uuid
stringlengths
36
36
file_name
stringlengths
5
50
repo_name
stringclasses
110 values
file_path
stringlengths
7
112
commit_hash
stringclasses
110 values
starcount
int64
0
0
input
stringlengths
39
33.8k
category
dict
licenses
sequencelengths
1
2
github_url
stringlengths
94
193
6d32b21d-530f-4d1d-a2b2-bb08a0c056cc
triton_matric_matmul.py
elphinkuo/fast_matrix_multiplication
dot_product/on_gpu/Triton/triton_matric_matmul.py
4e875a17e95b7ccf9af102d2c0f8cc31ed9a29f3
0
@triton.jit def _matmul_kernel(A, B, C, M, N, K, **meta): TILE_M = meta['BLOCK_M'] TILE_N = meta['BLOCK_N'] TILE_K = 128 m = tl.program_id(0) * TILE_M + tl.arange(0, TILE_M) n = tl.program_id(1) * TILE_N + tl.arange(0, TILE_N) acc = tl.zeros((TILE_M, TILE_N), dtype=tl.float32) for k in range(0, K, TILE_K): a = tl.load(A + m[:, None] * K + k, mask=[m[:, None] < M, None], other=0.0) b = tl.load(B + k * N + n, mask=[None, n < N], other=0.0) acc += tl.dot(a, b) tl.store(C + m[:, None] * N + n, acc, mask=[m[:, None] < M, n < N])
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication", "Elementwise Operations" ], "Memory Access Pattern": [ "Tiled", "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "MIT" ]
https://github.com/elphinkuo/fast_matrix_multiplication/blob/4e875a17e95b7ccf9af102d2c0f8cc31ed9a29f3/dot_product/on_gpu/Triton/triton_matric_matmul.py
1325bcba-7d28-47b5-b18b-31e0f79878f5
triton_sll.py
pytorch/FBGEMM
fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py
fe980ab54a6e28818d81c8694b6564e7f804418b
0
@triton.jit def jagged_2_softmax_kernel(input_ptr, output_ptr, offsets_row_ptr, offsets_col_ptr, offsets_overall_ptr, input_stride, output_stride, transpose, max_seq_len_row, max_seq_len_col, BLOCK_SIZE: tl.constexpr): """ input shape is [sum_B(Ni * Hi)] output shape is [sum_B(Ni * Hi)] Padded version = [B, N, H] Calculate softmax alone N dim Each kernel calulates softmax for 1 sample and 1 head offsets_row.size == offsets_col.size == offsets_overall.size """ pid_batch = tl.program_id(0) pid_head = tl.program_id(1) begin = tl.load(offsets_overall_ptr + pid_batch) if transpose: N = tl.load(offsets_row_ptr + pid_batch + 1) - tl.load( offsets_row_ptr + pid_batch) H = tl.load(offsets_col_ptr + pid_batch + 1) - tl.load( offsets_col_ptr + pid_batch) stride_n = H stride_h = H // H H = tl.minimum(max_seq_len_col, H) N = tl.minimum(max_seq_len_row, N) else: N = tl.load(offsets_col_ptr + pid_batch + 1) - tl.load( offsets_col_ptr + pid_batch) H = tl.load(offsets_row_ptr + pid_batch + 1) - tl.load( offsets_row_ptr + pid_batch) stride_h = N stride_n = N // N H = tl.minimum(max_seq_len_row, H) N = tl.minimum(max_seq_len_col, N) if pid_head >= H: return if H == 0 or N == 0: return start_ptr = input_ptr + begin * input_stride offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = (start_ptr + offsets * input_stride * stride_n + pid_head * input_stride * stride_h) row = tl.load(input_ptrs, mask=offsets < N, other=-float('inf')) row_mins_max = row - tl.max(row, axis=0) numerator = tl.exp(row_mins_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator output_start_ptr = output_ptr + begin * output_stride output_ptrs = (output_start_ptr + offsets * output_stride * stride_n + pid_head * output_stride * stride_h) tl.store(output_ptrs, softmax_output, mask=offsets < N)
{ "Data Type": [ "fp32" ], "Functionality": [ "Softmax" ], "Memory Access Pattern": [ "Coalesced", "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "BSD", "MIT" ]
https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py
c5681889-cbdf-4c8c-b730-916ee6ccb0d9
triton_ops.py
huyz2023/2by4-pretrain
sparse/triton_ops.py
9e330125dea71e5a3dee235f4efb8869f9e4cdd0
0
