Dataset Viewer
Auto-converted to Parquet
id
int64
398
463
name
stringclasses
4 values
deadline
timestamp[ns, tz=UTC]date
2025-09-02 00:00:00
2025-09-02 00:00:00
lang
stringclasses
1 value
description
stringclasses
4 values
reference
stringclasses
4 values
gpu_types
sequencelengths
1
1
398
amd-identity
2025-09-02T00:00:00
py
This task is purely for testing the submission system. There will be *no* points. > Input: (input_tensor, output_tensor) > - input_tensor: Input data > - output_tensor: Pre-allocated empty tensor of the same shape as `input_tensor` > Output: Should return `output_tensor` after it has been filled with the values from `input_tensor`.`
import torch from task import input_t, output_t from utils import make_match_reference def generate_input(size: int, seed: int) -> input_t: gen = torch.Generator(device='cuda') gen.manual_seed(seed) data = torch.empty(size, device='cuda', dtype=torch.float16) data.uniform_(0, 1, generator=gen) return data, torch.empty_like(data) def ref_kernel(data: input_t) -> output_t: input, output = data output[...] = input return output check_implementation = make_match_reference(ref_kernel)
[ "MI300" ]
399
amd-fp8-mm
2025-09-02T00:00:00
py
You will implement a custom fp8-blockwise matmul kernel optimized for MI300. You will be given single-precision scaling factors for your matrices. The shapes of all outer and inner dimensions of tensors are from DeepSeek-R1. To be explicit, you will be given a tuple of tensors: ``` (a, b, a_scale, b_scale, c) ``` where `a` and `b` are the input matrices, `a_scale` and `b_scale` are the scaling factors for `a` and `b` respectively, and `c` is the output matrix: * `a` is M x K in column-major order in e4m3fnuz * `b` is N x K in column-major order in e4m3fnuz * `a_scale` is M x K // 128 in column-major order in fp32 * `b_scale` is N // 128 x K // 128 in column-major order in fp32 * `c` is M x N in ROW-major order in bf16 Matrix sizes `m` and `n` are divisible by 64, `k` is divisible by 128. The ranking criteria is the geometric mean of the benchmark results. For the grand price, your kernel will be evaluated against the speed of light analysis and the solution closest to the speed of light will be awarded the grand price. ``` The speed of light analysis is: M N K time[us] 1024 1536 7168 8.63 1024 4608 7168 25.89 6144 1536 7168 51.78 6144 4608 7168 155.30 1024 7168 256 3.17 6144 7168 256 17.27 ```
import torch from task import input_t, output_t from utils import make_match_reference block_shape = (128, 128) def generate_input(m: int, n: int, k: int, seed: int) -> input_t: """ Generate random input and weights for Blockwise W8A8 Matmul scaled to FP32. Returns: Tuple of ( a: torch.Tensor[float8_e4m3fnuz] of shape [m, k], b: torch.Tensor[float8_e4m3fnuz] of shape [n, k], a_scale: torch.Tensor[float32] of shape [m, k // 128], b_scale: torch.Tensor[float32] of shape [n // 128, k // 128], c: torch.Tensor[bfloat16] of shape [m, n] ) """ gen = torch.Generator(device='cuda') gen.manual_seed(seed) block_shape_n, block_shape_k = block_shape scale_n = (n + block_shape_n - 1) // block_shape_n scale_k = (k + block_shape_k - 1) // block_shape_k # Generate random inputs with FP8 quantization a = (torch.randn((k, m), dtype=torch.bfloat16, device="cuda", generator=gen)).to(torch.float8_e4m3fnuz) b = (torch.randn((k, n), dtype=torch.bfloat16, device="cuda", generator=gen)).to(torch.float8_e4m3fnuz) # Generate scaling factors with FP32 a_scale = torch.randn([scale_k, m], dtype=torch.float32, device="cuda", generator=gen) b_scale = torch.randn([scale_k, scale_n], dtype=torch.float32, device="cuda", generator=gen) c = torch.zeros((m, n), dtype=torch.bfloat16, device="cuda") return (a.T, b.T, a_scale.T, b_scale.T, c) def ref_kernel(data: input_t) -> output_t: """ Highly inefficient torch reference implementation of FP8 GEMM. You can use this as a reference / starting template for your implementation. """ # c: [m, n] is pre-allocated memory to help remove allocation overhead. a, b, a_scale, b_scale, c = data # a is M x K in column-major order, we convert here for simplicity. a = a.contiguous() a_scale = a_scale.contiguous() b_scale = b_scale.contiguous() # constants m = a.shape[0] n = b.shape[0] k = a.shape[1] block_shape_n = 128 block_shape_k = 128 scale_n = b_scale.shape[0] scale_k = b_scale.shape[1] # Apply blockwise scaling to input 'a' a_scale = a_scale.unsqueeze(-1).repeat(1, 1, block_shape_k) # Shape: [m, scale_k, block_shape_k] a_scale = a_scale.reshape(m, scale_k * block_shape_k) a_scale = a_scale[:, :k] # Dequantize 'a', in your implementation you should do this at the end. a = a.to(a_scale.dtype) * a_scale # Apply blockwise scaling to input 'b' b_scale = ( b_scale.view(-1, 1) .repeat(1, block_shape_n * block_shape_k) .view(scale_n, scale_k, block_shape_n, block_shape_k) .permute(0, 2, 1, 3) # Reorder dimensions: [scale_n, blk_n, scale_k, blk_k] .reshape(scale_n * block_shape_n, scale_k * block_shape_k) ) b_scale = b_scale[:n, :k] # Dequantize 'b', in your implementation you should do this at the end. b = b.to(b_scale.dtype) * b_scale # Compute FP8 GEMM and write to 'c'. c[...] = (a @ b.T).to(torch.bfloat16) return c check_implementation = make_match_reference(ref_kernel, rtol=2e-02, atol=1e-03)
[ "MI300" ]
430
amd-mixture-of-experts
2025-09-02T00:00:00
py
For a more complete description, see: https://tinyurl.com/amd-comp-moe Implement a DeepSeek-style Mixture of Experts (MoE) layer for efficient transformer models on a single MI300X device. MoE is a technique that allows scaling model capacity without proportionally increasing computational costs by using a routing mechanism to selectively activate only a subset of parameters for each token. Your task: - Implement token routing using a simple softmax-based learned router - Route tokens to the top-k experts based on router probabilities - Process tokens through their assigned experts - Combine expert outputs weighted by router probabilities - Calculate appropriate auxiliary losses for training stability Input: - `data`: Tuple of (input: torch.Tensor, weights: Dict[str, torch.Tensor], config: Dict) - input: Input tensor of shape [bs, seq_len, d_hidden] - weights: Dictionary containing model weights - config: Dictionary containing model configuration parameters Output: - Tuple containing: - output: Processed tensor [bs, seq_len, d_model] - aux_data: Dictionary with auxiliary data like router probabilities and losses
from utils import make_match_reference from task import input_t, output_t import torch import torch.nn as nn import torch.nn.functional as F from typing import Dict, Tuple, List, Optional import math # Reference code in PyTorch class Expert(nn.Module): def __init__(self, config: Dict, d_expert: Optional[int] = None): super().__init__() self.config = config self.act_fn = nn.SiLU() self.d_hidden: int = config["d_hidden"] self.d_expert: int = config["d_expert"] if d_expert is None else d_expert self.W_gate = nn.Linear(self.d_hidden, self.d_expert, bias=False) self.W_up = nn.Linear(self.d_hidden, self.d_expert, bias=False) self.W_down = nn.Linear(self.d_expert, self.d_hidden, bias=False) def forward(self, x: torch.Tensor) -> torch.Tensor: gate = self.act_fn(self.W_gate(x)) out = self.W_down(gate * self.W_up(x)) return out class MoEGate(nn.Module): def __init__(self, config: Dict): super().