of3d_sc20 / README.md
qimaqi's picture
Add files using upload-large-folder tool
5e7b87a verified
### Prepare ScanNet Data for Indoor Detection or Segmentation Task
We follow the procedure in [votenet](https://github.com/facebookresearch/votenet/).
1. Download ScanNet v2 data [HERE](https://github.com/ScanNet/ScanNet). Link or move the 'scans' folder to this level of directory. If you are performing segmentation tasks and want to upload the results to its official [benchmark](http://kaldir.vc.in.tum.de/scannet_benchmark/), please also link or move the 'scans_test' folder to this directory.
2. In this directory, extract point clouds and annotations by running `python batch_load_scannet_data.py`. Add the `--scannet200` flag if you want to get markup for the ScanNet200 dataset.
3. Enter the project root directory, generate training data by running
```bash
python tools/create_data.py scannet --root-path ./data/scannet --out-dir ./data/scannet --extra-tag scannet
```
        or for ScanNet200:
```bash
mkdir data/scannet200
python tools/create_data.py scannet200 --root-path ./data/scannet --out-dir ./data/scannet200 --extra-tag scannet200
```
The overall process for ScanNet could be achieved through the following script
```bash
python batch_load_scannet_data.py
cd ../..
python tools/create_data.py scannet --root-path ./data/scannet --out-dir ./data/scannet --extra-tag scannet
```
Or for ScanNet200:
```bash
python batch_load_scannet_data.py --scannet200
cd ../..
mkdir data/scannet200
python tools/create_data.py scannet200 --root-path ./data/scannet --out-dir ./data/scannet200 --extra-tag scannet200
```
The directory structure after pre-processing should be as below
```
scannet
β”œβ”€β”€ meta_data
β”œβ”€β”€ batch_load_scannet_data.py
β”œβ”€β”€ load_scannet_data.py
β”œβ”€β”€ scannet_utils.py
β”œβ”€β”€ README.md
β”œβ”€β”€ scans
β”œβ”€β”€ scans_test
β”œβ”€β”€ scannet_instance_data
β”œβ”€β”€ points
β”‚ β”œβ”€β”€ xxxxx.bin
β”œβ”€β”€ instance_mask
β”‚ β”œβ”€β”€ xxxxx.bin
β”œβ”€β”€ semantic_mask
β”‚ β”œβ”€β”€ xxxxx.bin
β”œβ”€β”€ super_points
β”‚ β”œβ”€β”€ xxxxx.bin
β”œβ”€β”€ seg_info
β”‚ β”œβ”€β”€ train_label_weight.npy
β”‚ β”œβ”€β”€ train_resampled_scene_idxs.npy
β”‚ β”œβ”€β”€ val_label_weight.npy
β”‚ β”œβ”€β”€ val_resampled_scene_idxs.npy
β”œβ”€β”€ scannet_oneformer3d_infos_train.pkl
β”œβ”€β”€ scannet_oneformer3d_infos_val.pkl
β”œβ”€β”€ scannet_oneformer3d_infos_test.pkl
```