
+
| Gemini 2.5 Flash Preview | 71.91 | 84.66 | 12.75 | 82.02 | 56.28 | 69.15 |
|
143 |
+
| **Open-Source Models** | | | | | | |
|
144 |
+
| Qwen2.5-VL-72B | 62.06 | 78.47 | 16.41 | 77.34 | 54.64 | 65.99 |
|
145 |
+
| Llama-4 Scout | 67.41 | 84.84 | 17.43 | 81.76 | 51.89 | 66.83 |
|
146 |
+
| Intern-VL3-78B | 66.38 | 82.18 | 15.80 | 79.46 | 51.52 | 65.49 |
|
147 |
+
| Intern-VL3-8B | 56.82 | 73.50 | 16.68 | 74.26 | 49.57 | 61.92 |
|
148 |
+
| Janus Pro | 29.61 | 45.29 | 15.68 | 41.18 | 42.21 | 41.69 |
|
149 |
+
| DeepSeek VL2 | 39.81 | 47.01 | 7.20 | 58.72 | 44.54 | 51.63 |
|
150 |
+
| Phi-4 | 46.20 | 66.97 | 20.77 | 61.87 | 38.31 | 50.09 |
|
151 |
+
| LLaVA OneVision Chat 78B | 47.78 | 63.66 | 15.88 | 62.11 | 50.22 | 56.17 |
|
152 |
+
| LLaVA OneVision Chat 7B | 38.41 | 54.43 | 16.02 | 61.03 | 45.67 | 53.35 |
|
153 |
+
| Pixtral | 44.70 | 60.88 | 16.11 | 64.23 | 50.87 | 57.55 |
|
154 |
+
| Ovis1.6-Gemma2-9B | 50.56 | 64.52 | 13.98 | 60.96 | 34.42 | 47.69 |
|
155 |
+
| ChartGemma | 19.99 | 33.81 | 13.82 | 30.52 | 33.77 | 32.15 |
|
156 |
+
| TinyChart | 26.34 | 44.73 | 18.39 | 14.72 | 9.03 | 11.88 |
|
157 |
+
| ChartInstruct-LLama2 | 20.55 | 27.91 | 7.36 | 33.86 | 33.12 | 33.49 |
|
158 |
+
|
159 |
+
# License
|
160 |
+
|
161 |
+
Our original data contributions (all data except the charts) are distributed under the [CC BY-SA 4.0](https://github.com/princeton-nlp/CharXiv/blob/main/data/LICENSE) license. Our code is licensed under [Apache 2.0](https://github.com/princeton-nlp/CharXiv/blob/main/LICENSE) license. The copyright of the charts belong to the original authors.
|
162 |
|
163 |
+
## Paper Links
|
164 |
|
165 |
+
### 📌 Main Paper (This Repository)
|
166 |
+
|
167 |
+
- **[InfoChartQA: A Benchmark for Multimodal Question Answering on Infographic Charts](https://arxiv.org/abs/2505.19028)**
|
168 |
+
_Minzhi Lin, Tianchi Xie, Mengchen Liu, Yilin Ye, Changjian Chen, Shixia Liu_
|
169 |
+
|
170 |
+
### Relevant Papers
|
171 |
+
|
172 |
+
- **[OrionBench: A Benchmark for Chart and Human-Recognizable Object Detection in Infographics](https://arxiv.org/abs/2505.17473)** Jiangning Zhu, Yuxing Zhou, Zheng Wang, Juntao Yao, Yima Gu, Yuhui Yuan, Shixia Liu_
|
173 |
+
|
174 |
+
- **[ChartGalaxy: A Dataset for Infographic Chart Understanding and Generation](https://arxiv.org/abs/2505.18668)**
|
175 |
+
_Zhen Li, Duan Li, Yukai Guo, Xinyuan Guo, Bowen Li, Lanxi Xiao, Shenyu Qiao, Jiashu Chen, Zijian Wu, Hui Zhang, Xinhuan Shu, Shixia Liu_
|
176 |
+
|
177 |
+
|
178 |
+
## Cite
|
179 |
+
|
180 |
+
If you use our work and are inspired by our work, please consider cite us (available soon):
|
181 |
+
|
182 |
+
```
|
183 |
+
@misc{lin2025infochartqabenchmarkmultimodalquestion,
|
184 |
+
title={InfoChartQA: A Benchmark for Multimodal Question Answering on Infographic Charts},
|
185 |
+
author={Minzhi Lin and Tianchi Xie and Mengchen Liu and Yilin Ye and Changjian Chen and Shixia Liu},
|
186 |
+
year={2025},
|
187 |
+
eprint={2505.19028},
|
188 |
+
archivePrefix={arXiv},
|
189 |
+
primaryClass={cs.CV},
|
190 |
+
url={https://arxiv.org/abs/2505.19028},
|
191 |
+
}
|
192 |
+
```
|