uuid
stringlengths
36
36
file_name
stringlengths
5
50
repo_name
stringclasses
110 values
file_path
stringlengths
7
112
commit_hash
stringclasses
110 values
starcount
int64
0
0
input
stringlengths
39
33.8k
category
dict
licenses
sequencelengths
1
2
github_url
stringlengths
94
193
6d3ee5b8-898b-438e-a16f-c87c7ce98c84
triton_sll.py
pytorch/FBGEMM
fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py
fe980ab54a6e28818d81c8694b6564e7f804418b
0
@triton.jit def _jagged_dense_flash_attention_bwd_dk_kernel(q_ptr, k_ptr, v_ptr, ab_ptr, jagged_offsets_ptr, out_ptr, do_ptr, lse_ptr, delta_ptr, dq_ptr, dk_ptr, dv_ptr, dbias_ptr, max_seq_len, stride_ql, stride_qd, stride_kb, stride_kd, stride_kt, stride_vl, stride_vd, stride_ab_b, stride_ab_l, stride_ab_t, stride_ob, stride_ot, stride_od, stride_dk_b, stride_dk_d, stride_dk_t, stride_do_b, stride_do_t, stride_do_d, D, T: tl.constexpr, BLOCK_T: tl.constexpr, BLOCK_L: tl.constexpr, BLOCK_D: tl.constexpr, allow_tf32: tl.constexpr): pid_t = tl.program_id(0) pid_b = tl.program_id(1) begin = tl.load(jagged_offsets_ptr + pid_b) end = tl.load(jagged_offsets_ptr + pid_b + 1) seqlen = end - begin seqlen = tl.minimum(seqlen, max_seq_len) if seqlen == 0: return q_start_ptr = q_ptr + begin * stride_ql k_start_ptr = k_ptr + pid_b * stride_kb ab_start_ptr = ab_ptr + pid_b * stride_ab_b v_start_ptr = v_ptr + begin * stride_vl do_start_ptr = do_ptr + pid_b * stride_do_b dk_start_ptr = dk_ptr + pid_b * stride_dk_b delta_ptrs = delta_ptr + pid_b * T lse_ptrs = lse_ptr + pid_b * T offs_t_curr = pid_t * BLOCK_T + tl.arange(0, BLOCK_T) offs_d = tl.arange(0, BLOCK_D) k_ptrs = k_start_ptr + offs_d[:, None] * stride_kd + offs_t_curr[None, : ] * stride_kt do_ptrs = do_start_ptr + offs_t_curr[:, None] * stride_do_t + offs_d[ None, :] * stride_do_d dk_ptrs = dk_start_ptr + offs_d[:, None] * stride_dk_d + offs_t_curr[ None, :] * stride_dk_t dk = tl.zeros([BLOCK_D, BLOCK_T], dtype=tl.float32) k = tl.load(k_ptrs, mask=(offs_t_curr[None, :] < T) & (offs_d[:, None] < BLOCK_D), other=0.0) start_l = 0 while start_l < seqlen: offs_l_curr = start_l + tl.arange(0, BLOCK_L) q_ptrs = q_start_ptr + offs_l_curr[:, None] * stride_ql + offs_d[ None, :] * stride_qd q = tl.load(q_ptrs, mask=offs_l_curr[:, None] < seqlen, other=0.0) v_ptrs = v_start_ptr + offs_l_curr[:, None] * stride_vl + offs_d[ None, :] * stride_vd v = tl.load(v_ptrs, mask=offs_l_curr[:, None] < seqlen, other=0.0) qk = tl.zeros([BLOCK_L, BLOCK_T], dtype=tl.float32) qk = tl.dot(q, k, allow_tf32=allow_tf32) qk = tl.where((offs_l_curr[:, None] < seqlen) & (offs_t_curr[None, :] < T), qk, 0.0) ab_ptrs = ab_start_ptr + offs_l_curr[:, None ] * stride_ab_l + offs_t_curr[None, :] * stride_ab_t ab = tl.load(ab_ptrs, mask=(offs_l_curr[:, None] < seqlen) & ( offs_t_curr[None, :] < T), other=0.0) qk = qk + ab qk_mask = (offs_l_curr[:, None] < seqlen) & (offs_t_curr[None, :] < T) qk = tl.where(qk_mask, qk, float('-inf')) lse_t = tl.load(lse_ptrs + offs_t_curr, mask=offs_t_curr < T) p = tl.exp(qk - lse_t[None, :]) p = tl.where(qk_mask, p, 0.0) do = tl.load(do_ptrs, mask=offs_t_curr[:, None] < T, other=0.0) delta = tl.load(delta_ptrs + offs_t_curr, mask=offs_t_curr < T) dp = tl.trans(tl.dot(do, tl.trans(v), allow_tf32=allow_tf32)) ds = p * (dp - delta[None, :]) dk += tl.dot(tl.trans(q), ds, allow_tf32=allow_tf32) start_l += BLOCK_L tl.store(dk_ptrs, dk, mask=offs_t_curr[None, :] < T)
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Backpropagation", "Matrix Multiplication", "Elementwise Operations" ], "Memory Access Pattern": [ "Blocked Access", "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "BSD", "MIT" ]
https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py
8c7b91e8-cc8f-40fc-afce-459f1f8214bf
lightning_attn2.py
OpenNLPLab/lightning-attention
lightning_attn/ops/triton/lightning_attn2.py
d7439519541e966084eeaaf3ffd63eecc216f414
0
@triton.jit def _bwd_intra_kernel(Q, K, V, S, DO, DQ, DK, DV, b: tl.constexpr, h: tl. constexpr, n: tl.constexpr, d: tl.constexpr, e: tl.constexpr, BLOCK: tl .constexpr, NUM_BLOCK: tl.constexpr, CBLOCK: tl.constexpr, NUM_CBLOCK: tl.constexpr): off_bh = tl.program_id(0) off_block = tl.program_id(1) off_h = off_bh % h qk_offset = off_bh * n * d v_offset = off_bh * n * e o_offset = off_bh * n * e block_offset = off_block * BLOCK + tl.arange(0, BLOCK) Q_trans_block_ptr = Q + qk_offset + block_offset[None, :] * d + tl.arange( 0, d)[:, None] K_block_ptr = K + qk_offset + block_offset[:, None] * d + tl.arange(0, d)[ None, :] V_trans_block_ptr = V + v_offset + block_offset[None, :] * e + tl.arange( 0, e)[:, None] DQ_block_ptr = DQ + qk_offset + block_offset[:, None] * d + tl.arange(0, d )[None, :] DK_trans_block_ptr = DK + qk_offset + block_offset[None, : ] * d + tl.arange(0, d)[:, None] DV_block_ptr = DV + v_offset + block_offset[:, None] * e + tl.arange(0, e)[ None, :] DO_block_ptr = DO + o_offset + block_offset[:, None] * e + tl.arange(0, e)[ None, :] S_block_ptr = S + off_h s = tl.load(S_block_ptr) array = tl.arange(0, BLOCK).to(tl.float32) index = array[:, None] - array[None, :] s_index = s * index s_index = tl.where(index >= 0, -s_index, float('-inf')) diag_decay = tl.exp(s_index) diag_decay_trans = tl.trans(diag_decay) k = tl.load(K_block_ptr, mask=block_offset[:, None] < n, other=0.0).to(tl .float32) v_trans = tl.load(V_trans_block_ptr, mask=block_offset[None, :] < n, other=0.0).to(tl.float32) do = tl.load(DO_block_ptr, mask=block_offset[:, None] < n, other=0.0).to(tl .float32) q_trans = tl.load(Q_trans_block_ptr, mask=block_offset[None, :] < n, other=0.0).to(tl.float32) dqk = tl.dot(do, v_trans) * diag_decay dq_intra = tl.dot(dqk, k) dk_intra_trans = tl.dot(q_trans, dqk) qk_trans = tl.dot(k, q_trans) * diag_decay_trans dv_intra = tl.dot(qk_trans, do) dq = dq_intra dk_trans = dk_intra_trans dv = dv_intra tl.store(DQ_block_ptr, dq.to(DQ_block_ptr.dtype.element_ty), mask= block_offset[:, None] < n) tl.store(DK_trans_block_ptr, dk_trans.to(DK_trans_block_ptr.dtype. element_ty), mask=block_offset[None, :] < n) tl.store(DV_block_ptr, dv.to(DV_block_ptr.dtype.element_ty), mask= block_offset[:, None] < n)
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Backpropagation", "Matrix Multiplication", "Elementwise Operations" ], "Memory Access Pattern": [ "Blocked Access", "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/OpenNLPLab/lightning-attention/blob/d7439519541e966084eeaaf3ffd63eecc216f414/lightning_attn/ops/triton/lightning_attn2.py
4fcdc1d3-596d-431c-b62b-3f6a8a65e5a1
k_dropout.py
cpuhrsch/torchfused
torchfused/triton/k_dropout.py
6c40ed160dcecbe7825f268f7c86bccd359e0ebf
0
@triton.jit def _drop_and_scale(SEEDS, row, p, offsets, x): seed = SEEDS + row random = tl.rand(seed.to(tl.int32), offsets) x_keep = random > p zero = 0.0 zero = zero.to(x.dtype) return tl.where(x_keep, (x / (1 - p)).to(x.dtype), zero)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "BSD" ]
https://github.com/cpuhrsch/torchfused/blob/6c40ed160dcecbe7825f268f7c86bccd359e0ebf/torchfused/triton/k_dropout.py
83c7f330-658f-46b1-b1f2-1cd74b5122b4
triton_welford.py
pytorch-labs/tritonbench
tritonbench/operators/welford/triton_welford.py
3a5dccb159834968567a2e45e561dc1aeaa8f8a8
0
@triton.autotune(configs=[triton.Config({'XBLOCK': 1, 'RBLOCK': 1024}, num_stages=1, num_warps=8), triton.Config({'XBLOCK': 1, 'RBLOCK': 2048}, num_stages=1, num_warps=8)], key=['xnumel', 'rnumel']) @triton.jit def triton_red_fused_native_layer_norm_no_welford(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK: tl. constexpr, RBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex _tmp3 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r1 = rindex tmp0 = tl.load(in_ptr0 + (r1 + rnumel * x0), rmask, eviction_policy ='evict_last').to(tl.float32) tmp1 = tmp0.to(tl.float32) tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = _tmp3 + tmp2 _tmp3 = tmp4 tmp3 = tl.sum(_tmp3, 1)[:, None] tmp5 = rnumel tmp6 = tmp3 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, None) _tmp12 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r1 = rindex tmp7 = tl.load(in_ptr0 + (r1 + rnumel * x0), rmask, eviction_policy ='evict_last').to(tl.float32) tmp8 = tmp7.to(tl.float32) tmp9 = tmp8 - tmp6 tmp10 = tmp9 * tmp9 tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp13 = _tmp12 + tmp11 _tmp12 = tmp13 tmp12 = tl.sum(_tmp12, 1)[:, None] tmp14 = rnumel tmp15 = tmp12 / tmp14 tmp16 = 1e-05 tmp17 = tmp15 + tmp16 tmp18 = libdevice.rsqrt(tmp17) tl.debug_barrier() tl.store(in_out_ptr1 + x0, tmp18, None) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r1 = rindex tmp19 = tl.load(in_ptr0 + (r1 + rnumel * x0), rmask, eviction_policy='evict_first').to(tl.float32) tmp23 = tl.load(in_ptr1 + r1, rmask, eviction_policy='evict_last').to( tl.float32) tmp26 = tl.load(in_ptr2 + r1, rmask, eviction_policy='evict_last').to( tl.float32) tmp20 = tmp19.to(tl.float32) tmp21 = tmp20 - tmp6 tmp22 = tmp21 * tmp18 tmp24 = tmp23.to(tl.float32) tmp25 = tmp22 * tmp24 tmp27 = tmp26.to(tl.float32) tmp28 = tmp25 + tmp27 tmp29 = tmp28.to(tl.float32) tl.store(out_ptr0 + (r1 + rnumel * x0), tmp29, rmask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Normalization", "Elementwise Operations" ], "Memory Access Pattern": [ "Blocked Access", "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "BSD" ]
https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/operators/welford/triton_welford.py
c8059c9e-a8e6-4564-86fd-169f523010dc
positional_embedding.py
ai-compiler-study/triton-kernels
triton_kernels/kernels/positional_embedding.py
2308e5e9d965059fe2d19b4d535debac4970b69e
0
@triton.jit def _rope_fwd(q_ptr, k_ptr, f_ptr, oq_ptr, ok_ptr, stride, d, BLOCK_SIZE: tl.constexpr): bh_idx = tl.program_id(0) s_idx = tl.program_id(1) q_start_ptr = q_ptr + bh_idx * stride k_start_ptr = k_ptr + bh_idx * stride oq_start_ptr = oq_ptr + bh_idx * stride ok_start_ptr = ok_ptr + bh_idx * stride d_half = d // 2 col_offsets = tl.arange(0, BLOCK_SIZE) col_offsets2 = tl.arange(0, BLOCK_SIZE * 2) f0_ptrs = f_ptr + s_idx * d * 2 + col_offsets2 * 2 f1_ptrs = f_ptr + s_idx * d * 2 + col_offsets2 * 2 + 1 f0 = tl.load(f0_ptrs, mask=col_offsets2 < d, other=0.0).reshape(BLOCK_SIZE, 2) f1 = tl.load(f1_ptrs, mask=col_offsets2 < d, other=0.0).reshape(BLOCK_SIZE, 2) q0_ptrs = q_start_ptr + s_idx * d + col_offsets * 2 q1_ptrs = q_start_ptr + s_idx * d + col_offsets * 2 + 1 q0 = tl.load(q0_ptrs, mask=col_offsets < d_half, other=0.0).reshape( BLOCK_SIZE, 1) q1 = tl.load(q1_ptrs, mask=col_offsets < d_half, other=0.0).reshape( BLOCK_SIZE, 1) k0_ptrs = k_start_ptr + s_idx * d + col_offsets * 2 k1_ptrs = k_start_ptr + s_idx * d + col_offsets * 2 + 1 k0 = tl.load(k0_ptrs, mask=col_offsets < d_half, other=0.0).reshape( BLOCK_SIZE, 1) k1 = tl.load(k1_ptrs, mask=col_offsets < d_half, other=0.0).reshape( BLOCK_SIZE, 1) oq = f0 * q0 + f1 * q1 ok = f0 * k0 + f1 * k1 oq_ptrs = oq_start_ptr + s_idx * d + col_offsets2 ok_ptrs = ok_start_ptr + s_idx * d + col_offsets2 tl.store(oq_ptrs, oq.reshape(BLOCK_SIZE * 2), mask=col_offsets2 < d) tl.store(ok_ptrs, ok.reshape(BLOCK_SIZE * 2), mask=col_offsets2 < d)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/ai-compiler-study/triton-kernels/blob/2308e5e9d965059fe2d19b4d535debac4970b69e/triton_kernels/kernels/positional_embedding.py
ae45fb44-d0d9-48b0-8661-e897c1327370
seqlen_utils.py
Kitsunetic/kitsu
kitsu/nn/seqlen_utils.py
826967a493c89753ac2cf1e28b52b79998fc9076
0
@triton.jit def seqlen_to_index_kernel(seqlen_ptr, idx_ptr, BLK: tl.constexpr): pid = tl.program_id(0) i = tl.load(seqlen_ptr + pid) j = tl.load(seqlen_ptr + pid + 1) idx = tl.arange(0, BLK) tl.store(idx_ptr + i + idx, idx, mask=idx < j - i)
{ "Data Type": [ "uint8" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Low Latency" ] }
[ "MIT" ]
https://github.com/Kitsunetic/kitsu/blob/826967a493c89753ac2cf1e28b52b79998fc9076/kitsu/nn/seqlen_utils.py
510db266-e82a-4bbf-b760-757bb9b99da6
special.py
IntelLabs/EquiTriton
src/equitriton/sph_harm/direct/special.py
1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c
0
@triton.jit def joint_second_order_fwd(coord_ptr: tl.tensor, output_ptr: tl.tensor, block_size: tl.constexpr, coord_numel: tl.constexpr, output_numel: tl. constexpr): """ This Triton implementation includes l=0, 1, 2 within the same kernel, as it would be a common operation. """ coord_stride = 3 block_id = tl.program_id(0) coord_striding = tl.arange(0, block_size) * coord_stride coord_row_offset = coord_striding + block_size * coord_stride * block_id x = tl.load(coord_ptr + coord_row_offset, mask=coord_row_offset < coord_numel) y = tl.load(coord_ptr + coord_row_offset + 1, mask=coord_row_offset + 1 < coord_numel) z = tl.load(coord_ptr + coord_row_offset + 2, mask=coord_row_offset + 2 < coord_numel) CONST_00 = 3.87298334620742 CONST_01 = 2.23606797749979 CONST_02 = -1.11803398874989 CONST_03 = 1.93649167310371 CONST_04 = tl.sqrt(3.0) Y10 = CONST_04 * x Y11 = CONST_04 * y Y12 = CONST_04 * z Y20 = CONST_00 * x * z Y21 = CONST_00 * x * y Y23 = CONST_00 * y * z Y22 = CONST_02 * x * x + CONST_01 * y * y + CONST_02 * z * z Y24 = -CONST_03 * x * x + CONST_03 * z * z output_stride = 9 output_striding = tl.arange(0, block_size) * output_stride output_row_offset = output_striding + block_size * output_stride * block_id tl.store(output_ptr + output_row_offset, 1.0, mask=output_row_offset < output_numel) tl.store(output_ptr + output_row_offset + 1, Y10, mask= output_row_offset + 1 < output_numel) tl.store(output_ptr + output_row_offset + 2, Y11, mask= output_row_offset + 2 < output_numel) tl.store(output_ptr + output_row_offset + 3, Y12, mask= output_row_offset + 3 < output_numel) tl.store(output_ptr + output_row_offset + 4, Y20, mask= output_row_offset + 4 < output_numel) tl.store(output_ptr + output_row_offset + 5, Y21, mask= output_row_offset + 5 < output_numel) tl.store(output_ptr + output_row_offset + 6, Y22, mask= output_row_offset + 6 < output_numel) tl.store(output_ptr + output_row_offset + 7, Y23, mask= output_row_offset + 6 < output_numel) tl.store(output_ptr + output_row_offset + 8, Y24, mask= output_row_offset + 7 < output_numel)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "Apache" ]
https://github.com/IntelLabs/EquiTriton/blob/1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c/src/equitriton/sph_harm/direct/special.py
4e1ee352-1659-4bdb-be7f-7b5f64c2a6f8
triton_fused_vq_attn.py
LouChao98/vqtree
ops/triton_fused_vq_attn.py
27a53274df7a804bce27dffcce5f5be73f64b6f3
0
@triton.jit def _vq_attn_fwd_inner(acc, l_i, m_i, q, sm_scale, K_block_ptr, K_VQC_block_ptr, VVQI_block_ptr, V_VQ, stride_vvq_n, CODEBOOK_SIZE: tl. constexpr, BLOCK_HEADDIM: tl.constexpr, BLOCK_N: tl.constexpr): for _ in range(0, CODEBOOK_SIZE, BLOCK_N): k = tl.load(K_block_ptr) qk = tl.dot(q, k) * (sm_scale * RCP_LN2) k_vq_cnt = tl.load(K_VQC_block_ptr) mask = k_vq_cnt != 0.0 qk = tl.where(mask[None, :], qk, NEGINF) m_i_new = tl.maximum(m_i, tl.max(qk, 1)) alpha = tl.math.exp2(m_i - m_i_new) p = tl.math.exp2(qk - m_i_new[:, None]) acc *= alpha[:, None] v_vq_index = tl.load(VVQI_block_ptr) v_ptr = V_VQ + (v_vq_index[:, None] * stride_vvq_n + tl.arange(0, BLOCK_HEADDIM)[None, :]) v = tl.load(v_ptr) acc += tl.dot(p.to(v.dtype), v) l_i = l_i * alpha + tl.sum(p.to(v.dtype) * k_vq_cnt[None, :], axis=1) m_i = m_i_new K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) K_VQC_block_ptr = tl.advance(K_VQC_block_ptr, (BLOCK_N,)) VVQI_block_ptr = tl.advance(VVQI_block_ptr, (BLOCK_N,)) return acc, l_i, m_i
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Matrix Multiplication" ], "Memory Access Pattern": [ "Blocked Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound", "Memory-Bound" ] }
[ "Apache" ]
https://github.com/LouChao98/vqtree/blob/27a53274df7a804bce27dffcce5f5be73f64b6f3/ops/triton_fused_vq_attn.py
912d1872-d2e5-4a37-9f11-a8df42e90f66
y_10.py
IntelLabs/EquiTriton
src/equitriton/sph_harm/direct/y_10.py
1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c
0
@triton.jit def tenth_order_bwd(coord_ptr: tl.tensor, coord_grad_ptr: tl.tensor, sph_grad_ptr: tl.tensor, block_size: tl.constexpr, coord_numel: tl. constexpr, output_numel: tl.constexpr, col_offset: tl.constexpr, output_stride: tl.constexpr): block_id = tl.program_id(0) coord_stride = 3 coord_striding = tl.arange(0, block_size) * coord_stride coord_row_offset = coord_striding + block_size * coord_stride * block_id x = tl.load(coord_ptr + coord_row_offset, mask=coord_row_offset < coord_numel) y = tl.load(coord_ptr + coord_row_offset + 1, mask=coord_row_offset + 1 < coord_numel) z = tl.load(coord_ptr + coord_row_offset + 2, mask=coord_row_offset + 2 < coord_numel) output_striding = tl.arange(0, block_size) * output_stride output_row_offset = (output_striding + block_size * output_stride * block_id + col_offset) g_0 = tl.load(sph_grad_ptr + output_row_offset, mask=output_row_offset < output_numel) g_1 = tl.load(sph_grad_ptr + output_row_offset + 1, mask= output_row_offset + 1 < output_numel) g_2 = tl.load(sph_grad_ptr + output_row_offset + 2, mask= output_row_offset + 2 < output_numel) g_3 = tl.load(sph_grad_ptr + output_row_offset + 3, mask= output_row_offset + 3 < output_numel) g_4 = tl.load(sph_grad_ptr + output_row_offset + 4, mask= output_row_offset + 4 < output_numel) g_5 = tl.load(sph_grad_ptr + output_row_offset + 5, mask= output_row_offset + 5 < output_numel) g_6 = tl.load(sph_grad_ptr + output_row_offset + 6, mask= output_row_offset + 6 < output_numel) g_7 = tl.load(sph_grad_ptr + output_row_offset + 7, mask= output_row_offset + 7 < output_numel) g_8 = tl.load(sph_grad_ptr + output_row_offset + 8, mask= output_row_offset + 8 < output_numel) g_9 = tl.load(sph_grad_ptr + output_row_offset + 9, mask= output_row_offset + 9 < output_numel) g_10 = tl.load(sph_grad_ptr + output_row_offset + 10, mask= output_row_offset + 10 < output_numel) g_11 = tl.load(sph_grad_ptr + output_row_offset + 11, mask= output_row_offset + 11 < output_numel) g_12 = tl.load(sph_grad_ptr + output_row_offset + 12, mask= output_row_offset + 12 < output_numel) g_13 = tl.load(sph_grad_ptr + output_row_offset + 13, mask= output_row_offset + 13 < output_numel) g_14 = tl.load(sph_grad_ptr + output_row_offset + 14, mask= output_row_offset + 14 < output_numel) g_15 = tl.load(sph_grad_ptr + output_row_offset + 15, mask= output_row_offset + 15 < output_numel) g_16 = tl.load(sph_grad_ptr + output_row_offset + 16, mask= output_row_offset + 16 < output_numel) g_17 = tl.load(sph_grad_ptr + output_row_offset + 17, mask= output_row_offset + 17 < output_numel) g_18 = tl.load(sph_grad_ptr + output_row_offset + 18, mask= output_row_offset + 18 < output_numel) g_19 = tl.load(sph_grad_ptr + output_row_offset + 19, mask= output_row_offset + 19 < output_numel) g_20 = tl.load(sph_grad_ptr + output_row_offset + 20, mask= output_row_offset + 20 < output_numel) CONST000 = 2.0 CONST002 = 4.0 CONST003 = 4.82870805793735 CONST004 = 6.0 CONST005 = 4.9743298563255 CONST006 = 8.0 CONST007 = 4.9743298563255 CONST008 = 10.5521471197994 CONST009 = 3.0 CONST010 = 5.0 CONST011 = 7.0 CONST012 = 13.264879616868 CONST014 = 12.1657520803952 CONST015 = 16.7271353825295 CONST016 = -2030.35546709287 CONST017 = 19.3148322317494 CONST018 = -6131.53904851919 CONST019 = 22.862985426232 CONST020 = 23.213539329519 CONST021 = 24.6216766128653 CONST022 = 17.5869118663323 CONST024 = 28.9722483476241 CONST025 = 33.9852909359329 CONST026 = 33.9852909359329 CONST027 = 35.5238206489124 CONST028 = 6180.7463141598 CONST029 = 38.6296644634988 CONST030 = 39.794638850604 CONST031 = 38.6296644634988 CONST032 = -2007.25624590353 CONST033 = -2007.25624590353 CONST034 = 45.8257569495584 CONST035 = 45.725970852464 CONST037 = 56.3871618715269 CONST038 = 56.2781179722634 CONST039 = -1989.33395633909 CONST040 = -1989.33395633909 CONST041 = 59.691958275906 CONST042 = 66.9085415301178 CONST043 = 69.640617988557 CONST044 = -8121.42186837148 CONST045 = 77.2593289269976 CONST046 = 78.6510608948335 CONST047 = -1969.73412902922 CONST048 = 77.3468749368712 CONST049 = -1969.73412902922 CONST050 = -9.65741611587469 CONST051 = 90.1358837481638 CONST053 = 94.9693240781945 CONST055 = 96.5741611587469 CONST057 = 98.486706451461 CONST058 = 100.362812295177 CONST059 = 101.517773354644 CONST060 = 106.571461946737 CONST061 = 106.571461946737 CONST062 = 109.491768723557 CONST063 = 109.491768723557 CONST064 = 112.774323743054 CONST065 = 112.774323743054 CONST067 = 2165.26701586663 CONST070 = 133.817083060236 CONST071 = 139.281235977114 CONST072 = 139.281235977114 CONST073 = 141.5719096107 CONST074 = 142.09528259565 CONST075 = 147.730059677192 CONST076 = 150.544218442765 CONST077 = 150.074981259369 CONST079 = 2202.22970505534 CONST080 = -3939.46825805844 CONST081 = -5968.00186901728 CONST082 = 176.592751833137 CONST083 = 176.178376404427 CONST085 = 185.708314636152 CONST087 = 196.973412902922 CONST089 = 225.548647486108 CONST090 = 225.548647486108 CONST091 = 4330.53403173327 CONST093 = 244.831037842559 CONST094 = -1804.38917988886 CONST095 = -1804.38917988886 CONST097 = 2317.77986780993 CONST098 = 278.562471954228 CONST100 = 284.190565191299 CONST101 = -1761.78376404427 CONST103 = -9946.66978169547 CONST104 = 9.948659712651 CONST108 = -7878.93651611688 CONST111 = 338.322971229162 CONST112 = 360.877835977772 CONST114 = -1671.37483172537 CONST116 = 2436.42656051144 CONST119 = 393.946825805844 CONST120 = -1648.19901710928 CONST121 = 401.451249180707 CONST122 = 406.071093418574 CONST123 = 412.04975427732 CONST125 = -1624.2843736743 CONST126 = 426.285847786949 CONST127 = 426.285847786948 CONST128 = 2486.66744542387 CONST130 = 451.097294972216 CONST131 = 451.097294972216 CONST132 = 451.097294972215 CONST133 = 6606.68911516602 CONST134 = 6606.68911516602 CONST135 = -1575.78730322338 CONST136 = -1575.78730322338 CONST137 = -3608.77835977772 CONST139 = -1545.18657853995 CONST140 = -1545.18657853995 CONST142 = 535.268332240943 CONST143 = 4635.55973561985 CONST144 = 541.428124558099 CONST145 = -3545.5214322526 CONST146 = 557.124943908456 CONST147 = -3523.56752808854 CONST148 = -5571.24943908456 CONST151 = 15.7883647328499 CONST153 = 2642.67564606641 CONST154 = 2642.67564606641 CONST155 = 2676.34166120471 CONST156 = 629.208487158668 CONST158 = 4727.36190967013 CONST159 = -1392.81235977114 CONST160 = -1390.66792068596 CONST162 = 663.111318779698 CONST163 = -3427.63452979582 CONST164 = -1378.81389032045 CONST165 = 676.645942458323 CONST167 = -1338.17083060236 CONST168 = -1338.17083060236 CONST169 = 721.755671955545 CONST171 = 2785.62471954228 CONST173 = 772.593289269975 CONST175 = 787.893651611688 CONST176 = 787.893651611688 CONST177 = 6.632439808434 CONST178 = 812.142186837148 CONST180 = -1218.21328025572 CONST181 = -1202.92611992591 CONST182 = -1202.92611992591 CONST183 = -3248.56874734859 CONST184 = -3248.56874734859 CONST185 = -5285.35129213281 CONST186 = -1181.84047741753 CONST190 = 2936.30627340712 CONST192 = 2954.60119354383 CONST193 = -1114.24988781691 CONST194 = -16.581099521085 CONST195 = -1101.11485252767 CONST196 = -1081.63060497797 CONST197 = 15.7302121789667 CONST199 = 984.86706451461 CONST202 = -1027.70719569249 CONST203 = -1021.9231747532 CONST204 = -3065.7695242596 CONST205 = -1015.17773354644 CONST206 = 3090.3731570799 CONST207 = -994.666978169547 CONST208 = -984.86706451461 CONST209 = -984.86706451461 CONST210 = -979.324151370235 CONST211 = 1070.53666448189 CONST212 = -979.324151370235 CONST213 = 3151.57460644675 CONST216 = -927.111947123971 CONST217 = -927.11194712397 CONST218 = -5.63871618715269 CONST219 = -2954.60119354383 CONST220 = -902.194589944431 CONST221 = -900.449887556215 CONST222 = -880.891882022136 CONST223 = -880.891882022136 CONST224 = -875.934149788456 CONST226 = -4944.59705132784 CONST228 = 3248.56874734859 CONST229 = -835.687415862684 CONST230 = 1218.21328025572 CONST231 = -824.099508554641 CONST232 = -824.863625092051 CONST233 = -824.863625092051 CONST234 = -812.142186837148 CONST235 = 5352.68332240943 CONST236 = -787.893651611688 CONST237 = -787.893651611688 CONST238 = -772.593289269976 CONST239 = -742.833258544608 CONST240 = -2785.62471954228 CONST241 = -734.07656835178 CONST242 = 1321.3378230332 CONST243 = 1321.3378230332 CONST244 = -706.371007332549 CONST245 = -696.40617988557 CONST246 = 1353.29188491665 CONST247 = -675.337415667161 CONST248 = -675.337415667161 CONST250 = 3427.63452979582 CONST251 = -669.085415301178 CONST252 = -669.085415301178 CONST253 = -669.085415301178 CONST255 = -663.111318779698 CONST256 = -2707.14062279049 CONST258 = 1392.81235977114 CONST259 = 1412.7420146651 CONST260 = -4727.36190967013 CONST261 = -2676.34166120471 CONST262 = -618.07463141598 CONST263 = -611.735236846792 CONST264 = -611.735236846792 CONST265 = 1443.51134391109 CONST266 = -590.920238708766 CONST267 = -10828.562491162 CONST268 = -580.101562026534 CONST269 = -2626.31217203896 CONST272 = 5571.24943908456 CONST273 = -12.8765548211663 CONST274 = -557.124943908456 CONST275 = -557.124943908456 CONST277 = -541.428124558099 CONST278 = -6685.49932690147 CONST279 = 7664.42381064899 CONST280 = -525.262434407792 CONST281 = 1532.8847621298 CONST283 = -497.333489084773 CONST284 = -497.333489084773 CONST285 = -492.433532257305 CONST286 = 1575.78730322338 CONST287 = 1575.78730322338 CONST288 = -463.555973561985 CONST289 = -450.224943778107 CONST290 = -450.224943778107 CONST291 = -450.224943778108 CONST292 = -437.967074894228 CONST293 = -2472.29852566392 CONST294 = 1624.2843736743 CONST295 = -2472.29852566392 CONST296 = -406.071093418574 CONST297 = -393.946825805844 CONST298 = -393.946825805844 CONST299 = -2436.42656051144 CONST300 = -386.296644634988 CONST301 = -386.296644634988 CONST302 = -4456.99955126765 CONST303 = -337.668707833581 CONST304 = -337.668707833581 CONST305 = -331.555659389849 CONST306 = -331.555659389849 CONST307 = -2363.68095483506 CONST309 = -309.03731570799 CONST310 = -4404.45941011068 CONST311 = -309.03731570799 CONST312 = -305.867618423396 CONST313 = -305.867618423396 CONST314 = -305.867618423396 CONST315 = -300.731529981477 CONST316 = 9946.66978169547 CONST318 = -290.050781013267 CONST319 = -284.190565191299 CONST320 = -278.562471954228 CONST321 = -278.562471954228 CONST322 = -2317.77986780993 CONST323 = -10505.2486881558 CONST324 = -251.683394863467 CONST325 = -251.683394863467 CONST326 = -246.216766128653 CONST327 = -244.831037842559 CONST328 = -2285.08968653055 CONST329 = -2285.08968653055 CONST330 = 3862.96644634988 CONST331 = -223.028471767059 CONST332 = -220.222970505534 CONST333 = -206.215906273013 CONST334 = -203.035546709287 CONST335 = -196.973412902922 CONST336 = -196.973412902922 CONST337 = -182.903883409856 CONST338 = -2228.49977563382 CONST340 = 16.4144510752435 CONST341 = 3939.46825805844 CONST342 = 3939.46825805844 CONST343 = -154.518657853995 CONST344 = -154.518657853995 CONST345 = -150.074981259369 CONST346 = -147.730059677191 CONST347 = -146.815313670356 CONST348 = -142.09528259565 CONST349 = -131.315608601948 CONST350 = -131.315608601948 CONST351 = -130.52285145597 CONST352 = -125.841697431734 CONST353 = -125.841697431734 CONST354 = -112.556235944527 CONST355 = -103.107953136506 CONST356 = -101.517773354644 CONST357 = 1949.9373036796 CONST358 = -98.486706451461 CONST359 = -98.486706451461 CONST360 = -2141.07332896377 CONST361 = -2141.07332896377 CONST362 = -92.854157318076 CONST363 = -88.2963759165686 CONST366 = -77.3468749368713 CONST367 = 8121.42186837148 CONST369 = -67.6645942458323 CONST372 = -59.691958275906 CONST373 = -49.2433532257305 CONST374 = -49.2433532257305 CONST375 = -45.1097294972216 CONST376 = -45.1097294972216 CONST377 = -42.2085884791976 CONST378 = -27.2034486491732 CONST379 = -24.6216766128653 CONST380 = -22.862985426232 CONST381 = -19.7354559160624 CONST383 = -17.5869118663323 CONST384 = -16.4144510752435 CONST385 = -16.0956935264578 CONST386 = -14.5025390506634 CONST388 = -16.581099521085 CONST389 = -15.7883647328499 CONST390 = -14.0695294930659 CONST391 = -11.2774323743054 CONST392 = -11.2774323743054 CONST393 = -13.264879616868 CONST394 = -6.632439808434 CONST395 = -5.63871618715269 CONST396 = -4.82870805793735 CONST397 = -3.21913870529156 CONST398 = -11.2774323743054 VAR05 = x * x * x * x * x VAR06 = x * x * x * x VAR07 = x * x * x VAR08 = x * x VAR01 = VAR05 * VAR06 VAR02 = VAR06 * VAR06 VAR03 = VAR06 * VAR07 VAR04 = VAR07 * VAR07 VAR14 = y * y * y * y * y VAR15 = y * y * y * y VAR16 = y * y * y VAR17 = y * y VAR10 = VAR14 * VAR15 VAR11 = VAR15 * VAR15 VAR12 = VAR15 * VAR16 VAR13 = VAR16 * VAR16 VAR23 = z * z * z * z * z VAR24 = z * z * z * z VAR25 = z * z * z VAR26 = z * z VAR19 = VAR23 * VAR24 VAR20 = VAR24 * VAR24 VAR21 = VAR24 * VAR25 VAR22 = VAR25 * VAR25 g_x = tl.load(coord_grad_ptr + coord_row_offset, mask=coord_row_offset < coord_numel) g_y = tl.load(coord_grad_ptr + coord_row_offset + 1, mask= coord_row_offset + 1 < coord_numel) g_z = tl.load(coord_grad_ptr + coord_row_offset + 2, mask= coord_row_offset + 2 < coord_numel) g_x += g_0 * (CONST093 * VAR02 * z + CONST210 * VAR08 * VAR21 + CONST250 * VAR06 * VAR23 + CONST328 * VAR04 * VAR25 - CONST378 * VAR19 ) + g_1 * y * (CONST062 * VAR20 + CONST063 * VAR02 + CONST204 * VAR04 * VAR26 + CONST204 * VAR08 * VAR22 + CONST279 * VAR06 * VAR24 ) + g_10 * (CONST000 * x * (CONST089 * VAR17 * VAR22 + CONST169 * VAR13 * VAR26 + CONST220 * VAR15 * VAR24 + CONST355 * VAR11 + CONST395 * VAR20) + CONST002 * VAR07 * (CONST111 * VAR17 * VAR24 + CONST112 * VAR13 + CONST220 * VAR15 * VAR26 + CONST392 * VAR22) + CONST004 * VAR05 * (CONST090 * VAR17 * VAR26 + CONST315 * VAR15 + CONST392 * VAR24) + CONST006 * VAR03 * (CONST037 * VAR17 + CONST218 * VAR26) + CONST391 * VAR01) + g_11 * (CONST070 * VAR21 * x * y + VAR23 * (CONST121 * VAR07 * y + CONST168 * VAR16 * x) + VAR25 * ( CONST121 * VAR05 * y + CONST261 * VAR07 * VAR16 - CONST361 * VAR14 * x) + z * (CONST070 * VAR03 * y + CONST167 * VAR05 * VAR16 + CONST263 * VAR12 * x - CONST361 * VAR07 * VAR14)) + g_12 * ( CONST000 * x * (CONST003 * VAR20 - CONST301 * VAR15 * VAR24 + CONST343 * VAR17 * VAR22 + CONST363 * VAR11) + CONST002 * VAR07 * ( CONST123 * VAR13 + CONST300 * VAR15 * VAR26 - CONST397 * VAR22) + CONST004 * VAR05 * (CONST301 * VAR15 - CONST344 * VAR17 * VAR26 + CONST397 * VAR24) + CONST006 * VAR03 * (CONST045 * VAR17 + CONST396 * VAR26) + CONST385 * VAR01) + g_13 * (CONST221 * VAR12 * x * z + VAR14 * (-CONST260 * VAR07 * z + CONST286 * VAR25 * x) + VAR16 * ( CONST080 * VAR07 * VAR25 + CONST145 * VAR05 * z + CONST297 * VAR23 * x) + y * (-CONST237 * VAR05 * VAR25 - CONST297 * VAR07 * VAR23 - CONST298 * VAR03 * z)) + g_14 * (CONST000 * x * (CONST005 * VAR20 - CONST159 * VAR15 * VAR24 + CONST193 * VAR13 * VAR26 + CONST320 * VAR17 * VAR22) + CONST002 * VAR07 * (CONST020 * VAR22 + CONST085 * VAR13 + CONST245 * VAR17 * VAR24 + CONST258 * VAR15 * VAR26) + CONST004 * VAR05 * (CONST020 * VAR24 + CONST320 * VAR15 + CONST320 * VAR17 * VAR26) + CONST006 * VAR03 * (CONST007 * VAR26 + CONST043 * VAR17) + CONST388 * VAR01) + g_15 * (VAR14 * (-CONST147 * VAR07 * z + CONST147 * VAR25 * x) + VAR16 * (CONST153 * VAR23 * x + CONST190 * VAR07 * VAR25 + CONST310 * VAR05 * z) + y * (CONST156 * VAR03 * z + CONST222 * VAR07 * VAR23 + CONST324 * VAR21 * x)) + g_16 * ( CONST000 * x * (CONST047 * VAR15 * VAR24 + CONST175 * VAR17 * VAR22 + CONST380 * VAR20) + CONST002 * VAR07 * (-CONST047 * VAR15 * VAR26 + CONST379 * VAR22) + CONST004 * VAR05 * (CONST021 * VAR24 + CONST236 * VAR17 * VAR26 + CONST349 * VAR15) + CONST006 * VAR03 * (CONST019 * VAR26 + CONST038 * VAR17) + CONST383 * VAR01) + g_17 * (VAR16 * ( CONST183 * VAR23 * x + CONST184 * VAR05 * z - CONST267 * VAR07 * VAR25) + y * (CONST178 * VAR03 * z + CONST234 * VAR07 * VAR23 - CONST268 * VAR21 * x + CONST299 * VAR05 * VAR25)) + g_18 * ( CONST060 * VAR20 * x + CONST126 * VAR03 * VAR26 + CONST283 * VAR05 * VAR24 + CONST305 * VAR07 * VAR22 + CONST381 * VAR01 + VAR17 * ( CONST039 * VAR22 * x + CONST081 * VAR05 * VAR26 + CONST316 * VAR07 * VAR24 - CONST319 * VAR03)) + g_19 * y * (CONST018 * VAR05 * VAR25 - CONST018 * VAR07 * VAR23 - CONST224 * VAR03 * z + CONST224 * VAR21 * x ) + g_2 * (CONST074 * VAR02 * z + CONST100 * VAR08 * VAR21 + CONST255 * VAR04 * VAR25 + CONST389 * VAR19 + VAR17 * (CONST040 * VAR04 * z + CONST081 * VAR08 * VAR23 - CONST103 * VAR06 * VAR25 - CONST319 * VAR21)) + g_20 * (CONST163 * VAR05 * VAR24 - CONST212 * VAR03 * VAR26 + CONST327 * VAR20 * x - CONST329 * VAR07 * VAR22 + CONST378 * VAR01) + g_3 * (VAR16 * (CONST044 * VAR08 * VAR24 + CONST144 * VAR22 + CONST277 * VAR04 + CONST367 * VAR06 * VAR26) + y * (CONST016 * VAR04 * VAR26 - CONST205 * VAR06 * VAR24 + CONST230 * VAR08 * VAR22 - CONST351 * VAR02 + CONST356 * VAR20)) + g_4 * ( CONST008 * VAR19 + CONST009 * VAR08 * (CONST175 * VAR17 * VAR23 + CONST269 * VAR15 * VAR25 + CONST390 * VAR21) + CONST010 * VAR06 * ( CONST175 * VAR15 * z + CONST176 * VAR17 * VAR25 + CONST373 * VAR23) + CONST011 * VAR04 * (CONST303 * VAR17 * z + CONST390 * VAR25) + CONST053 * VAR02 * z + CONST175 * VAR15 * VAR23 + CONST304 * VAR17 * VAR21) + g_5 * (VAR14 * (CONST185 * VAR08 * VAR26 - CONST222 * VAR06 - CONST223 * VAR24) + VAR16 * (CONST079 * VAR08 * VAR24 + CONST133 * VAR06 * VAR26 + CONST202 * VAR04 + CONST241 * VAR22) + y * (CONST046 * VAR20 + CONST073 * VAR02 + CONST195 * VAR06 * VAR24 + CONST222 * VAR04 * VAR26)) + g_6 * (CONST009 * VAR08 * (CONST098 * VAR17 * VAR23 + CONST239 * VAR13 * z + CONST393 * VAR21) + CONST010 * VAR06 * (-CONST193 * VAR15 * z + CONST320 * VAR17 * VAR25) + CONST011 * VAR04 * (CONST012 * VAR25 + CONST321 * VAR17 * z) + CONST041 * VAR02 * z + CONST098 * VAR17 * VAR21 + CONST193 * VAR15 * VAR23 - CONST239 * VAR13 * VAR25 + CONST394 * VAR19) + g_7 * (VAR12 * (CONST289 * VAR08 - CONST290 * VAR26) + VAR14 * (-CONST049 * VAR06 + CONST186 * VAR24 + CONST307 * VAR08 * VAR26) + VAR16 * (CONST164 * VAR04 + CONST192 * VAR08 * VAR24 + CONST199 * VAR06 * VAR26 - CONST266 * VAR22) + y * (CONST075 * VAR02 + CONST285 * VAR06 * VAR24 + CONST297 * VAR08 * VAR22 + CONST374 * VAR20)) + g_8 * ( CONST009 * VAR08 * (-CONST140 * VAR15 * VAR25 + CONST231 * VAR13 * z - CONST273 * VAR21 + CONST288 * VAR17 * VAR23) + CONST010 * VAR06 * (CONST017 * VAR23 + CONST173 * VAR15 * z + CONST288 * VAR17 * VAR25 ) + CONST011 * VAR04 * (-CONST273 * VAR25 + CONST344 * VAR17 * z) + CONST024 * VAR02 * z + CONST082 * VAR11 * z + CONST173 * VAR15 * VAR23 + CONST231 * VAR13 * VAR25 + CONST344 * VAR17 * VAR21 - CONST397 * VAR19) + g_9 * (CONST009 * VAR08 * (CONST042 * VAR22 * y + CONST211 * VAR14 * VAR26 + CONST251 * VAR16 * VAR24 + CONST312 * VAR12) + CONST010 * VAR06 * (CONST058 * VAR24 * y + CONST142 * VAR14 + CONST252 * VAR16 * VAR26) + CONST011 * VAR04 * (CONST042 * VAR26 * y + CONST331 * VAR16) + CONST015 * VAR20 * y + CONST025 * VAR10 + CONST076 * VAR02 * y + CONST142 * VAR14 * VAR24 + CONST312 * VAR12 * VAR26 + CONST331 * VAR16 * VAR22) g_y += CONST000 * g_18 * y * (CONST027 * VAR02 + CONST027 * VAR20 + CONST128 * VAR06 * VAR24 + CONST207 * VAR04 * VAR26 + CONST207 * VAR08 * VAR22) + CONST000 * g_2 * y * (-CONST039 * VAR05 * VAR25 + CONST039 * VAR07 * VAR23 + CONST319 * VAR03 * z - CONST319 * VAR21 * x ) + g_1 * (CONST014 * VAR01 + CONST062 * VAR20 * x + CONST203 * VAR07 * VAR22 + CONST281 * VAR05 * VAR24 + CONST292 * VAR03 * VAR26 ) + g_10 * (CONST034 * VAR10 + CONST064 * VAR20 * y + CONST065 * VAR02 * y + CONST067 * VAR14 * VAR24 + CONST182 * VAR16 * VAR22 + CONST233 * VAR12 * VAR26 + VAR04 * (CONST131 * VAR26 * y + CONST181 * VAR16) + VAR06 * (CONST067 * VAR14 + CONST137 * VAR16 * VAR26 + CONST165 * VAR24 * y) + VAR08 * (CONST091 * VAR14 * VAR26 + CONST130 * VAR22 * y + CONST137 * VAR16 * VAR24 + CONST232 * VAR12) ) + g_11 * (CONST015 * VAR19 + VAR21 * (CONST042 * VAR08 + CONST253 * VAR17) + VAR23 * (CONST033 * VAR08 * VAR17 + CONST058 * VAR06 + CONST155 * VAR15) + VAR25 * (CONST032 * VAR06 * VAR17 + CONST042 * VAR04 + CONST235 * VAR08 * VAR15 + CONST361 * VAR13) + z * ( CONST015 * VAR02 + CONST155 * VAR06 * VAR15 + CONST253 * VAR04 * VAR17 - CONST312 * VAR11 + CONST360 * VAR08 * VAR13)) + g_12 * (- CONST140 * VAR16 * VAR22 - CONST244 * VAR12 * VAR26 + CONST293 * VAR14 * VAR24 + CONST343 * VAR20 * y - CONST344 * VAR02 * y + VAR04 * (CONST140 * VAR16 - CONST311 * VAR26 * y) + VAR06 * (CONST139 * VAR16 * VAR26 - CONST295 * VAR14) + VAR08 * (-CONST140 * VAR16 * VAR24 + CONST244 * VAR12 + CONST309 * VAR22 * y)) + g_13 * ( CONST009 * VAR17 * (CONST208 * VAR06 * VAR25 + CONST266 * VAR04 * z + CONST335 * VAR08 * VAR23 - CONST336 * VAR21) + CONST010 * VAR15 * ( CONST176 * VAR08 * VAR25 - CONST186 * VAR06 * z + CONST298 * VAR23) + CONST011 * VAR13 * (CONST077 * VAR25 + CONST290 * VAR08 * z) - CONST350 * VAR04 * VAR25 - CONST358 * VAR06 * VAR23 - CONST374 * VAR02 * z + CONST384 * VAR19) + g_14 * (CONST071 * VAR02 * y + CONST072 * VAR20 * y - CONST193 * VAR14 * VAR24 + CONST193 * VAR16 * VAR22 + VAR04 * (CONST193 * VAR16 + CONST274 * VAR26 * y) + VAR06 * (CONST159 * VAR24 * y - CONST193 * VAR14 + CONST272 * VAR16 * VAR26 ) + VAR08 * (-CONST148 * VAR16 * VAR24 + CONST274 * VAR22 * y + CONST278 * VAR14 * VAR26)) + g_15 * (CONST009 * VAR17 * (CONST241 * VAR04 * z - CONST241 * VAR06 * VAR25 + CONST242 * VAR08 * VAR23 + CONST347 * VAR21) + CONST010 * VAR15 * (CONST083 * VAR23 + CONST101 * VAR08 * VAR25 - CONST223 * VAR06 * z) + CONST046 * VAR02 * z + CONST197 * VAR19 + CONST332 * VAR06 * VAR23 + CONST352 * VAR08 * VAR21 ) + g_16 * (-CONST108 * VAR06 * VAR16 * VAR26 - CONST280 * VAR16 * VAR22 - CONST354 * VAR02 * y + CONST354 * VAR20 * y + VAR04 * ( CONST135 * VAR26 * y + CONST280 * VAR16) + VAR08 * (CONST108 * VAR16 * VAR24 + CONST287 * VAR22 * y)) + g_17 * (CONST009 * VAR17 * (CONST048 * VAR21 + CONST125 * VAR08 * VAR23 - CONST256 * VAR06 * VAR25 + CONST277 * VAR04 * z) + CONST059 * VAR02 * z + CONST296 * VAR04 * VAR25 - CONST318 * VAR08 * VAR21 + CONST334 * VAR06 * VAR23 + CONST386 * VAR19) + g_19 * (CONST014 * VAR19 + CONST062 * VAR02 * z + CONST203 * VAR04 * VAR25 + CONST281 * VAR06 * VAR23 + CONST292 * VAR08 * VAR21) + g_3 * (CONST009 * VAR17 * (CONST144 * VAR22 * x + CONST256 * VAR07 * VAR24 + CONST294 * VAR05 * VAR26 + CONST366 * VAR03) + CONST122 * VAR07 * VAR22 + CONST318 * VAR03 * VAR26 - CONST334 * VAR05 * VAR24 + CONST356 * VAR20 * x - CONST386 * VAR01 ) + g_4 * (CONST248 * VAR03 * y * z + VAR05 * (CONST213 * VAR16 * z + CONST286 * VAR25 * y) + VAR07 * (CONST287 * VAR23 * y + CONST323 * VAR16 * VAR25) + x * (CONST213 * VAR16 * VAR23 + CONST247 * VAR21 * y) ) + g_5 * (CONST009 * VAR17 * (-CONST241 * VAR07 * VAR24 + CONST241 * VAR22 * x + CONST243 * VAR05 * VAR26 + CONST347 * VAR03) + CONST010 * VAR15 * (CONST083 * VAR05 + CONST101 * VAR07 * VAR26 - CONST223 * VAR24 * x) + CONST046 * VAR20 * x + CONST197 * VAR01 + CONST332 * VAR05 * VAR24 + CONST353 * VAR03 * VAR26) + g_6 * (CONST275 * VAR03 * y * z + VAR05 * (CONST274 * VAR25 * y - CONST302 * VAR16 * z) + VAR07 * (CONST146 * VAR23 * y + CONST302 * VAR14 * z) + x * ( CONST146 * VAR21 * y - CONST302 * VAR14 * VAR25 + CONST302 * VAR16 * VAR23)) + g_7 * (CONST009 * VAR17 * (CONST087 * VAR05 * VAR26 - CONST209 * VAR07 * VAR24 - CONST266 * VAR22 * x + CONST336 * VAR03) + CONST010 * VAR15 * (CONST186 * VAR24 * x + CONST237 * VAR07 * VAR26 - CONST298 * VAR05) + CONST011 * VAR13 * (-CONST290 * VAR26 * x + CONST345 * VAR07) + CONST340 * VAR01 + CONST350 * VAR07 * VAR22 + CONST358 * VAR05 * VAR24 + CONST374 * VAR20 * x) + g_8 * (CONST311 * VAR03 * y * z + VAR05 * (CONST206 * VAR16 * z + CONST216 * VAR25 * y) + VAR07 * (CONST028 * VAR16 * VAR25 + CONST216 * VAR23 * y + CONST226 * VAR14 * z) + x * (CONST206 * VAR16 * VAR23 + CONST226 * VAR14 * VAR25 + CONST259 * VAR12 * z + CONST311 * VAR21 * y)) + g_9 * ( CONST015 * VAR01 + VAR03 * (CONST042 * VAR26 + CONST253 * VAR17) + VAR05 * (CONST033 * VAR17 * VAR26 + CONST058 * VAR24 + CONST155 * VAR15) + VAR07 * (CONST032 * VAR17 * VAR24 + CONST042 * VAR22 + CONST235 * VAR15 * VAR26 + CONST361 * VAR13) + x * (CONST015 * VAR20 + CONST155 * VAR15 * VAR24 + CONST253 * VAR17 * VAR22 - CONST314 * VAR11 + CONST361 * VAR13 * VAR26)) g_z += g_0 * (CONST093 * VAR20 * x + CONST210 * VAR03 * VAR26 + CONST250 * VAR05 * VAR24 + CONST328 * VAR07 * VAR22 - CONST378 * VAR01 ) + g_1 * y * (-CONST018 * VAR05 * VAR25 + CONST018 * VAR07 * VAR23 + CONST224 * VAR03 * z - CONST224 * VAR21 * x) + g_10 * (CONST095 * VAR15 * VAR23 + CONST132 * VAR17 * VAR21 + CONST265 * VAR13 * VAR25 + CONST333 * VAR11 * z + CONST391 * VAR19 + CONST398 * VAR02 * z + VAR04 * (CONST131 * VAR17 * z + CONST376 * VAR25) + VAR06 * ( CONST094 * VAR15 * z + CONST246 * VAR17 * VAR25 + CONST369 * VAR23) + VAR08 * (CONST137 * VAR15 * VAR25 + CONST246 * VAR17 * VAR23 + CONST265 * VAR13 * z + CONST375 * VAR21)) + g_11 * (CONST009 * VAR26 * (CONST042 * VAR04 * y + CONST211 * VAR08 * VAR14 + CONST251 * VAR06 * VAR16 + CONST313 * VAR12) + CONST010 * VAR24 * (CONST058 * VAR06 * y + CONST142 * VAR14 + CONST252 * VAR08 * VAR16) + CONST011 * VAR22 * (CONST042 * VAR08 * y + CONST331 * VAR16) + CONST015 * VAR02 * y + CONST026 * VAR10 + CONST076 * VAR20 * y + CONST142 * VAR06 * VAR14 + CONST314 * VAR08 * VAR12 + CONST331 * VAR04 * VAR16 ) + g_12 * (CONST050 * VAR02 * z + CONST082 * VAR11 * z + CONST097 * VAR15 * VAR23 + CONST120 * VAR13 * VAR25 + CONST262 * VAR17 * VAR21 - CONST385 * VAR19 + VAR04 * (CONST273 * VAR25 - CONST311 * VAR17 * z ) + VAR06 * (CONST017 * VAR23 + CONST238 * VAR15 * z) + VAR08 * ( CONST029 * VAR21 - CONST140 * VAR15 * VAR25 + CONST217 * VAR17 * VAR23) ) + g_13 * (VAR12 * (CONST290 * VAR08 - CONST290 * VAR26) + VAR14 * (CONST049 * VAR24 - CONST186 * VAR06 - CONST307 * VAR08 * VAR26) + VAR16 * (-CONST164 * VAR22 + CONST209 * VAR08 * VAR24 + CONST219 * VAR06 * VAR26 + CONST266 * VAR04) + y * (-CONST285 * VAR06 * VAR24 - CONST297 * VAR04 * VAR26 + CONST346 * VAR20 - CONST374 * VAR02) ) + g_14 * (CONST104 * VAR02 * z + CONST114 * VAR15 * VAR23 + CONST146 * VAR17 * VAR21 + CONST194 * VAR19 - CONST239 * VAR13 * VAR25 + VAR04 * (CONST274 * VAR17 * z - CONST362 * VAR25) + VAR06 * (CONST072 * VAR23 + CONST171 * VAR15 * z + CONST240 * VAR17 * VAR25 ) + VAR08 * (CONST030 * VAR21 + CONST114 * VAR17 * VAR23 - CONST148 * VAR15 * VAR25 + CONST338 * VAR13 * z)) + g_15 * (VAR14 * (CONST185 * VAR08 * VAR26 - CONST222 * VAR24 - CONST223 * VAR06) + VAR16 * ( CONST079 * VAR06 * VAR26 + CONST134 * VAR08 * VAR24 + CONST202 * VAR22 + CONST241 * VAR04) + y * (CONST046 * VAR02 + CONST073 * VAR20 + CONST195 * VAR06 * VAR24 + CONST223 * VAR08 * VAR22) ) + g_16 * (CONST022 * VAR19 + CONST035 * VAR02 * z + CONST175 * VAR15 * VAR23 + CONST291 * VAR17 * VAR21 + VAR04 * (CONST057 * VAR25 + CONST135 * VAR17 * z) + VAR06 * (CONST341 * VAR15 * z + CONST346 * VAR23) + VAR08 * (CONST108 * VAR15 * VAR25 + CONST158 * VAR17 * VAR23 + CONST337 * VAR21)) + g_17 * (VAR16 * (-CONST044 * VAR06 * VAR26 + CONST044 * VAR08 * VAR24 + CONST144 * VAR22 + CONST277 * VAR04) + y * (-CONST016 * VAR08 * VAR22 + CONST059 * VAR02 + CONST180 * VAR04 * VAR26 + CONST205 * VAR06 * VAR24 + CONST351 * VAR20)) + g_18 * (CONST061 * VAR02 * z + CONST127 * VAR08 * VAR21 + CONST284 * VAR06 * VAR23 + CONST306 * VAR04 * VAR25 + CONST381 * VAR19 + VAR17 * (CONST039 * VAR04 * z + CONST081 * VAR08 * VAR23 + CONST316 * VAR06 * VAR25 - CONST319 * VAR21)) + g_19 * y * ( CONST062 * VAR02 + CONST063 * VAR20 + CONST204 * VAR04 * VAR26 + CONST204 * VAR08 * VAR22 + CONST279 * VAR06 * VAR24) + g_2 * ( CONST151 * VAR01 + CONST162 * VAR07 * VAR22 + CONST319 * VAR03 * VAR26 + CONST348 * VAR20 * x + VAR17 * (-CONST040 * VAR22 * x - CONST081 * VAR05 * VAR26 + CONST103 * VAR07 * VAR24 + CONST319 * VAR03) ) + g_20 * (-CONST163 * VAR06 * VAR23 + CONST212 * VAR08 * VAR21 - CONST327 * VAR02 * z + CONST329 * VAR04 * VAR25 - CONST378 * VAR19 ) + g_3 * (VAR16 * (-CONST183 * VAR23 * x + CONST228 * VAR05 * z + CONST267 * VAR07 * VAR25) + y * (CONST116 * VAR07 * VAR23 - CONST234 * VAR05 * VAR25 + CONST234 * VAR21 * x + CONST268 * VAR03 * z) ) + g_4 * (CONST008 * VAR01 + VAR03 * (CONST303 * VAR17 + CONST377 * VAR26) + VAR05 * (CONST175 * VAR15 - CONST307 * VAR17 * VAR26 + CONST326 * VAR24) + VAR07 * (CONST108 * VAR15 * VAR26 + CONST341 * VAR17 * VAR24 + CONST359 * VAR22) + x * (CONST053 * VAR20 + CONST307 * VAR17 * VAR22 + CONST341 * VAR15 * VAR24)) + g_5 * ( VAR14 * (CONST147 * VAR07 * z - CONST147 * VAR25 * x) + VAR16 * ( CONST154 * VAR05 * z + CONST190 * VAR07 * VAR25 + CONST310 * VAR23 * x) + y * (CONST156 * VAR21 * x + CONST222 * VAR05 * VAR25 + CONST325 * VAR03 * z)) + g_6 * (CONST177 * VAR01 + VAR03 * ( CONST030 * VAR26 + CONST321 * VAR17) + VAR05 * (-CONST193 * VAR15 + CONST229 * VAR17 * VAR26) + VAR07 * (CONST239 * VAR13 + CONST258 * VAR17 * VAR24 + CONST362 * VAR22) + x * (CONST148 * VAR15 * VAR24 - CONST338 * VAR13 * VAR26 + CONST357 * VAR17 * VAR22 + CONST372 * VAR20) ) + g_7 * (-CONST221 * VAR12 * x * z + VAR14 * (CONST136 * VAR07 * z + CONST260 * VAR25 * x) + VAR16 * (CONST119 * VAR05 * z - CONST145 * VAR23 * x + CONST342 * VAR07 * VAR25) + y * (CONST237 * VAR07 * VAR23 + CONST297 * VAR05 * VAR25 + CONST298 * VAR21 * x) ) + g_8 * (-CONST397 * VAR01 + VAR03 * (CONST031 * VAR26 + CONST344 * VAR17) + VAR05 * (CONST055 * VAR24 + CONST160 * VAR17 * VAR26 + CONST173 * VAR15) + VAR07 * (CONST051 * VAR22 + CONST143 * VAR15 * VAR26 + CONST231 * VAR13 + CONST322 * VAR17 * VAR24) + x * ( CONST024 * VAR20 + CONST082 * VAR11 + CONST196 * VAR17 * VAR22 + CONST295 * VAR13 * VAR26 + CONST330 * VAR15 * VAR24)) + g_9 * ( CONST070 * VAR03 * y * z + VAR05 * (CONST121 * VAR25 * y + CONST168 * VAR16 * z) + VAR07 * (CONST121 * VAR23 * y + CONST261 * VAR16 * VAR25 - CONST361 * VAR14 * z) + x * (CONST070 * VAR21 * y + CONST167 * VAR16 * VAR23 + CONST264 * VAR12 * z - CONST361 * VAR14 * VAR25)) tl.store(coord_grad_ptr + coord_row_offset, g_x, mask=coord_row_offset < coord_numel) tl.store(coord_grad_ptr + coord_row_offset + 1, g_y, mask= coord_row_offset + 1 < coord_numel) tl.store(coord_grad_ptr + coord_row_offset + 2, g_z, mask= coord_row_offset + 2 < coord_numel)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "Apache" ]
https://github.com/IntelLabs/EquiTriton/blob/1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c/src/equitriton/sph_harm/direct/y_10.py
de16e6fe-5490-4908-ad00-f28cbf3e7e54
dropout.py
dame-cell/Triformer
triformer/dropout.py
0712537d576166b93fa09aa9509b2661b9ed8a68
0
@triton.jit def _seeded_dropout(x_ptr, output_ptr, n_elements, p, seed, BLOCK_SIZE: tl. constexpr): pid = tl.program_id(axis=0) block_start = pid * BLOCK_SIZE * 4 offset = block_start + tl.arange(0, BLOCK_SIZE) r0, r1, r2, r3 = tl.random.rand4x(seed, offset) scale = 1.0 / (1.0 - p) for i in tl.static_range(4): curr_offset = offset + BLOCK_SIZE * i mask = curr_offset < n_elements x = tl.load(x_ptr + curr_offset, mask=mask) r = tl.where(i == 0, r0, tl.where(i == 1, r1, tl.where(i == 2, r2, r3)) ) keep = r > p output = tl.where(keep, x * scale, 0.0) tl.store(output_ptr + curr_offset, output, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "MIT" ]
https://github.com/dame-cell/Triformer/blob/0712537d576166b93fa09aa9509b2661b9ed8a68/triformer/dropout.py
732ba6cd-e311-45e1-a903-5a7a6189d148
fused_kl_div.py
sustcsonglin/flash-linear-attention
fla/modules/fused_kl_div.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.jit def elementwise_mul_kernel(x, g, N: tl.constexpr, B: tl.constexpr): """ This function multiplies each element of the tensor pointed by x with the value pointed by g. The multiplication is performed in-place on the tensor pointed by x. Parameters: x: Pointer to the input tensor. g: Pointer to the gradient output value. N (int): The number of columns in the input tensor. B (int): The block size for Triton operations. """ i_x = tl.program_id(0).to(tl.int64) o_x = i_x * B + tl.arange(0, B) b_g = tl.load(g) b_x = tl.load(x + o_x, mask=o_x < N) tl.store(x + o_x, b_x * b_g, mask=o_x < N)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/modules/fused_kl_div.py
1db7555b-32ef-4cc2-9217-8ecf0ada9c85
cross_entropy_loss_kernels.py
BobMcDear/attorch
attorch/cross_entropy_loss_kernels.py
da06cb6236bb47195e33fe3986ed21c675ed94cc
0
@triton.autotune(configs=warps_kernel_configs(), key=['batch_dim', 'feat_dim']) @triton.heuristics({'BLOCK_SIZE_BATCH': BLOCK_SIZE_BATCH_heuristic, 'BLOCK_SIZE_FEAT': lambda args: next_power_of_2(args['feat_dim'])}) @triton.jit def cross_entropy_loss_backward_kernel(output_grad_pointer, target_pointer, input_pointer, weight_pointer, sum_weights_pointer, input_grad_pointer, batch_dim, feat_dim, input_batch_stride, input_feat_stride, input_grad_batch_stride, input_grad_feat_stride, weighted: tl.constexpr, BLOCK_SIZE_BATCH: tl.constexpr, BLOCK_SIZE_FEAT: tl.constexpr): """ Calculates the input gradient of cross entropy loss. Args: output_grad_pointer: Pointer to the loss's output gradients. The output gradient must be a scalar. target_pointer: Pointer to the target. The target must be of shape [batch_dim]. input_pointer: Pointer to the input. The input must be of shape [batch_dim, feat_dim]. weight_pointer: Pointer to an optional class weight vector. The class weight vector, if provided, must be of shape [feat_dim]. sum_weights_pointer: Pointer to the sum of the class weights if the classes were weighed. The sum of weights must be a scalar. input_grad_pointer: Pointer to a container the input's gradients are written to. The container must be of shape [batch_dim, feat_dim]. batch_dim: Batch dimension. feat_dim: Dimensionality of the features. input_batch_stride: Stride necessary to jump one element along the input's batch dimension. input_feat_stride: Stride necessary to jump one element along the input's feature dimension. input_grad_batch_stride: Stride necessary to jump one element along the input gradient container's batch dimension. input_grad_feat_stride: Stride necessary to jump one element along the input gradient container's feature dimension. weighted: Flag for weighing each class. BLOCK_SIZE_BATCH: Block size across the batch dimension. BLOCK_SIZE_FEAT: Block size across the feature dimension. """ batch_pid = tl.program_id(axis=0) batch_offset = batch_pid * BLOCK_SIZE_BATCH + tl.arange(0, BLOCK_SIZE_BATCH ) feat_offset = tl.arange(0, BLOCK_SIZE_FEAT) batch_mask = batch_offset < batch_dim feat_mask = feat_offset < feat_dim input_pointer += input_batch_stride * batch_offset[:, None ] + input_feat_stride * feat_offset[None, :] input_grad_pointer += input_grad_batch_stride * batch_offset[:, None ] + input_grad_feat_stride * feat_offset[None, :] input = tl.load(input_pointer, mask=batch_mask[:, None] & feat_mask[ None, :], other=-float('inf')).to(tl.float32) input -= tl.max(input, axis=1)[:, None] numerator = tl.exp(input) softmax = numerator / tl.sum(numerator, axis=1)[:, None] output_grad = tl.load(output_grad_pointer).to(tl.float32) target = tl.load(target_pointer + batch_offset, mask=batch_mask) broadcasted_feat_offset = tl.broadcast_to(feat_offset[None, :], ( BLOCK_SIZE_BATCH, BLOCK_SIZE_FEAT)) broadcasted_target = tl.broadcast_to(target[:, None], (BLOCK_SIZE_BATCH, BLOCK_SIZE_FEAT)) input_grad = output_grad * (softmax - (broadcasted_feat_offset == broadcasted_target)) if weighted: weight = tl.load(weight_pointer + target, mask=batch_mask).to(tl. float32) sum_weights = tl.load(sum_weights_pointer) input_grad *= weight[:, None] / sum_weights else: input_grad /= batch_dim tl.store(input_grad_pointer, input_grad, mask=batch_mask[:, None] & feat_mask[None, :])
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Softmax", "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound", "High Throughput", "Batch-Oriented" ] }
[ "MIT" ]
https://github.com/BobMcDear/attorch/blob/da06cb6236bb47195e33fe3986ed21c675ed94cc/attorch/cross_entropy_loss_kernels.py
f3a6e3a3-92be-4174-ade1-4a029fd7be9b
chunk.py
sustcsonglin/flash-linear-attention
fla/ops/retention/chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({'BV': BV}, num_warps=num_warps, num_stages=num_stages) for BV in [32, 64, 128] for num_warps in [2, 4] for num_stages in [2, 3, 4]], key=['BT']) @triton.jit def chunk_retention_bwd_kernel_dqkv(q, k, v, h, do, dh, dq, dk, dv, offsets, indices, scale, B: tl.constexpr, T: tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, NT: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr): i_k, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_b, i_h = i_bh // H, i_bh % H if USE_OFFSETS: i_tg = i_t i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) all = T T = eos - bos NT = tl.cdiv(T, BT) else: NT = tl.cdiv(T, BT) i_tg = i_b * NT + i_t bos, eos = i_b * T, i_b * T + T all = B * T b_b = tl.math.log2(1 - tl.math.exp2(-5 - i_h * 1.0)) o_i = tl.arange(0, BT) d_q, d_k = tl.math.exp2((o_i + 1) * b_b), tl.math.exp2((min(BT, T - i_t * BT) - o_i - 1) * b_b) d_q = (d_q * scale).to(d_q.dtype) m_s = o_i[:, None] >= o_i[None, :] d_s = tl.where(m_s, tl.math.exp2((o_i[:, None] - o_i[None, :]) * b_b), 0 ) * scale if HEAD_FIRST: p_q = tl.make_block_ptr(q + i_bh * T * K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) else: p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (K, T), (1, H * K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_s = tl.dot(b_k, b_q, allow_tf32=False) * tl.trans(d_s) b_dq = tl.zeros([BT, BK], dtype=tl.float32) b_dk = tl.zeros([BT, BK], dtype=tl.float32) b_ds = tl.zeros([BT, BT], dtype=tl.float32) for i_v in range(tl.cdiv(V, BV)): if HEAD_FIRST: p_v = tl.make_block_ptr(v + i_bh * T * V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_do = tl.make_block_ptr(do + i_bh * T * V, (T, V), (V, 1), ( i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_dv = tl.make_block_ptr(dv + (i_k * B * H + i_bh) * T * V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_h = tl.make_block_ptr(h + (i_bh * NT + i_t) * K * V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) p_dh = tl.make_block_ptr(dh + (i_bh * NT + i_t) * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) else: p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_do = tl.make_block_ptr(do + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_dv = tl.make_block_ptr(dv + ((i_k * all + bos) * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_h = tl.make_block_ptr(h + (i_tg * H + i_h) * K * V, (V, K), ( 1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) p_dh = tl.make_block_ptr(dh + (i_tg * H + i_h) * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)) b_h = tl.load(p_h, boundary_check=(0, 1)) b_dh = tl.load(p_dh, boundary_check=(0, 1)) b_ds += tl.dot(b_do, tl.trans(b_v), allow_tf32=False) b_dq += tl.dot(b_do, b_h.to(b_do.dtype), allow_tf32=False) b_dk += tl.dot(b_v, tl.trans(b_dh).to(b_v.dtype), allow_tf32=False) b_dv = tl.dot(b_k, b_dh, allow_tf32=False) * d_k[:, None] + tl.dot(b_s .to(b_q.dtype), b_do, allow_tf32=False) tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1)) b_ds = (b_ds * d_s).to(b_q.dtype) b_dq = b_dq * d_q[:, None] + tl.dot(b_ds, b_k, allow_tf32=False) b_dk = b_dk * d_k[:, None] + tl.trans(tl.dot(b_q, b_ds, allow_tf32=False)) if HEAD_FIRST: p_dq = tl.make_block_ptr(dq + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dk = tl.make_block_ptr(dk + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) else: p_dq = tl.make_block_ptr(dq + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dk = tl.make_block_ptr(dk + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Backpropagation" ], "Memory Access Pattern": [ "Tiled", "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/retention/chunk.py
4cb7f10c-e876-4404-a8ee-8dfb7a2f3050
sparse_copy.py
ServiceNow/Fast-LLM
fast_llm/functional/triton/sparse_copy.py
8b46289079da67cba99628448a6b6083dac083cf
0
@triton.jit def copy_sparse_to_dense_grad_score_kernel(input_ptr, grad_output_ptr, grad_scores_ptr, sparse_rows_ptr, num_columns: tl.constexpr, num_experts_per_token: tl.constexpr, block_size: tl.constexpr): dense_row = tl.program_id(0) top_index = tl.program_id(1) sparse_row = tl.load(sparse_rows_ptr + dense_row * num_experts_per_token + top_index) grad_output_ptr += dense_row * num_columns input_ptr += sparse_row * num_columns offsets = tl.arange(0, block_size) if num_columns % block_size == 0: grad_scores = tl.load(input_ptr + offsets).to(tl.float32) * tl.load( grad_output_ptr + offsets).to(tl.float32) else: mask = offsets < num_columns grad_scores = tl.load(input_ptr + offsets, mask=mask).to(tl.float32 ) * tl.load(grad_output_ptr + offsets, mask=mask).to(tl.float32) for i in range(1, tl.cdiv(num_columns, block_size)): offsets += block_size if num_columns % block_size == 0: grad_scores += tl.load(input_ptr + offsets).to(tl.float32 ) * tl.load(grad_output_ptr + offsets).to(tl.float32) else: mask = offsets < num_columns grad_scores += tl.load(input_ptr + offsets, mask=mask).to(tl. float32) * tl.load(grad_output_ptr + offsets, mask=mask).to(tl .float32) tl.store(grad_scores_ptr + dense_row * num_experts_per_token + top_index, tl.sum(grad_scores))
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations", "Backpropagation" ], "Memory Access Pattern": [ "Tiled", "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Memory-Bound" ] }
[ "Apache" ]
https://github.com/ServiceNow/Fast-LLM/blob/8b46289079da67cba99628448a6b6083dac083cf/fast_llm/functional/triton/sparse_copy.py
0958dea2-dc46-4f8c-9895-f76364fbcc17
parallel.py
sustcsonglin/flash-linear-attention
fla/ops/retention/parallel.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'NV': lambda args: triton.cdiv(args['V'], args['BV']), 'OUTPUT_ATTENTIONS': lambda args: args['attn'] is not None}) @triton.jit def parallel_retention_fwd_kernel(q, k, v, o, attn, scale, B: tl.constexpr, H: tl.constexpr, T: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BS: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, NV: tl.constexpr, OUTPUT_ATTENTIONS: tl.constexpr): i_kv, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_k, i_v = i_kv // NV, i_kv % NV i_h = i_bh % H b_b = tl.math.log2(1 - tl.math.exp2(-5 - i_h * 1.0)) o_k = tl.arange(0, BS) d_h = tl.math.exp2((BS - o_k) * b_b) p_q = tl.make_block_ptr(q + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_k = tl.make_block_ptr(k + i_bh * T * K, (K, T), (1, K), (i_k * BK, 0), (BK, BS), (0, 1)) p_v = tl.make_block_ptr(v + i_bh * T * V, (T, V), (V, 1), (0, i_v * BV), (BS, BV), (1, 0)) if OUTPUT_ATTENTIONS: p_a = tl.make_block_ptr(attn + (i_k * B * H + i_bh) * T * T, (T, T), (T, 1), (i_t * BT, 0), (BT, BS), (1, 0)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_q = (b_q * scale).to(b_q.dtype) b_o = tl.zeros([BT, BV], dtype=tl.float32) for i in range(0, i_t * BT, BS): b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_s = tl.dot(b_q, b_k, allow_tf32=False) * d_h if i > 0: b_o = b_o * tl.math.exp2(b_b * BS) b_o += tl.dot(b_s.to(b_v.dtype), b_v, allow_tf32=False) p_k = tl.advance(p_k, (0, BS)) p_v = tl.advance(p_v, (BS, 0)) if OUTPUT_ATTENTIONS: tl.store(p_a, b_s.to(p_a.dtype.element_ty), boundary_check=(0, 1)) p_a = tl.advance(p_a, (0, BS)) tl.debug_barrier() o_q = tl.arange(0, BT) d_q = tl.math.exp2(tl.arange(0, BT) * b_b) b_o *= d_q[:, None] p_k = tl.make_block_ptr(k + i_bh * T * K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BS), (0, 1)) p_v = tl.make_block_ptr(v + i_bh * T * V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BS, BV), (1, 0)) if OUTPUT_ATTENTIONS: p_a = tl.make_block_ptr(attn + (i_k * B * H + i_bh) * T * T, (T, T), (T, 1), (i_t * BT, i_t * BT), (BT, BS), (1, 0)) for _ in range(i_t * BT, (i_t + 1) * BT, BS): b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) m_s = o_q[:, None] >= o_k[None, :] d_s = tl.where(m_s, tl.math.exp2((o_q[:, None] - o_k[None, :]) * b_b), 0) b_s = tl.dot(b_q, b_k, allow_tf32=False) * d_s b_o += tl.dot(b_s.to(b_q.dtype), b_v, allow_tf32=False) if OUTPUT_ATTENTIONS: tl.store(p_a, b_s.to(p_a.dtype.element_ty), boundary_check=(0, 1)) p_a = tl.advance(p_a, (0, BS)) p_k = tl.advance(p_k, (0, BS)) p_v = tl.advance(p_v, (BS, 0)) o_k += BS p_o = tl.make_block_ptr(o + (i_bh + B * H * i_k) * T * V, (T, V), (V, 1 ), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Elementwise Operations" ], "Memory Access Pattern": [ "Tiled", "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/retention/parallel.py
509c75fc-fcc7-4a43-b0ef-aa00f4263dba
slstm_fw.py
NX-AI/flashrnn
flashrnn/flashrnn/triton_fused/slstm_fw.py
3fca666a81c8740af4878d7bc5e2a51900e4fe14
0
