Datasets:

Modalities:
Text
Formats:
text
Libraries:
Datasets
License:
FACETS_Datasets / WordNet ImageNet /generate_wordnet_oodness.py
MalumaDev's picture
init
2e11411
from nltk.corpus import LazyCorpusLoader
from nltk.corpus.reader import WordNetCorpusReader, CorpusReader
from nltk.corpus import wordnet as wn30, wordnet_ic
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import minmax_scale
wn31 = LazyCorpusLoader(
"wordnet31",
WordNetCorpusReader,
LazyCorpusLoader("omw", CorpusReader, r".*/wn-data-.*\.tab", encoding="utf8"),
)
metrics = ['Path', 'Leacock-Chodorow', 'Wu-Palmer', 'Resnik', 'Jiang-Conrath', 'Lin']
def write_similarities():
brown_ic = wordnet_ic.ic('ic-brown.dat')
places_classes = []
places_synsets = []
with open('places365_labels.txt', "r") as f:
for line in f:
fields = line.split()
_class = {
'full_name': fields[0],
'cleaned_name': fields[0].split('/')[2].replace("_", " "),
'index': int(fields[1]),
'synsets': [wn31.synset(f) for f in fields[2:]]
}
# print(fields[0], [(s, s.definition()) for s in synsets])
places_classes.append(_class)
places_synsets += _class['synsets']
scores = []
with open("imagenet_places_similarities.txt", "w") as o:
o.write("in_synset;in_label;Path;Path_synset;Leacock-Chodorow;\
LC_synset;Wu-Palmer;WP_synset;Resnik;Resnik_synset;Jiang-Conrath;JC_synset;Lin;Lin_synset\n")
with open('LOC_synset_mapping.txt', "r") as f:
for line in f:
fields = line.split()
synset_id = fields[0]
pos = synset_id[0]
offset = int(synset_id[1:])
synset = wn30.synset_from_pos_and_offset(pos, offset)
similarities = {
'Path': [s.path_similarity(synset) for s in places_synsets],
'Leacock-Chodorow': [s.lch_similarity(synset) for s in places_synsets],
'Wu-Palmer': [s.wup_similarity(synset) for s in places_synsets],
'Resnik': [s.res_similarity(synset, brown_ic) for s in places_synsets],
'Jiang-Conrath': [s.jcn_similarity(synset, brown_ic) for s in places_synsets],
'Lin': [s.lin_similarity(synset, brown_ic) for s in places_synsets],
}
most_similar = {}
for metric in similarities:
val = max(similarities[metric])
idx = similarities[metric].index(val)
most_similar[metric] = {
'value': val,
'synset': places_synsets[idx]
}
scores.append((fields[1:], most_similar))
sims = ";".join([";".join([str(most_similar[metric]['value']),
most_similar[metric]['synset'].name()]) for metric in metrics])
label = " ".join(fields[1:])
output_line = ";".join([fields[0], label, sims])
o.write(output_line + "\n")
def read_similarities():
res = []
with open('imagenet_places_similarities.txt', "r") as f:
for line in f.readlines()[1:]:
fields = line.split(";")
obj = {}
cnt = 2
for m in metrics:
obj[m] = {
'value': float(fields[cnt]),
'synset': wn31.synset(fields[cnt + 1])
}
cnt += 2
res.append((fields[1], obj))
return res
def draw_histogram(data, labels, name):
fig, axs = plt.subplots(len(labels), 1, figsize=(6.4, 10))
for i, l in enumerate(labels):
axs[i].set_title(l)
axs[i].hist(data[:, i], bins=30)
fig.show()
fig.savefig(name)
def analysis(data):
similarity_arr = np.array([[c[1][m]['value'] for m in metrics] for c in data]) # imagenet_classes x metrics
draw_histogram(similarity_arr, metrics, "histogram")
scaled_data = minmax_scale(similarity_arr, axis=0, feature_range=(0, 1))
columns = metrics + ["Average", "Average (no ic)"]
avg = np.average(scaled_data, axis=1).reshape(-1, 1)
avg_no_ic = np.average(scaled_data[:, 0:3], axis=1).reshape(-1, 1)
data_and_average = np.concatenate((scaled_data, avg, avg_no_ic), axis=1)
draw_histogram(data_and_average, columns, "scaled_histogram")
fig, ax = plt.subplots(figsize=(20, 180))
im = ax.pcolormesh(data_and_average)
fig.colorbar(im, ax=ax)
ax.set_xticks(0.5 + np.arange(len(columns)))
ax.set_yticks(0.5 + np.arange(len(data)))
ax.set_xticklabels(labels=columns, rotation=90)
ax.set_yticklabels(labels=[c[0].split(",")[0] for c in data])
for y in range(len(data)):
for x in range(len(metrics)):
ax.text(x+0.1, y+0.2, data[y][1][metrics[x]]['synset'].name(), color="grey")
ax.text(len(columns) - 1 + 0.1, y + 0.2, "%.2f" % data_and_average[y, -1], color="grey")
fig.show()
fig.savefig("heatmap")
return data_and_average
def write_output(similarities):
with open("in_wordnet_oodness.txt", "w") as f:
for s in similarities:
f.write("%.2f\n" % (1 - s))
def main():
scores = read_similarities()
res = analysis(scores)
write_output(res[:, -1])
main()