Datasets:

Modalities:
Text
Formats:
text
Libraries:
Datasets
License:
File size: 5,350 Bytes
2e11411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from nltk.corpus import LazyCorpusLoader
from nltk.corpus.reader import WordNetCorpusReader, CorpusReader
from nltk.corpus import wordnet as wn30, wordnet_ic
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import minmax_scale

wn31 = LazyCorpusLoader(
    "wordnet31",
    WordNetCorpusReader,
    LazyCorpusLoader("omw", CorpusReader, r".*/wn-data-.*\.tab", encoding="utf8"),
)

metrics = ['Path', 'Leacock-Chodorow', 'Wu-Palmer', 'Resnik', 'Jiang-Conrath', 'Lin']


def write_similarities():

    brown_ic = wordnet_ic.ic('ic-brown.dat')

    places_classes = []
    places_synsets = []

    with open('places365_labels.txt', "r") as f:

        for line in f:

            fields = line.split()
            _class = {
                'full_name': fields[0],
                'cleaned_name': fields[0].split('/')[2].replace("_", " "),
                'index': int(fields[1]),
                'synsets': [wn31.synset(f) for f in fields[2:]]
            }
            # print(fields[0], [(s, s.definition()) for s in synsets])
            places_classes.append(_class)
            places_synsets += _class['synsets']

    scores = []

    with open("imagenet_places_similarities.txt", "w") as o:
        o.write("in_synset;in_label;Path;Path_synset;Leacock-Chodorow;\
    LC_synset;Wu-Palmer;WP_synset;Resnik;Resnik_synset;Jiang-Conrath;JC_synset;Lin;Lin_synset\n")
        with open('LOC_synset_mapping.txt', "r") as f:

            for line in f:

                fields = line.split()
                synset_id = fields[0]

                pos = synset_id[0]
                offset = int(synset_id[1:])
                synset = wn30.synset_from_pos_and_offset(pos, offset)

                similarities = {
                    'Path':             [s.path_similarity(synset) for s in places_synsets],
                    'Leacock-Chodorow': [s.lch_similarity(synset) for s in places_synsets],
                    'Wu-Palmer':        [s.wup_similarity(synset) for s in places_synsets],
                    'Resnik':           [s.res_similarity(synset, brown_ic) for s in places_synsets],
                    'Jiang-Conrath':    [s.jcn_similarity(synset, brown_ic) for s in places_synsets],
                    'Lin':              [s.lin_similarity(synset, brown_ic) for s in places_synsets],
                }

                most_similar = {}
                for metric in similarities:
                    val = max(similarities[metric])
                    idx = similarities[metric].index(val)

                    most_similar[metric] = {
                        'value': val,
                        'synset': places_synsets[idx]
                    }

                scores.append((fields[1:], most_similar))

                sims = ";".join([";".join([str(most_similar[metric]['value']),
                                           most_similar[metric]['synset'].name()]) for metric in metrics])
                label = " ".join(fields[1:])
                output_line = ";".join([fields[0], label, sims])
                o.write(output_line + "\n")


def read_similarities():

    res = []

    with open('imagenet_places_similarities.txt', "r") as f:
        for line in f.readlines()[1:]:

            fields = line.split(";")
            obj = {}
            cnt = 2
            for m in metrics:
                obj[m] = {
                    'value':  float(fields[cnt]),
                    'synset': wn31.synset(fields[cnt + 1])
                }
                cnt += 2

            res.append((fields[1], obj))

    return res


def draw_histogram(data, labels, name):
    fig, axs = plt.subplots(len(labels), 1, figsize=(6.4, 10))

    for i, l in enumerate(labels):
        axs[i].set_title(l)
        axs[i].hist(data[:, i], bins=30)

    fig.show()
    fig.savefig(name)


def analysis(data):
    similarity_arr = np.array([[c[1][m]['value'] for m in metrics] for c in data])  # imagenet_classes x metrics

    draw_histogram(similarity_arr, metrics, "histogram")

    scaled_data = minmax_scale(similarity_arr, axis=0, feature_range=(0, 1))
    columns = metrics + ["Average", "Average (no ic)"]
    avg = np.average(scaled_data, axis=1).reshape(-1, 1)
    avg_no_ic = np.average(scaled_data[:, 0:3], axis=1).reshape(-1, 1)
    data_and_average = np.concatenate((scaled_data, avg, avg_no_ic), axis=1)

    draw_histogram(data_and_average, columns, "scaled_histogram")

    fig, ax = plt.subplots(figsize=(20, 180))
    im = ax.pcolormesh(data_and_average)
    fig.colorbar(im, ax=ax)
    ax.set_xticks(0.5 + np.arange(len(columns)))
    ax.set_yticks(0.5 + np.arange(len(data)))
    ax.set_xticklabels(labels=columns, rotation=90)
    ax.set_yticklabels(labels=[c[0].split(",")[0] for c in data])

    for y in range(len(data)):
        for x in range(len(metrics)):
            ax.text(x+0.1, y+0.2, data[y][1][metrics[x]]['synset'].name(), color="grey")

        ax.text(len(columns) - 1 + 0.1, y + 0.2, "%.2f" % data_and_average[y, -1], color="grey")
    fig.show()
    fig.savefig("heatmap")

    return data_and_average


def write_output(similarities):

    with open("in_wordnet_oodness.txt", "w") as f:
        for s in similarities:
            f.write("%.2f\n" % (1 - s))


def main():

    scores = read_similarities()
    res = analysis(scores)
    write_output(res[:, -1])


main()