@triton.autotune(configs, key=['siz_B', 'T', 'B', 'NH', 'DH']) @triton.jit def _forward_sequence_kernel(states_initial, Wx, R, b, states_all, gates_all, T: tl.constexpr, NS: tl.constexpr, B: tl.constexpr, NH: tl. constexpr, DH: tl.constexpr, NGI: tl.constexpr, NGR: tl.constexpr, siz_B: tl.constexpr, OUTPUT_GATES: tl.constexpr, DTYPE: tl.constexpr=tl .float32): idx_b_NH, idx_b_B = tl.program_id(0), tl.program_id(1) str_matWx_NH = T * NGI * B * DH str_matWx_T = NGI * B * DH str_matStatesAll_NH = (T + 1) * NS * B * DH str_matStatesAll_T = NS * B * DH str_matGatesAll_NH = T * NGI * B * DH str_matGatesAll_T = NGI * B * DH matHtrans_initial_ptr = tl.make_block_ptr(base=states_initial + idx_b_NH * NS * B * DH + 0 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) matHtrans = tl.load(matHtrans_initial_ptr).to(tl.float32) matCtrans_initial_ptr = tl.make_block_ptr(base=states_initial + idx_b_NH * NS * B * DH + 1 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) matCtrans = tl.load(matCtrans_initial_ptr).to(tl.float32) matNtrans_initial_ptr = tl.make_block_ptr(base=states_initial + idx_b_NH * NS * B * DH + 2 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) matNtrans = tl.load(matNtrans_initial_ptr).to(tl.float32) matMtrans_initial_ptr = tl.make_block_ptr(base=states_initial + idx_b_NH * NS * B * DH + 3 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) matMtrans = tl.load(matMtrans_initial_ptr).to(tl.float32) matHtrans_initial_store_ptr = tl.make_block_ptr(base=states_all + idx_b_NH * str_matStatesAll_NH + 0 * str_matStatesAll_T + 0 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) tl.store(matHtrans_initial_store_ptr, matHtrans.to(DTYPE)) matCtrans_initial_store_ptr = tl.make_block_ptr(base=states_all + idx_b_NH * str_matStatesAll_NH + 0 * str_matStatesAll_T + 1 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) tl.store(matCtrans_initial_store_ptr, matCtrans.to(DTYPE)) matNtrans_initial_store_ptr = tl.make_block_ptr(base=states_all + idx_b_NH * str_matStatesAll_NH + 0 * str_matStatesAll_T + 2 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) tl.store(matNtrans_initial_store_ptr, matNtrans.to(DTYPE)) matMtrans_initial_store_ptr = tl.make_block_ptr(base=states_all + idx_b_NH * str_matStatesAll_NH + 0 * str_matStatesAll_T + 3 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) tl.store(matMtrans_initial_store_ptr, matMtrans.to(DTYPE)) matRtrans_i_ptr = tl.make_block_ptr(base=R + idx_b_NH * DH * NGR * DH + 0 * DH * DH, shape=(DH, DH), strides=(DH, 1), offsets=(0, 0), block_shape=(DH, DH), order=(0, 1)) matRtrans_i = tl.load(matRtrans_i_ptr) matRtrans_f_ptr = tl.make_block_ptr(base=R + idx_b_NH * DH * NGR * DH + 1 * DH * DH, shape=(DH, DH), strides=(DH, 1), offsets=(0, 0), block_shape=(DH, DH), order=(0, 1)) matRtrans_f = tl.load(matRtrans_f_ptr) matRtrans_z_ptr = tl.make_block_ptr(base=R + idx_b_NH * DH * NGR * DH + 2 * DH * DH, shape=(DH, DH), strides=(DH, 1), offsets=(0, 0), block_shape=(DH, DH), order=(0, 1)) matRtrans_z = tl.load(matRtrans_z_ptr) matRtrans_o_ptr = tl.make_block_ptr(base=R + idx_b_NH * DH * NGR * DH + 3 * DH * DH, shape=(DH, DH), strides=(DH, 1), offsets=(0, 0), block_shape=(DH, DH), order=(0, 1)) matRtrans_o = tl.load(matRtrans_o_ptr) vecB_i_ptr = b + idx_b_NH * NGI * DH + 0 * DH + tl.arange(0, DH) vecB_i = tl.load(vecB_i_ptr) vecB_f_ptr = b + idx_b_NH * NGI * DH + 1 * DH + tl.arange(0, DH) vecB_f = tl.load(vecB_f_ptr) vecB_z_ptr = b + idx_b_NH * NGI * DH + 2 * DH + tl.arange(0, DH) vecB_z = tl.load(vecB_z_ptr) vecB_o_ptr = b + idx_b_NH * NGI * DH + 3 * DH + tl.arange(0, DH) vecB_o = tl.load(vecB_o_ptr) for idx_t in range(T): matIxtrans_ptr = tl.make_block_ptr(base=Wx + idx_b_NH * str_matWx_NH + idx_t * str_matWx_T + 0 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=( siz_B, DH), order=(0, 1)) matIxtrans = tl.load(matIxtrans_ptr) matFxtrans_ptr = tl.make_block_ptr(base=Wx + idx_b_NH * str_matWx_NH + idx_t * str_matWx_T + 1 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=( siz_B, DH), order=(0, 1)) matFxtrans = tl.load(matFxtrans_ptr) matZxtrans_ptr = tl.make_block_ptr(base=Wx + idx_b_NH * str_matWx_NH + idx_t * str_matWx_T + 2 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=( siz_B, DH), order=(0, 1)) matZxtrans = tl.load(matZxtrans_ptr) matOxtrans_ptr = tl.make_block_ptr(base=Wx + idx_b_NH * str_matWx_NH + idx_t * str_matWx_T + 3 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=( siz_B, DH), order=(0, 1)) matOxtrans = tl.load(matOxtrans_ptr) matRhtrans_i = tl.dot(matHtrans.to(DTYPE), matRtrans_i) matRhtrans_f = tl.dot(matHtrans.to(DTYPE), matRtrans_f) matRhtrans_z = tl.dot(matHtrans.to(DTYPE), matRtrans_z) matRhtrans_o = tl.dot(matHtrans.to(DTYPE), matRtrans_o) matIbar = matIxtrans + matRhtrans_i + vecB_i[None, :] matFbar = matFxtrans + matRhtrans_f + vecB_f[None, :] matZbar = matZxtrans + matRhtrans_z + vecB_z[None, :] matObar = matOxtrans + matRhtrans_o + vecB_o[None, :] matLogFplusM = matMtrans + tl.log(tl.sigmoid(matFbar)) matMtrans_next = tl.where(matNtrans == 0.0, matIbar, tl.maximum( matIbar, matLogFplusM)) matI = tl.exp(matIbar - matMtrans_next) matF = tl.exp(matLogFplusM - matMtrans_next) matZ = triton_tanh(matZbar) matO = tl.sigmoid(matObar) matCtrans_next = matF * matCtrans + matI * matZ matNtrans_next = tl.maximum(matF * matNtrans + matI, 1.0) matHtrans_next = matO * (matCtrans_next / matNtrans_next) matHtrans_next_ptr = tl.make_block_ptr(base=states_all + idx_b_NH * str_matStatesAll_NH + (idx_t + 1) * str_matStatesAll_T + 0 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0 ), block_shape=(siz_B, DH), order=(0, 1)) tl.store(matHtrans_next_ptr, matHtrans_next.to(DTYPE)) matCtrans_next_ptr = tl.make_block_ptr(base=states_all + idx_b_NH * str_matStatesAll_NH + (idx_t + 1) * str_matStatesAll_T + 1 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0 ), block_shape=(siz_B, DH), order=(0, 1)) tl.store(matCtrans_next_ptr, matCtrans_next.to(DTYPE)) matNtrans_next_ptr = tl.make_block_ptr(base=states_all + idx_b_NH * str_matStatesAll_NH + (idx_t + 1) * str_matStatesAll_T + 2 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0 ), block_shape=(siz_B, DH), order=(0, 1)) tl.store(matNtrans_next_ptr, matNtrans_next.to(DTYPE)) matMtrans_next_ptr = tl.make_block_ptr(base=states_all + idx_b_NH * str_matStatesAll_NH + (idx_t + 1) * str_matStatesAll_T + 3 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0 ), block_shape=(siz_B, DH), order=(0, 1)) tl.store(matMtrans_next_ptr, matMtrans_next.to(DTYPE)) if OUTPUT_GATES: matGatesItrans_ptr = tl.make_block_ptr(base=gates_all + idx_b_NH * str_matGatesAll_NH + idx_t * str_matGatesAll_T + 0 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=( idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) tl.store(matGatesItrans_ptr, matIbar.to(DTYPE)) matGatesFtrans_ptr = tl.make_block_ptr(base=gates_all + idx_b_NH * str_matGatesAll_NH + idx_t * str_matGatesAll_T + 1 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=( idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) tl.store(matGatesFtrans_ptr, matFbar.to(DTYPE)) matGatesZtrans_ptr = tl.make_block_ptr(base=gates_all + idx_b_NH * str_matGatesAll_NH + idx_t * str_matGatesAll_T + 2 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=( idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) tl.store(matGatesZtrans_ptr, matZ.to(DTYPE)) matGatesOtrans_ptr = tl.make_block_ptr(base=gates_all + idx_b_NH * str_matGatesAll_NH + idx_t * str_matGatesAll_T + 3 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=( idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) tl.store(matGatesOtrans_ptr, matO.to(DTYPE)) matCtrans = matCtrans_next matHtrans = matHtrans_next matNtrans = matNtrans_next matMtrans = matMtrans_next
{ "Data Type": [ "fp32" ], "Functionality": [ "Recurrent Neural Networks", "Elementwise Operations" ], "Memory Access Pattern": [ "Tiled", "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "MIT", "BSD" ]
https://github.com/NX-AI/flashrnn/blob/3fca666a81c8740af4878d7bc5e2a51900e4fe14/flashrnn/flashrnn/triton_fused/slstm_fw.py
8404cde9-7803-4d09-a284-c110eb62f90a
mlp.py
ServiceNow/Fast-LLM
fast_llm/functional/triton/mlp.py
8b46289079da67cba99628448a6b6083dac083cf
0
@triton.jit def triton_mlp_activation_forward_kernel(input_ptr, output_ptr, gated: tl. constexpr, activation_type: tl.constexpr, n_cols: tl.constexpr, block_size: tl.constexpr): row_idx = tl.program_id(0).to(tl.int64) columns = tl.program_id(1) * block_size + tl.arange(0, block_size) output_offsets = n_cols * row_idx + columns input_offsets = 2 * n_cols * row_idx + columns if gated else output_offsets input_ptr = input_ptr + input_offsets mask = columns < n_cols input_ = tl.load(input_ptr, mask=mask).to(tl.float32) if activation_type == _TritonActivationType.gelu.value: tanh_input = 0.79788456 * input_ * (1 + 0.044715 * input_ * input_) tanh = 1 - 2 / (1 + tl.exp(2 * tanh_input)) out = input_ * 0.5 * (1.0 + tanh) elif activation_type == _TritonActivationType.silu.value: out = input_ / (1 + tl.exp(-input_)) elif activation_type == _TritonActivationType.relu.value: out = tl.where(input_ > 0, input_, 0) elif activation_type == _TritonActivationType.squared_relu: relu_out = tl.where(input_ > 0, input_, 0) out = relu_out * relu_out else: raise NotImplementedError() if gated: other = tl.load(input_ptr + n_cols, mask=mask) out = out * other tl.store(output_ptr + output_offsets, out, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Activation Functions", "Elementwise Operations" ], "Memory Access Pattern": [ "Tiled", "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "Apache" ]
https://github.com/ServiceNow/Fast-LLM/blob/8b46289079da67cba99628448a6b6083dac083cf/fast_llm/functional/triton/mlp.py
83293d43-8c29-4602-b2d3-8e55f706ba6a
normalization.py
ai-compiler-study/triton-kernels
triton_kernels/kernels/normalization.py
2308e5e9d965059fe2d19b4d535debac4970b69e
0
@triton.jit def _rms_norm_fwd(X, Y, W, Rstd, N, eps, BLOCK_M: tl.constexpr, BLOCK_N: tl .constexpr): row_offset = tl.program_id(0) * BLOCK_M row_index = row_offset + tl.arange(0, BLOCK_M)[:, None] col_index = tl.arange(0, BLOCK_N)[None, :] col_mask = col_index < N x = tl.load(X + N * row_index + col_index, col_mask, other=0.0) w = tl.load(W + col_index, col_mask, eviction_policy='evict_last', other=0.0) xx = x * x xx = tl.broadcast_to(xx, [BLOCK_M, BLOCK_N]) mean = tl.sum(xx, axis=1)[:, None] / N rstd = tl.rsqrt(mean + eps) y = x * rstd * w tl.store(Rstd + row_index, rstd) tl.store(Y + N * row_index + col_index, y, col_mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Normalization", "Elementwise Operations" ], "Memory Access Pattern": [ "Tiled", "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/ai-compiler-study/triton-kernels/blob/2308e5e9d965059fe2d19b4d535debac4970b69e/triton_kernels/kernels/normalization.py
87e4c097-d2ca-4b41-ab22-ac0e29843a3c
RzLinearForward.py
apd10/RzLinear
python/rz_linear/impl/RzLinearForward.py
eb56657b2de0a97f398f88af421b0fbcbc5469c9
0
@triton.jit def rz_linear_forward_kernel_notune(a_ptr, b_ptr, c_ptr, init_factor, M, N, K, H, stride_am, stride_ak, stride_cm, stride_cn, allow_tf32: tl. constexpr, R7: int, R6: int, R5: int, R4: int, R3: int, R2: int, R1: int, R0: int, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE: tl.constexpr): rz_linear_forward_core(a_ptr=a_ptr, b_ptr=b_ptr, c_ptr=c_ptr, init_factor=init_factor, M=M, N=N, K=K, H=H, stride_am=stride_am, stride_ak=stride_ak, stride_cm=stride_cm, stride_cn=stride_cn, allow_tf32=allow_tf32, R7=R7, R6=R6, R5=R5, R4=R4, R3=R3, R2=R2, R1 =R1, R0=R0, BLOCK_SIZE_M=BLOCK_SIZE_M, BLOCK_SIZE_N=BLOCK_SIZE_N, BLOCK_SIZE_K=BLOCK_SIZE_K, GROUP_SIZE=GROUP_SIZE)
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Tiled", "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/apd10/RzLinear/blob/eb56657b2de0a97f398f88af421b0fbcbc5469c9/python/rz_linear/impl/RzLinearForward.py
7971a4d5-d72d-49a0-8810-4b44d3e7eab4
real_rnn_tie_input_gate.py
berlino/seq_icl
src/models/sequence/rnn/scan_triton/real_rnn_tie_input_gate.py
9b9223d15348b5a415fb453ed988ed5f7ab9fbdc
0
@triton.jit def fwd_sequential_scan(v, f1, hidden, B, L, C, BLOCK_M: tl.constexpr): offset_b = tl.program_id(0) if offset_b >= B: return offset_n = tl.program_id(1) ptr = tl.arange(0, BLOCK_M) + offset_b * L * C + offset_n * BLOCK_M h1 = tl.zeros([BLOCK_M], dtype=tl.float32) for _ in range(L): x0 = tl.load(v + ptr).to(tl.float32) decay1 = tl.load(f1 + ptr).to(tl.float32) h1 = (h1 - x0) * decay1 + x0 tl.store(hidden + ptr, h1.to(hidden.dtype.element_ty)) ptr += C
{ "Data Type": [ "fp32" ], "Functionality": [ "Recurrent Neural Networks", "Elementwise Operations" ], "Memory Access Pattern": [ "Tiled", "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "Apache" ]
https://github.com/berlino/seq_icl/blob/9b9223d15348b5a415fb453ed988ed5f7ab9fbdc/src/models/sequence/rnn/scan_triton/real_rnn_tie_input_gate.py
88e83a8a-262f-4bec-a1fa-c5f9b43f17d6
relu.py
daemyung/practice-triton
relu.py
27f727726f1507c8380a1c11751d851c7c4a07ce
0
@staticmethod @triton.jit def forward(output_ptr, input_ptr, size, block_size: tl.constexpr): pid = tl.program_id(0) offset = pid * block_size input_block_ptr = tl.make_block_ptr(input_ptr, shape=(size,), strides=( 1,), offsets=(offset,), block_shape=(block_size,), order=(0,)) output_block_ptr = tl.make_block_ptr(output_ptr, shape=(size,), strides =(1,), offsets=(offset,), block_shape=(block_size,), order=(0,)) input = tl.load(input_block_ptr, boundary_check=(0,)) condition = input >= 0 output = tl.where(condition, input, 0) tl.store(output_block_ptr, output, boundary_check=(0,))
{ "Data Type": [ "fp32" ], "Functionality": [ "Activation Functions", "Elementwise Operations" ], "Memory Access Pattern": [ "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Low Latency" ] }
[ "MIT" ]
https://github.com/daemyung/practice-triton/blob/27f727726f1507c8380a1c11751d851c7c4a07ce/relu.py
88873c2a-b635-4908-bbff-feff8674e931
rotary_embedding.py
AlibabaPAI/FLASHNN
flashnn/triton_kernels/rotary_embedding.py
528a9301587f5fb135b25d973a87ba0a40a703a7
0
@triton.jit def _rotary_embedding_kernel(q_rot_ptr, k_rot_ptr, q_ptr, k_ptr, cos_ptr, sin_ptr, seq_len, batch_size, num_heads, num_kv, hidden_size, q_strides, q_strideb, q_strideh, q_strided, k_strides, k_strideb, k_stridekv, k_strided, seq_offset, BLOCK_SIZE_SEQ: tl.constexpr, BLOCK_SIZE_BH: tl. constexpr, BLOCK_SIZE_D: tl.constexpr): pid = tl.program_id(axis=0) num_bh_blocks = tl.cdiv(batch_size * num_heads, BLOCK_SIZE_BH) num_d_blocks = tl.cdiv(hidden_size // 2, BLOCK_SIZE_D) bh_id = pid % num_bh_blocks d_id = pid // num_bh_blocks % num_d_blocks seq_block_id = pid // num_bh_blocks // num_d_blocks seq_offs = seq_offset + seq_block_id * BLOCK_SIZE_SEQ + tl.arange(0, BLOCK_SIZE_SEQ) bh_offs = bh_id * BLOCK_SIZE_BH + tl.arange(0, BLOCK_SIZE_BH) q_common_offs = seq_offs[:, None, None] * q_strides + bh_offs[None, :, None ] * q_strideh k_common_offs = seq_offs[:, None, None] * k_strides + bh_offs[None, :, None ] // (num_heads // num_kv) * k_stridekv q_base_offs, qo_base_offs = (q_ptr + q_common_offs, q_rot_ptr + q_common_offs) k_base_offs, ko_base_offs = (k_ptr + k_common_offs, k_rot_ptr + k_common_offs) c_base_offs = cos_ptr + seq_offs[:, None] * hidden_size s_base_offs = sin_ptr + seq_offs[:, None] * hidden_size hidden_block_range = tl.arange(0, BLOCK_SIZE_D) hidden_offs_l = d_id * BLOCK_SIZE_D + hidden_block_range hidden_offs_r = hidden_size // 2 + hidden_offs_l mask_l, mask_r = (hidden_offs_l < hidden_size // 2, hidden_offs_r < hidden_size) mask_bh = bh_offs < batch_size * num_heads mask_seq = seq_offs < seq_len mask_bh_seq = mask_bh[None, :, None] & mask_seq[:, None, None] q_l, k_l = tl.load(q_base_offs + hidden_offs_l[None, None, :] * q_strided, mask=mask_l[None, None, :] & mask_bh_seq, other=0), tl.load( k_base_offs + hidden_offs_l[None, None, :] * k_strided, mask=mask_l [None, None, :] & mask_bh_seq, other=0) q_r, k_r = tl.load(q_base_offs + hidden_offs_r[None, None, :] * q_strided, mask=mask_r[None, None, :] & mask_bh_seq, other=0), tl.load( k_base_offs + hidden_offs_r[None, None, :] * k_strided, mask=mask_r [None, None, :] & mask_bh_seq, other=0) cos_l, cos_r = tl.load(c_base_offs + hidden_offs_l[None, :], mask= mask_l[None, :], other=0)[:, None, :], tl.load(c_base_offs + hidden_offs_r[None, :], mask=mask_r[None, :], other=0)[:, None, :] sin_l, sin_r = tl.load(s_base_offs + hidden_offs_l[None, :], mask= mask_l[None, :], other=0)[:, None, :], tl.load(s_base_offs + hidden_offs_r[None, :], mask=mask_r[None, :], other=0)[:, None, :] qo_l = q_l * cos_l - q_r * sin_l tl.store(qo_base_offs + hidden_offs_l, qo_l, mask=mask_l[None, None, :] & mask_bh_seq) qo_r = q_r * cos_r + q_l * sin_r tl.store(qo_base_offs + hidden_offs_r, qo_r, mask=mask_r[None, None, :] & mask_bh_seq) ko_l = k_l * cos_l - k_r * sin_l tl.store(ko_base_offs + hidden_offs_l, ko_l, mask=mask_l[None, None, :] & mask_bh_seq) ko_r = k_r * cos_r + k_l * sin_r tl.store(ko_base_offs + hidden_offs_r, ko_r, mask=mask_r[None, None, :] & mask_bh_seq)
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "Apache" ]
https://github.com/AlibabaPAI/FLASHNN/blob/528a9301587f5fb135b25d973a87ba0a40a703a7/flashnn/triton_kernels/rotary_embedding.py
1629adb1-4300-4648-8f28-5969b18864d5
block_ptr.py
daemyung/practice-triton
block_ptr.py
27f727726f1507c8380a1c11751d851c7c4a07ce
0
@triton.jit def add_kernel(x_ptr, y_ptr, z_ptr, size, block_size: tl.constexpr): offset = tl.program_id(0) * block_size x_block_ptr = tl.make_block_ptr(x_ptr, shape=(size,), strides=(1,), offsets=(offset,), block_shape=(block_size,), order=(0,)) y_block_ptr = tl.make_block_ptr(y_ptr, shape=(size,), strides=(1,), offsets=(offset,), block_shape=(block_size,), order=(0,)) x = tl.load(x_block_ptr, boundary_check=(0,)) y = tl.load(y_block_ptr, boundary_check=(0,)) z = x + y z_block_ptr = tl.make_block_ptr(z_ptr, shape=(size,), strides=(1,), offsets=(offset,), block_shape=(block_size,), order=(0,)) tl.store(z_block_ptr, z, boundary_check=(0,))
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/daemyung/practice-triton/blob/27f727726f1507c8380a1c11751d851c7c4a07ce/block_ptr.py
df24c070-c472-4437-97d2-8959ecc59778
cross_entropy.py
dame-cell/Triformer
triformer/cross_entropy.py
0712537d576166b93fa09aa9509b2661b9ed8a68
0
@triton.jit def cross_entropy_fwd_bwd_kernel(output_loss_ptr, output_logit_grad_ptr, input_logit_ptr, input_targ_ptr, input_divisor_ptr, output_loss_stride, output_logit_grad_stride, input_logit_stride, input_targ_stride, n_cols, ignore_index, BLOCK_SIZE: tl.constexpr): row_idx = tl.program_id(0) logit_grad_row_start_ptr = (output_logit_grad_ptr + row_idx * output_logit_grad_stride) logit_row_start_ptr = input_logit_ptr + row_idx * input_logit_stride targ_ptr = input_targ_ptr + row_idx * input_targ_stride loss_ptr = output_loss_ptr + row_idx * output_loss_stride col_offsets = tl.arange(0, BLOCK_SIZE) logit_row_ptrs = logit_row_start_ptr + col_offsets logit_grad_row_ptrs = logit_grad_row_start_ptr + col_offsets logit_row = tl.load(logit_row_ptrs, mask=col_offsets < n_cols, other= float('-Inf')) targ = tl.load(targ_ptr) divisor = tl.load(input_divisor_ptr) logit_row = logit_row - tl.max(logit_row, axis=0) exp_logit_row = tl.exp(logit_row) sum_exp_logit_row = tl.sum(exp_logit_row, axis=0) log_sum_exp_logit_row = tl.log(sum_exp_logit_row) logit_gt_logit = tl.sum(tl.where(targ == col_offsets, logit_row, 0.0)) loss = log_sum_exp_logit_row - logit_gt_logit loss = loss / divisor loss = tl.where(targ == ignore_index, 0.0, loss) tl.store(loss_ptr, loss) targ_one_hot = tl.where(targ == col_offsets, 1.0, 0.0) grad = exp_logit_row / sum_exp_logit_row - targ_one_hot grad = grad / divisor grad = tl.where(targ == ignore_index, 0.0, grad) tl.store(logit_grad_row_ptrs, grad, mask=col_offsets < n_cols)
{ "Data Type": [ "fp32" ], "Functionality": [ "Softmax", "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "MIT" ]
https://github.com/dame-cell/Triformer/blob/0712537d576166b93fa09aa9509b2661b9ed8a68/triformer/cross_entropy.py
d1bbad34-33d0-441b-b7e1-fbac372c752f
chunk_h_split.py
sustcsonglin/flash-linear-attention
fla/ops/common/chunk_h_split.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'STORE_INITIAL_STATE_GRADIENT': lambda args: args['dh0' ] is not None, 'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({'BK': BK, 'BV': BV}, num_warps= num_warps, num_stages=num_stages) for BK in [32, 64] for BV in [32, 64] for num_warps in [2, 4, 8] for num_stages in [2, 3, 4]], key=['BT', 'USE_G', 'USE_GK', 'USE_GV']) @triton.jit def chunk_bwd_kernel_dh_reduction(g, gk, gv, dhs, dhr, dh0, offsets, split_offsets, T: tl.constexpr, S: tl.constexpr, H: tl.constexpr, HQ: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, NG: tl.constexpr, USE_G: tl.constexpr, USE_GK: tl.constexpr, USE_GV: tl.constexpr, STORE_INITIAL_STATE_GRADIENT: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr): i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_n, i_hq = i_nh // HQ, i_nh % HQ i_ng, i_h = i_nh // NG, i_hq // NG if USE_OFFSETS: bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos NS = tl.cdiv(T, S) boh = tl.load(split_offsets + i_n).to(tl.int32) else: bos, eos = i_n * T, i_n * T + T NS = tl.cdiv(T, S) boh = i_n * NS b_dh = tl.zeros([BK, BV], dtype=tl.float32) for i_s in range(NS - 2, -1, -1): p_dhs = tl.make_block_ptr(dhs + ((boh + i_s + 1) * H + i_h) * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) p_dhr = tl.make_block_ptr(dhr + ((boh + i_s) * H + i_h) * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) b_dh += tl.load(p_dhs, boundary_check=(0, 1)).to(tl.float32) tl.store(p_dhr, b_dh.to(p_dhr.dtype.element_ty), boundary_check=(0, 1)) for i_t in range(tl.cdiv(min(i_s * S + S, T), BT) - 1, tl.cdiv(i_s * S, BT) - 1, -1): last_idx = min(i_t * BT + BT, T) - 1 if USE_G: if HEAD_FIRST: b_g_last = tl.load(g + i_ng * T + last_idx) else: b_g_last = tl.load(g + (bos + last_idx) * H + i_h) b_dh *= tl.exp(b_g_last) if USE_GK: if HEAD_FIRST: p_gk_last = gk + (i_ng * T + last_idx ) * K + i_k * BK + tl.arange(0, BK) else: p_gk_last = gk + (bos + last_idx ) * H * K + i_h * K + i_k * BK + tl.arange(0, BK) p_gk_last = tl.max_contiguous(tl.multiple_of(p_gk_last, BK), BK ) b_gk_last = tl.load(p_gk_last, mask=i_k * BK + tl.arange(0, BK) < K, other=0.0) b_dh *= tl.exp(b_gk_last)[:, None] if USE_GV: if HEAD_FIRST: p_gv_last = gv + (i_ng * T + last_idx ) * V + i_v * BV + tl.arange(0, BV) else: p_gv_last = gv + (bos + last_idx ) * H * V + i_h * V + i_v * BV + tl.arange(0, BV) p_gv_last = tl.max_contiguous(tl.multiple_of(p_gv_last, BV), BV ) b_gv_last = tl.load(p_gv_last, mask=i_v * BV + tl.arange(0, BV) < V, other=0.0) b_dh *= tl.exp(b_gv_last)[None, :] if NS > 1: if STORE_INITIAL_STATE_GRADIENT: p_dhs = tl.make_block_ptr(dhs + (boh * H + i_h) * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) p_dh0 = tl.make_block_ptr(dh0 + i_nh * K * V, (K, V), (V, 1), ( i_k * BK, i_v * BV), (BK, BV), (1, 0)) b_dh += tl.load(p_dhs, boundary_check=(0, 1)).to(tl.float32) tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), boundary_check =(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/common/chunk_h_split.py
12456573-9f7c-4e65-b821-93e96495dd34
quant_triton.py
CompendiumLabs/ziggy
ziggy/backends/quant_triton.py
bd12fe50ca3475743f62ae26d4c184108e441e03
0
@triton.jit def clamp(x, a, b): return tl.maximum(a, tl.minimum(b, x))
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/CompendiumLabs/ziggy/blob/bd12fe50ca3475743f62ae26d4c184108e441e03/ziggy/backends/quant_triton.py
434a7a78-d4a9-4a24-a028-0bbe017c400b
masks.py
drisspg/transformer_nuggets
transformer_nuggets/flash/masks.py
a4c66bbeebaa479ad8b6ed82d7efbafa41b17260
0
@triton.jit def score_modification(score, offs_m, start_n, offs_n, off_hz, num_heads, q, k, mask_block_ptr, BIAS_CHOICE: tl.constexpr, DEBUG_MASK: tl.constexpr, IS_CAUSAL: tl.constexpr, MATMUL_PRECISION: tl.constexpr=tl.float16): batch = off_hz // num_heads head = off_hz % num_heads seq_len_q = offs_m[:, None] seq_len_kv = start_n + offs_n[None, :] if BIAS_CHOICE == BiasMode.rel_pos.value: score = rel_attention_triton(score, batch, head, seq_len_q, seq_len_kv) elif BIAS_CHOICE == BiasMode.alibi.value: score = alibi_attention_triton(score, batch, head, seq_len_q, seq_len_kv, num_heads) elif BIAS_CHOICE == BiasMode.inverse_causal.value: score = inverse_causal_mask_triton(score, batch, head, seq_len_q, seq_len_kv) elif BIAS_CHOICE == BiasMode.causal.value: score = causal_mask_triton(score, batch, head, seq_len_q, seq_len_kv) if DEBUG_MASK and BIAS_CHOICE != BiasMode.none: mask = score - tl.dot(q.to(MATMUL_PRECISION), k.to(MATMUL_PRECISION)) tl.store(mask_block_ptr, mask) return score
{ "Data Type": [ "fp16" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "BSD" ]
https://github.com/drisspg/transformer_nuggets/blob/a4c66bbeebaa479ad8b6ed82d7efbafa41b17260/transformer_nuggets/flash/masks.py
049b3fe1-f26d-423e-844f-bef45e5755b6
masks.py
drisspg/transformer_nuggets
transformer_nuggets/flash/masks.py
a4c66bbeebaa479ad8b6ed82d7efbafa41b17260
0
@triton.jit def rel_attention_triton(score, batch, head, seq_len_q, seq_len_kv): bias = seq_len_kv - seq_len_q score = score + bias return score
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "BSD" ]
https://github.com/drisspg/transformer_nuggets/blob/a4c66bbeebaa479ad8b6ed82d7efbafa41b17260/transformer_nuggets/flash/masks.py
5ff91ea0-293b-4837-826f-44c0fe4e319c
triton_kernels.py
vkuzo/pytorch_scripts
reduction_hack/triton_kernels.py
15322fe2a72fbebe1b9d9e38978cb6476da3bf70
0
@triton.autotune(configs=[triton.Config({'BLOCK_SIZE': 512}), triton.Config ({'BLOCK_SIZE': 1024}), triton.Config({'BLOCK_SIZE': 2048}), triton. Config({'BLOCK_SIZE': 8192}), triton.Config({'BLOCK_SIZE': 16384})], key=['n_elements']) @triton.jit def max_with_atomics_kernel(in_ptr0, out_ptr, n_elements, BLOCK_SIZE: 'tl.constexpr'): pid = tl.program_id(axis=0) block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements x = tl.load(in_ptr0 + offsets, mask=mask) x_max = tl.max(x) tl.atomic_max(out_ptr, x_max)
{ "Data Type": [ "fp32" ], "Functionality": [ "Top-K Selection" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/vkuzo/pytorch_scripts/blob/15322fe2a72fbebe1b9d9e38978cb6476da3bf70/reduction_hack/triton_kernels.py
c2fc4d8e-023b-46eb-8021-911d529c03b8
fused_recurrent.py
sustcsonglin/flash-linear-attention
fla/ops/delta_rule/fused_recurrent.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_INITIAL_STATE': lambda args: args['h0'] is not None, 'STORE_FINAL_STATE': lambda args: args['ht'] is not None, 'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.jit def fused_recurrent_delta_rule_fwd_kernel(q, k, v, u, beta, o, h0, ht, offsets, scale, B: tl.constexpr, T: tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, USE_INITIAL_STATE: tl.constexpr, STORE_FINAL_STATE: tl.constexpr, IS_BETA_HEADWISE: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr): i_v, i_k, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_n, i_h = i_nh // H, i_nh % H if USE_OFFSETS: bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64) all = T T = eos - bos else: bos, eos = i_n * T, i_n * T + T all = B * T if HEAD_FIRST: p_q = q + i_nh * T * K + i_k * BK + tl.arange(0, BK) p_k = k + i_nh * T * K + i_k * BK + tl.arange(0, BK) p_v = v + i_nh * T * V + i_v * BV + tl.arange(0, BV) p_u = u + i_nh * T * V + i_v * BV + tl.arange(0, BV) if IS_BETA_HEADWISE: p_beta = beta + i_nh * T * V + i_v * BV + tl.arange(0, BV) else: p_beta = beta + i_nh * T p_o = o + (i_k * B * H + i_nh) * T * V + i_v * BV + tl.arange(0, BV) else: p_q = q + (bos * H + i_h) * K + i_k * BK + tl.arange(0, BK) p_k = k + (bos * H + i_h) * K + i_k * BK + tl.arange(0, BK) p_v = v + (bos * H + i_h) * V + i_v * BV + tl.arange(0, BV) p_u = u + (bos * H + i_h) * V + i_v * BV + tl.arange(0, BV) if IS_BETA_HEADWISE: p_beta = beta + (bos * H + i_h) * V + i_v * BV + tl.arange(0, BV) else: p_beta = beta + bos * H + i_h p_o = o + ((i_k * all + bos) * H + i_h) * V + i_v * BV + tl.arange( 0, BV) mask_k = i_k * BK + tl.arange(0, BK) < K mask_v = i_v * BV + tl.arange(0, BV) < V mask_h = mask_k[None, :] & mask_v[:, None] b_h = tl.zeros([BV, BK], dtype=tl.float32) if USE_INITIAL_STATE: p_h0 = h0 + i_nh * K * V + (i_k * BK + tl.arange(0, BK)[None, :] ) * V + (i_v * BV + tl.arange(0, BV)[:, None]) b_h += tl.load(p_h0, mask=mask_h, other=0).to(tl.float32) for _ in range(0, T): b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32) b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32) b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32) * scale b_v_minus = tl.sum(b_h * b_k[None, :], axis=1) b_v -= b_v_minus if IS_BETA_HEADWISE: b_beta = tl.load(p_beta, mask=mask_v, other=0).to(tl.float32) else: b_beta = tl.load(p_beta).to(tl.float32) tl.store(p_u, b_v.to(p_v.dtype.element_ty), mask=mask_v) b_v *= b_beta b_h += b_k[None, :] * b_v[:, None] b_o = b_h * b_q[None, :] b_o = tl.sum(b_o, axis=1) tl.store(p_o, b_o.to(p_o.dtype.element_ty), mask=mask_v) p_q += K if HEAD_FIRST else H * K p_k += K if HEAD_FIRST else H * K p_o += V if HEAD_FIRST else H * V p_v += V if HEAD_FIRST else H * V p_u += V if HEAD_FIRST else H * V p_beta += (1 if HEAD_FIRST else H) * (V if IS_BETA_HEADWISE else 1) if STORE_FINAL_STATE: p_ht = ht + i_nh * K * V + (i_k * BK + tl.arange(0, BK)[None, :] ) * V + (i_v * BV + tl.arange(0, BV)[:, None]) tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), mask=mask_h)
{ "Data Type": [ "fp32" ], "Functionality": [ "Recurrent Neural Networks" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Latency Sensitive" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/delta_rule/fused_recurrent.py
6222b5ee-b5c3-4653-81db-38b9198dc016
rms_norm_dquant.py
AlibabaPAI/FLASHNN
flashnn/triton_kernels/rms_norm_dquant.py
528a9301587f5fb135b25d973a87ba0a40a703a7
0
@triton.jit def _rms_norm_dquant_kernel(X, Y, W, scale, stride, N, eps, BLOCK_SIZE: tl. constexpr): row = tl.program_id(0) Y += row * stride X += row * stride _var = tl.zeros([BLOCK_SIZE], dtype=tl.float32) for off in range(0, N, BLOCK_SIZE): cols = off + tl.arange(0, BLOCK_SIZE) x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32) _var += x * x var = tl.sum(_var, axis=0) / N rstd = 1 / tl.sqrt(var + eps) _max_x = 0.0 for off in range(0, N, BLOCK_SIZE): cols = off + tl.arange(0, BLOCK_SIZE) mask = cols < N x = tl.load(X + cols, mask=mask, other=0.0).to(tl.float32) w = tl.load(W + cols, mask=mask) norm = x * rstd * w _max_x = tl.maximum(_max_x, tl.max(tl.abs(norm), axis=0)) scale_x = _max_x / 127.0 tl.store(scale + row, scale_x) for off in range(0, N, BLOCK_SIZE): cols = off + tl.arange(0, BLOCK_SIZE) mask = cols < N x = tl.load(X + cols, mask=mask, other=0.0).to(tl.float32) w = tl.load(W + cols, mask=mask) norm = x * rstd * w norm = norm / scale_x norm = tl.where(norm > 0, norm + 0.5, norm - 0.5) tl.store(Y + cols, norm.to(tl.int8), mask=mask)