__init__() self.top_k: int = config["n_experts_per_token"] self.num_experts: int = config["n_routed_experts"] self.d_hidden: int = config["d_hidden"] self.W_g = nn.Linear(self.d_hidden, self.num_experts, bias=False) def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: logits = self.W_g(x) scores = logits.softmax(dim=-1) topk_scores, topk_indices = torch.topk(scores, k=self.top_k, dim=-1, sorted=False) return topk_indices, topk_scores class MoE(nn.Module): def __init__(self, config: Dict): super().__init__() self.config = config self.experts = nn.ModuleList([ Expert(config) for _ in range(config["n_routed_experts"]) ]) self.gating_network = MoEGate(config) shared_expert_dim = config["d_expert"] * config["n_shared_experts"] self.shared_expert = Expert(config=config, d_expert=shared_expert_dim) def forward(self, x: torch.Tensor) -> torch.Tensor: shared_output = self.shared_expert(x) expert_indices, expert_scores = self.gating_network(x) batch_size, seq_len, hidden_dim = x.shape orig_shape = x.shape x_flat = x.view(-1, hidden_dim) flat_expert_indices = expert_indices.view(-1) flat_expert_weights = expert_scores.view(-1, 1) routed_output_flat = self.moe_infer(x_flat, flat_expert_indices, flat_expert_weights) routed_output = routed_output_flat.view(*orig_shape) return routed_output + shared_output @torch.no_grad() def moe_infer(self, x: torch.Tensor, flat_expert_indices: torch.Tensor, flat_expert_weights: torch.Tensor ) -> torch.Tensor: expert_cache = torch.zeros_like(x) idxs = flat_expert_indices.argsort() counts = flat_expert_indices.bincount().cpu().numpy() tokens_per_expert = counts.cumsum() num_per_tok = self.config["n_experts_per_token"] token_idxs = idxs // num_per_tok for expert_id, end_idx in enumerate(tokens_per_expert): start_idx = 0 if expert_id == 0 else tokens_per_expert[expert_id - 1] if start_idx == end_idx: continue expert = self.experts[expert_id] exp_token_idxs = token_idxs[start_idx:end_idx] expert_tokens = x[exp_token_idxs] expert_out = expert(expert_tokens) expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]]) expert_cache.scatter_reduce_( 0, exp_token_idxs.view(-1, 1).repeat(1, x.shape[-1]), expert_out, reduce='sum' ) return expert_cache def ref_kernel(data: input_t) -> output_t: """ Reference implementation of DeepSeek-style Mixture of Experts using PyTorch. Args: data: Tuple of (input: torch.Tensor, weights: Dict[str, torch.Tensor], config: Dict) - input: Input tensor of shape [batch_size, seq_len, hidden_dim] - weights: Dictionary containing model weights - config: Dictionary containing model configuration parameters Returns: Tuple containing: - output: Processed tensor [batch_size, seq_len, d_model] - aux_data: Dictionary with auxiliary data """ input_tensor, weights, config = data num_experts = config["n_routed_experts"] moe = MoE(config) # Fill in the given weights of the model moe.gating_network.W_g.weight = nn.Parameter(weights['router.weight']) for i in range(num_experts): gate_proj_weight = weights[f'experts.{i}.0.weight'] up_proj_weight = weights[f'experts.{i}.1.weight'] down_proj_weight = weights[f'experts.