|
|
|
import argparse |
|
import random |
|
import os |
|
|
|
|
|
parser = argparse.ArgumentParser(description="Generate test and val splits for the Facets-OOD-detection dataset") |
|
parser.add_argument("-t", "--threshold", default="1", help="Can be 1 or 2: images (from the SUN397 dataset) that have OODness lower or equal to the threshold are considered in-distribution") |
|
parser.add_argument("-v", "--val_perc", default="0.5", help="Percentage (as ratio, between 0 and 1) of images to be used as validation set. Remaining images are used as test set") |
|
parser.add_argument("-s", "--seed", default="1234", help="PRNG seed used to generate random numbers") |
|
args = parser.parse_args() |
|
|
|
datasets = ['places_val', 'sun', 'in_val', 'in_train'] |
|
ID = 0 |
|
OOD = 1 |
|
threshold = int(args.threshold) |
|
val_perc = float(args.val_perc) |
|
random.seed(int(args.seed)) |
|
|
|
counters = [0, 0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with open("facets_ood_val_t" + args.threshold + ".txt", "w") as f_val: |
|
with open("facets_ood_test_t" + args.threshold + ".txt", "w") as f_test: |
|
|
|
|
|
|
|
with open("../places365-standard-small/places365_val.txt", "r") as places_val_list: |
|
|
|
places_val = {} |
|
|
|
for line in places_val_list: |
|
|
|
fields = line.split() |
|
|
|
if not fields[1] in places_val: |
|
places_val[fields[1]] = [] |
|
|
|
places_val[fields[1]].append(fields[0]) |
|
|
|
|
|
for class_index, images in places_val.items(): |
|
|
|
output_line = str(ID) + " places_val " + class_index + " " |
|
|
|
class_count = len(images) |
|
val_num = round(class_count * val_perc) |
|
|
|
|
|
|
|
flags = random.sample([True for _ in range(val_num)] + [False for _ in range(class_count - val_num)], k=class_count) |
|
|
|
for i in range(class_count): |
|
|
|
if flags[i]: |
|
f_val.write(output_line + images[i] + "\n") |
|
else: |
|
f_test.write(output_line + images[i] + "\n") |
|
|
|
counters[ID] += 1 |
|
|
|
|
|
|
|
|
|
|
|
for oodness in range(4): |
|
|
|
sun = {} |
|
|
|
with open("sun_oodness_" + str(oodness) + ".txt", "r") as f: |
|
|
|
for line in f: |
|
|
|
fields = line.split() |
|
|
|
if not fields[0] in sun: |
|
sun[fields[0]] = [] |
|
|
|
sun[fields[0]].append(fields[1]) |
|
|
|
for class_index, images in sun.items(): |
|
|
|
if oodness <= threshold: |
|
split_oodness = ID |
|
else: |
|
split_oodness = OOD |
|
|
|
output_line = str(split_oodness) + " sun " + str(class_index) + " " |
|
|
|
class_count = len(images) |
|
val_num = round(class_count * val_perc) |
|
|
|
flags = random.sample([True for _ in range(val_num)] + [False for _ in range(class_count-val_num)], k=class_count) |
|
|
|
for i in range(class_count): |
|
|
|
if flags[i]: |
|
f_val.write(output_line + images[i] + "\n") |
|
else: |
|
f_test.write(output_line + images[i] + "\n") |
|
|
|
counters[split_oodness] += 1 |
|
|
|
|
|
|
|
|
|
with open("imagenet_val_oodness.txt", "r") as f: |
|
|
|
imagenet_val = {} |
|
|
|
for line in f: |
|
|
|
fields = line.split() |
|
|
|
if not fields[0] in imagenet_val: |
|
imagenet_val[fields[0]] = [] |
|
|
|
imagenet_val[fields[0]].append((fields[1], ID if fields[2]=="0" else OOD)) |
|
|
|
for class_index, images in imagenet_val.items(): |
|
|
|
class_count = len(images) |
|
val_num = round(class_count * val_perc) |
|
|
|
flags = random.sample([True for _ in range(val_num)] + [False for _ in range(class_count - val_num)], k=class_count) |
|
|
|
for i in range(class_count): |
|
|
|
if flags[i]: |
|
f_val.write(str(images[i][1]) + " in_val " + str(class_index) + " " + images[i][0] + "\n") |
|
else: |
|
f_test.write(str(images[i][1]) + " in_val " + str(class_index) + " " + images[i][0] + "\n") |
|
|
|
counters[images[i][1]] += 1 |
|
|
|
|
|
|
|
|
|
|
|
missing_ood_samples = counters[ID] - counters[OOD] |
|
|
|
if missing_ood_samples > 0: |
|
|
|
imagenet_synsets = [] |
|
imagenet_train_dir = "../imagenet2012/ILSVRC/Data/CLS-LOC/train/" |
|
imagenet = {} |
|
|
|
with open("../imagenet2012/LOC_synset_mapping.txt", "r") as f: |
|
|
|
for line in f: |
|
imagenet_synsets.append(line.split()[0]) |
|
|
|
with open("ImageNet_OOD_classes.txt", "r") as f: |
|
|
|
for line in f: |
|
|
|
class_index = int(line.split(":")[0]) |
|
synset = imagenet_synsets[class_index] |
|
imagenet[str(class_index)] = synset |
|
|
|
ood_classes = len(imagenet.keys()) |
|
samples_per_class = missing_ood_samples // ood_classes |
|
remainder = missing_ood_samples % ood_classes |
|
|
|
for class_index, synset in imagenet.items(): |
|
|
|
class_images = os.listdir(imagenet_train_dir + synset) |
|
sample = random.sample(class_images, k=samples_per_class if remainder == 0 else samples_per_class + 1) |
|
|
|
if remainder > 0: |
|
remainder -= 1 |
|
|
|
|
|
class_tot = len(sample) |
|
val_count = round(class_tot * val_perc) |
|
|
|
flags = random.sample([True for _ in range(val_count)] + [False for _ in range(class_tot - val_count)], k=class_tot) |
|
|
|
output_line = str(OOD) + " in_train " + class_index + " " + synset + "/" |
|
|
|
for i in range(class_tot): |
|
|
|
if flags[i]: |
|
f_val.write(output_line + sample[i] + "\n") |
|
else: |
|
f_test.write(output_line + sample[i] + "\n") |
|
|
|
counters[OOD] += 1 |
|
|
|
|
|
|
|
print("Tot id samples:", counters[ID]) |
|
print("Tot ood samples:", counters[OOD]) |
|
|
|
|