{ "Data Type": [ "fp32", "int8" ], "Functionality": [ "Normalization", "Quantization" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Memory-Bound" ] }
[ "Apache" ]
https://github.com/AlibabaPAI/FLASHNN/blob/528a9301587f5fb135b25d973a87ba0a40a703a7/flashnn/triton_kernels/rms_norm_dquant.py
cfcb2dbd-a045-4be5-8067-8ff20faf4034
seqlen_utils.py
Kitsunetic/kitsu
kitsu/nn/seqlen_utils.py
826967a493c89753ac2cf1e28b52b79998fc9076
0
@triton.jit def seqlen_to_batch_index_kernel(seqlen_ptr, idx_ptr, BLK: tl.constexpr): pid = tl.program_id(0) i = tl.load(seqlen_ptr + pid) j = tl.load(seqlen_ptr + pid + 1) idx = tl.arange(0, BLK) tl.store(idx_ptr + i + idx, pid, mask=idx < j - i)
{ "Data Type": [], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/Kitsunetic/kitsu/blob/826967a493c89753ac2cf1e28b52b79998fc9076/kitsu/nn/seqlen_utils.py
272fdc2b-cbf6-4942-9981-90ca27a426e6
fused_recurrent.py
sustcsonglin/flash-linear-attention
fla/ops/delta_rule/fused_recurrent.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_INITIAL_STATE': lambda args: args['h0'] is not None, 'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not None, 'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.jit def fused_recurrent_delta_rule_bwd_kernel(q, k, v, beta, h0, dh0, dht, do, dq, dk, dv, db, offsets, scale, B: tl.constexpr, T: tl.constexpr, H: tl .constexpr, K: tl.constexpr, V: tl.constexpr, BK: tl.constexpr, BV: tl. constexpr, NK: tl.constexpr, IS_BETA_HEADWISE: tl.constexpr, USE_INITIAL_STATE: tl.constexpr, USE_FINAL_STATE_GRADIENT: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr): i_v, i_k, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_n, i_h = i_nh // H, i_nh % H if USE_OFFSETS: bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64) all = T T = eos - bos else: bos, eos = i_n * T, i_n * T + T all = B * T mask_k = i_k * BK + tl.arange(0, BK) < K mask_v = i_v * BV + tl.arange(0, BV) < V if HEAD_FIRST: p_q = q + i_nh * T * K + i_k * BK + tl.arange(0, BK) + (T - 1) * K p_k = k + i_nh * T * K + i_k * BK + tl.arange(0, BK) + (T - 1) * K p_v = v + i_nh * T * V + i_v * BV + tl.arange(0, BV) + (T - 1) * V p_do = do + i_nh * T * V + i_v * BV + tl.arange(0, BV) + (T - 1) * V p_dk = dk + (i_v * B * H + i_nh) * T * K + i_k * BK + tl.arange(0, BK ) + (T - 1) * K p_dv = dv + (i_k * B * H + i_nh) * T * V + i_v * BV + tl.arange(0, BV ) + (T - 1) * V if IS_BETA_HEADWISE: p_beta = beta + i_nh * T * V + i_v * BV + tl.arange(0, BV) + (T - 1 ) * V p_dbeta = db + (i_v * NK * B * H + i_k * B * H + i_nh ) * T * V + tl.arange(0, BV) + (T - 1) * V else: p_beta = beta + i_nh * T + T - 1 p_dbeta = db + (i_v * B * H + i_nh) * T + T - 1 else: p_q = q + (bos * H + i_h) * K + i_k * BK + tl.arange(0, BK) + (T - 1 ) * H * K p_k = k + (bos * H + i_h) * K + i_k * BK + tl.arange(0, BK) + (T - 1 ) * H * K p_v = v + (bos * H + i_h) * V + i_v * BV + tl.arange(0, BV) + (T - 1 ) * H * V p_do = do + (bos * H + i_h) * V + i_v * BV + tl.arange(0, BV) + (T - 1 ) * H * V p_dk = dk + ((i_v * all + bos) * H + i_h) * K + i_k * BK + tl.arange( 0, BK) + (T - 1) * H * K p_dv = dv + ((i_k * all + bos) * H + i_h) * V + i_v * BV + tl.arange( 0, BV) + (T - 1) * H * V if IS_BETA_HEADWISE: p_beta = beta + (bos + T - 1 ) * H * V + i_h * V + i_v * BV + tl.arange(0, BV) p_dbeta = db + ((i_v * NK + i_k) * all + bos + T - 1 ) * H * V + i_h * V + tl.arange(0, BV) else: p_beta = beta + (bos + T - 1) * H + i_h p_dbeta = db + (i_v * all + bos + T - 1) * H + i_h b_dh = tl.zeros([BK, BV], dtype=tl.float32) if USE_FINAL_STATE_GRADIENT: p_ht = dht + i_nh * K * V + (i_k * BK + tl.arange(0, BK)[:, None] ) * V + (i_v * BV + tl.arange(0, BV)[None, :]) b_dh += tl.load(p_ht, mask=mask_k[:, None] & mask_v[None, :], other=0 ).to(tl.float32) for _ in range(T): b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32) * scale b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32) b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32) b_do = tl.load(p_do, mask=mask_v, other=0).to(tl.float32) if IS_BETA_HEADWISE: b_beta = tl.load(p_beta, mask=mask_v, other=0).to(tl.float32) else: b_beta = tl.load(p_beta).to(tl.float32) b_dh += b_q[:, None] * b_do[None, :] b_dk = tl.sum(b_dh * (b_v * b_beta)[None, :], axis=1) b_dv = tl.sum(b_dh * b_k[:, None], axis=0) b_db = b_dv * b_v if IS_BETA_HEADWISE else tl.sum(b_dv * b_v) b_dv = b_dv * b_beta tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), mask=mask_k) tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), mask=mask_v) if IS_BETA_HEADWISE: tl.store(p_dbeta, b_db.to(p_dbeta.dtype.element_ty), mask=mask_v) else: tl.store(p_dbeta, b_db.to(p_dbeta.dtype.element_ty)) b_dh -= b_k[:, None] * b_dv[None, :] p_q -= K if HEAD_FIRST else H * K p_k -= K if HEAD_FIRST else H * K p_v -= V if HEAD_FIRST else H * V p_do -= V if HEAD_FIRST else H * V p_dk -= K if HEAD_FIRST else H * K p_dv -= V if HEAD_FIRST else H * V p_dbeta -= (1 if HEAD_FIRST else H) * (V if IS_BETA_HEADWISE else 1) p_beta -= (1 if HEAD_FIRST else H) * (V if IS_BETA_HEADWISE else 1) if USE_INITIAL_STATE: p_dh0 = dh0 + i_nh * K * V + (i_k * BK + tl.arange(0, BK)[:, None] ) * V + (i_v * BV + tl.arange(0, BV)[None, :]) tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), mask=mask_k[:, None] & mask_v[None, :]) tl.debug_barrier() b_h = tl.zeros([BK, BV], dtype=tl.float32) if HEAD_FIRST: p_q = q + i_nh * T * K + i_k * BK + tl.arange(0, BK) p_k = k + i_nh * T * K + i_k * BK + tl.arange(0, BK) p_v = v + i_nh * T * V + i_v * BV + tl.arange(0, BV) if IS_BETA_HEADWISE: p_beta = beta + i_nh * T * V + i_v * BV + tl.arange(0, BV) else: p_beta = beta + i_nh * T p_do = do + i_nh * T * V + i_v * BV + tl.arange(0, BV) p_dq = dq + (i_v * B * H + i_nh) * T * K + i_k * BK + tl.arange(0, BK) p_dk = dk + (i_v * B * H + i_nh) * T * K + i_k * BK + tl.arange(0, BK) p_dv = dv + (i_k * B * H + i_nh) * T * V + i_v * BV + tl.arange(0, BV) else: p_q = q + (bos * H + i_h) * K + i_k * BK + tl.arange(0, BK) p_k = k + (bos * H + i_h) * K + i_k * BK + tl.arange(0, BK) p_v = v + (bos * H + i_h) * V + i_v * BV + tl.arange(0, BV) if IS_BETA_HEADWISE: p_beta = beta + (bos * H + i_h) * V + i_v * BV + tl.arange(0, BV) else: p_beta = beta + bos * H + i_h p_do = do + (bos * H + i_h) * V + i_v * BV + tl.arange(0, BV) p_dq = dq + ((i_v * all + bos) * H + i_h) * K + i_k * BK + tl.arange( 0, BK) p_dk = dk + ((i_v * all + bos) * H + i_h) * K + i_k * BK + tl.arange( 0, BK) p_dv = dv + ((i_k * all + bos) * H + i_h) * V + i_v * BV + tl.arange( 0, BV) if USE_INITIAL_STATE: mask_h = mask_k[:, None] & mask_v[None, :] p_h0 = h0 + i_nh * K * V + (i_k * BK + tl.arange(0, BK)[:, None] ) * V + (i_v * BV + tl.arange(0, BV)[None, :]) b_h += tl.load(p_h0, mask=mask_h, other=0).to(tl.float32) for _ in range(0, T): b_dk = tl.load(p_dk, mask=mask_k, other=0).to(tl.float32) b_dv = tl.load(p_dv, mask=mask_v, other=0).to(tl.float32) b_dk -= tl.sum(b_dv[None, :] * b_h, axis=1) tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), mask=mask_k) b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32) b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32) b_do = tl.load(p_do, mask=mask_v, other=0).to(tl.float32) if IS_BETA_HEADWISE: b_beta = tl.load(p_beta, mask=mask_v, other=0).to(tl.float32) else: b_beta = tl.load(p_beta).to(tl.float32) b_v *= b_beta b_h += b_k[:, None] * b_v[None, :] b_dq = b_h * b_do[None, :] d_q = tl.sum(b_dq, axis=1) * scale tl.store(p_dq, d_q.to(p_dq.dtype.element_ty), mask=mask_k) p_k += K if HEAD_FIRST else H * K p_v += V if HEAD_FIRST else H * V p_do += V if HEAD_FIRST else H * V p_dq += K if HEAD_FIRST else H * K p_dk += K if HEAD_FIRST else H * K p_dv += V if HEAD_FIRST else H * V p_beta += (1 if HEAD_FIRST else H) * (V if IS_BETA_HEADWISE else 1)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Recurrent Neural Networks" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/delta_rule/fused_recurrent.py
6737d4e9-b985-4927-a44a-82cdfbceeae6
fused_cross_entropy.py
sustcsonglin/flash-linear-attention
fla/modules/fused_cross_entropy.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'HAS_SMOOTHING': lambda args: args['label_smoothing'] > 0.0}) @triton.jit def cross_entropy_bwd_kernel(dlogits_ptr, dloss_ptr, logits_ptr, lse_ptr, labels_ptr, label_smoothing, logit_scale, lse_square_scale, ignore_index, total_classes, class_start_idx, n_cols, logits_row_stride, dlogits_row_stride, dloss_row_stride, BLOCK_SIZE: tl.constexpr, HAS_SMOOTHING: tl.constexpr): row_idx = tl.program_id(0) col_block_idx = tl.program_id(1) logits_ptr = logits_ptr + row_idx * logits_row_stride.to(tl.int64) dlogits_ptr = dlogits_ptr + row_idx * dlogits_row_stride.to(tl.int64) col_offsets = col_block_idx * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) label_idx = tl.load(labels_ptr + row_idx) if label_idx != ignore_index: dloss = tl.load(dloss_ptr + row_idx * dloss_row_stride) else: dloss = 0.0 logits = tl.load(logits_ptr + col_offsets, mask=col_offsets < n_cols, other=-float('inf')).to(tl.float32) * logit_scale lse = tl.load(lse_ptr + row_idx) probs = tl.exp(logits - lse) probs += 2.0 * lse_square_scale * lse * probs label_idx -= class_start_idx if HAS_SMOOTHING: smooth_negative = label_smoothing / total_classes probs = tl.where(col_offsets == label_idx, probs - (1 - label_smoothing), probs) - smooth_negative else: probs = tl.where(col_offsets == label_idx, probs - 1.0, probs) tl.store(dlogits_ptr + col_offsets, dloss * logit_scale * probs, mask= col_offsets < n_cols)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Softmax" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/modules/fused_cross_entropy.py
b912e62b-afb4-4422-890d-6fb1182bfd6e
cumsum.py
sustcsonglin/flash-linear-attention
fla/ops/utils/cumsum.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({'BT': BT}, num_warps=num_warps) for BT in [16, 32, 64] for num_warps in [2, 4, 8]], key=['S']) @triton.jit def chunk_global_cumsum_vector_kernel(s, z, offsets, T: tl.constexpr, H: tl .constexpr, S: tl.constexpr, BT: tl.constexpr, BS: tl.constexpr, HEAD_FIRST: tl.constexpr, USE_OFFSETS: tl.constexpr): i_s, i_bh = tl.program_id(0), tl.program_id(1) i_b, i_h = i_bh // H, i_bh % H if USE_OFFSETS: bos, eos = tl.load(offsets + i_b).to(tl.int32), tl.load(offsets + i_b + 1).to(tl.int32) else: bos, eos = i_b * T, i_b * T + T T = eos - bos o_i = tl.arange(0, BT) m_s = tl.where(o_i[:, None] >= o_i[None, :], 1.0, 0.0) b_z = tl.zeros([BS], dtype=tl.float32) for i_t in range(tl.cdiv(T, BT)): if HEAD_FIRST: p_s = tl.make_block_ptr(s + i_bh * T * S, (T, S), (S, 1), (i_t * BT, i_s * BS), (BT, BS), (1, 0)) p_z = tl.make_block_ptr(z + i_bh * T * S, (T, S), (S, 1), (i_t * BT, i_s * BS), (BT, BS), (1, 0)) else: p_s = tl.make_block_ptr(s + (bos * H + i_h) * S, (T, S), (H * S, 1), (i_t * BT, i_s * BS), (BT, BS), (1, 0)) p_z = tl.make_block_ptr(z + (bos * H + i_h) * S, (T, S), (H * S, 1), (i_t * BT, i_s * BS), (BT, BS), (1, 0)) b_s = tl.load(p_s, boundary_check=(0, 1)).to(tl.float32) b_c = b_z[None, :] + tl.dot(m_s, b_s, allow_tf32=False) tl.store(p_z, b_c.to(p_z.dtype.element_ty), boundary_check=(0, 1)) if i_t >= 0: b_z += tl.sum(b_s, 0)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access", "Blocked Access" ], "Parallelization Strategy": [ "Cooperative Groups" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/utils/cumsum.py
6a835470-58ab-445d-b53c-4296e4297b79
triton_kernel.py
yann-Choho/projet_PPML
notebooks/triton_kernel.py
9274e0561443b01f029ee6e0737f922f71d2da39
0
@triton.autotune(configs=get_autotune_config(), key=['n_elements']) @triton.jit def triple_mul_kernel(A_ptr, B_ptr, C_ptr, output_ptr, n_elements, BLOCK_SIZE: tl.constexpr): pid = tl.program_id(axis=0) block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) mask = offsets < n_elements A = tl.load(A_ptr + offsets, mask=mask) B = tl.load(B_ptr + offsets, mask=mask) C = tl.load(C_ptr + offsets, mask=mask) output = A * B * C tl.store(output_ptr + offsets, output, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/yann-Choho/projet_PPML/blob/9274e0561443b01f029ee6e0737f922f71d2da39/notebooks/triton_kernel.py
1162e2ac-eec4-4b6a-ac17-f648e706e5b4
heuristics.py
daemyung/practice-triton
heuristics.py
27f727726f1507c8380a1c11751d851c7c4a07ce
0
@triton.heuristics({'boundary_check': lambda args: args['x_size'] % args[ 'block_size']}) @triton.jit def add_kernel(x_ptr, y_ptr, z_ptr, size, block_size: tl.constexpr, boundary_check: tl.constexpr): offset = tl.program_id(0) * block_size x_block_ptr = tl.make_block_ptr(x_ptr, shape=(size,), strides=(1,), offsets=(offset,), block_shape=(block_size,), order=(0,)) y_block_ptr = tl.make_block_ptr(y_ptr, shape=(size,), strides=(1,), offsets=(offset,), block_shape=(block_size,), order=(0,)) if boundary_check: x = tl.load(x_block_ptr, boundary_check=(0,)) y = tl.load(y_block_ptr, boundary_check=(0,)) else: x = tl.load(x_block_ptr) y = tl.load(y_block_ptr) z = x + y z_block_ptr = tl.make_block_ptr(z_ptr, shape=(size,), strides=(1,), offsets=(offset,), block_shape=(block_size,), order=(0,)) if boundary_check: tl.store(z_block_ptr, z, boundary_check=(0,)) else: tl.store(z_block_ptr, z)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Low Latency" ] }
[ "MIT" ]
https://github.com/daemyung/practice-triton/blob/27f727726f1507c8380a1c11751d851c7c4a07ce/heuristics.py
79923ee4-c50b-4734-a499-56f92bffc35b
sized_tuned_bwd.py
ROCm/aotriton
tritonsrc/sized_tuned_bwd.py
016f733e8ff746450e066f78bed68709ccd93e60
0
@triton.autotune(configs=TRITON_CONFIG_LIST_BWD_SIZED, key=['BLOCK_DMODEL', 'max_seqlen_q', 'max_seqlen_k']) @triton.jit def sized_tuned_bwd_kernel_dk_dv(Q, K, V, B, sm_scale, Out, DO, DK, DV, L, D, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_bz, stride_bh, stride_bm, stride_bn, stride_oz, stride_oh, stride_om, stride_ok, stride_dkz, stride_dkh, stride_dkn, stride_dkk, stride_dvz, stride_dvh, stride_dvk, stride_dvn, cu_seqlens_q, cu_seqlens_k, num_seqlens, max_seqlen_q, max_seqlen_k, head_dim, dropout_p, philox_seed, philox_offset_base, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, CAUSAL: tl.constexpr, ENABLE_DROPOUT: tl.constexpr, PADDED_HEAD: tl.constexpr, BIAS_TYPE: tl. constexpr): bare_bwd_kernel_dk_dv(Q, K, V, B, sm_scale, Out, DO, DK, DV, L, D, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_bz, stride_bh, stride_bm, stride_bn, stride_oz, stride_oh, stride_om, stride_ok, stride_dkz, stride_dkh, stride_dkn, stride_dkk, stride_dvz, stride_dvh, stride_dvk, stride_dvn, cu_seqlens_q, cu_seqlens_k, num_seqlens, max_seqlen_q, max_seqlen_k, head_dim, dropout_p, philox_seed, philox_offset_base, BLOCK_M, BLOCK_DMODEL, BLOCK_N, CAUSAL, ENABLE_DROPOUT, PADDED_HEAD= PADDED_HEAD, BIAS_TYPE=BIAS_TYPE)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/ROCm/aotriton/blob/016f733e8ff746450e066f78bed68709ccd93e60/tritonsrc/sized_tuned_bwd.py
eef87b29-d8f2-420d-a9a1-7f119fb0bc3c
wy_fast.py
sustcsonglin/flash-linear-attention
fla/ops/gated_delta_rule/wy_fast.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({}, num_warps=num_warps) for num_warps in [1, 2, 4]], key=['BT', 'BK', 'BV']) @triton.jit def bwd_prepare_wy_repr_kernel(k, v, beta, g, Aw, Au, dw, du, dk, dv, dbeta, dg, offsets, indices, T: tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, HEAD_FIRST: tl.constexpr, USE_OFFSETS: tl.constexpr): i_t, i_bh = tl.program_id(0), tl.program_id(1) i_b, i_h = i_bh // H, i_bh % H if USE_OFFSETS: i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos else: bos, eos = i_b * T, i_b * T + T b_dbeta = tl.zeros([BT], dtype=tl.float32) b_dA = tl.zeros([BT, BT], dtype=tl.float32) if HEAD_FIRST: p_beta = tl.make_block_ptr(beta + i_bh * T, (T,), (1,), (i_t * BT,), (BT,), (0,)) p_A = tl.make_block_ptr(Aw + i_bh * T * BT, (BT, T), (1, BT), (0, i_t * BT), (BT, BT), (0, 1)) else: p_beta = tl.make_block_ptr(beta + (bos * H + i_h), (T,), (H,), (i_t * BT,), (BT,), (0,)) p_A = tl.make_block_ptr(Aw + (bos * H + i_h) * BT, (BT, T), (1, H * BT), (0, i_t * BT), (BT, BT), (0, 1)) b_A = tl.load(p_A, boundary_check=(0, 1)) b_beta = tl.load(p_beta, boundary_check=(0,)) for i_k in range(tl.cdiv(K, BK)): if HEAD_FIRST: p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dk = tl.make_block_ptr(dk + i_bh * T * K, (T, K), (K, 1), ( i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dw = tl.make_block_ptr(dw + i_bh * T * K, (T, K), (K, 1), ( i_t * BT, i_k * BK), (BT, BK), (1, 0)) else: p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dk = tl.make_block_ptr(dk + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dw = tl.make_block_ptr(dw + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_k_beta = (b_k * b_beta[:, None]).to(b_k.dtype) b_dw = tl.load(p_dw, boundary_check=(0, 1)) b_dA += tl.dot(b_dw, tl.trans(b_k_beta), allow_tf32=False) b_dk_beta = tl.dot(b_A, b_dw, allow_tf32=False) b_dk = b_dk_beta * b_beta[:, None] b_dbeta += tl.sum(b_dk_beta * b_k, 1) tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1)) b_dA = tl.where(tl.arange(0, BT)[:, None] > tl.arange(0, BT)[None, :], b_dA, 0) b_dA = tl.dot(b_dA.to(b_A.dtype), b_A) b_dA = tl.dot(b_A, b_dA.to(b_A.dtype)) b_dA = tl.where(tl.arange(0, BT)[:, None] > tl.arange(0, BT)[None, :], -b_dA, 0).to(k.dtype.element_ty) if HEAD_FIRST: p_A = tl.make_block_ptr(Au + i_bh * T * BT, (BT, T), (1, BT), (0, i_t * BT), (BT, BT), (0, 1)) else: p_A = tl.make_block_ptr(Au + (bos * H + i_h) * BT, (BT, T), (1, H * BT), (0, i_t * BT), (BT, BT), (0, 1)) b_A = tl.load(p_A, boundary_check=(0, 1)) b_dA2 = tl.zeros([BT, BT], dtype=tl.float32) for i_v in range(tl.cdiv(V, BV)): if HEAD_FIRST: p_v = tl.make_block_ptr(v + i_bh * T * V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_dv = tl.make_block_ptr(dv + i_bh * T * V, (T, V), (V, 1), ( i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_du = tl.make_block_ptr(du + i_bh * T * V, (T, V), (V, 1), ( i_t * BT, i_v * BV), (BT, BV), (1, 0)) else: p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_dv = tl.make_block_ptr(dv + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_du = tl.make_block_ptr(du + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_v_beta = (b_v * b_beta[:, None]).to(b_v.dtype) b_du = tl.load(p_du, boundary_check=(0, 1)) b_dA2 += tl.dot(b_du, tl.trans(b_v_beta), allow_tf32=False) b_dv_beta = tl.dot(b_A, b_du, allow_tf32=False) b_dv = b_dv_beta * b_beta[:, None] b_dbeta += tl.sum(b_dv_beta * b_v, 1) tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1)) b_dA2 = tl.where(tl.arange(0, BT)[:, None] > tl.arange(0, BT)[None, :], b_dA2, 0) b_dA2 = tl.dot(b_dA2.to(b_A.dtype), b_A) b_dA2 = tl.dot(b_A, b_dA2.to(b_A.dtype)) b_dA2 = tl.where(tl.arange(0, BT)[:, None] > tl.arange(0, BT)[None, :], -b_dA2, 0).to(k.dtype.element_ty) if HEAD_FIRST: p_g = tl.make_block_ptr(g + i_bh * T, (T,), (1,), (i_t * BT,), (BT, ), (0,)) else: p_g = tl.make_block_ptr(g + (bos * H + i_h), (T,), (H,), (i_t * BT, ), (BT,), (0,)) b_g = tl.load(p_g, boundary_check=(0,)) b_dA += b_dA2 * tl.where(tl.arange(0, BT)[:, None] > tl.arange(0, BT)[ None, :], tl.exp(b_g[:, None] - b_g[None, :]), 0) b_dA = b_dA.to(k.dtype.element_ty) b_A = tl.zeros([BT, BT], dtype=tl.float32) for i_k in range(tl.cdiv(K, BK)): if HEAD_FIRST: p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dk = tl.make_block_ptr(dk + i_bh * T * K, (T, K), (K, 1), ( i_t * BT, i_k * BK), (BT, BK), (1, 0)) else: p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dk = tl.make_block_ptr(dk + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_dk = tl.load(p_dk, boundary_check=(0, 1)) b_k_beta = (b_k * b_beta[:, None]).to(b_k.dtype) b_A += tl.dot(b_k_beta, tl.trans(b_k)) b_dk_beta = tl.dot(b_dA, b_k, allow_tf32=False) b_dbeta += tl.sum(b_dk_beta * b_k, 1) b_dk += tl.dot(tl.trans(b_dA), b_k_beta, allow_tf32=False) b_dk += b_dk_beta * b_beta[:, None] tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1)) b_A = b_A * tl.where(tl.arange(0, BT)[:, None] > tl.arange(0, BT)[None, :], tl.exp(b_g[:, None] - b_g[None, :]), 0) b_A *= b_dA2 b_dg = tl.sum(b_A, axis=1) - tl.sum(b_A, axis=0) if HEAD_FIRST: p_dg = tl.make_block_ptr(dg + i_bh * T, (T,), (1,), (i_t * BT,), ( BT,), (0,)) p_dbeta = tl.make_block_ptr(dbeta + i_bh * T, (T,), (1,), (i_t * BT ,), (BT,), (0,)) else: p_dg = tl.make_block_ptr(dg + (bos * H + i_h), (T,), (H,), (i_t * BT,), (BT,), (0,)) p_dbeta = tl.make_block_ptr(dbeta + (bos * H + i_h), (T,), (H,), ( i_t * BT,), (BT,), (0,)) tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0,)) tl.store(p_dbeta, b_dbeta.to(p_dbeta.dtype.element_ty), boundary_check=(0,) )
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/gated_delta_rule/wy_fast.py
bf07f58b-4dc1-4f3e-8074-7f90a37688c0
naive_associative_rnn_scan.py
TushaarGVS/linear-rnn
linear_rnn/triton/naive_associative_rnn_scan.py
48320589b73154484be7d09a144923a2b9e56b85
0
@triton.jit def _naive_associative_rnn_scan_bwd_kernel(): pass
{ "Data Type": [], "Functionality": [ "Backpropagation", "Recurrent Neural Networks" ], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "Apache" ]
https://github.com/TushaarGVS/linear-rnn/blob/48320589b73154484be7d09a144923a2b9e56b85/linear_rnn/triton/naive_associative_rnn_scan.py
6008f8eb-f05d-46b8-ba50-eaf48490ed4d
rand_init.py
gmgu/study-triton
6_random/rand_init.py
3a9a24fd3f1de3e7465535ffe72f6deac8a419bd
0
@triton.jit def rand_init(out_ptr, n, seed, BLOCK_SIZE: tl.constexpr): pid = tl.program_id(axis=0) offsets = pid * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) mask = offsets < n random = tl.rand(seed, offsets) tl.store(out_ptr + offsets, random, mask=mask)
{ "Data Type": [], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Memory-Bound" ] }
[ "Apache" ]
https://github.com/gmgu/study-triton/blob/3a9a24fd3f1de3e7465535ffe72f6deac8a419bd/6_random/rand_init.py
af1c833d-4eeb-4313-a034-3b8bf3198b9d
main_triton.py
dwgan/GraphMST
main_triton.py
4d65ed0f108d339e3e4cfff25085a39adc6a48a2
0
@triton.jit def union_kernel(parent, rank, u, v, BLOCK_SIZE: tl.constexpr): root_u = tl.zeros((BLOCK_SIZE,), dtype=tl.int32) root_v = tl.zeros((BLOCK_SIZE,), dtype=tl.int32) find_kernel(parent, u, root_u, BLOCK_SIZE=BLOCK_SIZE) find_kernel(parent, v, root_v, BLOCK_SIZE=BLOCK_SIZE) tl.syncwarp() root_u = root_u[0] root_v = root_v[0] if root_u != root_v: ru_rank = tl.load(rank + root_u) rv_rank = tl.load(rank + root_v) if ru_rank > rv_rank: tl.store(parent, root_v, root_u) elif ru_rank < rv_rank: tl.store(parent, root_u, root_v) else: tl.store(parent, root_v, root_u) tl.atomic_add(rank, root_u, 1)
{ "Data Type": [], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Shared Memory Intensive" ], "Parallelization Strategy": [ "Cooperative Groups" ], "Performance Objective": [ "Memory-Bound" ] }
[ "MIT" ]
https://github.com/dwgan/GraphMST/blob/4d65ed0f108d339e3e4cfff25085a39adc6a48a2/main_triton.py
faf1b309-5072-4c15-ba21-d9fb5786455c
06-fused-attention.py
triton-lang/triton
python/tutorials/06-fused-attention.py
a2b398e0bb1b120f31cf386d6ae3261c3ab84207
0
@triton.jit def _attn_bwd(Q, K, V, sm_scale, DO, DQ, DK, DV, M, D, stride_z, stride_h, stride_tok, stride_d, H, N_CTX, BLOCK_M1: tl.constexpr, BLOCK_N1: tl. constexpr, BLOCK_M2: tl.constexpr, BLOCK_N2: tl.constexpr, BLK_SLICE_FACTOR: tl.constexpr, HEAD_DIM: tl.constexpr): LN2: tl.constexpr = 0.6931471824645996 bhid = tl.program_id(2) off_chz = (bhid * N_CTX).to(tl.int64) adj = (stride_h * (bhid % H) + stride_z * (bhid // H)).to(tl.int64) pid = tl.program_id(0) Q += adj K += adj V += adj DO += adj DQ += adj DK += adj DV += adj M += off_chz D += off_chz offs_k = tl.arange(0, HEAD_DIM) start_n = pid * BLOCK_N1 start_m = start_n MASK_BLOCK_M1: tl.constexpr = BLOCK_M1 // BLK_SLICE_FACTOR offs_n = start_n + tl.arange(0, BLOCK_N1) dv = tl.zeros([BLOCK_N1, HEAD_DIM], dtype=tl.float32) dk = tl.zeros([BLOCK_N1, HEAD_DIM], dtype=tl.float32) k = tl.load(K + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d) v = tl.load(V + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d) num_steps = BLOCK_N1 // MASK_BLOCK_M1 dk, dv = _attn_bwd_dkdv(dk, dv, Q, k, v, sm_scale, DO, M, D, stride_tok, stride_d, H, N_CTX, MASK_BLOCK_M1, BLOCK_N1, HEAD_DIM, start_n, start_m, num_steps, MASK=True) start_m += num_steps * MASK_BLOCK_M1 num_steps = (N_CTX - start_m) // BLOCK_M1 dk, dv = _attn_bwd_dkdv(dk, dv, Q, k, v, sm_scale, DO, M, D, stride_tok, stride_d, H, N_CTX, BLOCK_M1, BLOCK_N1, HEAD_DIM, start_n, start_m, num_steps, MASK=False) dv_ptrs = DV + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d tl.store(dv_ptrs, dv) dk *= sm_scale dk_ptrs = DK + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d tl.store(dk_ptrs, dk) start_m = pid * BLOCK_M2 end_n = start_m + BLOCK_M2 MASK_BLOCK_N2: tl.constexpr = BLOCK_N2 // BLK_SLICE_FACTOR offs_m = start_m + tl.arange(0, BLOCK_M2) q = tl.load(Q + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d) dq = tl.zeros([BLOCK_M2, HEAD_DIM], dtype=tl.float32) do = tl.load(DO + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d ) m = tl.load(M + offs_m) m = m[:, None] num_steps = BLOCK_M2 // MASK_BLOCK_N2 dq = _attn_bwd_dq(dq, q, K, V, do, m, D, stride_tok, stride_d, H, N_CTX, BLOCK_M2, MASK_BLOCK_N2, HEAD_DIM, start_m, end_n - num_steps * MASK_BLOCK_N2, num_steps, MASK=True) end_n -= num_steps * MASK_BLOCK_N2 num_steps = end_n // BLOCK_N2 dq = _attn_bwd_dq(dq, q, K, V, do, m, D, stride_tok, stride_d, H, N_CTX, BLOCK_M2, BLOCK_N2, HEAD_DIM, start_m, end_n - num_steps * BLOCK_N2, num_steps, MASK=False) dq_ptrs = DQ + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d dq *= LN2 tl.store(dq_ptrs, dq)
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Backpropagation" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/triton-lang/triton/blob/a2b398e0bb1b120f31cf386d6ae3261c3ab84207/python/tutorials/06-fused-attention.py
21eb0b3f-9ba8-480f-bb96-a5685bc5fff5
snake.py
falkaer/multi-scale-music
snake.py
a7794ddfb3bbd95b70acf3fe72a08d8a1d47564d
0
@triton.autotune(configs=[triton.Config({}, num_warps=4), triton.Config({}, num_warps=8), triton.Config({}, num_warps=16)], reset_to_zero=['DYDA', 'DYDC'], key=['C']) @triton.jit def _snake_bwd_triton(X, OUT, ALPHA, CR, GRAD, DYDX, DYDA, DYDC, X_stride1, X_stride2, X_stride3, OUT_stride1, OUT_stride2, OUT_stride3, GRAD_stride1, GRAD_stride2, GRAD_stride3, DYDX_stride1, DYDX_stride2, DYDX_stride3, DYDA_stride, DYDC_stride, ALPHA_stride, CR_stride, C, N, CORR: tl.constexpr, X_NEEDS_GRAD: tl.constexpr, ALPHA_NEEDS_GRAD: tl. constexpr, CR_NEEDS_GRAD: tl.constexpr, BLOCK_SIZE: tl.constexpr): pid = tl.program_id(0) batch_idx = pid // C channel_idx = pid % C block_start = tl.program_id(1) * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) GRAD = GRAD + batch_idx * GRAD_stride1 + channel_idx * GRAD_stride2 grad = tl.load(GRAD + offsets * GRAD_stride3, mask=offsets < N, other=0) if CORR: cr = tl.load(CR + channel_idx * CR_stride) if ALPHA_NEEDS_GRAD | CR_NEEDS_GRAD: OUT = OUT + batch_idx * OUT_stride1 + channel_idx * OUT_stride2 out = tl.load(OUT + offsets * OUT_stride3, mask=offsets < N, other=0) outgrad = tl.sum(out * grad, axis=0) if X_NEEDS_GRAD | ALPHA_NEEDS_GRAD: X = X + batch_idx * X_stride1 + channel_idx * X_stride2 x = tl.load(X + offsets * X_stride3, mask=offsets < N, other=0) alpha = tl.load(ALPHA + channel_idx * ALPHA_stride) sin2ax = tl.sin((2 * alpha * x).to(tl.float32)).to(x.type) dydx = (sin2ax + 1) * grad if CORR: dydx = dydx / cr if X_NEEDS_GRAD: DYDX = DYDX + batch_idx * DYDX_stride1 + channel_idx * DYDX_stride2 tl.store(DYDX + offsets * DYDX_stride3, dydx, mask=offsets < N) if ALPHA_NEEDS_GRAD: dyda = (tl.sum(x * dydx, axis=0) - outgrad) / alpha tl.atomic_add(DYDA + channel_idx * DYDA_stride, dyda) if CR_NEEDS_GRAD: dydc = -outgrad / cr tl.atomic_add(DYDC + channel_idx * DYDC_stride, dydc)
{ "Data Type": [], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [ "Shared Memory Intensive" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Memory-Bound" ] }
[ "MIT" ]
https://github.com/falkaer/multi-scale-music/blob/a7794ddfb3bbd95b70acf3fe72a08d8a1d47564d/snake.py
b98029f7-6d1d-4960-8e62-6b7ea5e45c0e
chunk.py
sustcsonglin/flash-linear-attention
fla/ops/abc/chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.jit def chunk_abc_bwd_kernel_dh(q, z, do, dh, s_k_h, s_k_t, s_k_d, s_v_h, s_v_t, s_v_d, s_h_h, s_h_t, s_h_d, scale, T: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, NT: tl.constexpr, NORMK: tl.constexpr): i_k, i_v, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) b_dh = tl.zeros([BK, BV], dtype=tl.float32) b_zp = tl.full([BK if NORMK else BV], float('inf'), dtype=tl.float32) for i_t in range(NT - 1, -1, -1): i_p = tl.maximum(i_t * BT - 1, 0) p_q = tl.make_block_ptr(q + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), ( i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_dh = tl.make_block_ptr(dh + i_bh * s_h_h + i_t * K * V, (K, V), ( s_h_t, s_h_d), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_q = (b_q * scale).to(b_q.dtype) b_do = tl.load(p_do, boundary_check=(0, 1)) tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1)) if NORMK: p_z = tl.make_block_ptr(z + i_bh * s_k_h, (K, T), (s_k_d, s_k_t ), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_zc = tl.make_block_ptr(z + i_bh * s_k_h, (T * K,), (s_k_d,), (i_p * K + i_k * BK,), (BK,), (0,)) b_zc = tl.load(p_zc, boundary_check=(0,)) b_r, b_zp = tl.exp(b_zc - b_zp), b_zc b_z = tl.load(p_z, boundary_check=(0, 1)) b_q = (b_q * tl.exp(b_zc[:, None] - b_z)).to(b_q.dtype) b_dh = b_dh * b_r[:, None] else: p_z = tl.make_block_ptr(z + i_bh * s_v_h, (T, V), (s_v_t, s_v_d ), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_zc = tl.make_block_ptr(z + i_bh * s_v_h, (T * V,), (s_v_d,), (i_p * V + i_v * BV,), (BV,), (0,)) b_zc = tl.load(p_zc, boundary_check=(0,)) b_r, b_zp = tl.exp(b_zc - b_zp), b_zc b_z = tl.load(p_z, boundary_check=(0,)) b_do = (b_do * tl.exp(b_zc[None, :] - b_z)).to(b_do.dtype) b_dh = b_dh * b_r[None, :] b_dh += tl.dot(b_q, b_do, allow_tf32=False)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Attention Mechanisms" ], "Memory Access Pattern": [ "Blocked Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/abc/chunk.py