{i}.2.weight'] # Transpose weights to match expected shape for nn.Linear moe.experts[i].W_gate.weight = nn.Parameter(gate_proj_weight.t()) moe.experts[i].W_up.weight = nn.Parameter(up_proj_weight.t()) moe.experts[i].W_down.weight = nn.Parameter(down_proj_weight.t()) moe.shared_expert.W_gate.weight = nn.Parameter(weights['shared_experts.0.weight'].t()) moe.shared_expert.W_up.weight = nn.Parameter(weights['shared_experts.1.weight'].t()) moe.shared_expert.W_down.weight = nn.Parameter(weights['shared_experts.2.weight'].t()) output = moe(input_tensor) return output # Input generation for the reference code def generate_input( dhidden: int, dexpert: int, nroutedexperts: int, nsharedexperts: int, nexpertspertoken: int, bs: int, seqlen: int, seed: int ) -> input_t: # Really dumb but for now _ isn't parsing correctly. d_hidden = dhidden d_expert = dexpert n_routed_experts = nroutedexperts n_shared_experts = nsharedexperts n_experts_per_token = nexpertspertoken batch_size = bs seq_len = seqlen config = { "d_hidden": d_hidden, "d_expert": d_expert, "n_routed_experts": n_routed_experts, "n_shared_experts": n_shared_experts, "n_experts_per_token": n_experts_per_token, "batch_size": batch_size, "seq_len": seq_len, } gen = torch.Generator(device='cuda') gen.manual_seed(seed) num_experts = n_routed_experts expert_dim = d_expert weights = {} input_tensor = torch.randn( (batch_size, seq_len, d_hidden), device='cuda', dtype=torch.float16, generator=gen ).contiguous() # Initialize router weights weights['router.weight'] = torch.randn( (num_experts, d_hidden), device="cuda", dtype=torch.float16, generator=gen ) / math.sqrt(d_hidden) for i in range(num_experts): weights[f'experts.{i}.0.weight'] = torch.randn( (d_hidden, expert_dim), device='cuda', dtype=torch.float16, generator=gen ) / math.sqrt(expert_dim) weights[f'experts.{i}.1.weight'] = torch.randn( (d_hidden, expert_dim), device='cuda', dtype=torch.float16, generator=gen ) / math.sqrt(expert_dim) weights[f'experts.{i}.2.weight'] = torch.randn( (expert_dim, d_hidden), device='cuda', dtype=torch.float16, generator=gen ) / math.sqrt(d_hidden) weights['shared_experts.0.weight'] = torch.randn( (d_hidden, expert_dim * n_shared_experts), device='cuda', dtype=torch.float16, generator=gen ) / math.sqrt(expert_dim * n_shared_experts) weights['shared_experts.1.weight'] = torch.randn( (d_hidden, expert_dim * n_shared_experts), device='cuda', dtype=torch.float16, generator=gen ) / math.sqrt(expert_dim * n_shared_experts) weights['shared_experts.2.weight'] = torch.randn( (expert_dim * n_shared_experts, d_hidden), device='cuda', dtype=torch.float16, generator=gen ) / math.sqrt(d_hidden) return (input_tensor, weights, config) check_implementation = make_match_reference(ref_kernel, rtol=1e-2, atol=1e-2)
[ "MI300" ]
463
amd-mla-decode
2025-09-02T00:00:00
py
You will implement a custom mla decode kernel optimized for MI300, a few things simplified here: 1. Q, K, V data type as bfloat16 2. decode only with pre-allocated non-paged latent kv cache 3. return the update kv cache with MLA output The shapes of all outer and inner dimensions of tensors are from DeepSeek-R1, and split number of heads to fit in one GPU. To be explicit, you will be given a tuple to tensors: ```yml input [bs, sq, dim] attn_output [bs, n_heads, sq, v_head_dim] kv_cache [bs, sq, kv_lora_rank + qk_rope_head_dim] ``` where 0. bs::128 # batch size 1. prefill::[512, 2048, 4096, 6144] # as kv length 2. sq::1 # as only consider decoding 3. dim::7168 # hidden size of deepseek v3 4. kv_lora_rank::[512] # kv lora rank of deepseek v3 5. qk_rope_head_dim::[64] # rope embedding dimension 6. v_head_dim::128 # head size 7. n_heads::128 # num of attn heads The ranking criteria is the geometric mean of the benchmark results. For the grand prize, your kernel will be evaluated against the speed of light analysis and the solution closest to the speed of light will be awarded the grand prize. The speed of light analysis is:: | bs | prefill | sq | dtype | roofline time(us) | |---|---|---|---|---| | 128 | 512 | 1 | bf16 | 54.62 | | 128 | 2048 | 1 | bf16 | 141.16 | | 128 | 4096 | 1 | bf16 | 210.75 | | 128 | 6144 | 1 | bf16 | 280.87 |
