metadata
dataset_info:
features:
- name: question_id
dtype: string
- name: qtype
dtype: string
- name: figure_path
dtype: image
- name: visual_figure_path
list: image
- name: question
dtype: string
- name: answer
dtype: string
- name: instructions
dtype: string
- name: prompt
dtype: string
- name: options
list: string
splits:
- name: info
num_bytes: 9389294399
num_examples: 55091
- name: plain
num_bytes: 15950918129
num_examples: 55091
- name: visual_metaphor
num_bytes: 144053150
num_examples: 450
- name: visual_basic
num_bytes: 1254942699.466
num_examples: 7297
download_size: 20376840742
dataset_size: 26739208377.466
configs:
- config_name: default
data_files:
- split: info
path: data/info-*
- split: plain
path: data/plain-*
- split: visual_metaphor
path: data/visual_metaphor-*
- split: visual_basic
path: data/visual_basic-*
InfoChartQA: Benchmark for Multimodal Question Answering on Infographic Charts
Dataset
You can find our dataset on huggingface: 🤗InfoChartQA Dataset
Usage
Each question entry is arranged as:
--question_id: int
--qtype: int
--figure_path: image
--visual_figure_path: list of image
--question: str
--answer: str
--instructions: str
--prompt: str
--options: list of dict ("A/B/C/D":"option_content")
Each question is built as:
image_input: figure_path, visual_figure_path_1...visual_figure_path_n (if any)
text_iunput: prompt (if any) + question + options (if any) + instructions (if any)
Evaluate
You should store and evaluate model's response as:
# Example code for evaluate
def build_question(query):#to build the question
question = ""
if "prompt" in query:
question = question + f"{query["prompt"]}\n"
question = question + f"{query["question"]}\n"
if "options" in query:
for _ in query["options"]:
question = question + f"{_} {query['options'][_]}\n"
if "instructions" in query:
question = question + query["instructions"]
return question
with open("visual_basic.json","r",encode="utf-8") as f:
queries = json.load(f)
for idx in range(queries):
question = build_question(queries[idx])
figure_path = [queries[idx]['figure_path']]
visual_figure_path = queries[idx]['visual_figure_path']
response = model.generate(question, [figure_path, visual_figure_path])# generate model's response based on
queries[idx]["response"] = reponse
with open("model_reponse.json","w",encode="utf-8") as f:
json.dump(queries, f)
from checker import evaluate
evaluate("model_reponse.json", "path_to_save_the_result")