4ff74bb4-943c-4c66-937e-646014c4ff27
math.py
BobMcDear/attorch
attorch/math.py
da06cb6236bb47195e33fe3986ed21c675ed94cc
0
@triton.jit def softmax(input, log: tl.constexpr): """ Normalizes the input using softmax along the last dimension. Args: input: Input to normalize. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. log: Flag for indicating if the log of softmax should be taken. Returns: Input normalized by softmax. """ input = input.to(tl.float32) input = input - tl.max(input, axis=1)[:, None] numerator = tl.exp(input) denominator = tl.sum(numerator, axis=1)[:, None] if log: output = input - tl.log(denominator) else: output = numerator / denominator return output
{ "Data Type": [ "fp32" ], "Functionality": [ "Softmax" ], "Memory Access Pattern": [ "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "MIT" ]
https://github.com/BobMcDear/attorch/blob/da06cb6236bb47195e33fe3986ed21c675ed94cc/attorch/math.py
7dd66f4e-95eb-48ec-8b08-1f9ced106147
parallel.py
sustcsonglin/flash-linear-attention
fla/ops/based/parallel.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.jit def _parallel_based_bwd_dq(i_bh, i_c, i_k, i_v, i_h, q, k, v, do, dz, dq, s_k_h, s_k_t, s_k_d, s_v_h, s_v_t, s_v_d, B, H, T, scale, BTL: tl. constexpr, BTS: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, K: tl .constexpr, V: tl.constexpr): p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), ( i_c * BTL, i_v * BV), (BTL, BV), (1, 0)) p_q = tl.make_block_ptr(q + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_c * BTL, i_k * BK), (BTL, BK), (1, 0)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype) b_q = (b_q * scale).to(b_q.dtype) b_dq = tl.zeros([BTL, BK], dtype=tl.float32) p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (0, i_k * BK), (BTS, BK), (1, 0)) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (V, T), (s_v_d, s_v_t), (i_v * BV, 0), (BV, BTS), (0, 1)) p_dz = dz + i_bh * T + i_c * BTL + tl.arange(0, BTL) b_dz = tl.load(p_dz, mask=i_c * BTL + tl.arange(0, BTL) < T) for _ in range(0, i_c * BTL, BTS): b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_ds = tl.dot(b_do, b_v, allow_tf32=False) if i_v == 0: b_ds += b_dz[:, None] else: b_ds = b_ds b_s = tl.dot(b_q, tl.trans(b_k), allow_tf32=False) b_dq += tl.dot((b_ds * (1 + b_s)).to(b_v.dtype), b_k, allow_tf32=False) p_k = tl.advance(p_k, (BTS, 0)) p_v = tl.advance(p_v, (0, BTS)) b_dq *= scale o_q = tl.arange(0, BTL) o_k = tl.arange(0, BTS) p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_c * BTL, i_k * BK), (BTS, BK), (1, 0)) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (V, T), (s_v_d, s_v_t), (i_v * BV, i_c * BTL), (BV, BTS), (0, 1)) for _ in range(i_c * BTL, (i_c + 1) * BTL, BTS): b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) m_s = o_q[:, None] >= o_k[None, :] b_ds = tl.dot(b_do, b_v, allow_tf32=False) if i_v == 0: b_ds += b_dz[:, None] else: b_ds = b_ds b_ds = tl.where(m_s, b_ds, 0) * scale b_s = tl.dot(b_q, tl.trans(b_k), allow_tf32=False) b_s = tl.where(m_s, b_s, 0) b_dq += tl.dot((b_ds + b_ds * b_s).to(b_k.dtype), b_k, allow_tf32=False ) p_k = tl.advance(p_k, (BTS, 0)) p_v = tl.advance(p_v, (0, BTS)) o_k += BTS p_dq = tl.make_block_ptr(dq + (i_bh + B * H * i_v) * s_k_h, (T, K), ( s_k_t, s_k_d), (i_c * BTL, i_k * BK), (BTL, BK), (1, 0)) tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1)) return
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/based/parallel.py
35bf1229-189c-4ad2-b417-b760322afbf3
positional_embedding.py
sjjeong94/ai_compiler_study
aicom/positional_embedding.py
e87284aab74acab704e2d192190be446e328e1c6
0
@triton.jit def rope_bw(dx_ptr, f_ptr, dt_ptr, dx_s_stride, f_s_stride, dt_s_stride, d, d2, BLOCK_SIZE: tl.constexpr): s_idx = tl.program_id(0) bh_idx = tl.program_id(1) dx_start_ptr = dx_ptr + s_idx * dx_s_stride f_start_ptr = f_ptr + s_idx * f_s_stride dt_start_ptr = dt_ptr + s_idx * dt_s_stride d2_half = d2 // 2 col_offsets = tl.arange(0, BLOCK_SIZE) mask = col_offsets < d2_half f0_ptrs = f_start_ptr + col_offsets f1_ptrs = f_start_ptr + col_offsets + d2_half f0 = tl.load(f0_ptrs, mask=mask, other=0.0) cos0 = tl.cos(f0) sin0 = tl.sin(f0) f1 = tl.load(f1_ptrs, mask=mask, other=0.0) cos1 = tl.cos(f1) sin1 = tl.sin(f1) dx0_ptrs = dx_start_ptr + bh_idx * d + col_offsets dx1_ptrs = dx_start_ptr + bh_idx * d + col_offsets + d2_half dx0 = tl.load(dx0_ptrs, mask=mask, other=0.0) dx1 = tl.load(dx1_ptrs, mask=mask, other=0.0) dt0 = dx0 * cos0 + dx1 * sin1 dt1 = dx1 * cos1 - dx0 * sin0 dt0_ptrs = dt_start_ptr + bh_idx * d + col_offsets dt1_ptrs = dt_start_ptr + bh_idx * d + col_offsets + d2_half tl.store(dt0_ptrs, dt0, mask=mask) tl.store(dt1_ptrs, dt1, mask=mask) if d2 < d: remainder = d - d2 q, r = remainder // BLOCK_SIZE, remainder % BLOCK_SIZE for i in range(q): dx2_ptrs = (dx_start_ptr + bh_idx * d + col_offsets + d2 + BLOCK_SIZE * i) dt2_ptrs = (dt_start_ptr + bh_idx * d + col_offsets + d2 + BLOCK_SIZE * i) dx2 = tl.load(dx2_ptrs) tl.store(dt2_ptrs, dx2) if r > 0: dx2_ptrs = (dx_start_ptr + bh_idx * d + col_offsets + d2 + BLOCK_SIZE * q) dt2_ptrs = (dt_start_ptr + bh_idx * d + col_offsets + d2 + BLOCK_SIZE * q) mask = col_offsets < r dx2 = tl.load(dx2_ptrs, mask=mask, other=0.0) tl.store(dt2_ptrs, dx2, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sjjeong94/ai_compiler_study/blob/e87284aab74acab704e2d192190be446e328e1c6/aicom/positional_embedding.py
f0a324aa-5bec-4ba9-8dee-d1c6f875aff3
triton_jagged_tensor_ops.py
pytorch/FBGEMM
fbgemm_gpu/fbgemm_gpu/triton/jagged/triton_jagged_tensor_ops.py
fe980ab54a6e28818d81c8694b6564e7f804418b
0
@triton.jit def triton_jagged_to_dense(jagged_value_ptr, jagged_offsets_ptr, jagged_value_row_stride, output_dense_ptr, dense_indices_ptr, dense_col_stride, dense_row_stride, dense_matrix_stride, JAGGED_DIM: tl .constexpr, thread_block_row_size: tl.constexpr, thread_block_col_size: tl.constexpr, operation_function: tl.constexpr, operation_dense) ->None: pid = tl.program_id(0) begin = tl.load(jagged_offsets_ptr + pid) end = tl.load(jagged_offsets_ptr + (pid + 1)) jagged_value_ptr += begin * jagged_value_row_stride if JAGGED_DIM > 2: dense_indice = tl.load(dense_indices_ptr + pid) if dense_indice == -1: return output_dense_ptr += dense_indice if operation_function is not None: operation_dense += dense_indice else: output_dense_ptr += pid * dense_matrix_stride if operation_function is not None: operation_dense += pid * dense_matrix_stride offset_row = tl.arange(0, thread_block_row_size) N = tl.minimum(dense_row_stride, jagged_value_row_stride) M = tl.minimum(dense_matrix_stride // dense_row_stride, end - begin) for _i in range(begin, end, thread_block_row_size): offset_col = tl.arange(0, thread_block_col_size) block_offset = offset_row[:, None] * dense_row_stride + offset_col[ None, :] * dense_col_stride for _j in range(0, N, thread_block_col_size): mask = (offset_row[:, None] < M) & (offset_col[None, :] < N) jagged_val = tl.load(jagged_value_ptr + block_offset, mask=mask, other=0) if operation_function is not None: val1 = jagged_val val2 = tl.load(operation_dense + block_offset, mask=mask, other=0) if operation_function == 'add': jagged_val = tensor_elementwise_add(val1, val2) else: jagged_val = tensor_elementwise_mul(val1, val2) tl.store(output_dense_ptr + block_offset, jagged_val, mask=mask) offset_col += thread_block_col_size block_offset += thread_block_col_size offset_row += thread_block_row_size
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access", "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "BSD", "MIT" ]
https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/fbgemm_gpu/triton/jagged/triton_jagged_tensor_ops.py
7373edff-5262-4dfe-8b20-5d8d947fc6be
triton_chunk.py
NX-AI/xlstm-jax
xlstm_jax/models/xlstm_pytorch/blocks/mlstm/backend/triton_chunk.py
6615e620ba4ecdbe4fd9cc4e9a5a313b133e84a7
0
@triton.jit def chunk_mlstm_fwd_kernel_C(k, v, C, n, m, i, f, initial_C, initial_n, initial_m, final_C, final_n, final_m, s_qk_h, s_qk_t, s_qk_d, s_vh_h, s_vh_t, s_vh_d, s_C_h, s_C_t, s_n_h, H: tl.constexpr, T: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, NT: tl.constexpr, USE_INITIAL_STATE: tl.constexpr, STORE_FINAL_STATE: tl.constexpr): i_k, i_v, i_bC = tl.program_id(0), tl.program_id(1), tl.program_id(2) if USE_INITIAL_STATE: p_C0 = tl.make_block_ptr(initial_C + i_bC * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) p_n0 = tl.make_block_ptr(initial_n + i_bC * K, (K,), (1,), (i_k * BK,), (BK,), (0,)) p_m0 = initial_m b_C = tl.load(p_C0, boundary_check=(0, 1)).to(tl.float32) b_n = tl.load(p_n0, boundary_check=(0,)).to(tl.float32) b_m = tl.load(p_m0).to(tl.float32) else: b_C = tl.zeros([BK, BV], dtype=tl.float32) b_n = tl.zeros([BK], dtype=tl.float32) b_m = 0.0 b_m_next = 0.0 for i_t in range(NT): p_k = tl.make_block_ptr(k + i_bC * s_qk_h, (K, T), (s_qk_d, s_qk_t), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_v = tl.make_block_ptr(v + i_bC * s_vh_h, (T, V), (s_vh_t, s_vh_d), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_C = tl.make_block_ptr(C + i_bC * s_C_h + i_t * K * V, (K, V), ( s_C_t, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) p_n = tl.make_block_ptr(n + i_bC * s_n_h + i_t * K, (K,), (1,), ( i_k * BK,), (BK,), (0,)) tl.store(p_C, b_C.to(p_C.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_n, b_n.to(p_n.dtype.element_ty), boundary_check=(0,)) tl.store(m + i_bC * (NT + 1) + i_t, b_m) b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_f_last = tl.load(f + i_bC * T + i_t * BT + BT - 1) b_f = tl.load(f + i_bC * T + i_t * BT + tl.arange(0, BT)) b_i = tl.load(i + i_bC * T + i_t * BT + tl.arange(0, BT)) b_g = b_i + b_f_last - b_f b_m_next, _ = tl.max(b_g) b_m_next = tl.maximum(b_f_last + b_m, b_m_next) b_C *= tl.math.exp2(b_f_last - b_m_next + b_m) b_n *= tl.math.exp2(b_f_last - b_m_next + b_m) b_C += tl.dot(b_k, (b_v * tl.math.exp2(b_g - b_m_next)[:, None]).to (b_k.dtype), allow_tf32=False) b_n += tl.sum(b_k * tl.math.exp2(b_g - b_m_next), axis=1) b_m = b_m_next if STORE_FINAL_STATE: p_Ct = tl.make_block_ptr(final_C + i_bC * K * V, (K, V), (V, 1), ( i_k * BK, i_v * BV), (BK, BV), (1, 0)) p_n = tl.make_block_ptr(final_n + i_bC * K, (K,), (1,), (i_k * BK,), (BK,), (0,)) tl.store(p_Ct, b_C.to(p_Ct.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_n, b_n.to(p_n.dtype.element_ty), boundary_check=(0,)) tl.store(final_m + i_bC, b_m) tl.store(m + i_bC * (NT + 1) + NT, b_m)
{ "Data Type": [ "fp32" ], "Functionality": [ "Recurrent Neural Networks" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "Low Latency" ] }
[ "Apache", "BSD" ]
https://github.com/NX-AI/xlstm-jax/blob/6615e620ba4ecdbe4fd9cc4e9a5a313b133e84a7/xlstm_jax/models/xlstm_pytorch/blocks/mlstm/backend/triton_chunk.py
0d15dee4-56b7-4d6d-bb33-39e4b5938078
fp8_gemm.py
pytorch/FBGEMM
fbgemm_gpu/experimental/gemm/triton_gemm/fp8_gemm.py
fe980ab54a6e28818d81c8694b6564e7f804418b
0
@triton.autotune(configs=MATMUL_CONFIGS, key=['m_key', 'n_key', 'k_key'], prune_configs_by={'early_config_prune': early_config_prune, 'perf_model': estimate_matmul_time, 'top_k': 10}) @triton.heuristics({'EVEN_K': lambda args: args['K'] % (args['BLOCK_K'] * args['SPLIT_K']) == 0}) @triton.jit def _kernel_matmul_fp8_block_slowacc(A, B, C, M, N, K, m_key, n_key, k_key, A_scale, B_scale, scale_block_m: tl.constexpr, scale_block_n: tl. constexpr, scale_block_k: tl.constexpr, stride_am, stride_ak, stride_bn, stride_bk, stride_cm, stride_cn, stride_scale_am, stride_scale_ak, stride_scale_bn, stride_scale_bk, dot_out_dtype: tl.constexpr, allow_tf32: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr, GROUP_M: tl.constexpr, SPLIT_K: tl.constexpr, EVEN_K: tl.constexpr, AB_DTYPE: tl.constexpr) ->None: """Matmul kernel of [M, K] @ [N, K] with block-wise scales Performs swizzled matmul in [BLOCK_M, BLOCK_K] with [BLOCK_K, BLOCK_N] tiles and A and B scaled by a scaling factor per [scale_block_m, scale_block_k] and [scale_block_n, scale_block_k] tiles respectively. Todo: * Support scale_block_{mnk} < BLOCK{MNK} for each dim. Args: A (TensorWrapper): [M, K] input tensor. B (TensorWrapper): [N, K] input tensor. C (TensorWrapper): [M, N] output tensor. M (int): M dimension of input tensor. N (int): N dimension of input tensor. K (int): K dimension of input tensor. m_key (int): Autotuning key for M dimension of input tensor. n_key (int): Autotuning key for N dimension of input tensor. k_key (int): Autotuning key for K dimension of input tensor. A_scale (TensorWrapper): [cdiv(M, scale_block_m), cdiv(K, scale_block_k)] reciprocal scale tensor per block. A * A_scale = original A B_scale (TensorWrapper): [cdiv(N, scale_block_n), cdiv(K, scale_block_k)] reciprocal scale tensor per block. B * B_scale = original B scale_block_m (int): Block size for M dimension of A_scale. scale_block_n (int): Block size for N dimension of B_scale. scale_block_k (int): Block size for K dimension of A_scale and B_scale. stride_am (int): Stride of M dimension of A. stride_ak (int): Stride of K dimension of A. stride_bn (int): Stride of N dimension of B. stride_bk (int): Stride of K dimension of B. stride_cm (int): Stride of M dimension of C. stride_cn (int): Stride of N dimension of C. stride_scale_am (int): Stride of M dimension of A_scale. stride_scale_ak (int): Stride of K dimension of A_scale. stride_scale_bn (int): Stride of N dimension of B_scale. stride_scale_bk (int): Stride of K dimension of B_scale. dot_out_dtype (torch.dtype): Output type of tensor core. allow_tf32 (bool): Whether to use TF32 for tensor core. fp8_fast_accum (bool): Whether to use fast accumulation for tensor core. BLOCK_M (int): Block size for M dimension. BLOCK_N (int): Block size for N dimension. BLOCK_K (int): Block size for K dimension. GROUP_M (int): Number of groups for M dimension swizzle. SPLIT_K (int): Number of SM's to launch per row. EVEN_K (bool): Whether K is evenly divisible by BLOCK_K * SPLIT_K. AB_DTYPE (bool): Wether to cast A and B to C.dtype before tensor core. """ assert BLOCK_M < scale_block_m assert BLOCK_N < scale_block_n assert BLOCK_K < scale_block_k pid = tl.program_id(0) pid_z = tl.program_id(1) grid_m = tl.cdiv(M, BLOCK_M) grid_n = tl.cdiv(N, BLOCK_N) width = GROUP_M * grid_n group_id = pid // width group_size = min(grid_m - group_id * GROUP_M, GROUP_M) pid_m = group_id * GROUP_M + pid % group_size pid_n = pid % width // group_size rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M) rbn = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N) rk = pid_z * BLOCK_K + tl.arange(0, BLOCK_K) A = A + (ram[:, None] * stride_am + rk[None, :] * stride_ak) B = B + (rk[:, None] * stride_bk + rbn[None, :] * stride_bn) acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=dot_out_dtype) scale_m = pid_m * BLOCK_M // scale_block_m scale_n = pid_n * BLOCK_N // scale_block_n _0 = tl.zeros((1, 1), dtype=C.dtype.element_ty) for k in range(0, tl.cdiv(K, BLOCK_K * SPLIT_K)): pid_k = k * SPLIT_K + pid_z scale_k = pid_k * BLOCK_K // scale_block_k a_scale = tl.load(A_scale + scale_m * stride_scale_am + scale_k * stride_scale_ak) b_scale = tl.load(B_scale + scale_n * stride_scale_bn + scale_k * stride_scale_bk) scale = a_scale * b_scale if EVEN_K: a = tl.load(A) b = tl.load(B) else: k_remaining = K - k * (BLOCK_K * SPLIT_K) a = tl.load(A, mask=rk[None, :] < k_remaining, other=_0) b = tl.load(B, mask=rk[:, None] < k_remaining, other=_0) if AB_DTYPE: a = a.to(C.dtype.element_ty) b = b.to(C.dtype.element_ty) acc += tl.dot(a, b, out_dtype=dot_out_dtype, allow_tf32=allow_tf32 ) * scale A += BLOCK_K * SPLIT_K * stride_ak B += BLOCK_K * SPLIT_K * stride_bk rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) acc = acc.to(C.dtype.element_ty) c = C + (rm[:, None] * stride_cm + rn[None, :] * stride_cn) mask = (rm < M)[:, None] & (rn < N)[None, :] if SPLIT_K == 1: tl.store(c, acc, mask=mask) else: tl.atomic_add(c, acc, mask=mask)
{ "Data Type": [], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Blocked Access", "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput" ] }
[ "BSD", "MIT" ]
https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/experimental/gemm/triton_gemm/fp8_gemm.py
9c7bbe01-fd64-4864-80d0-e77e220fab0a
fused_chunk.py
sustcsonglin/flash-linear-attention
fla/ops/delta_rule/fused_chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.autotune(configs=[triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8)], key=['BT', 'BK', 'BV']) @triton.jit def fused_chunk_delta_rule_bwd_kernel(q, k, v, d, dht, dh0, do, dq, dk, dv, dd, initial_state, s_k_h, s_k_t, s_k_d, s_v_h, s_v_t, s_v_d, B, H, T, scale, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, DK: tl. constexpr, DV: tl.constexpr, USE_INITIAL_STATE: tl.constexpr, USE_DHT: tl.constexpr, USE_DHO: tl.constexpr, CHECK: tl.constexpr): i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) o_i = tl.arange(0, BT) b_dh = tl.zeros([BK, BV], dtype=tl.float32) if USE_DHT: p_dht = tl.make_block_ptr(dht + i_bh * DK * DV, (DK, DV), (DV, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) b_dh += tl.load(p_dht, boundary_check=(0, 1)).to(tl.float32) m_s = o_i[:, None] <= o_i[None, :] for i in range(tl.cdiv(T, BT) - 1, -1, -1): p_q = tl.make_block_ptr(q + i_bh * s_k_h, (DK, T), (s_k_d, s_k_t), (i_k * BK, i * BT), (BK, BT), (0, 1)) p_d = tl.make_block_ptr(d + i_bh * s_k_h, (DK, T), (s_k_d, s_k_t), (i_k * BK, i * BT), (BK, BT), (0, 1)) p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, DK), (s_k_t, s_k_d), (i * BT, i_k * BK), (BT, BK), (1, 0)) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, DV), (s_v_t, s_v_d), (i * BT, i_v * BV), (BT, BV), (1, 0)) p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, DV), (s_v_t, s_v_d), (i * BT, i_v * BV), (BT, BV), (1, 0)) p_dk = tl.make_block_ptr(dk + (i_bh + i_v * B * H) * s_k_h, (T, DK), (s_k_t, s_k_d), (i * BT, i_k * BK), (BT, BK), (1, 0)) p_dv = tl.make_block_ptr(dv + (i_bh + i_k * B * H) * s_v_h, (T, DV), (s_v_t, s_v_d), (i * BT, i_v * BV), (BT, BV), (1, 0)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_q = (b_q * scale).to(b_q.dtype) b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)) b_ds = tl.dot(b_v, tl.trans(b_do), allow_tf32=False) b_ds = tl.where(m_s, b_ds, 0).to(b_q.dtype) b_s = tl.dot(b_k, b_q, allow_tf32=False) b_s = tl.where(m_s, b_s, 0).to(b_q.dtype) b_dk = tl.dot(b_ds, tl.trans(b_q), allow_tf32=False) b_dv = tl.dot(b_s, b_do, allow_tf32=False) b_d = tl.load(p_d, boundary_check=(0, 1)) b_dk += tl.dot(b_v, tl.trans(b_dh).to(b_v.dtype), allow_tf32=False) b_dv += tl.dot(b_k, b_dh.to(b_k.dtype), allow_tf32=False) b_dh += tl.dot(b_q, b_do, allow_tf32=False) b_dh -= tl.dot(b_d, b_dv.to(b_d.dtype), allow_tf32=False) tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1)) if USE_DHO: p_dh0 = tl.make_block_ptr(dh0 + i_bh * DK * DV, (DK, DV), (DV, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), boundary_check=(0, 1)) b_h = None tl.debug_barrier() m_s = o_i[:, None] >= o_i[None, :] b_h = tl.zeros([BV, BK], dtype=tl.float32) if USE_INITIAL_STATE: p_h = tl.make_block_ptr(initial_state + i_bh * DK * DV, (DV, DK), ( 1, DV), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) b_h += tl.load(p_h, boundary_check=(0, 1)).to(tl.float32) NT = tl.cdiv(T, BT) for i in range(0, NT): p_dv = tl.make_block_ptr(dv + i_bh * s_v_h, (T, DV), (s_v_t, s_v_d), (i * BT, i_v * BV), (BT, BV), (1, 0)) b_dv = tl.load(p_dv, boundary_check=(0, 1)) b_dd = tl.dot(b_dv.to(k.dtype.element_ty), b_h.to(k.dtype. element_ty), allow_tf32=False) p_dd = tl.make_block_ptr(dd + (i_bh + i_v * B * H) * s_k_h, (T, DK), (s_k_t, s_k_d), (i * BT, i_k * BK), (BT, BK), (1, 0)) tl.store(p_dd, -b_dd.to(p_dd.dtype.element_ty), boundary_check=(0, 1)) p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, DK), (s_k_t, s_k_d), (i * BT, i_k * BK), (BT, BK), (1, 0)) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (DV, T), (s_v_d, s_v_t), (i_v * BV, i * BT), (BV, BT), (0, 1)) p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, DV), (s_v_t, s_v_d), (i * BT, i_v * BV), (BT, BV), (1, 0)) p_dq = tl.make_block_ptr(dq + (i_bh + i_v * B * H) * s_k_h, (T, DK), (s_k_t, s_k_d), (i * BT, i_k * BK), (BT, BK), (1, 0)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)) b_ds = tl.dot(b_do, b_v, allow_tf32=False) b_ds = tl.where(m_s, b_ds, 0) b_dq = tl.dot(b_ds.to(b_k.dtype), b_k, allow_tf32=False) if CHECK and i == 0: b_dq += tl.dot(b_do, b_h.to(b_do.dtype), allow_tf32=False) b_h = b_h + tl.dot(b_v, b_k, allow_tf32=False) else: b_dq += tl.dot(b_do, b_h.to(b_do.dtype), allow_tf32=False) b_h = b_h + tl.dot(b_v, b_k, allow_tf32=False) b_dq *= scale tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Attention Mechanisms" ], "Memory Access Pattern": [ "Blocked Access", "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/delta_rule/fused_chunk.py
16c05989-05bd-492f-89cf-86a814ede982
mhmoe.py
dtadpole/triton-playground
mhmoe.py
2d317976722d63080133b1bf88b1f0cdec98f831
0
@triton.jit def d_silu(x, o): sig = tl.sigmoid(x) return sig + o * (1 - sig)
{ "Data Type": [ "fp32" ], "Functionality": [ "Activation Functions", "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/dtadpole/triton-playground/blob/2d317976722d63080133b1bf88b1f0cdec98f831/mhmoe.py
fd1f4159-2938-4d88-91f3-e1646ab75398
math.py
BobMcDear/attorch
attorch/math.py
da06cb6236bb47195e33fe3986ed21c675ed94cc
0
@triton.jit def calc_mean_and_inv_std(input, last_dim, eps, last_dim_mask: tl.constexpr): """ Calculates the mean and inverse standard deviation of the input along the last dimension. Args: input: Input whose mean and inverse standard deviation are calculated. The input must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. last_dim: Size of the last dimension of input. eps: Epsilon added in the square root in the denominator to avoid division by zero. last_dim_mask: Mask for the last dimension indicating which elements should be included in the calculations. The mask must be of shape [BLOCK_SIZE2]. Returns: Mean and inverse standard deviation of the input. """ input = input.to(tl.float32) mean = tl.sum(input, axis=1) / last_dim diff = tl.where(last_dim_mask[None, :], input - mean[:, None], 0) inv_std = tl.rsqrt(tl.sum(diff * diff, axis=1) / last_dim + eps) return mean, inv_std
{ "Data Type": [ "fp32" ], "Functionality": [ "Normalization" ], "Memory Access Pattern": [ "Blocked Access", "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/BobMcDear/attorch/blob/da06cb6236bb47195e33fe3986ed21c675ed94cc/attorch/math.py
dc7321dc-32fb-4fed-9ba5-5273d19cb153
kernels.py
pytorch-labs/tritonbench
tritonbench/operators/jagged_sum/kernels.py
3a5dccb159834968567a2e45e561dc1aeaa8f8a8
0
@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_RAGGED': b_r, 'BLOCK_SIZE_M': b_m}, num_warps=w, num_stages=s) for b_r, b_m, w, s in itertools.product(BLOCK_SIZES, BLOCK_SIZES, NUM_WARPS, NUM_STAGES)], key=['M']) @triton.jit def triton_jagged_sum_kernel_variable_length_loop_sum_then_buffer( input_ptr_values, input_ptr_offsets, output_ptr, M, BLOCK_SIZE_RAGGED: tl.constexpr, BLOCK_SIZE_M: tl.constexpr): pid = tl.program_id(axis=0) pid_b = pid // tl.cdiv(M, BLOCK_SIZE_M) pid_m = pid % tl.cdiv(M, BLOCK_SIZE_M) buffer = tl.zeros((1, BLOCK_SIZE_M), dtype=tl.float32) block_start_m = pid_m * BLOCK_SIZE_M offsets_m = block_start_m + tl.arange(0, BLOCK_SIZE_M) mask_m = offsets_m < M ragged_start, ragged_end = tl.load(input_ptr_offsets + pid_b), tl.load( input_ptr_offsets + (pid_b + 1)) for block_start_ragged in range(ragged_start, ragged_end, BLOCK_SIZE_RAGGED ): offsets_ragged = block_start_ragged + tl.arange(0, BLOCK_SIZE_RAGGED) mask_ragged = offsets_ragged < ragged_end idxs = offsets_ragged[:, None] * M + offsets_m mask = mask_ragged[:, None] & mask_m input = tl.load(input_ptr_values + idxs, mask=mask, other=0) buffer += tl.sum(input, axis=0) buffer_view = buffer.reshape((BLOCK_SIZE_M,)) output_offsets = offsets_m + pid_b * M output_mask = output_offsets < M * (pid_b + 1) tl.store(output_ptr + output_offsets, buffer_view, mask=output_mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Blocked Access", "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Memory-Bound" ] }
[ "BSD" ]
https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/operators/jagged_sum/kernels.py
e1d634ae-75e9-4158-a173-e373bc727999
triton_fused_attn_rerope.py
LouChao98/vqtree
ops/triton_fused_attn_rerope.py
27a53274df7a804bce27dffcce5f5be73f64b6f3
0
@triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args[ 'BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args[ 'BLOCK_N'] == 0}) @triton.jit def _fwd_kernel(Q1, Q2, K1, K2, V, sm_scale, Out, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_oz, stride_oh, stride_om, stride_on, seqlen_q, seqlen_k, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, IS_CAUSAL: tl. constexpr, WINDOW: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr ): start_m = tl.program_id(0) off_hz = tl.program_id(1) q_offset = off_hz * stride_qh kv_offset = off_hz * stride_kh Q1_block_ptr = tl.make_block_ptr(base=Q1 + q_offset, shape=(seqlen_q, BLOCK_DMODEL), strides=(stride_qm, stride_qk), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0)) Q2_block_ptr = tl.make_block_ptr(base=Q2 + q_offset, shape=(seqlen_q, BLOCK_DMODEL), strides=(stride_qm, stride_qk), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0)) K1_block_ptr = tl.make_block_ptr(base=K1 + kv_offset, shape=( BLOCK_DMODEL, seqlen_k), strides=(stride_kk, stride_kn), offsets=(0, 0), block_shape=(BLOCK_DMODEL, BLOCK_N), order=(0, 1)) K2_block_ptr = tl.make_block_ptr(base=K2 + kv_offset, shape=( BLOCK_DMODEL, seqlen_k), strides=(stride_kk, stride_kn), offsets=(0, 0), block_shape=(BLOCK_DMODEL, BLOCK_N), order=(0, 1)) V_block_ptr = tl.make_block_ptr(base=V + kv_offset, shape=(seqlen_k, BLOCK_DMODEL), strides=(stride_vk, stride_vn), offsets=(0, 0), block_shape=(BLOCK_N, BLOCK_DMODEL), order=(1, 0)) offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf') l_i = tl.zeros([BLOCK_M], dtype=tl.float32) acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) qk_scale = sm_scale * 1.44269504 if EVEN_M: q1 = tl.load(Q1_block_ptr) q2 = tl.load(Q2_block_ptr) else: q1 = tl.load(Q1_block_ptr, boundary_check=(0,), padding_option='zero') q2 = tl.load(Q2_block_ptr, boundary_check=(0,), padding_option='zero') lo = 0 hi = tl.minimum((start_m + 1) * BLOCK_M, seqlen_k ) if IS_CAUSAL else seqlen_k for start_n in range(lo, hi, BLOCK_N): qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) if IS_CAUSAL: qk = tl.where(offs_m[:, None] >= start_n + offs_n[None, :], qk, float('-inf')) if not EVEN_N: qk = tl.where(start_n + offs_n[None, :] < seqlen_k, qk, float( '-inf')) if start_n <= start_m * BLOCK_M - WINDOW - BLOCK_N or start_n >= ( start_m + 1) * BLOCK_M + WINDOW: if EVEN_N & EVEN_M: k2 = tl.load(K2_block_ptr) else: k2 = tl.load(K2_block_ptr, boundary_check=(1,), padding_option='zero') qk += tl.dot(q2, k2) elif start_n > (start_m + 1 ) * BLOCK_M - WINDOW and start_n < start_m * BLOCK_M + WINDOW - BLOCK_N: if EVEN_N & EVEN_M: k1 = tl.load(K1_block_ptr) else: k1 = tl.load(K1_block_ptr, boundary_check=(1,), padding_option='zero') qk += tl.dot(q1, k1) else: if EVEN_N & EVEN_M: k1 = tl.load(K1_block_ptr) k2 = tl.load(K2_block_ptr) else: k1 = tl.load(K1_block_ptr, boundary_check=(1,), padding_option='zero') k2 = tl.load(K2_block_ptr, boundary_check=(1,), padding_option='zero') qk1 = tl.dot(q1, k1) qk2 = tl.dot(q2, k2) qk += tl.where(tl.abs(offs_m[:, None] - (start_n + offs_n[None, :])) < WINDOW, qk1, qk2) qk *= qk_scale m_i_new = tl.maximum(m_i, tl.max(qk, 1)) alpha = tl.math.exp2(m_i - m_i_new) p = tl.math.exp2(qk - m_i_new[:, None]) acc_scale = l_i * 0 + alpha acc *= acc_scale[:, None] if EVEN_N & EVEN_M: v = tl.load(V_block_ptr) else: v = tl.load(V_block_ptr, boundary_check=(0,), padding_option='zero' ) v = tl.load(V_block_ptr) acc += tl.dot(p.to(v.dtype), v) l_i = l_i * alpha + tl.sum(p, 1) m_i = m_i_new K1_block_ptr = tl.advance(K1_block_ptr, (0, BLOCK_N)) K2_block_ptr = tl.advance(K2_block_ptr, (0, BLOCK_N)) V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) acc = acc / l_i[:, None] O_block_ptr = tl.make_block_ptr(base=Out + q_offset, shape=(seqlen_q, BLOCK_DMODEL), strides=(stride_om, stride_on), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0)) offs_d = tl.arange(0, BLOCK_DMODEL) out_ptrs = Out + q_offset + (offs_m[:, None] * stride_om + offs_d[None, :]) if EVEN_M: tl.store(out_ptrs, acc) else: tl.store(out_ptrs, acc, mask=offs_m[:, None] < seqlen_q)
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Softmax" ], "Memory Access Pattern": [ "Blocked Access", "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "Apache" ]
https://github.com/LouChao98/vqtree/blob/27a53274df7a804bce27dffcce5f5be73f64b6f3/ops/triton_fused_attn_rerope.py
77311a94-8d98-4965-a46c-7c601a7fd275
kernels.py
pytorch-labs/tritonbench
tritonbench/operators/jagged_sum/kernels.py
3a5dccb159834968567a2e45e561dc1aeaa8f8a8
0
@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_RAGGED': b_r, 'BLOCK_SIZE_M': b_m}, num_warps=w, num_stages=s) for b_r, b_m, w, s in itertools.product(BLOCK_SIZES, BLOCK_SIZES, NUM_WARPS, NUM_STAGES)], key=['M']) @triton.jit def triton_jagged_sum_kernel_simple_fused_sum_then_buffer(input_ptr_values, input_ptr_offsets, output_ptr, M, MAX_SEQLEN, BLOCK_SIZE_RAGGED: tl. constexpr, BLOCK_SIZE_M: tl.constexpr): pid = tl.program_id(axis=0) pid_ragged = pid // tl.cdiv(M, BLOCK_SIZE_M) pid_m = pid % tl.cdiv(M, BLOCK_SIZE_M) buffer = tl.zeros((1, BLOCK_SIZE_M), dtype=tl.float32) block_start_m = pid_m * BLOCK_SIZE_M offsets_m = block_start_m + tl.arange(0, BLOCK_SIZE_M) mask_m = offsets_m < M ragged_start, ragged_end = tl.load(input_ptr_offsets + pid_ragged ), tl.load(input_ptr_offsets + (pid_ragged + 1)) for block_pos in range(0, MAX_SEQLEN, BLOCK_SIZE_RAGGED): block_start_ragged = ragged_start + block_pos offsets_ragged = block_start_ragged + tl.arange(0, BLOCK_SIZE_RAGGED) mask_ragged = offsets_ragged < ragged_end idxs = offsets_ragged[:, None] * M + offsets_m mask = mask_ragged[:, None] & mask_m input = tl.load(input_ptr_values + idxs, mask=mask, other=0) buffer += tl.sum(input, axis=0) buffer_view = buffer.reshape((BLOCK_SIZE_M,)) output_offsets = offsets_m + pid_ragged * M output_mask = output_offsets < M * (pid_ragged + 1) tl.store(output_ptr + output_offsets, buffer_view, mask=output_mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Blocked Access", "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Memory-Bound" ] }