import math from dataclasses import dataclass import torch from torch import nn import torch.nn.functional as F from task import input_t, output_t from utils import make_match_reference class RoPE(nn.Module): def __init__(self, d_model: int): super().__init__() self.d_model = d_model theta = 10000 ** (-torch.arange(0, d_model//2,dtype=torch.bfloat16) / (d_model//2)) self.register_buffer("theta", theta) def rotate_half(self, x: torch.Tensor) -> torch.Tensor: x1, x2 = x.chunk(2, dim=-1) return torch.cat((-x2, x1), dim=-1) def forward(self, x: torch.Tensor, start_pos: int = 0) -> torch.Tensor: seq_len = x.size(-2) d_model = x.size(-1) assert d_model == self.d_model seq_idx = torch.arange(start_pos, start_pos + seq_len, device=x.device) idx_theta = torch.einsum('s,d->sd', seq_idx, self.theta) idx_theta2 = torch.cat([idx_theta, idx_theta], dim=-1) cos = idx_theta2.cos().to(torch.bfloat16) sin = idx_theta2.sin().to(torch.bfloat16) return x * cos + self.rotate_half(x) * sin class KVCache(nn.Module): def __init__(self, kv_cache_shape: tuple, **kwargs) -> None: super().__init__(**kwargs) self.register_buffer('data', torch.zeros(kv_cache_shape, dtype=torch.bfloat16)) self.seq_len = 0 self.zero() def zero(self) -> None: self.data.zero_() def get_data(self) -> torch.Tensor: return self.data def forward(self, c_kv: torch.Tensor) -> torch.Tensor: assert self.seq_len + c_kv.size(1) <= self.data.size(1), "KV Cache Exceeded" self.data = self.data.to(c_kv.dtype) self.data[ :, self.seq_len : self.seq_len + c_kv.size(1), : ] = c_kv self.seq_len += c_kv.size(1) return self.data[:, :self.seq_len], self.seq_len @dataclass class Config: batch_size: int dim: int n_heads: int q_lora_rank: int kv_lora_rank: int qk_nope_head_dim: int qk_rope_head_dim: int v_head_dim: int seq_len: int max_seq_len: int kv_cache_shape: tuple Q_proj_down_weight: torch.Tensor Q_proj_up_weight: torch.Tensor KV_proj_down_weight: torch.Tensor KV_proj_up_weight: torch.Tensor wo_weight: torch.Tensor class MLA(nn.Module): def __init__(self, config: Config): super().__init__() self.dim = config.dim self.n_heads = config.n_heads self.q_lora_rank = config.q_lora_rank self.kv_lora_rank = config.kv_lora_rank self.nope_head_dim = config.qk_nope_head_dim self.rope_head_dim = config.qk_rope_head_dim self.v_head_dim = config.v_head_dim # Down-projection matrices self.Q_proj_down = nn.Linear(self.dim, self.q_lora_rank, dtype=torch.bfloat16, bias=False) self.KV_proj_down = nn.Linear(self.dim, self.kv_lora_rank + self.rope_head_dim, dtype=torch.bfloat16, bias=False) # Up-projection and rope projection matrices self.Q_proj_up = nn.Linear(self.q_lora_rank, (self.nope_head_dim + self.rope_head_dim) * self.n_heads, dtype=torch.bfloat16, bias=False) self.KV_proj_up = nn.Linear(self.kv_lora_rank, (self.nope_head_dim + self.v_head_dim) * self.n_heads, dtype=torch.bfloat16, bias=False) # RoPE on half embeddings self.q_rope = RoPE(self.rope_head_dim) self.k_rope = RoPE(self.rope_head_dim) # Output projection self.wo = nn.Linear(self.v_head_dim * self.n_heads, self.dim, dtype=torch.bfloat16, bias=False) self.eps = 1e-6 def forward(self, x: torch.Tensor, kv_cache: KVCache) -> torch.Tensor: # seq_len = 1 always here batch_size, seq_len, model_dim = x.size() ################################################################################ # Step 1: Handle down-projection + KV cache # ################################################################################ q_lora = self.Q_proj_down(x) kv_lora = self.KV_proj_down(x) kv_lora, kv_len = kv_cache(kv_lora) query_pos = kv_len - 1 ################################################################################ # Step 2: Up-project and prepare NoPE + RoPE # ################################################################################ # Handle queries Q first q_nope_and_rope = self.Q_proj_up(q_lora).view( batch_size, seq_len, self.n_heads, self.nope_head_dim + self.rope_head_dim) q_nope, q_rope = torch.split(q_nope_and_rope, [self.nope_head_dim, self.rope_head_dim], dim=-1) # Handle keys and values K/V. V does not need RoPE kv_nope, k_rope = torch.split(kv_lora, [self.kv_lora_rank, self.rope_head_dim], dim=-1) kv_nope = self.KV_proj_up(kv_nope).view( batch_size, kv_len, self.n_heads, self.nope_head_dim + self.v_head_dim) k_nope, v = torch.split(kv_nope, [self.nope_head_dim, self.v_head_dim], dim=-1) ################################################################################ # Step 3: Handle RoPE Stream # ################################################################################ # Compute RoPE for queries and combine with no-RoPE part q_rope = q_rope.permute(0, 2, 1, 3) # bs x n_heads x seq_len x rope_head_dim q_rope = self.q_rope(q_rope, start_pos=query_pos) q_nope = q_nope.permute(0, 2, 1, 3) # bs x n_heads x seq_len x rope_head_dim q = torch.concat([q_nope, q_rope], dim=-1) # Compute RoPE for keys and combine with no-RoPE part k_rope = k_rope[:, None, :, :] k_rope = self.k_rope(k_rope).expand(-1,self.n_heads,-1,-1) k_nope = k_nope.permute(0, 2, 1, 3) # bs x kv_len x n_heads x rope_head_dim k = torch.concat([k_nope, k_rope], dim=-1) ################################################################################ # Compute Multi-head Attention # ################################################################################ v = v.permute(0, 2, 1, 3) # bs x n_heads x kv_len x v_head_dim scores = torch.matmul(q, k.transpose(-1, -2)) / math.sqrt(self.rope_head_dim + self.nope_head_dim) attn = F.softmax(scores, dim=-1).to(torch.bfloat16) y = torch.matmul(attn, v).view(batch_size, 1, -1) y = self.wo(y) return y, kv_cache.get_data() def generate_input(batchsize, dim, dq, prefill, seed): # Sizes derived from: https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py gen = torch.Generator(device='cuda') gen.manual_seed(seed) # Generate weights for linear layers Q_proj_down_weight = torch.randn((dq, dim), dtype=torch.bfloat16, generator=gen, device='cuda') / math.sqrt(dim) KV_proj_down_weight = torch.randn((512 + 64, dim), dtype=torch.bfloat16, generator=gen, device='cuda') / math.sqrt(dim) Q_proj_up_weight = torch.randn(((128 + 64) * 128, dq), dtype=torch.bfloat16, generator=gen, device='cuda') / math.sqrt(dq) KV_proj_up_weight = torch.randn(((128 + 128) * 128, 512), dtype=torch.bfloat16, generator=gen, device='cuda') / math.sqrt(512) wo_weight = torch.randn((dim, 128 * 128), dtype=torch.bfloat16, generator=gen, device='cuda') / math.sqrt(128 * 128) config = Config( batch_size=batchsize, dim=dim, q_lora_rank=dq, n_heads=128, kv_lora_rank=512, qk_nope_head_dim=128, qk_rope_head_dim=64, v_head_dim=128, seq_len=1, max_seq_len=8192, kv_cache_shape=(batchsize, 