Datasets:

Modalities:
Text
Formats:
text
Libraries:
Datasets
License:
File size: 6,755 Bytes
2e11411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

import argparse
import random
import os

# Read arguments
parser = argparse.ArgumentParser(description="Generate test and val splits for the Facets-OOD-detection dataset")
parser.add_argument("-t", "--threshold", default="1", help="Can be 1 or 2: images (from the SUN397 dataset) that have OODness lower or equal to the threshold are considered in-distribution")
parser.add_argument("-v", "--val_perc", default="0.5", help="Percentage (as ratio, between 0 and 1) of images to be used as validation set. Remaining images are used as test set")
parser.add_argument("-s", "--seed", default="1234", help="PRNG seed used to generate random numbers")
args = parser.parse_args()

datasets = ['places_val', 'sun', 'in_val', 'in_train']
ID  = 0
OOD = 1
threshold = int(args.threshold)
val_perc = float(args.val_perc)
random.seed(int(args.seed))

counters = [0, 0]

# Stratified sampling to obtain test and val splits of the Facets OOD-detection dataset
# Output format: oodness (0/1), dataset_index (0-3), class_index (dataset dependent), image_path (relative to the dataset folder)

# Code is largely improvable (remove duplicated code and reduce complexity)

# Create output files
with open("facets_ood_val_t" + args.threshold + ".txt", "w") as f_val:
    with open("facets_ood_test_t" + args.threshold + ".txt", "w") as f_test:

        # Places365-Standard validation set

        with open("../places365-standard-small/places365_val.txt", "r") as places_val_list:

            places_val = {}

            for line in places_val_list:

                fields = line.split()

                if not fields[1] in places_val:
                    places_val[fields[1]] = []

                places_val[fields[1]].append(fields[0])


        for class_index, images in places_val.items():

            output_line = str(ID) + " places_val " + class_index + " "
            
            class_count = len(images)
            val_num     = round(class_count * val_perc)

            # flags = random.sample([True, False], counts=[val_num, class_count-val_num], k=class_count)  # Python 3.9+ 
        
            flags = random.sample([True for _ in range(val_num)] + [False for _ in range(class_count - val_num)], k=class_count)

            for i in range(class_count):

                if flags[i]:
                    f_val.write(output_line + images[i] + "\n")
                else:
                    f_test.write(output_line + images[i] + "\n")

                counters[ID] += 1



        # sun

        for oodness in range(4):
            
            sun = {}

            with open("sun_oodness_" + str(oodness) + ".txt", "r") as f:

                for line in f:

                    fields = line.split()

                    if not fields[0] in sun:
                        sun[fields[0]] = []

                    sun[fields[0]].append(fields[1])

                for class_index, images in sun.items():

                    if oodness <= threshold:
                        split_oodness = ID
                    else:
                        split_oodness = OOD

                    output_line = str(split_oodness) + " sun " + str(class_index) + " "

                    class_count = len(images)
                    val_num     = round(class_count * val_perc)

                    flags = random.sample([True for _ in range(val_num)] + [False for _ in range(class_count-val_num)], k=class_count)

                    for i in range(class_count):

                        if flags[i]:
                            f_val.write(output_line + images[i] + "\n")
                        else:
                            f_test.write(output_line + images[i] + "\n")

                        counters[split_oodness] += 1

        
        # ImageNet val

        with open("imagenet_val_oodness.txt", "r") as f:

            imagenet_val = {}

            for line in f:

                fields = line.split()

                if not fields[0] in imagenet_val:
                    imagenet_val[fields[0]] = []

                imagenet_val[fields[0]].append((fields[1], ID if fields[2]=="0" else OOD))

        for class_index, images in imagenet_val.items():

            class_count = len(images)
            val_num     = round(class_count * val_perc)

            flags = random.sample([True for _ in range(val_num)] + [False for _ in range(class_count - val_num)], k=class_count)

            for i in range(class_count):

                if flags[i]:
                    f_val.write(str(images[i][1]) + " in_val " + str(class_index) + " " + images[i][0] + "\n")
                else:
                    f_test.write(str(images[i][1]) + " in_val " + str(class_index) + " " + images[i][0] + "\n")

                counters[images[i][1]] += 1

        
        # ImageNet train
        # Improvable code

        missing_ood_samples = counters[ID] - counters[OOD]

        if missing_ood_samples > 0:

            imagenet_synsets   = []
            imagenet_train_dir = "../imagenet2012/ILSVRC/Data/CLS-LOC/train/" 
            imagenet = {}

            with open("../imagenet2012/LOC_synset_mapping.txt", "r") as f:

                for line in f:
                    imagenet_synsets.append(line.split()[0])

            with open("ImageNet_OOD_classes.txt", "r") as f:

                for line in f:

                    class_index = int(line.split(":")[0])
                    synset = imagenet_synsets[class_index]
                    imagenet[str(class_index)] = synset

            ood_classes = len(imagenet.keys())
            samples_per_class = missing_ood_samples // ood_classes
            remainder         = missing_ood_samples % ood_classes

            for class_index, synset in imagenet.items():

                class_images = os.listdir(imagenet_train_dir + synset)
                sample = random.sample(class_images, k=samples_per_class if remainder == 0 else samples_per_class + 1)

                if remainder > 0:
                    remainder -= 1
                
                # Split between test and val
                class_tot = len(sample)
                val_count = round(class_tot * val_perc)

                flags = random.sample([True for _ in range(val_count)] + [False for _ in range(class_tot - val_count)], k=class_tot)

                output_line = str(OOD) + " in_train " + class_index + " " + synset + "/"

                for i in range(class_tot):
                    
                    if flags[i]:
                        f_val.write(output_line + sample[i] + "\n")
                    else:
                        f_test.write(output_line + sample[i] + "\n")

                    counters[OOD] += 1



print("Tot id samples:", counters[ID])
print("Tot ood samples:", counters[OOD])