[ "BSD" ]
https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/operators/jagged_sum/kernels.py
454eebde-6921-487e-b8e0-ee204d96b580
chunk.py
sustcsonglin/flash-linear-attention
fla/ops/retention/chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'STORE_INITIAL_STATE_GRADIENT': lambda args: args['dh0' ] is not None, 'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not None, 'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({'BK': BK, 'BV': BV}, num_warps= num_warps, num_stages=num_stages) for BK in [32, 64, 128] for BV in [32, 64, 128] for num_warps in [2, 4, 8] for num_stages in [2, 3, 4]], key=[ 'BT']) @triton.jit def chunk_retention_bwd_kernel_dh(q, do, dh, dh0, dht, offsets, chunk_offsets, scale, T: tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, STORE_INITIAL_STATE_GRADIENT: tl.constexpr, USE_FINAL_STATE_GRADIENT: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr): i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_n, i_h = i_nh // H, i_nh % H b_b = tl.math.log2(1 - tl.math.exp2(-5 - i_h * 1.0)) if USE_OFFSETS: bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos NT = tl.cdiv(T, BT) boh = tl.load(chunk_offsets + i_n).to(tl.int32) else: bos, eos = i_n * T, i_n * T + T NT = tl.cdiv(T, BT) boh = i_n * NT o_i = tl.arange(0, BT) d_i = tl.math.exp2((o_i + 1) * b_b) b_dh = tl.zeros([BK, BV], dtype=tl.float32) if USE_FINAL_STATE_GRADIENT: p_dht = tl.make_block_ptr(dht + i_nh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) b_dh += tl.load(p_dht, boundary_check=(0, 1)).to(tl.float32) for i_t in range(NT - 1, -1, -1): if HEAD_FIRST: p_q = tl.make_block_ptr(q + i_nh * T * K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_do = tl.make_block_ptr(do + i_nh * T * V, (T, V), (V, 1), ( i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_dh = tl.make_block_ptr(dh + (i_nh * NT + i_t) * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) else: p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (K, T), (1, H * K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_do = tl.make_block_ptr(do + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_dh = tl.make_block_ptr(dh + ((boh + i_t) * H + i_h) * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1)) d_b = tl.math.exp2(min(BT, T - i_t * BT) * b_b) b_q = tl.load(p_q, boundary_check=(0, 1)) b_q = (b_q * scale).to(b_q.dtype) b_do = tl.load(p_do, boundary_check=(0, 1)) b_dh = d_b * b_dh + tl.dot(b_q, (b_do * d_i[:, None]).to(b_q.dtype), allow_tf32=False) if STORE_INITIAL_STATE_GRADIENT: p_dh0 = tl.make_block_ptr(dh0 + i_nh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Memory-Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/retention/chunk.py
4ca187d4-705d-426a-ab32-956f78d4d117
sb_fwd.py
shawntan/stickbreaking-attention
stickbreaking_attention/sb_attn/sb_fwd.py
8dd32ad5e58f0ee0232fd4782dc53d354ff8d283
0
@triton.autotune(configs=get_configs(), key=['token_size', 'head_size']) @triton.jit def _forward(Q_ptr, stride_qb, stride_qh, stride_qm: tl.constexpr, stride_qd: tl.constexpr, K_ptr, stride_kb, stride_kh, stride_kn: tl. constexpr, stride_kd: tl.constexpr, V_ptr, stride_vb, stride_vh, stride_vn: tl.constexpr, stride_vd: tl.constexpr, O_ptr, stride_ob, stride_oh, stride_om: tl.constexpr, stride_od: tl.constexpr, R_ptr, stride_rb, stride_rh, stride_rm: tl.constexpr, A_ptr, stride_ab, stride_ah, stride_am: tl.constexpr, W_ptr, stride_wb, stride_wh, stride_wm, stride_wn, logit_scale: tl.constexpr, attend_current: tl. constexpr, batch_size, token_size, head_size: tl.constexpr, num_heads: tl.constexpr, BLOCK_D: tl.constexpr, NO_D_MASK: tl.constexpr, NO_M_MASK: tl.constexpr, NO_N_MASK: tl.constexpr, ALLOW_TF32: tl.constexpr, inv_log2: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, no_grad: tl.constexpr=False, acc_dtype: tl.constexpr=tl.float32, return_attention: tl.constexpr=False, is_compiling: tl.constexpr=False): tl.static_assert(BLOCK_M % BLOCK_N == 0) batch_id = tl.program_id(0) head_pid = tl.program_id(1) prog_id = tl.program_id(2) tl.num_programs(2) seq_length = token_size qk_scale = inv_log2 * logit_scale M_range = tl.arange(0, BLOCK_M) N_range = tl.arange(0, BLOCK_N) D_range = tl.arange(0, BLOCK_D) D_mask = D_range < head_size cm = tl.where(N_range[:, None] >= N_range[None, :], 1.0, 0.0).to(Q_ptr. type.element_ty) head_id = head_pid seq_prog_id = prog_id Q_head_seq_ptr = Q_ptr + stride_qb * batch_id + stride_qh * head_id K_head_seq_ptr = K_ptr + stride_kb * batch_id + stride_kh * head_id V_head_seq_ptr = V_ptr + stride_vb * batch_id + stride_vh * head_id O_head_seq_ptr = O_ptr + stride_ob * batch_id + stride_oh * head_id R_head_seq_ptr = R_ptr + stride_rb * batch_id + stride_rh * head_id A_head_seq_ptr = A_ptr + stride_ab * batch_id + stride_ah * head_id W_head_seq_ptr = W_ptr + stride_wb * batch_id + stride_wh * head_id _forward_one_row(seq_prog_id, seq_length, qk_scale, M_range, N_range, D_range, D_mask, cm, Q_head_seq_ptr, stride_qm, stride_qd, K_head_seq_ptr, stride_kn, stride_kd, V_head_seq_ptr, stride_vn, stride_vd, O_head_seq_ptr, stride_om, stride_od, R_head_seq_ptr, stride_rm, A_head_seq_ptr, stride_am, W_head_seq_ptr, stride_wm, stride_wn, BLOCK_D, NO_D_MASK, NO_M_MASK, NO_N_MASK, ALLOW_TF32, BLOCK_M, BLOCK_N, no_grad, acc_dtype, return_attention, attend_current=attend_current, is_compiling=is_compiling)
{ "Data Type": [ "fp32", "fp16" ], "Functionality": [ "Attention Mechanisms", "Softmax" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Batch-Oriented" ] }
[ "Apache" ]
https://github.com/shawntan/stickbreaking-attention/blob/8dd32ad5e58f0ee0232fd4782dc53d354ff8d283/stickbreaking_attention/sb_attn/sb_fwd.py
4a35494c-3b38-474a-8c6f-d0bfb320f8b8
swiglu.py
ardywibowo/triton-mode
kernels/swiglu.py
5cd773ec95e25e23c6b75e312c7a9a1c6eb650b1
0
@triton.jit def triton_swiglu_backward(grad_output_ptr, input_a_ptr, input_b_ptr, row_stride, num_columns: tl.constexpr, BLOCK_SIZE: tl.constexpr): prog_id = tl.program_id(0).to(tl.int64) grad_output_ptr += prog_id * row_stride input_a_ptr += prog_id * row_stride input_b_ptr += prog_id * row_stride column_offsets = tl.arange(0, BLOCK_SIZE) active_mask = column_offsets < num_columns grad_output_row = tl.load(grad_output_ptr + column_offsets, mask= active_mask, other=0) input_a_row = tl.load(input_a_ptr + column_offsets, mask=active_mask, other=0).to(tl.float32) input_b_row = tl.load(input_b_ptr + column_offsets, mask=active_mask, other=0) sigmoid_a = tl.sigmoid(input_a_row) silu_a = input_a_row * sigmoid_a grad_b_row = grad_output_row * silu_a grad_a_row = grad_output_row * (silu_a * (1 - sigmoid_a) + sigmoid_a ) * input_b_row tl.store(input_a_ptr + column_offsets, grad_a_row, mask=active_mask) tl.store(input_b_ptr + column_offsets, grad_b_row, mask=active_mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Activation Functions", "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/ardywibowo/triton-mode/blob/5cd773ec95e25e23c6b75e312c7a9a1c6eb650b1/kernels/swiglu.py
c669de30-862b-4b20-b39f-b1ab212762b0
test_triton_basics.py
tucommenceapousser/xformers
tests/test_triton_basics.py
c97e3d917cfdad4a38acd4e9d776030d25ab9141
0
@triton.jit def k_rand(X, Y, SEED_X, SEED_Y, stride_x, stride_y, N: tl.constexpr): """ Check the random number generation """ row = tl.program_id(0) rand_offsets = tl.arange(0, N) seed_x = tl.load(SEED_X + row) randx, _, _, _ = tl.randint4x(seed_x, rand_offsets) rand_offsets = tl.arange(0, N) seed_y = tl.load(SEED_Y + row) randy, _, _, _ = tl.randint4x(seed_y, rand_offsets) tl.store(X + row * stride_x + tl.arange(0, N), randx) tl.store(Y + row * stride_y + tl.arange(0, N), randy)
{ "Data Type": [], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "BSD" ]
https://github.com/tucommenceapousser/xformers/blob/c97e3d917cfdad4a38acd4e9d776030d25ab9141/tests/test_triton_basics.py
1f159cd8-6426-4d71-9d99-6e0ba4030389
matrix-vector-multiplication.py
northstreet12/triton-cpu
python/tutorials/matrix-vector-multiplication.py
bfb302ffc5fde3b9efe040cb452ddac0454dbb98
0
@triton.jit def gemv_kernel(Y, A, X, M, N, stride_am, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr): start_m = tl.program_id(0) rm = start_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) rn = tl.arange(0, BLOCK_SIZE_N) A = A + (rm[:, None] * stride_am + rn[None, :]) X = X + rn acc = tl.zeros((BLOCK_SIZE_M,), dtype=tl.float32) for n in range(N, 0, -BLOCK_SIZE_N): a = tl.load(A) x = tl.load(X) acc += tl.sum(a * x[None, :], axis=1) A += BLOCK_SIZE_N X += BLOCK_SIZE_N Y = Y + rm tl.store(Y, acc)
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "MIT" ]
https://github.com/northstreet12/triton-cpu/blob/bfb302ffc5fde3b9efe040cb452ddac0454dbb98/python/tutorials/matrix-vector-multiplication.py
36107a2c-caa6-4ebc-98a8-495698ac5780
multi_head_attention_kernels.py
BobMcDear/attorch
attorch/multi_head_attention_kernels.py
da06cb6236bb47195e33fe3986ed21c675ed94cc
0
@triton.jit def _bwd_kernel_one_col_block(Q, K, V, sm_scale, qk_scale, Out, DO, DQ, DK, DV, L, D, Q_block_ptr, K_block_ptr, V_block_ptr, DO_block_ptr, DQ_block_ptr, DK_block_ptr, DV_block_ptr, stride_dqa, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vn, stride_vk, Z, H, N_CTX, off_h, off_z, off_hz, start_n, num_block, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, SEQUENCE_PARALLEL: tl.constexpr, CAUSAL: tl.constexpr, MMA_V3: tl.constexpr): if CAUSAL: lo = start_n * BLOCK_M else: lo = 0 Q_offset = (off_z * stride_qz + off_h * stride_qh) // stride_qm DQ_offset = off_z * stride_qz + off_h * stride_qh K_offset = (off_z * stride_kz + off_h * stride_kh) // stride_kn V_offset = (off_z * stride_vz + off_h * stride_vh) // stride_vn if SEQUENCE_PARALLEL: DQ_offset += stride_dqa * start_n DQ_offset = DQ_offset // stride_qm Q_block_ptr = tl.advance(Q_block_ptr, (lo + Q_offset, 0)) K_block_ptr = tl.advance(K_block_ptr, (start_n * BLOCK_M + K_offset, 0)) V_block_ptr = tl.advance(V_block_ptr, (start_n * BLOCK_M + V_offset, 0)) DO_block_ptr = tl.advance(DO_block_ptr, (lo + Q_offset, 0)) DQ_block_ptr = tl.advance(DQ_block_ptr, (lo + DQ_offset, 0)) DK_block_ptr = tl.advance(DK_block_ptr, (start_n * BLOCK_M + K_offset, 0)) DV_block_ptr = tl.advance(DV_block_ptr, (start_n * BLOCK_M + V_offset, 0)) offs_n = start_n * BLOCK_M + tl.arange(0, BLOCK_M) offs_m = tl.arange(0, BLOCK_N) D_ptrs = D + off_hz * N_CTX l_ptrs = L + off_hz * N_CTX dv = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) dk = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) k = tl.load(K_block_ptr) v = tl.load(V_block_ptr) for start_m in range(lo, num_block * BLOCK_M, BLOCK_M): offs_m_curr = start_m + offs_m q = tl.load(Q_block_ptr) if CAUSAL: qk = tl.where(offs_m_curr[:, None] >= offs_n[None, :], float( 0.0), float('-inf')) else: qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) qk += tl.dot(q, tl.trans(k)) qk *= qk_scale l_i = tl.load(l_ptrs + offs_m_curr) p = tl.math.exp2(qk - l_i[:, None]) do = tl.load(DO_block_ptr) dv += tl.dot(tl.trans(p.to(Q.dtype.element_ty)), do) Di = tl.load(D_ptrs + offs_m_curr) dp = tl.dot(do, tl.trans(v)) ds = (p * (dp - Di[:, None]) * sm_scale).to(Q.dtype.element_ty) dk += tl.dot(tl.trans(ds), q) if not SEQUENCE_PARALLEL: dq = tl.load(DQ_block_ptr) dq += tl.dot(ds, k) tl.store(DQ_block_ptr, dq.to(Q.dtype.element_ty)) elif SEQUENCE_PARALLEL: if MMA_V3: dq = tl.dot(ds, k) else: dq = tl.trans(tl.dot(tl.trans(k), tl.trans(ds))) tl.store(DQ_block_ptr, dq.to(Q.dtype.element_ty)) DQ_block_ptr = tl.advance(DQ_block_ptr, (BLOCK_M, 0)) Q_block_ptr = tl.advance(Q_block_ptr, (BLOCK_M, 0)) DO_block_ptr = tl.advance(DO_block_ptr, (BLOCK_M, 0)) tl.store(DV_block_ptr, dv.to(V.dtype.element_ty)) tl.store(DK_block_ptr, dk.to(K.dtype.element_ty))
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Attention Mechanisms" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/BobMcDear/attorch/blob/da06cb6236bb47195e33fe3986ed21c675ed94cc/attorch/multi_head_attention_kernels.py
a03e38da-ffa6-4c28-bae7-c2831152756e
bwd_kernel_dq.py
ROCm/aotriton
tritonsrc/bwd_kernel_dq.py
016f733e8ff746450e066f78bed68709ccd93e60
0
@triton.jit def bwd_kernel_dq(Q, K, V, B, sm_scale, Out, DO, DQ, DB, L, D, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_bz, stride_bh, stride_bm, stride_bn, stride_oz, stride_oh, stride_om, stride_ok, stride_dqz, stride_dqh, stride_dqm, stride_dqk, stride_dbz, stride_dbh, stride_dbm, stride_dbn, num_head_q: 'i32', num_head_k: 'i32', cu_seqlens_q, cu_seqlens_k, num_seqlens, max_seqlen_q, max_seqlen_k, head_dim, dropout_p, philox_seed_ptr, philox_offset1: '*u32', philox_offset2: 'u32', BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl. constexpr, BLOCK_N: tl.constexpr, CAUSAL: tl.constexpr, ENABLE_DROPOUT: tl.constexpr, PADDED_HEAD: tl.constexpr, BIAS_TYPE: tl.constexpr): philox_seed = 0 philox_offset_base = philox_offset2 if ENABLE_DROPOUT: philox_seed = tl.load(philox_seed_ptr) philox_offset_base += tl.load(philox_offset1) start_q = tl.program_id(0) * BLOCK_M off_h_q = tl.program_id(1) off_h_k = off_h_q if num_head_q == num_head_k else off_h_q // (num_head_q // num_head_k) off_z = tl.program_id(2) num_z = tl.num_programs(2) off_zh = off_z * num_head_q + off_h_q * 1 offs_q = start_q + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) offs_d = tl.arange(0, BLOCK_DMODEL) ld_offs_d = None if not PADDED_HEAD else tl.arange(0, BLOCK_DMODEL) cu_seqlens_q_start = 0 cu_seqlens_k_start = 0 seqlen_q = max_seqlen_q seqlen_k = max_seqlen_k batch_index = off_z if num_seqlens > 0: cu_seqlens_q_start = tl.load(cu_seqlens_q + off_z) cu_seqlens_q_end = tl.load(cu_seqlens_q + off_z + 1) seqlen_q = cu_seqlens_q_end - cu_seqlens_q_start if start_q >= seqlen_q: return cu_seqlens_k_start = tl.load(cu_seqlens_k + off_z) cu_seqlens_k_end = tl.load(cu_seqlens_k + off_z + 1) seqlen_k = cu_seqlens_k_end - cu_seqlens_k_start batch_index = 0 if num_seqlens < 0: cu_seqlens_q_start = tl.load(cu_seqlens_q + off_z) cu_seqlens_q_end = tl.load(cu_seqlens_q + off_z + 1) seqlen_q = cu_seqlens_q_end - cu_seqlens_q_start if start_q >= seqlen_q: return cu_seqlens_k_start = tl.load(cu_seqlens_k + off_z) cu_seqlens_k_end = tl.load(cu_seqlens_k + off_z + 1) seqlen_k = cu_seqlens_k_end - cu_seqlens_k_start cu_seqlens_q_start = 0 cu_seqlens_k_start = 0 batch_index = off_z q_offset = (off_h_q * stride_qh + batch_index * stride_qz + cu_seqlens_q_start * stride_qm) Q += q_offset q_ptrs = Q + offs_q[:, None] * stride_qm + offs_d[None, :] * stride_qk if start_q + BLOCK_M <= seqlen_q: q = load_fn(q_ptrs, None, ld_offs_d, seqlen_q, head_dim) else: q = load_fn(q_ptrs, offs_q, ld_offs_d, seqlen_q, head_dim) qk_scale = sm_scale * 1.44269504089 bias_scale = 1.0 / sm_scale k_offset = (off_h_k * stride_kh + batch_index * stride_kz + cu_seqlens_k_start * stride_kn) K += k_offset kt_ptrs = K + offs_d[:, None] * stride_kk + offs_n[None, :] * stride_kn v_offset = (off_h_k * stride_vh + batch_index * stride_vz + cu_seqlens_k_start * stride_vk) V += v_offset vt_ptrs = V + offs_d[:, None] * stride_vn + offs_n[None, :] * stride_vk do_offset = (off_h_q * stride_oh + batch_index * stride_oz + cu_seqlens_q_start * stride_om) DO += do_offset do_ptrs = DO + offs_q[:, None] * stride_om + offs_d[None, :] * stride_ok if start_q + BLOCK_M <= seqlen_q: do = load_fn(do_ptrs, None, ld_offs_d, seqlen_q, head_dim) else: do = load_fn(do_ptrs, offs_q, ld_offs_d, seqlen_q, head_dim) D_ptrs = D + off_zh * max_seqlen_q l_ptrs = L + off_zh * max_seqlen_q if ENABLE_DROPOUT: batch_philox_offset = (philox_offset_base + off_zh * max_seqlen_q * max_seqlen_k) else: batch_philox_offset = 0 dq_offset = (batch_index * stride_dqz + off_h_q * stride_dqh + cu_seqlens_q_start * stride_dqm) DQ += dq_offset store_db = True if BIAS_TYPE == 0: B_block_ptr = 0 DB_block_ptr = 0 elif BIAS_TYPE == 1: B_block_ptr = tl.make_block_ptr(base=B + off_h_q * stride_bh + batch_index * stride_bz, shape=(seqlen_q, seqlen_k), strides=( stride_bm, stride_bn), offsets=(start_q, 0), block_shape=( BLOCK_M, BLOCK_N), order=(1, 0)) if (stride_dbz == 0 and stride_dbh == 0) and stride_dbm == 0: store_db = False DB_block_ptr = tl.make_block_ptr(base=DB + off_h_q * stride_dbh + batch_index * stride_dbz, shape=(seqlen_q, seqlen_k), strides=( stride_dbm, stride_dbn), offsets=(start_q, 0), block_shape=( BLOCK_M, BLOCK_N), order=(1, 0)) else: tl.static_assert(False, f'Unsupported BIAS_TYPE {BIAS_TYPE}') k_lo = 0 k_hi = min(start_q + BLOCK_M, seqlen_k) if CAUSAL else seqlen_k real_seqlen_k = k_hi - k_lo n_blocks = tl.cdiv(k_hi - k_lo, BLOCK_N) n_extra_tokens = 0 if real_seqlen_k < BLOCK_N: n_extra_tokens = BLOCK_N - real_seqlen_k elif real_seqlen_k % BLOCK_N: n_extra_tokens = real_seqlen_k % BLOCK_N is_irregular_k = n_extra_tokens != 0 n_full_blocks = (k_hi - k_lo) // BLOCK_N leading_masked_blocks = 0 trailing_masked_blocks = 0 if CAUSAL: mask_top_edge = min(start_q, seqlen_k) n_full_blocks = (mask_top_edge - k_lo) // BLOCK_N trailing_masked_blocks = n_blocks - n_full_blocks else: trailing_masked_blocks = 1 if is_irregular_k else 0 q_boundary = tl.full((BLOCK_M,), seqlen_q, dtype=tl.int32) d_lse_ptrs_mask = offs_q < q_boundary Di = tl.load(D_ptrs + offs_q, mask=d_lse_ptrs_mask, other=0.0) l_i = tl.load(l_ptrs + offs_q, mask=d_lse_ptrs_mask, other=0.0) dropout_scale = 1.0 / (1.0 - dropout_p) if ENABLE_DROPOUT else 1.0 dq = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) if n_full_blocks > 0: lo = 0 hi = n_full_blocks * BLOCK_N dq = bwd_inner_dq(dq, qk_scale, bias_scale, DB_block_ptr, store_db, q, kt_ptrs, stride_kn, vt_ptrs, stride_vk, B_block_ptr, do, Di, l_i, seqlen_q, seqlen_k, head_dim, start_q, lo, hi, dropout_p, dropout_scale, philox_seed, batch_philox_offset, max_seqlen_k, BLOCK_M, BLOCK_DMODEL, BLOCK_N, True, False, ENABLE_DROPOUT, PADDED_HEAD, BIAS_TYPE) if trailing_masked_blocks > 0: lo = n_full_blocks * BLOCK_N hi = k_hi tl.debug_barrier() dq = bwd_inner_dq(dq, qk_scale, bias_scale, DB_block_ptr, store_db, q, kt_ptrs, stride_kn, vt_ptrs, stride_vk, B_block_ptr, do, Di, l_i, seqlen_q, seqlen_k, head_dim, start_q, lo, hi, dropout_p, dropout_scale, philox_seed, batch_philox_offset, max_seqlen_k, BLOCK_M, BLOCK_DMODEL, BLOCK_N, False, CAUSAL, ENABLE_DROPOUT, PADDED_HEAD, BIAS_TYPE) dq = (dq * sm_scale).to(dq.type.element_ty) mstore2d(dq, BLOCK_M, BLOCK_DMODEL, o_base=DQ, o_start_row=start_q, o_start_col=0, o_rows=seqlen_q, o_cols=head_dim, stride_row= stride_dqm, stride_col=stride_dqk)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/ROCm/aotriton/blob/016f733e8ff746450e066f78bed68709ccd93e60/tritonsrc/bwd_kernel_dq.py
1bc0dab2-df5d-49d7-8357-25c023511ef4
fused_recurrent.py
sustcsonglin/flash-linear-attention
fla/ops/hgrn/fused_recurrent.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_INITIAL_STATE': lambda args: args['h0'] is not None, 'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not None, 'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({'BD': BD}, num_warps=num_warps) for BD in [32, 64, 128] for num_warps in [1, 2, 4, 8]], key=['D']) @triton.jit def fused_recurrent_hgrn_bwd_kernel(g, o, h0, dx, dg, do, dht, dh0, offsets, T: tl.constexpr, D: tl.constexpr, BD: tl.constexpr, USE_INITIAL_STATE: tl.constexpr, USE_FINAL_STATE_GRADIENT: tl.constexpr, USE_OFFSETS: tl. constexpr): i_d, i_n = tl.program_id(0), tl.program_id(1) if USE_OFFSETS: bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64) T = eos - bos else: bos, eos = i_n * T, i_n * T + T o_d = i_d * BD + tl.arange(0, BD) mask = o_d < D p_g = g + (bos + T - 1) * D + o_d p_o = o + (bos + T - 2) * D + o_d p_dx = dx + (bos + T - 1) * D + o_d p_dg = dg + (bos + T - 1) * D + o_d p_do = do + (bos + T - 1) * D + o_d b_dh = tl.zeros([BD], dtype=tl.float32) if USE_FINAL_STATE_GRADIENT: p_dht = dht + i_n * D + o_d b_dh += tl.load(p_dht, mask=mask, other=0).to(tl.float32) for i in range(T - 1, -1, -1): b_g = tl.load(p_g, mask=mask, other=0).to(tl.float32) b_do = tl.load(p_do, mask=mask, other=0).to(tl.float32) if i > 0: b_o = tl.load(p_o, mask=mask, other=0).to(tl.float32) elif USE_INITIAL_STATE: b_o = tl.load(h0 + i_n * D + o_d, mask=mask, other=0).to(tl.float32 ) else: b_o = tl.zeros([BD], dtype=tl.float32) b_dh = b_dh + b_do b_dx = b_dh b_dh = b_dh * tl.exp(b_g) b_dg = b_dh * b_o tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), mask=mask) tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), mask=mask) p_g -= D p_o -= D p_dx -= D p_dg -= D p_do -= D if USE_INITIAL_STATE: p_dh0 = dh0 + i_n * D + o_d tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Recurrent Neural Networks", "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/hgrn/fused_recurrent.py
4f77ab02-60d6-4972-ba32-de199f864ca3
blocksparse_logsumexp.py
kimiasa/Experiments
src/models/attention/blocksparse_logsumexp.py
c4e73bfefd8290695ec52b6386b6b81838ca94a1
0
@triton.heuristics({'num_warps': lambda *args, **meta: num_warps(args[5] * meta['BLOCK'])}) @triton.heuristics({'TN': lambda *args, **meta: next_power_of_2(args[5]) * meta['BLOCK']}) @triton.jit def _backward(X, OUT, DX, DOUT, LUT, sizemax, stride_zx, stride_zout, stride_hout, stride_zdx, stride_zdout, stride_hdout, **meta): pidhm = tl.program_id(0) pidz = tl.program_id(1) TN = meta['TN'] BLOCK = meta['BLOCK'] rxm = pidhm % BLOCK rbm = pidhm // BLOCK rxn = tl.arange(0, TN) % BLOCK rbn = tl.arange(0, TN) // BLOCK header = LUT + rbm * 2 size = tl.load(header + 0) offset = tl.load(header + 1) check = rbn < size rbmn = tl.where(check, rbn, size - 1) blockid = tl.load(LUT + offset + rbmn * 4) rowid = tl.load(LUT + offset + rbmn * 4 + 2) headid = tl.load(LUT + offset + rbmn * 4 + 3) px = X + pidz * stride_zx + blockid * BLOCK * BLOCK + rxm * BLOCK + rxn pdx = DX + pidz * stride_zdx + blockid * BLOCK * BLOCK + rxm * BLOCK + rxn pout = (OUT + pidz * stride_zout + headid * stride_hout + rowid * BLOCK + rxm) pdout = (DOUT + pidz * stride_zdout + headid * stride_hdout + rowid * BLOCK + rxm) x = tl.load(px, mask=check, other=-float('inf')) out = tl.load(pout) dout = tl.load(pdout) x = x.to(tl.float32) out = out.to(tl.float32) dout = dout.to(tl.float32) dx = dout * tl.exp(-(out - x)) tl.store(pdx, dx, mask=check)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Softmax", "Attention Mechanisms" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "Apache" ]
https://github.com/kimiasa/Experiments/blob/c4e73bfefd8290695ec52b6386b6b81838ca94a1/src/models/attention/blocksparse_logsumexp.py
97d8600e-0e67-46a3-81b1-9dc82a69f084
vector_add3.py
danielpyon/ml-kernels
triton/vector_add3.py
506186b419335b590da538ffb388aea2c7c26c03
0
@triton.jit def add_kernel(x, y, out, n, BLOCK_SIZE: tl.constexpr): start = BLOCK_SIZE * tl.program_id(axis=0) offsets = start + tl.arange(0, BLOCK_SIZE) mask = offsets < n xs = tl.load(x + offsets, mask=mask) ys = tl.load(y + offsets, mask=mask) tl.store(out + offsets, xs + ys, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT", "BSD" ]
https://github.com/danielpyon/ml-kernels/blob/506186b419335b590da538ffb388aea2c7c26c03/triton/vector_add3.py
965bd139-0aa6-4b52-b2f1-093fcc0ab9b0
parallel.py
sustcsonglin/flash-linear-attention
fla/ops/rebased/parallel.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.jit def _parallel_rebased_bwd_dq(i_bh, i_c, i_k, i_v, i_h, q, k, v, do, dz, dq, s_k_h, s_k_t, s_k_d, s_v_h, s_v_t, s_v_d, scale, B: tl.constexpr, H: tl .constexpr, T: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BTL: tl. constexpr, BTS: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr): p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), ( i_c * BTL, i_v * BV), (BTL, BV), (1, 0)) p_q = tl.make_block_ptr(q + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_c * BTL, i_k * BK), (BTL, BK), (1, 0)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype) b_q = (b_q * scale).to(b_q.dtype) b_dq = tl.zeros([BTL, BK], dtype=tl.float32) p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (0, i_k * BK), (BTS, BK), (1, 0)) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (V, T), (s_v_d, s_v_t), (i_v * BV, 0), (BV, BTS), (0, 1)) p_dz = dz + i_bh * T + i_c * BTL + tl.arange(0, BTL) b_dz = tl.load(p_dz, mask=i_c * BTL + tl.arange(0, BTL) < T) for _ in range(0, i_c * BTL, BTS): b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_ds = tl.dot(b_do, b_v, allow_tf32=False) if i_v == 0: b_ds += b_dz[:, None] else: b_ds = b_ds b_s = tl.dot(b_q, tl.trans(b_k), allow_tf32=False) b_dq += tl.dot((2 * b_ds * b_s).to(b_v.dtype), b_k, allow_tf32=False) p_k = tl.advance(p_k, (BTS, 0)) p_v = tl.advance(p_v, (0, BTS)) b_dq *= scale o_q = tl.arange(0, BTL) o_k = tl.arange(0, BTS) p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_c * BTL, i_k * BK), (BTS, BK), (1, 0)) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (V, T), (s_v_d, s_v_t), (i_v * BV, i_c * BTL), (BV, BTS), (0, 1)) for _ in range(i_c * BTL, (i_c + 1) * BTL, BTS): b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) m_s = o_q[:, None] >= o_k[None, :] b_ds = tl.dot(b_do, b_v, allow_tf32=False) if i_v == 0: b_ds += b_dz[:, None] else: b_ds = b_ds b_ds = tl.where(m_s, b_ds, 0) * scale b_s = tl.dot(b_q, tl.trans(b_k), allow_tf32=False) b_s = tl.where(m_s, b_s, 0) b_dq += tl.dot((2 * b_ds * b_s).to(b_k.dtype), b_k, allow_tf32=False) p_k = tl.advance(p_k, (BTS, 0)) p_v = tl.advance(p_v, (0, BTS)) o_k += BTS p_dq = tl.make_block_ptr(dq + (i_bh + B * H * i_v) * s_k_h, (T, K), ( s_k_t, s_k_d), (i_c * BTL, i_k * BK), (BTL, BK), (1, 0)) tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1)) return
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Backpropagation" ], "Memory Access Pattern": [ "Strided Access", "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/rebased/parallel.py
30b6c5be-8933-4c72-b749-323b8c021e41
fused_recurrent.py
sustcsonglin/flash-linear-attention
fla/ops/retention/fused_recurrent.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_INITIAL_STATE': lambda args: args['h0'] is not None, 'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not None, 'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.jit def fused_recurrent_retention_bwd_kernel(q, k, v, h0, do, dq, dk, dv, dh0, dht, offsets, scale, B: tl.constexpr, H: tl.constexpr, T: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, REVERSE: tl.constexpr, USE_INITIAL_STATE: tl.constexpr, USE_FINAL_STATE_GRADIENT: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr): i_v, i_k, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_n, i_h = i_nh // H, i_nh % H if USE_OFFSETS: bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64) all = T T = eos - bos else: bos, eos = i_n * T, i_n * T + T all = B * T b_b = 1 - tl.math.exp2(-5 - i_h * 1.0) if HEAD_FIRST: p_k = k + i_nh * T * K + ((T - 1) * K if REVERSE else 0 ) + i_k * BK + tl.arange(0, BK) p_v = v + i_nh * T * V + ((T - 1) * V if REVERSE else 0 ) + i_v * BV + tl.arange(0, BV) p_do = do + i_nh * T * V + ((T - 1) * V if REVERSE else 0 ) + i_v * BV + tl.arange(0, BV) p_dq = dq + (i_v * B * H + i_nh) * T * K + ((T - 1) * K if REVERSE else 0) + i_k * BK + tl.arange(0, BK) else: p_k = k + (bos + (T - 1 if REVERSE else 0) ) * H * K + i_h * K + i_k * BK + tl.arange(0, BK) p_v = v + (bos + (T - 1 if REVERSE else 0) ) * H * V + i_h * V + i_v * BV + tl.arange(0, BV) p_do = do + (bos + (T - 1 if REVERSE else 0) ) * H * V + i_h * V + i_v * BV + tl.arange(0, BV) p_dq = dq + (i_v * all + bos + (T - 1 if REVERSE else 0) ) * H * K + i_h * K + i_k * BK + tl.arange(0, BK) mask_k = i_k * BK + tl.arange(0, BK) < K mask_v = i_v * BV + tl.arange(0, BV) < V mask_h = mask_k[:, None] & mask_v[None, :] b_h = tl.zeros([BK, BV], dtype=tl.float32) if USE_INITIAL_STATE: p_h0 = h0 + i_nh * K * V + (i_k * BK + tl.arange(0, BK)[:, None] ) * V + (i_v * BV + tl.arange(0, BV)[None, :]) b_h += tl.load(p_h0, mask=mask_h, other=0).to(tl.float32) for _ in range(0, T): b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32) b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32) b_do = tl.load(p_do, mask=mask_v, other=0).to(tl.float32) b_h = b_b * b_h + b_k[:, None] * b_v[None, :] b_dq = tl.sum(b_h * b_do[None, :], axis=1) * scale tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), mask=mask_k) p_k += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K p_v += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V p_do += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V p_dq += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K tl.debug_barrier() if HEAD_FIRST: p_q = q + i_nh * T * K + ((T - 1) * K if not REVERSE else 0 ) + i_k * BK + tl.arange(0, BK) p_k = k + i_nh * T * K + ((T - 1) * K if not REVERSE else 0 ) + i_k * BK + tl.arange(0, BK) p_v = v + i_nh * T * V + ((T - 1) * V if not REVERSE else 0 ) + i_v * BV + tl.arange(0, BV) p_do = do + i_nh * T * V + ((T - 1) * V if not REVERSE else 0 ) + i_v * BV + tl.arange(0, BV) p_dk = dk + (i_v * B * H + i_nh) * T * K + ((T - 1) * K if not REVERSE else 0) + i_k * BK + tl.arange(0, BK) p_dv = dv + (i_k * B * H + i_nh) * T * V + ((T - 1) * V if not REVERSE else 0) + i_v * BV + tl.arange(0, BV) else: p_q = q + (bos + (T - 1 if not REVERSE else 0) ) * H * K + i_h * K + i_k * BK + tl.arange(0, BK) p_k = k + (bos + (T - 1 if not REVERSE else 0) ) * H * K + i_h * K + i_k * BK + tl.arange(0, BK) p_v = v + (bos + (T - 1 if not REVERSE else 0) ) * H * V + i_h * V + i_v * BV + tl.arange(0, BV) p_do = do + (bos + (T - 1 if not REVERSE else 0) ) * H * V + i_h * V + i_v * BV + tl.arange(0, BV) p_dk = dk + (i_v * all + bos + (T - 1 if not REVERSE else 0) ) * H * K + i_h * K + i_k * BK + tl.arange(0, BK) p_dv = dv + (i_k * all + bos + (T - 1 if not REVERSE else 0) ) * H * V + i_h * V + i_v * BV + tl.arange(0, BV) b_dh = tl.zeros([BK, BV], dtype=tl.float32) if USE_FINAL_STATE_GRADIENT: p_ht = dht + i_nh * K * V + (i_k * BK + tl.arange(0, BK)[:, None] ) * V + (i_v * BV + tl.arange(0, BV)[None, :]) b_dh += tl.load(p_ht, mask=mask_h, other=0).to(tl.float32) for _ in range(T): b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32) * scale b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32) b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32) b_do = tl.load(p_do, mask=mask_v, other=0).to(tl.float32) b_dh += b_q[:, None] * b_do[None, :] b_dk = tl.sum(b_dh * b_v[None, :], axis=1) b_dv = tl.sum(b_dh * b_k[:, None], axis=0) b_dh *= b_b tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), mask=mask_k) tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), mask=mask_v) p_q += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * K p_k += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * K p_v += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * V p_do += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * V p_dk += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * K p_dv += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * V if USE_INITIAL_STATE: p_dh0 = dh0 + i_nh * K * V + (i_k * BK + tl.arange(0, BK)[:, None] ) * V + (i_v * BV + tl.arange(0, BV)[None, :]) tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), mask=mask_h)