8192, 512 + 64), Q_proj_down_weight=Q_proj_down_weight, Q_proj_up_weight=Q_proj_up_weight, KV_proj_down_weight=KV_proj_down_weight, KV_proj_up_weight=KV_proj_up_weight, wo_weight=wo_weight, ) x = torch.randn((config.batch_size, 1, config.dim), dtype=torch.bfloat16, generator=gen, device='cuda') # Pre-fill KV cache kv_cache = KVCache((config.batch_size, config.max_seq_len, config.kv_lora_rank + config.qk_rope_head_dim)).to('cuda') pre_filled_cache = torch.randn((config.batch_size, prefill, config.kv_lora_rank + config.qk_rope_head_dim), dtype=torch.bfloat16, generator=gen, device='cuda') kv_cache(pre_filled_cache) return config, x, kv_cache def ref_kernel(data: input_t) -> output_t: config, x, kv_cache = data # Load in model weights model = MLA(config).to('cuda') model.Q_proj_down.weight = nn.Parameter(config.Q_proj_down_weight) model.Q_proj_up.weight = nn.Parameter(config.Q_proj_up_weight) model.KV_proj_down.weight = nn.Parameter(config.KV_proj_down_weight) model.KV_proj_up.weight = nn.Parameter(config.KV_proj_up_weight) model.wo.weight = nn.Parameter(config.wo_weight) output, kv_cache = model(x, kv_cache) return output, kv_cache check_implementation = make_match_reference(ref_kernel, rtol=2e-02, atol=8e-03) def time_mla(model, x, kv_cache, num_warmup=3, num_trials=5): # Warmup runs for _ in range(1): output, _ = model(x, kv_cache) torch.cuda.synchronize() # Timed runs times = [] for _ in range(num_trials): kv_cache = KVCache((config.batch_size, config.max_seq_len, config.kv_lora_rank + config.qk_rope_head_dim)).to('cuda') start = torch.cuda.Event(enable_timing=True) end = torch.cuda.Event(enable_timing=True) start.record() output, updated_kv = model(x, kv_cache) end.record() torch.cuda.synchronize() times.append(start.elapsed_time(end)) avg_time = sum(times) / len(times) return output, updated_kv, avg_time, times if __name__ == "__main__": # Generate test input batchsize = 128 dim = 7168 dq = 1536 prefill = 512 seed = 97 # Create model and inputs config, x, kv_cache = generate_input(batchsize, dim, dq, prefill, seed) model = MLA(config).to('cuda') # Run model with timing output, updated_kv, avg_time, times = time_mla(model, x, kv_cache) # Test reference kernel ref_output, ref_kv = ref_kernel((config, x, kv_cache)) print("\nReference kernel output:") print(f"Output shape: {ref_output.shape}") print(f"KV cache shape: {ref_kv.shape}") print("\nFirst few values of reference output:") print(ref_output[0, :10]) # Compare outputs print("\nOutput difference:") print(f"Max absolute difference: {torch.max(torch.abs(output - ref_output))}") print(f"Mean absolute difference: {torch.mean(torch.abs(output - ref_output))}") print(f"Input shape: {x.shape}") print(f"Output shape: {output.shape}") print(f"Updated KV cache shape: {updated_kv.shape}") print("\nFirst few values of output:") print(output[0, :10]) print(f"\nTiming results over {len(times)} runs (ms):") print(f"Average: {avg_time:.2f}") print(f"Individual times: {[f'{t:.2f}' for t in times]}")
[ "MI300" ]

If you use GPUMODE/amd-kernels-2025 in your work, please cite:

@inproceedings{
  zhang2025kernelbot,
  title={KernelBot: A Competition Platform for Writing Heterogeneous {GPU} Code},
  author={Alex L Zhang and Matej Sirovatka and Erik Schultheis and Benjamin Horowitz and Mark Saroufim},
  booktitle={Championing Open-source DEvelopment in ML Workshop @ ICML25},
  year={2025},
  url={https://openreview.net/forum?id=bq9U4dmuyJ}
}
Downloads last month
60