{ "Data Type": [ "fp32" ], "Functionality": [ "Recurrent Neural Networks", "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/retention/fused_recurrent.py
256c710f-0067-4c80-b37c-d4bbf785d671
block_offsets.py
Forkxz/TritonDeepLearningKernel
kernel/block_offsets.py
add54b6318e8fa5fdbf8c7b47659de9fceaa5691
0
@triton.jit def block_offsets_3d(shape_x, shape_y, shape_z, stride_x, stride_y, stride_z, offset_x, offset_y, offset_z, block_shape_x, block_shape_y, block_shape_z, require_mask=False): offs_x = tl.arange(0, block_shape_x) + offset_x offs_y = tl.arange(0, block_shape_y) + offset_y offs_z = tl.arange(0, block_shape_z) + offset_z ptrs = offs_x[:, None, None] * stride_x + offs_y[None, :, None ] * stride_y + offs_z[None, None, :] * stride_z if require_mask: mask = (offs_x[:, None, None] < shape_x) & (offs_y[None, :, None] < shape_y) & (offs_z[None, None, :] < shape_z) return ptrs, mask else: return ptrs
{ "Data Type": [], "Functionality": [], "Memory Access Pattern": [ "Strided Access", "Tiled" ], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/Forkxz/TritonDeepLearningKernel/blob/add54b6318e8fa5fdbf8c7b47659de9fceaa5691/kernel/block_offsets.py
a0e121c3-7ebc-4eb8-bdeb-cb903a4b9850
softmax.py
Nagi-ovo/diy
OpenAI-Triton/softmax.py
d7c119aa762b9103109d29abaebee345246fe5d7
0
@triton.jit def _softmax_fwd_kernel(output_ptr, stride_output_rop, input_ptr, stride_input_row, num_cols, block_size: tl.constexpr): row_index = tl.program_id(0) row_start_ptr = input_ptr + row_index * stride_input_row col_offsets = tl.arange(0, block_size) input_pointers = row_start_ptr + col_offsets row_mask = col_offsets < num_cols row = tl.load(input_pointers, mask=row_mask, other=float('-inf')) safe_row = row - tl.max(row, axis=0) numerator = tl.exp(safe_row) denominator = tl.sum(numerator, axis=0) sm_out = numerator / denominator output_row_ptr = output_ptr + row_index * stride_output_rop output_pointers = output_row_ptr + col_offsets tl.store(output_pointers, sm_out, mask=row_mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Softmax" ], "Memory Access Pattern": [ "Strided Access", "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/Nagi-ovo/diy/blob/d7c119aa762b9103109d29abaebee345246fe5d7/OpenAI-Triton/softmax.py
735e0114-467d-4933-bae8-e10228aac0d5
chunk.py
sustcsonglin/flash-linear-attention
fla/ops/abc/chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.jit def chunk_abc_bwd_kernel_rcum_intra(s, z, ss, doo, s_s_h, s_s_t, s_s_d, T: tl.constexpr, S: tl.constexpr, BT: tl.constexpr, BC: tl.constexpr, BS: tl.constexpr, NC: tl.constexpr): i_s, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_t, i_i = i_c // NC, i_c % NC o_i = tl.arange(0, BC) m_o = tl.full([BC, BC], 1.0, dtype=tl.float32) p_s = tl.make_block_ptr(s + i_bh * s_s_h, (T, S), (s_s_t, s_s_d), (i_t * BT + i_i * BC, i_s * BS), (BC, BS), (1, 0)) p_zn = tl.make_block_ptr(z + i_bh * s_s_h, (T * S,), (s_s_d,), ((i_t * BT + i_i * BC + BC - 1) * S + i_s * BS,), (BS,), (0,)) p_doo = tl.make_block_ptr(doo + i_bh * s_s_h, (T, S), (s_s_t, s_s_d), ( i_t * BT + i_i * BC, i_s * BS), (BC, BS), (1, 0)) b_s = tl.load(p_s, boundary_check=(0, 1)) b_zn = tl.load(p_zn, boundary_check=(0,)) b_doo = tl.zeros([BC, BS], dtype=tl.float32) for i_j in range(i_i + 1, NC): p_z = tl.make_block_ptr(z + i_bh * s_s_h, (T, S), (s_s_t, s_s_d), ( i_t * BT + i_j * BC, i_s * BS), (BC, BS), (1, 0)) p_ss = tl.make_block_ptr(ss + i_bh * s_s_h, (T, S), (s_s_t, s_s_d), (i_t * BT + i_j * BC, i_s * BS), (BC, BS), (1, 0)) b_z = tl.load(p_z, boundary_check=(0, 1)) b_ss = tl.load(p_ss, boundary_check=(0, 1)) b_doo += b_ss * tl.exp(b_zn[None, :] - b_z) b_doo = tl.exp(b_s - b_zn[None, :]) * tl.dot(m_o.to(b_s.dtype), b_doo. to(b_s.dtype), allow_tf32=False) for j in range(0, BC): p_z = tl.make_block_ptr(z + i_bh * s_s_h, (T * S,), (1,), ((i_t * BT + i_i * BC + j) * S + i_s * BS,), (BS,), (0,)) p_ss = tl.make_block_ptr(ss + i_bh * s_s_h, (T * S,), (1,), ((i_t * BT + i_i * BC + j) * S + i_s * BS,), (BS,), (0,)) b_z = tl.load(p_z, boundary_check=(0,)) b_ss = tl.load(p_ss, boundary_check=(0,)) m_i = o_i[:, None] <= j b_doo += tl.where(m_i, tl.exp(b_s - b_z[None, :]) * b_ss[None, :], 0.0) b_doo += tl.load(p_doo, boundary_check=(0, 1)) tl.store(p_doo, b_doo.to(p_doo.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/abc/chunk.py
e64784a5-f146-4390-946f-2befee210aea
triton_jagged_tensor_ops.py
pytorch/FBGEMM
fbgemm_gpu/fbgemm_gpu/triton/jagged/triton_jagged_tensor_ops.py
fe980ab54a6e28818d81c8694b6564e7f804418b
0
@triton.jit def triton_batched_dense_vec_jagged_2d_matmul(jagged_tensor_ptr, dense_ptr, jagged_offset, thread_block_col_size: tl.constexpr, dense_row_stride, jagged_value_row_stride, D, H: tl.constexpr, output_ptr) ->None: pid = tl.program_id(0) GRID_DIM_COL = (D + thread_block_col_size - 1) // thread_block_col_size output_row_idx = pid // GRID_DIM_COL jagged_offset_id = output_row_idx // H D_refer_idx = output_row_idx % H group_id = pid % GRID_DIM_COL offset = group_id * thread_block_col_size + tl.arange(0, thread_block_col_size) begin = tl.load(jagged_offset + jagged_offset_id) end = tl.load(jagged_offset + (jagged_offset_id + 1)) dense_ptr += output_row_idx * dense_row_stride jagged_tensor_ptr += begin * jagged_value_row_stride + D_refer_idx * D output_ptr += D * output_row_idx num_row = tl.minimum(end - begin, dense_row_stride) acc = tl.zeros((thread_block_col_size,), dtype=tl.float32) mask = offset < D for i in range(num_row): val1 = tl.load(dense_ptr + i) val2 = tl.load(jagged_tensor_ptr + offset, mask=mask, other=0.0) result = val1 * val2 acc += result jagged_tensor_ptr += jagged_value_row_stride tl.store(output_ptr + offset, acc, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Strided Access", "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "BSD", "MIT" ]
https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/fbgemm_gpu/triton/jagged/triton_jagged_tensor_ops.py
fae6dfee-0856-48f2-8c09-198c2bf008d0
mse.py
l1351868270/implicit_gemm.triton
triton_kernel/mse.py
64eb8548ccf4576883c928f6315be8b24680a455
0
@triton.jit def _ld_mse_bwd_kernel(grad_ptr, input_ptr, target_ptr, grad_output, grad_row_stride, input_row_stride, target_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): pid = tl.program_id(0) col_offsets = tl.arange(0, BLOCK_SIZE) mask = col_offsets < n_cols grad_ptrs = grad_ptr + pid * grad_row_stride + col_offsets input_ptrs = input_ptr + pid * input_row_stride + col_offsets target_ptrs = target_ptr + pid * target_row_stride + col_offsets input = tl.load(input_ptrs, mask=mask, other=0.0) target = tl.load(target_ptrs, mask=mask, other=0.0) grad_ = (input - target) * 2 * grad_output / (n_rows * n_cols) tl.store(grad_ptrs, grad_, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/l1351868270/implicit_gemm.triton/blob/64eb8548ccf4576883c928f6315be8b24680a455/triton_kernel/mse.py
d2319479-4740-45ba-a17c-d0a3e92ef405
fused_chunk.py
sustcsonglin/flash-linear-attention
fla/ops/gla/fused_chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.jit def bwd_decay_global_cumsum(dq_inner, dq_inter, dk_inner, dk_inter, q, k, g, dg, s_k_h, BT: tl.constexpr, BK: tl.constexpr, K: tl.constexpr): i_k, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) p_q = q + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + (i_c * BT + BT - 1 ) * K p_k = k + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + (i_c * BT + BT - 1 ) * K p_g = g + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + (i_c * BT + BT - 1 ) * K p_dg = dg + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + (i_c * BT + BT - 1 ) * K p_dq_inner = dq_inner + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ( i_c * BT + BT - 1) * K p_dk_inner = dk_inner + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ( i_c * BT + BT - 1) * K p_dq_inter = dq_inter + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ( i_c * BT + BT - 1) * K p_dk_inter = dk_inter + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ( i_c * BT + BT - 1) * K cum_grad_dg = tl.zeros([BK], dtype=tl.float32) mask = i_k * BK + tl.arange(0, BK) < K last_g = tl.zeros([BK], dtype=tl.float32) for j in range(BT - 1, -1, -1): _g = tl.load(p_g, mask=mask, other=0).to(tl.float32) if j == BT - 1: last_g = _g b_dq1 = tl.load(p_dq_inner, mask=mask, other=0) b_dq2 = tl.load(p_dq_inter, mask=mask, other=0) b_dq2 *= tl.exp(_g) b_dq = b_dq1 + b_dq2 tl.store(p_dq_inter, b_dq, mask=mask) b_dk1 = tl.load(p_dk_inner, mask=mask, other=0) b_dk2 = tl.load(p_dk_inter, mask=mask, other=0) b_dk2 *= tl.exp(last_g - _g) b_dk = b_dk1 + b_dk2 tl.store(p_dk_inter, b_dk, mask=mask) b_q = tl.load(p_q, mask=mask, other=0) b_k = tl.load(p_k, mask=mask, other=0) b_dg = b_dq * b_q - b_dk * b_k cum_grad_dg += b_dg tl.store(p_dg, cum_grad_dg.to(p_dg.dtype.element_ty), mask=mask) p_g -= K p_k -= K p_q -= K p_dq_inner -= K p_dk_inner -= K p_dq_inter -= K p_dk_inter -= K p_dg -= K
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/gla/fused_chunk.py
c043b3cc-fffa-49f1-90d0-c95423a99f18
kernels.py
pytorch-labs/tritonbench
tritonbench/operators/sum/kernels.py
3a5dccb159834968567a2e45e561dc1aeaa8f8a8
0
@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_NON_REDUCE_DIM': b, 'BLOCK_SIZE_REDUCE_DIM': b}, num_warps=w) for b, w in itertools.product ([2, 4, 8, 16], [2, 4, 8])], key=['M', 'N']) @triton.jit def triton_sum_kernel_1D_result_buffer_then_sum(input_ptr, output_ptr, M, N, BLOCK_SIZE_NON_REDUCE_DIM: tl.constexpr, BLOCK_SIZE_REDUCE_DIM: tl. constexpr, dim: tl.constexpr): """ Add blocks of input to a buffer and sum the buffer using Triton """ pid = tl.program_id(axis=0) reduce_dim_len = M if dim == 0 else N non_reduce_dim_len = N if dim == 0 else M buffer = tl.zeros((BLOCK_SIZE_REDUCE_DIM, BLOCK_SIZE_NON_REDUCE_DIM), dtype=tl.float32) block_start_non_reduce_dim = pid * BLOCK_SIZE_NON_REDUCE_DIM offsets_non_reduce_dim = block_start_non_reduce_dim + tl.arange(0, BLOCK_SIZE_NON_REDUCE_DIM) mask_non_reduce_dim = offsets_non_reduce_dim < non_reduce_dim_len for block_start_reduce_dim in range(0, reduce_dim_len, BLOCK_SIZE_REDUCE_DIM): offsets_reduce_dim = block_start_reduce_dim + tl.arange(0, BLOCK_SIZE_REDUCE_DIM) mask_reduce_dim = offsets_reduce_dim < reduce_dim_len idxs, mask = None, None if dim == 0: idxs = offsets_reduce_dim[:, None ] * non_reduce_dim_len + offsets_non_reduce_dim mask = mask_reduce_dim[:, None] & mask_non_reduce_dim elif dim == 1: idxs = offsets_non_reduce_dim[:, None ] * reduce_dim_len + offsets_reduce_dim mask = mask_non_reduce_dim[:, None] & mask_reduce_dim buffer += tl.load(input_ptr + idxs, mask=mask, other=mask) buffer_sum = tl.sum(buffer, axis=dim) buffer_view = buffer_sum.reshape((BLOCK_SIZE_NON_REDUCE_DIM,)) tl.store(output_ptr + offsets_non_reduce_dim, buffer_view, mask= mask_non_reduce_dim)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access", "Blocked Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "BSD" ]
https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/operators/sum/kernels.py
1204a122-b1ff-4519-8d58-a59f218f6150
batched_matmul.py
MichaelWei7/torch
_inductor/triton_ops/batched_matmul.py
4bfe6988308edc9544ddae94bfdcf83a4326b04a
0
@triton.heuristics({'EVEN_K': lambda args: args['K'] % (args['BLOCK_K'] * args['SPLIT_K']) == 0}) @triton.autotune(configs=[triton.Config({'BLOCK_M': 128, 'BLOCK_N': 256, 'BLOCK_K': 32, 'SPLIT_K': 1}, num_stages=3, num_warps=8), triton.Config ({'BLOCK_M': 256, 'BLOCK_N': 128, 'BLOCK_K': 32, 'SPLIT_K': 1}, num_stages=3, num_warps=8), triton.Config({'BLOCK_M': 256, 'BLOCK_N': 64, 'BLOCK_K': 32, 'SPLIT_K': 1}, num_stages=4, num_warps=4), triton. Config({'BLOCK_M': 64, 'BLOCK_N': 256, 'BLOCK_K': 32, 'SPLIT_K': 1}, num_stages=4, num_warps=4), triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'BLOCK_K': 32, 'SPLIT_K': 1}, num_stages=4, num_warps=4), triton. Config({'BLOCK_M': 128, 'BLOCK_N': 64, 'BLOCK_K': 32, 'SPLIT_K': 1}, num_stages=4, num_warps=4), triton.Config({'BLOCK_M': 64, 'BLOCK_N': 128, 'BLOCK_K': 32, 'SPLIT_K': 1}, num_stages=4, num_warps=4), triton. Config({'BLOCK_M': 128, 'BLOCK_N': 32, 'BLOCK_K': 32, 'SPLIT_K': 1}, num_stages=4, num_warps=4), triton.Config({'BLOCK_M': 64, 'BLOCK_N': 32, 'BLOCK_K': 32, 'SPLIT_K': 1}, num_stages=5, num_warps=2), triton.Config ({'BLOCK_M': 128, 'BLOCK_N': 256, 'BLOCK_K': 64, 'SPLIT_K': 1}, num_stages=3, num_warps=8), triton.Config({'BLOCK_M': 256, 'BLOCK_N': 128, 'BLOCK_K': 64, 'SPLIT_K': 1}, num_stages=3, num_warps=8), triton. Config({'BLOCK_M': 256, 'BLOCK_N': 64, 'BLOCK_K': 64, 'SPLIT_K': 1}, num_stages=4, num_warps=4), triton.Config({'BLOCK_M': 64, 'BLOCK_N': 256, 'BLOCK_K': 64, 'SPLIT_K': 1}, num_stages=2, num_warps=4), triton. Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'BLOCK_K': 64, 'SPLIT_K': 1}, num_stages=2, num_warps=4), triton.Config({'BLOCK_M': 128, 'BLOCK_N': 256, 'BLOCK_K': 64, 'SPLIT_K': 1}, num_stages=1, num_warps=8), triton. Config({'BLOCK_M': 256, 'BLOCK_N': 128, 'BLOCK_K': 64, 'SPLIT_K': 1}, num_stages=1, num_warps=8), triton.Config({'BLOCK_M': 256, 'BLOCK_N': 64, 'BLOCK_K': 64, 'SPLIT_K': 1}, num_stages=1, num_warps=4), triton. Config({'BLOCK_M': 64, 'BLOCK_N': 256, 'BLOCK_K': 64, 'SPLIT_K': 1}, num_stages=1, num_warps=4), triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'BLOCK_K': 64, 'SPLIT_K': 1}, num_stages=1, num_warps=4), triton. Config({'BLOCK_M': 128, 'BLOCK_N': 64, 'BLOCK_K': 64, 'SPLIT_K': 1}, num_stages=4, num_warps=4), triton.Config({'BLOCK_M': 64, 'BLOCK_N': 128, 'BLOCK_K': 64, 'SPLIT_K': 1}, num_stages=4, num_warps=4), triton. Config({'BLOCK_M': 128, 'BLOCK_N': 32, 'BLOCK_K': 64, 'SPLIT_K': 1}, num_stages=4, num_warps=4), triton.Config({'BLOCK_M': 64, 'BLOCK_N': 32, 'BLOCK_K': 64, 'SPLIT_K': 1}, num_stages=5, num_warps=2), triton.Config ({'BLOCK_M': 128, 'BLOCK_N': 64, 'BLOCK_K': 64, 'SPLIT_K': 1}, num_stages=1, num_warps=4), triton.Config({'BLOCK_M': 64, 'BLOCK_N': 128, 'BLOCK_K': 64, 'SPLIT_K': 1}, num_stages=1, num_warps=4), triton. Config({'BLOCK_M': 128, 'BLOCK_N': 32, 'BLOCK_K': 64, 'SPLIT_K': 1}, num_stages=1, num_warps=4), triton.Config({'BLOCK_M': 64, 'BLOCK_N': 32, 'BLOCK_K': 64, 'SPLIT_K': 1}, num_stages=1, num_warps=2)], key=['M', 'N', 'K']) @triton.jit def _kernel(A, B, C, M, N, K, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr, GROUP_M: tl.constexpr, SPLIT_K: tl.constexpr, EVEN_K: tl.constexpr, ACC_TYPE: tl.constexpr): pid = tl.program_id(0) pid_z = tl.program_id(1) bid = tl.program_id(2) grid_m = (M + BLOCK_M - 1) // BLOCK_M grid_n = (N + BLOCK_N - 1) // BLOCK_N width = GROUP_M * grid_n group_id = pid // width group_size = min(grid_m - group_id * GROUP_M, GROUP_M) pid_m = group_id * GROUP_M + pid % group_size pid_n = pid % width // group_size rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M) rbn = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N) rk = pid_z * BLOCK_K + tl.arange(0, BLOCK_K) A = A + (ram[:, None] * stride_am + rk[None, :] * stride_ak) B = B + (rk[:, None] * stride_bk + rbn[None, :] * stride_bn) A += bid * M * K B += bid * K * N acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=ACC_TYPE) for k in range(K, 0, -BLOCK_K * SPLIT_K): if EVEN_K: a = tl.load(A) b = tl.load(B) else: a = tl.load(A, mask=rk[None, :] < k, other=0.0) b = tl.load(B, mask=rk[:, None] < k, other=0.0) acc += tl.dot(a, b) A += BLOCK_K * SPLIT_K * stride_ak B += BLOCK_K * SPLIT_K * stride_bk acc = acc.to(C.dtype.element_ty) rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) C = C + (rm[:, None] * stride_cm + rn[None, :] * stride_cn) C += bid * M * N mask = (rm < M)[:, None] & (rn < N)[None, :] if SPLIT_K == 1: tl.store(C, acc, mask=mask) else: tl.atomic_add(C, acc, mask=mask)
{ "Data Type": [ "fp32", "int32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Tiled", "Blocked Access" ], "Parallelization Strategy": [ "Persistent Kernels" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "BSD" ]
https://github.com/MichaelWei7/torch/blob/4bfe6988308edc9544ddae94bfdcf83a4326b04a/_inductor/triton_ops/batched_matmul.py
b5fecd23-5b89-4b3c-8fad-037f53bf7408
prefix_sums.py
intel/intel-xpu-backend-for-triton
benchmarks/triton_kernels_benchmark/prefix_sums.py
6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2
0
@triton.jit def scan_kernel(x_ptr, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl. constexpr, AXIS: tl.constexpr): range_m = tl.arange(0, BLOCK_SIZE_M) range_n = tl.arange(0, BLOCK_SIZE_N) x = tl.load(x_ptr + range_m[:, None] * BLOCK_SIZE_N + range_n[None, :]) x = tl.cumsum(x, axis=AXIS) tl.store(x_ptr + range_m[:, None] * BLOCK_SIZE_N + range_n[None, :], x)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/intel/intel-xpu-backend-for-triton/blob/6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2/benchmarks/triton_kernels_benchmark/prefix_sums.py
3a506554-8ef0-4725-a568-9de1c8c01198
layer_norm_kernels.py
BobMcDear/attorch
attorch/layer_norm_kernels.py
da06cb6236bb47195e33fe3986ed21c675ed94cc
0
@triton.autotune(configs=warps_kernel_configs(), key=['batch_dim', 'feat_dim']) @triton.heuristics({'BLOCK_SIZE_BATCH': BLOCK_SIZE_BATCH_heuristic, 'BLOCK_SIZE_FEAT': lambda args: next_power_of_2(args['feat_dim'])}) @triton.jit def layer_norm_forward_kernel(input_pointer, weight_pointer, bias_pointer, mean_pointer, inv_std_pointer, output_pointer, batch_dim, feat_dim, input_batch_stride, input_feat_stride, output_batch_stride, output_feat_stride, eps, scale_by_weight: tl.constexpr, add_bias: tl. constexpr, save_stats: tl.constexpr, BLOCK_SIZE_BATCH: tl.constexpr, BLOCK_SIZE_FEAT: tl.constexpr): """ Layer-normalizes the input. Args: input_pointer: Pointer to the input to layer-normalize. The input must be of shape [batch_dim, feat_dim]. weight_pointer: Pointer to optional weights for affine transform. The weights, if provided, must be of shape [feat_dim]. bias_pointer: Pointer to an optional bias vector for affine transform. The bias vector, if provided, must be of shape [feat_dim]. mean_pointer: Pointer to an optional container the input's mean is written to if save_stats is True. The container, if provided, must be of shape [batch_dim]. inv_std_pointer: Pointer to an optional container the input's inverse standard deviation is written to if save_stats is True. The container, if provided, must be of shape [batch_dim]. output_pointer: Pointer to a container the result is written to. The container must be of shape [batch_dim, feat_dim]. batch_dim: Batch dimension. feat_dim: Dimensionality of the features. input_batch_stride: Stride necessary to jump one element along the input's batch dimension. input_feat_stride: Stride necessary to jump one element along the input's feature dimension. output_batch_stride: Stride necessary to jump one element along the output container's batch dimension. output_feat_stride: Stride necessary to jump one element along the output container's feature dimension. eps: Epsilon added in the square root in the denominator to avoid division by zero. scale_by_weight: Flag for scaling the normalized output by weights. add_bias: Flag for adding a bias vector to the normalized output if scale_by_weight is True. save_stats: Flag for saving the mean and standard deviation. BLOCK_SIZE_BATCH: Block size across the batch dimension. BLOCK_SIZE_FEAT: Block size across the feature dimension. """ batch_pid = tl.program_id(axis=0) batch_offset = batch_pid * BLOCK_SIZE_BATCH + tl.arange(0, BLOCK_SIZE_BATCH ) feat_offset = tl.arange(0, BLOCK_SIZE_FEAT) batch_mask = batch_offset < batch_dim feat_mask = feat_offset < feat_dim input_pointer += input_batch_stride * batch_offset[:, None ] + input_feat_stride * feat_offset[None, :] output_pointer += output_batch_stride * batch_offset[:, None ] + output_feat_stride * feat_offset[None, :] input = tl.load(input_pointer, mask=batch_mask[:, None] & feat_mask[ None, :]).to(tl.float32) mean = tl.sum(input, axis=1) / feat_dim diff = tl.where(feat_mask[None, :], input - mean[:, None], 0) inv_std = tl.rsqrt(tl.sum(diff * diff, axis=1) / feat_dim + eps) if save_stats: tl.store(mean_pointer + batch_offset, mean, mask=batch_mask) tl.store(inv_std_pointer + batch_offset, inv_std, mask=batch_mask) output = diff * inv_std[:, None] if scale_by_weight: weight = tl.load(weight_pointer + feat_offset, mask=feat_mask) output *= weight if add_bias: bias = tl.load(bias_pointer + feat_offset, mask=feat_mask) output += bias tl.store(output_pointer, output, mask=batch_mask[:, None] & feat_mask[ None, :])
{ "Data Type": [ "fp32" ], "Functionality": [ "Normalization" ], "Memory Access Pattern": [ "Strided Access", "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/BobMcDear/attorch/blob/da06cb6236bb47195e33fe3986ed21c675ed94cc/attorch/layer_norm_kernels.py
77b783f4-944a-4989-ab38-630883cdbda5
fused_chunk.py
sustcsonglin/flash-linear-attention
fla/ops/gla/fused_chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.jit def fwd_inner_chunk(q, k, g, A, s_k_h, s_k_t, s_k_d, scale, B: tl.constexpr, H: tl.constexpr, T: tl.constexpr, K: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr): i_k, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) b_k = tl.load(p_k, boundary_check=(0, 1)) p_g = tl.make_block_ptr(g + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) b_g = tl.load(p_g, boundary_check=(0, 1)).to(tl.float32) mask = i_k * BK + tl.arange(0, BK) < K o_i = tl.arange(0, BT) p_q = q + i_bh * s_k_h + i_k * BK + i_t * BT * K + tl.arange(0, BK) p_gq = g + i_bh * s_k_h + i_k * BK + i_t * BT * K + tl.arange(0, BK) p_A = A + (i_bh + i_k * B * H) * (tl.cdiv(T, BT) * BT * BT ) + i_t * BT * BT + tl.arange(0, BT) for i in range(BT): _q = tl.load(p_q, mask=mask, other=0) * scale gq = tl.load(p_gq, mask=mask, other=0).to(tl.float32) s = _q[None, :] * b_k * tl.exp(gq[None, :] - b_g) score = tl.sum(s, axis=1) score = tl.where(o_i <= i, score, 0) tl.store(p_A, score.to(p_A.dtype.element_ty)) p_q += K p_gq += K p_A += BT
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/gla/fused_chunk.py
034eebc4-faf8-4f0a-b847-5d898fd31da7
lstm_bw.py
NX-AI/flashrnn
flashrnn/flashrnn/triton_fused/lstm_bw.py
3fca666a81c8740af4878d7bc5e2a51900e4fe14
0
@triton.jit def triton_tanh(x): return (1.0 - tl.exp(-2.0 * x)) / (1.0 + tl.exp(-2.0 * x))
{ "Data Type": [ "fp32" ], "Functionality": [ "Activation Functions" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT", "BSD" ]
https://github.com/NX-AI/flashrnn/blob/3fca666a81c8740af4878d7bc5e2a51900e4fe14/flashrnn/flashrnn/triton_fused/lstm_bw.py
33a2ed2a-c830-4a48-9359-fe4d01c30f36
causal_conv1d_varlen.py
shaielc/MambaLinearCode
causal-conv1d/causal_conv1d/causal_conv1d_varlen.py
567fc4ae197064540c1a558bbb60c78f55b95fef
0
@triton.jit def _causal_conv1d_varlen_states(X, CU_SEQLENS, STATES, state_len, dim, stride_x_seqlen, stride_x_dim, stride_states_batch, stride_states_seqlen, stride_states_dim, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr): batch_idx = tl.program_id(2) STATES += batch_idx * stride_states_batch end_idx = tl.load(CU_SEQLENS + batch_idx + 1) start_idx = tl.maximum(tl.load(CU_SEQLENS + batch_idx), end_idx - state_len ) rows = end_idx - (tl.program_id(1) + 1) * BLOCK_M + tl.arange(0, BLOCK_M) cols = tl.program_id(0) * BLOCK_N + tl.arange(0, BLOCK_N) x = tl.load(X + rows[:, None] * stride_x_seqlen + cols[None, :] * stride_x_dim, mask=(rows[:, None] >= start_idx) & (cols[None, :] < dim), other=0) rows_states = state_len - (tl.program_id(1) + 1) * BLOCK_M + tl.arange( 0, BLOCK_M) tl.store(STATES + rows_states[:, None] * stride_states_seqlen + cols[ None, :] * stride_states_dim, x, mask=(rows_states[:, None] >= 0) & (cols[None, :] < dim))
{ "Data Type": [ "fp32" ], "Functionality": [ "Recurrent Neural Networks" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "BSD", "Apache" ]
https://github.com/shaielc/MambaLinearCode/blob/567fc4ae197064540c1a558bbb60c78f55b95fef/causal-conv1d/causal_conv1d/causal_conv1d_varlen.py
fc92abc9-d8fd-4398-8a22-d121aebc63d3
logcumsumexp.py
sustcsonglin/flash-linear-attention
fla/ops/utils/logcumsumexp.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.autotune(configs=[triton.Config({'BT': 16}, num_warps=2), triton. Config({'BT': 16}, num_warps=4), triton.Config({'BT': 16}, num_warps=8), triton.Config({'BT': 32}, num_warps=2), triton.Config({'BT': 32}, num_warps=4), triton.Config({'BT': 32}, num_warps=8), triton.Config({ 'BT': 64}, num_warps=2), triton.Config({'BT': 64}, num_warps=4), triton .Config({'BT': 64}, num_warps=8)], key=['S']) @triton.jit def logcumsumexp_fwd_kernel(s, z, s_s_h, s_s_t, s_s_d, T: tl.constexpr, S: tl.constexpr, BT: tl.constexpr): i_bh = tl.program_id(0) o_i = tl.arange(0, BT) m_s = tl.where(o_i[:, None] >= o_i[None, :], 1.0, 0.0) b_mp = tl.full([S], float('-inf'), dtype=tl.float32) b_zp = tl.zeros([S], dtype=tl.float32) for i_t in range(tl.cdiv(T, BT)): p_s = tl.make_block_ptr(s + i_bh * s_s_h, (T, S), (s_s_t, s_s_d), ( i_t * BT, 0), (BT, S), (1, 0)) p_z = tl.make_block_ptr(z + i_bh * s_s_h, (T, S), (s_s_t, s_s_d), ( i_t * BT, 0), (BT, S), (1, 0)) b_s = tl.load(p_s, boundary_check=(0, 1)).to(tl.float32) b_mc = tl.max(b_s, 0) if i_t > 0: b_mc = tl.maximum(b_mp, b_mc) b_zp = b_zp * tl.exp(b_mp - b_mc) b_s = tl.exp(b_s - b_mc) b_z = tl.dot(m_s, b_s, allow_tf32=False) + b_zp b_zc = tl.max(b_z, 0) b_mp = b_mc b_zp = b_zc b_z = tl.log(tl.where(b_z != 0, b_z, 1e-20)) + b_mc tl.store(p_z, b_z.to(p_z.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Softmax" ], "Memory Access Pattern": [ "Blocked Access" ], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/utils/logcumsumexp.py
bea526aa-fd9a-4f16-8749-f490743aecce
attn_qk_int8_per_block_h64.py
rodjjo/editorium
editorium/app/server/pipelines/cogvideo/sageattention/attn_qk_int8_per_block_h64.py
7b92e2c92a144bf23bbe6fe88e3d513ffcf7d694
0
@triton.jit def _attn_fwd_inner(acc, l_i, m_i, q, q_scale, K_ptrs, K_scale_ptr, V_ptrs, start_m, BLOCK_M: tl.constexpr, HEAD_DIM: tl.constexpr, BLOCK_N: tl. constexpr, STAGE: tl.constexpr, offs_m: tl.constexpr, offs_n: tl. constexpr, N_CTX: tl.constexpr): lo, hi = 0, N_CTX for start_n in range(lo, hi, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) k_mask = offs_n[None, :] < N_CTX - start_n k = tl.load(K_ptrs, mask=k_mask) k_scale = tl.load(K_scale_ptr) qk = tl.dot(q, k).to(tl.float32) * q_scale * k_scale m_ij = tl.maximum(m_i, tl.max(qk, 1)) qk = qk - m_ij[:, None] p = tl.math.exp2(qk) l_ij = tl.sum(p, 1) alpha = tl.math.exp2(m_i - m_ij) l_i = l_i * alpha + l_ij acc = acc * alpha[:, None] v = tl.load(V_ptrs, mask=offs_n[:, None] < N_CTX - start_n) p = p.to(tl.float16) acc += tl.dot(p, v, out_dtype=tl.float16) m_i = m_ij K_ptrs += BLOCK_N * HEAD_DIM K_scale_ptr += 1 V_ptrs += BLOCK_N * HEAD_DIM return acc, l_i
{ "Data Type": [ "fp16" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [] }
[ "Apache" ]
https://github.com/rodjjo/editorium/blob/7b92e2c92a144bf23bbe6fe88e3d513ffcf7d694/editorium/app/server/pipelines/cogvideo/sageattention/attn_qk_int8_per_block_h64.py
eef6506d-e789-4c85-8695-427fcf745d3f
atomic.py
daemyung/practice-triton
atomic.py
27f727726f1507c8380a1c11751d851c7c4a07ce
0
@triton.jit def atomic_kernel(x_ptr, increment): tl.atomic_add(x_ptr, increment)
{ "Data Type": [ "uint8" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/daemyung/practice-triton/blob/27f727726f1507c8380a1c11751d851c7c4a07ce/atomic.py
c87e2484-0947-436e-9ac0-d1273f24b0a3
rmsnorm.py
ardywibowo/triton-mode
kernels/rmsnorm.py
5cd773ec95e25e23c6b75e312c7a9a1c6eb650b1
0
@triton.jit def triton_rmsnorm_backward(dY_ptr, dY_row_stride, X_ptr, X_row_stride, X_dtype: tl.constexpr, W_ptr, RSTD_ptr, RSTD_row_stride, dW_ptr, dW_row_stride, n_rows, n_cols, offset, rows_per_program: tl.constexpr, BLOCK_SIZE: tl.constexpr): row_block_id = tl.program_id(0) row_start = row_block_id * rows_per_program row_end = min((row_block_id + 1) * rows_per_program, n_rows) col_offsets = tl.arange(0, BLOCK_SIZE) mask = col_offsets < n_cols dW_row = tl.zeros((BLOCK_SIZE,), dtype=tl.float32) dY_ptr += row_start * dY_row_stride X_ptr += row_start * X_row_stride RSTD_ptr += row_start W_row = tl.load(W_ptr + col_offsets, mask=mask, other=0.0) W_row = W_row + offset for _ in range(row_start, row_end): dY_row = tl.load(dY_ptr + col_offsets, mask=mask, other=0.0) X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0.0) rstd_row = tl.load(RSTD_ptr) X_row = X_row.to(tl.float32) m = (dY_row * W_row).to(tl.float32) dX_row = rstd_row * m dX_row += rstd_row * (-(1 / n_cols) * rstd_row * rstd_row * tl.sum( m * X_row, axis=0) * X_row) dW_row += dY_row * (X_row * rstd_row).to(X_dtype) tl.store(dY_ptr + col_offsets, dX_row.to(X_dtype), mask=mask) dY_ptr += dY_row_stride X_ptr += X_row_stride RSTD_ptr += RSTD_row_stride tl.store(dW_ptr + row_block_id * dW_row_stride + col_offsets, dW_row, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Normalization" ], "Memory Access Pattern": [ "Blocked Access" ], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/ardywibowo/triton-mode/blob/5cd773ec95e25e23c6b75e312c7a9a1c6eb650b1/kernels/rmsnorm.py
61fe3795-54b0-4858-973e-4e780e63884b
fused_chunk.py
sustcsonglin/flash-linear-attention
fla/ops/based/fused_chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.jit def fused_chunk_based_bwd_kernel(q, k, v, do, dz, dq, dk, dv, s_k_h, s_k_t, s_k_d, s_v_h, s_v_t, s_v_d, scale, B: tl.constexpr, H: tl.constexpr, T: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr): i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) o_i = tl.arange(0, BT) m_s = o_i[:, None] >= o_i[None, :] b_h_1o = tl.zeros([BV, BK], dtype=tl.float32) b_h_2o = tl.zeros([BV, BK * BK], dtype=tl.float32) k_1o = tl.zeros([1, BK], dtype=tl.float32) k_2o = tl.zeros([1, BK * BK], dtype=tl.float32) for i in range(0, tl.cdiv(T, BT)): p_q = tl.make_block_ptr(q + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), ( i * BT, i_k * BK), (BT, BK), (1, 0)) p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), ( i * BT, i_k * BK), (BT, BK), (1, 0)) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (V, T), (s_v_d, s_v_t), ( i_v * BV, i * BT), (BV, BT), (0, 1)) p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i * BT, i_v * BV), (BT, BV), (1, 0)) p_dq = tl.make_block_ptr(dq + (i_bh + i_v * B * H) * s_k_h, (T, K), (s_k_t, s_k_d), (i * BT, i_k * BK), (BT, BK), (1, 0)) p_dz = dz + i_bh * T + tl.arange(0, BT) + i * BT b_dq = tl.zeros([BT, BK], dtype=tl.float32) b_q = tl.load(p_q, boundary_check=(0, 1)) b_q = (b_q * scale).to(b_q.dtype) b_k = tl.load(p_k, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype) b_dz = tl.load(p_dz, mask=tl.arange(0, BT) + i * BT < T) b_v = tl.load(p_v, boundary_check=(0, 1)) b_dq += tl.dot(b_do, b_h_1o.to(b_do.dtype), allow_tf32=False) if i_v == 0: b_dq += b_dz[:, None] * k_1o b_dq_2o = tl.dot(b_do, b_h_2o.to(b_do.dtype), allow_tf32=False) * 0.5 if i_v == 0: b_dq_2o += b_dz[:, None] * k_2o * 0.5 b_dq_2o = tl.reshape(b_dq_2o, [BT, BK, BK]) b_dq += tl.sum(b_dq_2o * b_q[:, :, None], axis=1) b_dq += tl.sum(b_dq_2o * b_q[:, None, :], axis=2) b_dq *= scale b_ds = tl.dot(b_do, b_v, allow_tf32=False) if i_v == 0: b_ds += b_dz[:, None] b_ds = tl.where(m_s, b_ds, 0) * scale b_s = tl.dot(b_q, tl.trans(b_k), allow_tf32=False) b_s = tl.where(m_s, b_s, 0) b_dq += tl.dot((b_ds * (1 + b_s)).to(b_q.dtype), b_k, allow_tf32=False) tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1)) b_k_2o = b_k[:, :, None] * b_k[:, None, :] b_k_2o = tl.reshape(b_k_2o, [BT, BK * BK]).to(b_k.dtype) b_h_2o = b_h_2o + tl.dot(b_v, b_k_2o.to(b_v.dtype), allow_tf32=False) b_h_1o = b_h_1o + tl.dot(b_v, b_k, allow_tf32=False) if i_v == 0: k_1o += tl.sum(b_k, axis=0)[None, :] k_2o += tl.sum(b_k_2o, axis=0)[None, :] tl.debug_barrier() b_h_1o = None b_h_2o = None b_dh_1o = tl.zeros([BK, BV], dtype=tl.float32) b_dh_2o = tl.zeros([BK * BK, BV], dtype=tl.float32) b_dh_0o = tl.zeros([BV], dtype=tl.float32) m_s = tl.arange(0, BT)[:, None] <= tl.arange(0, BT)[None, :] dq_1o = tl.zeros([1, BK], dtype=tl.float32) dq_2o = tl.zeros([BK * BK, 1], dtype=tl.float32) for i in range(tl.cdiv(T, BT) * BT - BT, -BT, -BT): p_q = tl.make_block_ptr(q + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), ( i_k * BK, i), (BK, BT), (0, 1)) p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), ( i, i_k * BK), (BT, BK), (1, 0)) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), ( i, i_v * BV), (BT, BV), (1, 0)) p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i, i_v * BV), (BT, BV), (1, 0)) p_dk = tl.make_block_ptr(dk + (i_bh + i_v * B * H) * s_k_h, (T, K), (s_k_t, s_k_d), (i, i_k * BK), (BT, BK), (1, 0)) p_dv = tl.make_block_ptr(dv + (i_bh + i_k * B * H) * s_v_h, (T, V), (s_v_t, s_v_d), (i, i_v * BV), (BT, BV), (1, 0)) p_dz = dz + i_bh * T + tl.arange(0, BT) + i b_dk = tl.zeros([BT, BK], dtype=tl.float32) b_dv = tl.zeros([BT, BV], dtype=tl.float32) b_q = tl.load(p_q, boundary_check=(0, 1)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype) b_dz = tl.load(p_dz, mask=tl.arange(0, BT) + i < T) b_q = (b_q * scale).to(b_k.dtype) b_ds = tl.dot(b_v, tl.trans(b_do), allow_tf32=False) if i_v == 0: b_ds += b_dz[None, :] b_ds = tl.where(m_s, b_ds, 0) b_s = tl.dot(b_k, b_q, allow_tf32=False) b_s2 = 1 + b_s + 0.5 * b_s * b_s b_s = tl.where(m_s, b_s, 0) b_s2 = tl.where(m_s, b_s2, 0) b_ds *= 1 + b_s b_dk += tl.dot(b_ds.to(b_k.dtype), tl.trans(b_q), allow_tf32=False) b_dv += tl.dot(b_s2.to(b_do.dtype), b_do, allow_tf32=False) b_k_2o = b_k[:, :, None] * b_k[:, None, :] b_k_2o = tl.reshape(b_k_2o, [BT, BK * BK]).to(b_k.dtype) b_dv += tl.dot(b_k, b_dh_1o.to(b_k.dtype), allow_tf32=False) b_dv += tl.dot(b_k_2o, b_dh_2o.to(b_k.dtype), allow_tf32=False) b_dv += b_dh_0o b_dk += tl.dot(b_v, tl.trans(b_dh_1o).to(b_k.dtype), allow_tf32=False) if i_v == 0: b_dk += dq_1o b_dk_2o = tl.dot(b_dh_2o.to(b_k.dtype), tl.trans(b_v), allow_tf32=False ) if i_v == 0: b_dk_2o += dq_2o b_dk_2o = tl.reshape(b_dk_2o, [BK, BK, BT]) b_k_fp32 = tl.trans(b_k.to(tl.float32)) b_dk2 = tl.sum(b_dk_2o * b_k_fp32[:, None, :], axis=0) b_dk2 += tl.sum(b_dk_2o * b_k_fp32[None, :, :], axis=1) b_dk += tl.trans(b_dk2) b_dh_0o += tl.sum(b_do, axis=0) b_dh_1o = b_dh_1o + tl.dot(b_q, b_do, allow_tf32=False) b_q_2o = b_q[None, :, :] * b_q[:, None, :] b_q_2o = tl.reshape(b_q_2o, [BK * BK, BT]).to(b_k.dtype) b_dh_2o = b_dh_2o + tl.dot(b_q_2o, b_do, allow_tf32=False) * 0.5 if i_v == 0: dq_1o += tl.sum(b_dz[None, :] * b_q, axis=1)[None, :] dq_2o += (tl.sum(b_dz[None, :] * b_q_2o, axis=1) * 0.5)[:, None] tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [ "Blocked Access" ], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/based/fused_chunk.py
f8d8edc6-bf70-4ed3-b262-9a5b4a3846e7
parallel.py
sustcsonglin/flash-linear-attention
fla/ops/simple_gla/parallel.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.jit def parallel_simple_gla_bwd_kernel_dkv(i_bh, i_t, i_k, i_v, i_kv, q, k, v, g, do, dk, dv, dg, s_k_h, s_k_t, s_v_h, s_v_t, scale, B: tl.constexpr, H: tl.constexpr, T: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BS: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr): p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_gk = tl.make_block_ptr(g + i_bh * T, (T,), (1,), (i_t * BT,), (BT,), (0,) ) b_k = tl.load(p_k, boundary_check=(0, 1)) b_dk = tl.zeros([BT, BK], dtype=tl.float32) b_v = tl.load(p_v, boundary_check=(0, 1)) b_dv = tl.zeros([BT, BV], dtype=tl.float32) b_gk = tl.load(p_gk, boundary_check=(0,)) NTS = tl.cdiv(T, BS) b_kg = (b_k * tl.exp(tl.load(g + i_bh * T + min(i_t * BT + BT, T) - 1) - b_gk)[:, None]).to(b_k.dtype) for i_s in range(NTS * BS - BS, (i_t + 1) * BT - BS, -BS): p_q = tl.make_block_ptr(q + i_bh * s_k_h, (T, K), (s_k_t, 1), (i_s, i_k * BK), (BS, BK), (1, 0)) p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, V), (s_v_t, 1), ( i_s, i_v * BV), (BS, BV), (1, 0)) p_gq = tl.make_block_ptr(g + i_bh * T, (T,), (1,), (i_s,), (BS,), (0,)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_gq = tl.load(p_gq, boundary_check=(0,)) b_gp = tl.load(g + i_bh * T + min(i_s + BS, T) - 1) b_gn = tl.load(g + i_bh * T + i_s - 1) if i_s % BT > 0 else 0.0 b_do = tl.load(p_do, boundary_check=(0, 1)) b_do = (b_do * tl.exp(b_gq - b_gn)[:, None]).to(b_do.dtype) b_dk *= tl.exp(b_gp - b_gn) b_dv *= tl.exp(b_gp - b_gn) b_ds = tl.dot(b_v, tl.trans(b_do), allow_tf32=False) b_s = tl.dot(b_kg, tl.trans(b_q), allow_tf32=False) b_dk += tl.dot(b_ds.to(b_q.dtype), b_q, allow_tf32=False) b_dv += tl.dot(b_s.to(b_do.dtype), b_do, allow_tf32=False) b_dk *= tl.exp(tl.load(g + i_bh * T + min(T, i_t * BT + BT) - 1) - b_gk)[ :, None] * scale b_dv *= scale tl.debug_barrier() o_q = i_t * BT + tl.arange(0, BS) o_k = i_t * BT + tl.arange(0, BT) for i_s in range(i_t * BT, min((i_t + 1) * BT, T), BS): p_q = tl.make_block_ptr(q + i_bh * s_k_h, (T, K), (s_k_t, 1), (i_s, i_k * BK), (BS, BK), (1, 0)) p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, V), (s_v_t, 1), ( i_s, i_v * BV), (BS, BV), (1, 0)) p_gq = tl.make_block_ptr(g + i_bh * T, (T,), (1,), (i_s,), (BS,), (0,)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)) b_gq = tl.load(p_gq, boundary_check=(0,)) m_s = o_k[:, None] <= o_q[None, :] d_s = tl.where(m_s, tl.exp(-b_gk[:, None] + b_gq[None, :]), 0) * scale b_ds = tl.dot(b_v, tl.trans(b_do), allow_tf32=False) * d_s b_s = tl.dot(b_k, tl.trans(b_q), allow_tf32=False) * d_s b_dk += tl.dot(b_ds.to(b_q.dtype), b_q, allow_tf32=False) b_dv += tl.dot(b_s.to(b_q.dtype), b_do, allow_tf32=False) o_q += BS p_dk = tl.make_block_ptr(dk + (i_v * B * H + i_bh) * s_k_h, (T, K), ( s_k_t, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dv = tl.make_block_ptr(dv + (i_k * B * H + i_bh) * s_v_h, (T, V), ( s_v_t, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_dg = tl.make_block_ptr(dg + (i_kv * B * H + i_bh) * T, (T,), (1,), ( i_t * BT,), (BT,), (0,)) tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1)) b_dg = tl.load(p_dg, boundary_check=(0,)) b_dg -= tl.sum(b_dk * b_k, 1) tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0,))
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [ "Blocked Access" ], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/simple_gla/parallel.py
eb17d738-56f7-4b95-9035-3e3775974f90
fused_chunk.py
sustcsonglin/flash-linear-attention
fla/ops/retention/fused_chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.jit def fused_chunk_retention_bwd_kernel(q, k, v, do, dq, dk, dv, h0, scale, B: tl.constexpr, H: tl.constexpr, T: tl.constexpr, K: tl.constexpr, V: tl. constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, USE_INITIAL_STATE: tl.constexpr, CHECK: tl.constexpr): i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_h = i_bh % H o_i = tl.arange(0, BT) b_b = tl.math.log2(1 - tl.math.exp2(-5 - i_h * 1.0)) d_q, d_k = tl.math.exp2((o_i + 1) * b_b) * scale, tl.math.exp2((BT - o_i - 1) * b_b) d_b = tl.math.exp2(BT * b_b) m_s = o_i[:, None] >= o_i[None, :] d_s = tl.where(m_s, tl.math.exp2((o_i[:, None] - o_i[None, :]) * b_b), 0 ) * scale b_h = tl.zeros([BV, BK], dtype=tl.float32) if USE_INITIAL_STATE: p_h = tl.make_block_ptr(h0 + i_bh * K * V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) b_h = tl.load(p_h, boundary_check=(0, 1)).to(tl.float32) for i in range(0, tl.cdiv(T, BT)): p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i * BT, i_k * BK), (BT, BK), (1, 0)) p_v = tl.make_block_ptr(v + i_bh * T * V, (V, T), (1, V), (i_v * BV, i * BT), (BV, BT), (0, 1)) p_do = tl.make_block_ptr(do + i_bh * T * V, (T, V), (V, 1), (i * BT, i_v * BV), (BT, BV), (1, 0)) p_dq = tl.make_block_ptr(dq + (i_bh + i_v * B * H) * T * K, (T, K), (K, 1), (i * BT, i_k * BK), (BT, BK), (1, 0)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)) b_dd = (b_do * d_q[:, None]).to(b_do.dtype) b_ds = tl.dot(b_do, b_v, allow_tf32=False) b_ds = (b_ds * d_s).to(b_k.dtype) b_dq = tl.dot(b_ds, b_k, allow_tf32=False) if CHECK and i == 0: b_dq += tl.dot(b_dd, b_h.to(b_k.dtype), allow_tf32=False) b_h = d_b * b_h + tl.dot((b_v * d_k[None, :]).to(b_k.dtype), b_k, allow_tf32=False) else: b_dq += tl.dot(b_dd, b_h.to(b_k.dtype), allow_tf32=False) b_h = d_b * b_h + tl.dot((b_v * d_k[None, :]).to(b_k.dtype), b_k, allow_tf32=False) tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1)) b_h = None tl.debug_barrier() d_s = tl.trans(d_s) b_dh = tl.zeros([BK, BV], dtype=tl.float32) for i in range(1, tl.cdiv(T, BT) + 1): p_q = tl.make_block_ptr(q + i_bh * T * K, (K, T), (1, K), (i_k * BK, T - i * BT), (BK, BT), (0, 1)) p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (T - i * BT, i_k * BK), (BT, BK), (1, 0)) p_v = tl.make_block_ptr(v + i_bh * T * V, (T, V), (V, 1), (T - i * BT, i_v * BV), (BT, BV), (1, 0)) p_do = tl.make_block_ptr(do + i_bh * T * V, (T, V), (V, 1), (T - i * BT, i_v * BV), (BT, BV), (1, 0)) p_dk = tl.make_block_ptr(dk + (i_bh + i_v * B * H) * T * K, (T, K), (K, 1), (T - i * BT, i_k * BK), (BT, BK), (1, 0)) p_dv = tl.make_block_ptr(dv + (i_bh + i_k * B * H) * T * V, (T, V), (V, 1), (T - i * BT, i_v * BV), (BT, BV), (1, 0)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)) b_dd = (b_do * d_q[:, None]).to(b_do.dtype) b_ds = tl.dot(b_v, tl.trans(b_do), allow_tf32=False) b_ds = (b_ds * d_s).to(b_k.dtype) b_s = tl.dot(b_k, b_q, allow_tf32=False) * d_s b_dk = tl.dot(b_ds, tl.trans(b_q), allow_tf32=False) b_dv = tl.dot(b_s.to(b_q.dtype), b_do, allow_tf32=False) if CHECK and i == 1: b_dk += tl.dot(b_v, tl.trans(b_dh).to(b_v.dtype), allow_tf32=False ) * d_k[:, None] b_dv += tl.dot(b_k, b_dh.to(b_k.dtype), allow_tf32=False) * d_k[ :, None] b_dh = d_b * b_dh + tl.dot(b_q, b_dd, allow_tf32=False) else: b_dk += tl.dot(b_v, tl.trans(b_dh).to(b_v.dtype), allow_tf32=False ) * d_k[:, None] b_dv += tl.dot(b_k, b_dh.to(b_k.dtype), allow_tf32=False) * d_k[ :, None] b_dh = d_b * b_dh + tl.dot(b_q, b_dd, allow_tf32=False) tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [ "Blocked Access" ], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/retention/fused_chunk.py
fdc8c514-97dc-4a5b-b5ee-8cb84a245397
lightseq_async_attn.py
EvolvingLMMs-Lab/LongVA
easy_context/dist_flash_attn/lightseq_async_attn.py
76b7c33946936361eeb5a18b2c9fcc5fe63e9434
0
@triton.jit def _rescale_kernel(peer_m, m, peer_l, l, peer_o, o, L, stride_oz, stride_oh, stride_om, stride_on, Z, H, N_CTX, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, LAST_STEP: tl.constexpr ): start_m = tl.program_id(0) off_hz = tl.program_id(1) o_offset = off_hz * stride_oh peer_o_block_ptr = tl.make_block_ptr(base=peer_o + o_offset, shape=( N_CTX, BLOCK_DMODEL), strides=(stride_om, stride_on), offsets=( start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=( 1, 0)) o_block_ptr = tl.make_block_ptr(base=o + o_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_om, stride_on), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0)) offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) peer_m_ptrs = peer_m + off_hz * N_CTX + offs_m m_ptrs = m + off_hz * N_CTX + offs_m peer_l_ptrs = peer_l + off_hz * N_CTX + offs_m l_ptrs = l + off_hz * N_CTX + offs_m peer_m_i = tl.load(peer_m_ptrs) peer_m_i = peer_m_i.to(tl.float32) m_i = tl.load(m_ptrs) m_i = m_i.to(tl.float32) peer_l_i = tl.load(peer_l_ptrs) peer_l_i = peer_l_i.to(tl.float32) l_i = tl.load(l_ptrs) l_i = l_i.to(tl.float32) peer_acc = tl.load(peer_o_block_ptr) peer_acc = peer_acc.to(tl.float32) acc = tl.load(o_block_ptr) acc = acc.to(tl.float32) lo = 0 hi = N_CTX m_i_sync = tl.maximum(m_i, peer_m_i) alpha = tl.math.exp2(m_i - m_i_sync) peer_alpha = tl.math.exp2(peer_m_i - m_i_sync) acc_scale = l_i * 0 + alpha peer_acc_scale = peer_l_i * 0 + peer_alpha acc *= acc_scale[:, None] peer_acc *= peer_acc_scale[:, None] acc += peer_acc l_i = l_i * acc_scale + peer_l_i * peer_acc_scale tl.store(m_ptrs, m_i_sync) tl.store(l_ptrs, l_i) if LAST_STEP: acc = acc / l_i[:, None] L_ptrs = L + off_hz * N_CTX + offs_m tl.store(L_ptrs, m_i_sync / 1.44269504 + tl.math.log(l_i)) tl.store(o_block_ptr, acc.to(tl.bfloat16))
{ "Data Type": [ "fp32", "bf16" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Blocked Access" ], "Parallelization Strategy": [], "Performance Objective": [] }
[ "Apache" ]
https://github.com/EvolvingLMMs-Lab/LongVA/blob/76b7c33946936361eeb5a18b2c9fcc5fe63e9434/easy_context/dist_flash_attn/lightseq_async_attn.py
04b500e9-43c3-4a8d-8bdf-3fa2cecce9bc
prefix_prefill.py
IBM/vllm
vllm/attention/ops/prefix_prefill.py
99523dd62be2ecf6c6db15e8133aaaf7855e7e86
0
@triton.jit def _fwd_kernel(Q, K, V, K_cache, V_cache, B_Loc, sm_scale, k_scale, v_scale, B_Start_Loc, B_Seqlen, B_Ctxlen, block_size, x, Out, stride_b_loc_b, stride_b_loc_s, stride_qbs, stride_qh, stride_qd, stride_kbs, stride_kh, stride_kd, stride_vbs, stride_vh, stride_vd, stride_obs, stride_oh, stride_od, stride_k_cache_bs, stride_k_cache_h, stride_k_cache_d, stride_k_cache_bl, stride_k_cache_x, stride_v_cache_bs, stride_v_cache_h, stride_v_cache_d, stride_v_cache_bl, num_queries_per_kv: int, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_DMODEL_PADDED: tl.constexpr, BLOCK_N: tl.constexpr, SLIDING_WINDOW: tl.constexpr): cur_batch = tl.program_id(0) cur_head = tl.program_id(1) start_m = tl.program_id(2) cur_kv_head = cur_head // num_queries_per_kv cur_batch_ctx_len = tl.load(B_Ctxlen + cur_batch) cur_batch_seq_len = tl.load(B_Seqlen + cur_batch) cur_batch_in_all_start_index = tl.load(B_Start_Loc + cur_batch) cur_batch_query_len = cur_batch_seq_len - cur_batch_ctx_len block_start_loc = BLOCK_M * start_m offs_n = tl.arange(0, BLOCK_N) offs_d = tl.arange(0, BLOCK_DMODEL_PADDED) offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) off_q = (cur_batch_in_all_start_index + offs_m[:, None] ) * stride_qbs + cur_head * stride_qh + offs_d[None, :] * stride_qd dim_mask = tl.where(tl.arange(0, BLOCK_DMODEL_PADDED) < BLOCK_DMODEL, 1, 0 ).to(tl.int1) q = tl.load(Q + off_q, mask=dim_mask[None, :] & (offs_m[:, None] < cur_batch_query_len), other=0.0) m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf') l_i = tl.zeros([BLOCK_M], dtype=tl.float32) acc = tl.zeros([BLOCK_M, BLOCK_DMODEL_PADDED], dtype=tl.float32) for start_n in range(0, cur_batch_ctx_len, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) bn = tl.load(B_Loc + cur_batch * stride_b_loc_b + (start_n + offs_n ) // block_size * stride_b_loc_s, mask=start_n + offs_n < cur_batch_ctx_len, other=0) off_k = bn[None, : ] * stride_k_cache_bs + cur_kv_head * stride_k_cache_h + offs_d[ :, None] // x * stride_k_cache_d + (start_n + offs_n[None, :] ) % block_size * stride_k_cache_bl + offs_d[:, None ] % x * stride_k_cache_x off_v = bn[:, None ] * stride_v_cache_bs + cur_kv_head * stride_v_cache_h + offs_d[ None, :] * stride_v_cache_d + (start_n + offs_n[:, None] ) % block_size * stride_v_cache_bl k_load = tl.load(K_cache + off_k, mask=dim_mask[:, None] & (start_n + offs_n[None, :] < cur_batch_ctx_len), other=0.0) if k_load.dtype.is_fp8(): k = (k_load.to(tl.float32) * k_scale).to(q.dtype) else: k = k_load qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) qk += tl.dot(q, k) qk = tl.where(start_n + offs_n[None, :] < cur_batch_ctx_len, qk, float('-inf')) qk *= sm_scale if SLIDING_WINDOW > 0: qk = tl.where(cur_batch_ctx_len + offs_m[:, None] - (start_n + offs_n[None, :]) < SLIDING_WINDOW, qk, -10000) m_ij = tl.max(qk, 1) p = tl.exp(qk - m_ij[:, None]) l_ij = tl.sum(p, 1) m_i_new = tl.maximum(m_i, m_ij) alpha = tl.exp(m_i - m_i_new) beta = tl.exp(m_ij - m_i_new) l_i_new = alpha * l_i + beta * l_ij p_scale = beta / l_i_new p = p * p_scale[:, None] acc_scale = l_i / l_i_new * alpha acc = acc * acc_scale[:, None] v_load = tl.load(V_cache + off_v, mask=dim_mask[None, :] & (start_n + offs_n[:, None] < cur_batch_ctx_len), other=0.0) if v_load.dtype.is_fp8(): v = (v_load.to(tl.float32) * v_scale).to(q.dtype) else: v = v_load p = p.to(v.dtype) acc += tl.dot(p, v) l_i = l_i_new m_i = m_i_new off_k = offs_n[None, :] * stride_kbs + cur_kv_head * stride_kh + offs_d[ :, None] * stride_kd off_v = offs_n[:, None] * stride_vbs + cur_kv_head * stride_vh + offs_d[ None, :] * stride_vd k_ptrs = K + off_k v_ptrs = V + off_v block_mask = tl.where(block_start_loc < cur_batch_query_len, 1, 0) for start_n in range(0, block_mask * (start_m + 1) * BLOCK_M, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) k = tl.load(k_ptrs + (cur_batch_in_all_start_index + start_n) * stride_kbs, mask=dim_mask[:, None] & (start_n + offs_n[None, :] < cur_batch_query_len), other=0.0) qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) qk += tl.dot(q, k) qk *= sm_scale qk = tl.where(offs_m[:, None] >= start_n + offs_n[None, :], qk, float('-inf')) if SLIDING_WINDOW > 0: qk = tl.where(offs_m[:, None] - (start_n + offs_n[None, :]) < SLIDING_WINDOW, qk, -10000) m_ij = tl.max(qk, 1) p = tl.exp(qk - m_ij[:, None]) l_ij = tl.sum(p, 1) m_i_new = tl.maximum(m_i, m_ij) alpha = tl.exp(m_i - m_i_new) beta = tl.exp(m_ij - m_i_new) l_i_new = alpha * l_i + beta * l_ij p_scale = beta / l_i_new p = p * p_scale[:, None] acc_scale = l_i / l_i_new * alpha acc = acc * acc_scale[:, None] v = tl.load(v_ptrs + (cur_batch_in_all_start_index + start_n) * stride_vbs, mask=dim_mask[None, :] & (start_n + offs_n[:, None] < cur_batch_query_len), other=0.0) p = p.to(v.dtype) acc += tl.dot(p, v) l_i = l_i_new m_i = m_i_new off_o = (cur_batch_in_all_start_index + offs_m[:, None] ) * stride_obs + cur_head * stride_oh + offs_d[None, :] * stride_od out_ptrs = Out + off_o tl.store(out_ptrs, acc, mask=dim_mask[None, :] & (offs_m[:, None] < cur_batch_query_len)) return
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Blocked Access" ], "Parallelization Strategy": [], "Performance Objective": [] }
[ "Apache" ]
https://github.com/IBM/vllm/blob/99523dd62be2ecf6c6db15e8133aaaf7855e7e86/vllm/attention/ops/prefix_prefill.py
2f8b0d83-5616-4c9c-832e-4472431e9e84
paged_attn.py
AlibabaPAI/FLASHNN
flashnn/triton_kernels/paged_attn.py
528a9301587f5fb135b25d973a87ba0a40a703a7
0
@triton.jit def _inner_paged_attn_unroll_0_kernel(q, k_cache, v_cache, stride_km, block_base_ptrs, base_offs_kv, alibi_slope, block_offs, seq_len, qkv, qk_max, exp_sum, BLOCK_SIZE: tl.constexpr, LO: tl.constexpr, HI: tl. constexpr): for block_idx in range(LO, HI, 1): offs_kv_0 = tl.load(block_base_ptrs + block_idx + 0 ) * stride_km + base_offs_kv k_0 = tl.load(k_cache + offs_kv_0) v_0 = tl.load(v_cache + offs_kv_0) _qk_0 = tl.sum((q[None, :] * k_0).to(tl.float32), axis=1) if alibi_slope is not None: _qk_0 += alibi_slope * ((block_idx + 0) * BLOCK_SIZE + block_offs - seq_len + 1) _qk_max = tl.maximum(tl.max(_qk_0, axis=0), qk_max) exp_tmp = tl.exp(_qk_0 - _qk_max) _exp_sum = exp_sum * tl.exp(qk_max - _qk_max) + tl.sum(exp_tmp, axis=0) qkv_sum_tmp = tl.exp(_qk_0[:, None] - _qk_max).to(v_cache.dtype. element_ty) * v_0 qkv = (qkv * (exp_sum * tl.exp(qk_max - _qk_max)) + qkv_sum_tmp ) / _exp_sum qk_max = _qk_max exp_sum = _exp_sum return qkv, qk_max, exp_sum
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "Apache" ]
https://github.com/AlibabaPAI/FLASHNN/blob/528a9301587f5fb135b25d973a87ba0a40a703a7/flashnn/triton_kernels/paged_attn.py
5ae29aea-e9ab-4b04-990c-d208c7ac02ac
kernels.py
pytorch-labs/tritonbench
tritonbench/operators/sum/kernels.py
3a5dccb159834968567a2e45e561dc1aeaa8f8a8
0
@triton.jit def triton_sum_kernel_scalar_result(input_ptr, output_ptr, M, BLOCK_SIZE_M: tl.constexpr): pid = tl.program_id(axis=0) block_start = pid * BLOCK_SIZE_M offsets = block_start + tl.arange(0, BLOCK_SIZE_M) mask = offsets < M x = tl.load(input_ptr + offsets, mask=mask, other=mask) output = tl.sum(x) output_offsets = tl.arange(0, 1) tl.store(output_ptr + output_offsets, output)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "BSD" ]
https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/operators/sum/kernels.py
09deca13-45a1-459d-85c5-acec7312d548
parallel.py
sustcsonglin/flash-linear-attention
fla/ops/delta_rule/parallel.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.autotune(configs=[triton.Config({}, num_warps=1), triton.Config({}, num_warps=2)], key=['BT']) @triton.jit def save_intra_chunk_attn(A, A_local, T: tl.constexpr, BT: tl.constexpr): i_t, i_bh = tl.program_id(0), tl.program_id(1) p_A = tl.make_block_ptr(A + i_bh * T * T, (T, T), (T, 1), (i_t * BT, i_t * BT), (BT, BT), (1, 0)) p_A_local = tl.make_block_ptr(A_local + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) b_A_local = tl.load(p_A_local, boundary_check=(0, 1)) tl.store(p_A, b_A_local.to(p_A.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Memory-Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/delta_rule/parallel.py
9c1a7f44-002d-4db7-b1da-ef6ca965c300
blocksparse_sum.py
kimiasa/Experiments
src/models/attention/blocksparse_sum.py
c4e73bfefd8290695ec52b6386b6b81838ca94a1
0
@triton.heuristics({'num_warps': lambda *args, **meta: num_warps(args[3] * meta['BLOCK'])}) @triton.heuristics({'TN': lambda *args, **meta: next_power_of_2(args[3] * meta['BLOCK'])}) @triton.jit def _forward(X, OUT, LUT, sizemax, stride_zx, stride_zout, stride_hout, **meta ): TN = meta['TN'] BLOCK = meta['BLOCK'] pidhm = tl.program_id(0) pidz = tl.program_id(1) rxm = pidhm % BLOCK rbm = pidhm // BLOCK rxn = tl.arange(0, TN) % BLOCK rbn = tl.arange(0, TN) // BLOCK header = LUT + rbm * 2 size = tl.load(header + 0) offset = tl.load(header + 1) check = rbn < size rbmn = tl.where(check, rbn, size - 1) blockid = tl.load(LUT + offset + rbmn * 4 + 0) rowid = tl.load(LUT + offset + rbmn * 4 + 2) headid = tl.load(LUT + offset + rbmn * 4 + 3) px = X + pidz * stride_zx + blockid * BLOCK * BLOCK + rxm * BLOCK + rxn x = tl.load(px, mask=check, other=0) x = x.to(tl.float32) out = tl.sum(x, axis=0) pout = (OUT + pidz * stride_zout + headid * stride_hout + rowid * BLOCK + rxm) tl.store(pout, out)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "Apache" ]
https://github.com/kimiasa/Experiments/blob/c4e73bfefd8290695ec52b6386b6b81838ca94a1/src/models/attention/blocksparse_sum.py
3d84e0a7-71fe-46f5-a28a-531bf86d60ad
06-fused-attention.py
2lambda123/triton
python/tutorials/06-fused-attention.py
09e27725b89043a07f49c440db6a9aedcfba8432
0
@triton.jit def _bwd_kernel(Q, K, V, sm_scale, Out, DO, DQ, DK, DV, L, D, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, Z, H, N_CTX, num_block, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, CAUSAL: tl.constexpr): off_hz = tl.program_id(0) off_z = off_hz // H off_h = off_hz % H qk_scale = sm_scale * 1.44269504 Q += off_z * stride_qz + off_h * stride_qh K += off_z * stride_qz + off_h * stride_qh V += off_z * stride_qz + off_h * stride_qh DO += off_z * stride_qz + off_h * stride_qh DQ += off_z * stride_qz + off_h * stride_qh DK += off_z * stride_qz + off_h * stride_qh DV += off_z * stride_qz + off_h * stride_qh for start_n in range(0, num_block): if CAUSAL: lo = start_n * BLOCK_M else: lo = 0 offs_qm = lo + tl.arange(0, BLOCK_M) offs_n = start_n * BLOCK_M + tl.arange(0, BLOCK_M) offs_m = tl.arange(0, BLOCK_N) offs_k = tl.arange(0, BLOCK_DMODEL) q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_k[None, :] * stride_qk) k_ptrs = K + (offs_n[:, None] * stride_kn + offs_k[None, :] * stride_kk ) v_ptrs = V + (offs_n[:, None] * stride_qm + offs_k[None, :] * stride_qk ) do_ptrs = DO + (offs_qm[:, None] * stride_qm + offs_k[None, :] * stride_qk) dq_ptrs = DQ + (offs_qm[:, None] * stride_qm + offs_k[None, :] * stride_qk) D_ptrs = D + off_hz * N_CTX l_ptrs = L + off_hz * N_CTX dv = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) dk = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) k = tl.load(k_ptrs) v = tl.load(v_ptrs) for start_m in range(lo, num_block * BLOCK_M, BLOCK_M): offs_m_curr = start_m + offs_m q = tl.load(q_ptrs) if CAUSAL: qk = tl.where(offs_m_curr[:, None] >= offs_n[None, :], float(0.0), float('-inf')) else: qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) qk += tl.dot(q, tl.trans(k)) qk *= qk_scale l_i = tl.load(l_ptrs + offs_m_curr) p = tl.math.exp2(qk - l_i[:, None]) do = tl.load(do_ptrs) dv += tl.dot(tl.trans(p.to(Q.dtype.element_ty)), do) Di = tl.load(D_ptrs + offs_m_curr) dp = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) - Di[:, None] dp += tl.dot(do, tl.trans(v)) ds = p * dp * sm_scale dk += tl.dot(tl.trans(ds.to(Q.dtype.element_ty)), q) dq = tl.load(dq_ptrs) dq += tl.dot(ds.to(Q.dtype.element_ty), k) tl.store(dq_ptrs, dq) dq_ptrs += BLOCK_M * stride_qm q_ptrs += BLOCK_M * stride_qm do_ptrs += BLOCK_M * stride_qm dv_ptrs = DV + (offs_n[:, None] * stride_qm + offs_k[None, :] * stride_qk) dk_ptrs = DK + (offs_n[:, None] * stride_kn + offs_k[None, :] * stride_kk) tl.store(dv_ptrs, dv) tl.store(dk_ptrs, dk)
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "MIT" ]
https://github.com/2lambda123/triton/blob/09e27725b89043a07f49c440db6a9aedcfba8432/python/tutorials/06-fused-attention.py
02bde305-1b40-42a5-b808-be8ee0f8f362
outer_softmax_online.py
iclementine/optimize_softmax
outer_softmax_online.py
6ddeee3481dd5e63f4a30b946c417e97bc4494bf
0
@triton.jit def next_multiple_of(a, b): return tl.cidv(a, b) * b
{ "Data Type": [ "int8" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "BSD" ]
https://github.com/iclementine/optimize_softmax/blob/6ddeee3481dd5e63f4a30b946c417e97bc4494bf/outer_softmax_online.py
35ba6a63-cf05-402d-aa41-8b691e1e0c2e
flash_attention.py
falkaer/multi-scale-music
seq/flash_attention.py
a7794ddfb3bbd95b70acf3fe72a08d8a1d47564d
0
@triton.jit def bounds_mask(offs_m, offs_n, M, N, EVEN_M: tl.constexpr, EVEN_N: tl. constexpr): if EVEN_M & EVEN_N: val = 0 else: mask = make_bounds(offs_m, offs_n, M, N, EVEN_M, EVEN_N) val = tl.where(mask, 0, float('-inf')) return val
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "Latency Sensitive" ] }
[ "MIT" ]
https://github.com/falkaer/multi-scale-music/blob/a7794ddfb3bbd95b70acf3fe72a08d8a1d47564d/seq/flash_attention.py
e0ec9d80-09d9-4544-b5fb-203ac2fa2c98
test_inductor.py
triton-lang/kernels
test/test_inductor.py
eeeebdd8be7d13629de22d600621e6234057eed3
0
@triton.jit def fn(out_ptr0, rnumel, RBLOCK: tl.constexpr): rbase = tl.arange(0, RBLOCK)[None, :] for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel tmp3 = tl.where(rmask, 1, 0) tmp6 = tl.cumsum(tmp3, 1) tl.store(out_ptr0 + rindex, tmp6, rmask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/triton-lang/kernels/blob/eeeebdd8be7d13629de22d600621e6234057eed3/test/test_inductor.py
c629a162-a019-40d7-b34a-4b77786b3e07
RzLinearIdx.py
apd10/RzLinear
python/rz_linear/impl/RzLinearIdx.py
eb56657b2de0a97f398f88af421b0fbcbc5469c9
0
@triton.jit def rz_linear_idx_kernel(bh_ptr, b_ptr, K, N, H, R3, R2, R1, R0, stride_bk, stride_bn, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr): pid = tl.program_id(axis=0) grid_n = tl.cdiv(N, BLOCK_SIZE_N) pid_k = pid // grid_n pid_n = pid % grid_n bh_offset = bh_ptr + tl.arange(0, BLOCK_SIZE_K)[:, None ] * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)[None, :] bh_ptrs = bh_offset + (pid_k * R3 + pid_n * R2 + R1) % R0 % (H - BLOCK_SIZE_K * BLOCK_SIZE_N) b_ptrs = (b_ptr + pid_k * BLOCK_SIZE_K * stride_bk + pid_n * BLOCK_SIZE_N * stride_bn + tl.arange(0, BLOCK_SIZE_K)[:, None] * stride_bk + tl.arange(0, BLOCK_SIZE_N)[None, :]) bh = tl.load(bh_ptrs) tl.store(b_ptrs, bh)
{ "Data Type": [ "fp32" ], "Functionality": [], "Memory Access Pattern": [ "Transposed Access", "Blocked Access" ], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/apd10/RzLinear/blob/eb56657b2de0a97f398f88af421b0fbcbc5469c9/python/rz_linear/impl/RzLinearIdx.py