@triton.jit def _MVUE24_approx_triton(dense_ptr, sparse_ptr, dense_row_stride, sparse_row_stride, dense_col_stride, sparse_col_stride, m, k, seed, BLOCK_SIZE: tl.constexpr, ARRAY_LAYOUT: tl.constexpr): if ARRAY_LAYOUT == 'row': row_idx = tl.program_id(0) col_idx = tl.program_id(1) * 4 * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE ) * 4 mask = col_idx < k elif ARRAY_LAYOUT == 'col': row_idx = tl.arange(0, BLOCK_SIZE) + tl.program_id(0) * BLOCK_SIZE col_idx = tl.program_id(1) * 4 mask = row_idx < m dense_40 = tl.load(dense_ptr + row_idx * dense_row_stride + (col_idx + 0) * dense_col_stride, mask=mask) dense_41 = tl.load(dense_ptr + row_idx * dense_row_stride + (col_idx + 1) * dense_col_stride, mask=mask) dense_42 = tl.load(dense_ptr + row_idx * dense_row_stride + (col_idx + 2) * dense_col_stride, mask=mask) dense_43 = tl.load(dense_ptr + row_idx * dense_row_stride + (col_idx + 3) * dense_col_stride, mask=mask) if ARRAY_LAYOUT == 'row': seed0 = seed + (tl.program_id(0) + tl.program_id(1) * m) * 2 seed1 = seed + (tl.program_id(0) + tl.program_id(1) * m) * 2 + 1 else: seed0 = seed + (tl.program_id(0) * k // 16 + tl.program_id(1)) * 2 seed1 = seed + (tl.program_id(0) * k // 16 + tl.program_id(1)) * 2 + 1 random0 = tl.rand(seed0, tl.arange(0, BLOCK_SIZE), n_rounds=5) random1 = tl.rand(seed1, tl.arange(0, BLOCK_SIZE), n_rounds=5) dense_40, dense_41, dense_42, dense_43, m0, m1, m2, m3 = _MVUE24_approx( dense_40, dense_41, dense_42, dense_43, random0, random1) tl.store(sparse_ptr + row_idx * sparse_row_stride + (col_idx + 0) * sparse_col_stride, dense_40, mask=mask & m0) tl.store(sparse_ptr + row_idx * sparse_row_stride + (col_idx + 1) * sparse_col_stride, dense_41, mask=mask & m1) tl.store(sparse_ptr + row_idx * sparse_row_stride + (col_idx + 2) * sparse_col_stride, dense_42, mask=mask & m2) tl.store(sparse_ptr + row_idx * sparse_row_stride + (col_idx + 3) * sparse_col_stride, dense_43, mask=mask & m3)
{ "Data Type": [ "fp32", "uint8" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Coalesced", "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Memory-Bound", "Compute Bound" ] }
[ "BSD" ]
https://github.com/huyz2023/2by4-pretrain/blob/9e330125dea71e5a3dee235f4efb8869f9e4cdd0/sparse/triton_ops.py
ae2cb3a3-be88-4b7a-bbba-b418ac601259
parallel_scan.py
chengkai-liu/RecBLR
parallel_scan.py
66e520c26e28c05a5425ba2e81c9169b7e0176e2
0
@triton.jit def unpack64(merged): tl.static_assert(merged.dtype == tl.uint64) b = (merged & 4294967295).to(tl.uint32).to(tl.float32, bitcast=True) a = (merged >> 32).to(tl.uint32).to(tl.float32, bitcast=True) return a, b
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/chengkai-liu/RecBLR/blob/66e520c26e28c05a5425ba2e81c9169b7e0176e2/parallel_scan.py
f031d842-9ab5-40cf-b113-7fe0ef2ae51e
y_5.py
IntelLabs/EquiTriton
src/equitriton/sph_harm/direct/y_5.py
1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c
0
@triton.jit def fifth_order_bwd(coord_ptr: tl.tensor, coord_grad_ptr: tl.tensor, sph_grad_ptr: tl.tensor, block_size: tl.constexpr, coord_numel: tl. constexpr, output_numel: tl.constexpr, col_offset: tl.constexpr, output_stride: tl.constexpr): block_id = tl.program_id(0) coord_stride = 3 coord_striding = tl.arange(0, block_size) * coord_stride coord_row_offset = coord_striding + block_size * coord_stride * block_id x = tl.load(coord_ptr + coord_row_offset, mask=coord_row_offset < coord_numel) y = tl.load(coord_ptr + coord_row_offset + 1, mask=coord_row_offset + 1 < coord_numel) z = tl.load(coord_ptr + coord_row_offset + 2, mask=coord_row_offset + 2 < coord_numel) output_striding = tl.arange(0, block_size) * output_stride output_row_offset = (output_striding + block_size * output_stride * block_id + col_offset) g_0 = tl.load(sph_grad_ptr + output_row_offset, mask=output_row_offset < output_numel) g_1 = tl.load(sph_grad_ptr + output_row_offset + 1, mask= output_row_offset + 1 < output_numel) g_2 = tl.load(sph_grad_ptr + output_row_offset + 2, mask= output_row_offset + 2 < output_numel) g_3 = tl.load(sph_grad_ptr + output_row_offset + 3, mask= output_row_offset + 3 < output_numel) g_4 = tl.load(sph_grad_ptr + output_row_offset + 4, mask= output_row_offset + 4 < output_numel) g_5 = tl.load(sph_grad_ptr + output_row_offset + 5, mask= output_row_offset + 5 < output_numel) g_6 = tl.load(sph_grad_ptr + output_row_offset + 6, mask= output_row_offset + 6 < output_numel) g_7 = tl.load(sph_grad_ptr + output_row_offset + 7, mask= output_row_offset + 7 < output_numel) g_8 = tl.load(sph_grad_ptr + output_row_offset + 8, mask= output_row_offset + 8 < output_numel) g_9 = tl.load(sph_grad_ptr + output_row_offset + 9, mask= output_row_offset + 9 < output_numel) g_10 = tl.load(sph_grad_ptr + output_row_offset + 10, mask= output_row_offset + 10 < output_numel) CONST000 = 1.60565407233314 CONST001 = 3.0 CONST002 = 3.21130814466628 CONST003 = 1.60565407233314 CONST004 = 6.42261628933256 CONST005 = 6.42261628933256 CONST006 = 8.67152307844476 CONST007 = 8.02827036166571 CONST008 = 6.9372184627558 CONST009 = 11.6340690431164 CONST010 = 12.8452325786651 CONST011 = 6.21867148191637 CONST012 = 6.21867148191637 CONST014 = 12.4373429638327 CONST017 = 12.8452325786651 CONST018 = 13.8744369255116 CONST019 = 24.8746859276655 CONST020 = 24.8746859276655 CONST021 = 27.7488738510232 CONST024 = 29.4321253055229 CONST027 = 7.35803132638072 CONST029 = 46.5362761724657 CONST030 = 51.3809303146605 CONST031 = 51.3809303146605 CONST034 = 101.955872807799 CONST036 = -8.67152307844475 CONST037 = 3.4686092313779 CONST038 = -88.2963759165686 CONST039 = -83.2466215530696 CONST040 = -69.8044142586986 CONST041 = -50.9779364038993 CONST042 = -50.9779364038993 CONST043 = -46.5362761724657 CONST044 = -44.1481879582843 CONST045 = -41.6233107765348 CONST046 = -38.5356977359954 CONST047 = -38.5356977359954 CONST048 = -33.166247903554 CONST049 = -33.9852909359329 CONST050 = 6.42261628933257 CONST051 = -33.9852909359329 CONST052 = -29.4321253055229 CONST053 = -27.7488738510232 CONST054 = -20.8116553882674 CONST055 = -19.2678488679977 CONST056 = -19.2678488679977 CONST057 = -16.9926454679664 CONST058 = -16.9926454679664 CONST059 = -13.8744369255116 CONST060 = -16.583123951777 CONST061 = -8.49632273398321 CONST062 = -6.9372184627558 CONST063 = -5.20291384706685 CONST064 = -3.4686092313779 VAR06 = x * x * x * x VAR07 = x * x * x VAR08 = x * x VAR15 = y * y * y * y VAR16 = y * y * y VAR17 = y * y VAR24 = z * z * z * z VAR25 = z * z * z VAR26 = z * z g_x = tl.load(coord_grad_ptr + coord_row_offset, mask=coord_row_offset < coord_numel) g_y = tl.load(coord_grad_ptr + coord_row_offset + 1, mask= coord_row_offset + 1 < coord_numel) g_z = tl.load(coord_grad_ptr + coord_row_offset + 2, mask= coord_row_offset + 2 < coord_numel) g_x += g_0 * (CONST009 * VAR06 + CONST009 * VAR24 + CONST040 * VAR08 * VAR26) + g_1 * y * (CONST038 * VAR08 * z - CONST052 * VAR25) + g_10 * ( CONST029 * VAR07 * z + CONST043 * VAR25 * x) + g_2 * (CONST001 * VAR08 * (CONST059 * VAR17 + CONST064 * VAR26) + CONST006 * VAR06 - CONST045 * VAR17 * VAR26 + CONST063 * VAR24) + g_3 * (CONST041 * VAR08 * y * z - CONST049 * VAR16 * z + CONST057 * VAR25 * y) + g_4 * ( CONST000 * VAR24 + CONST001 * VAR08 * (CONST002 * VAR26 + CONST055 * VAR17) + CONST007 * VAR06 + CONST010 * VAR15 + CONST056 * VAR17 * VAR26 ) + g_5 * (CONST048 * VAR16 * x + y * (CONST019 * VAR07 + CONST019 * VAR26 * x)) + g_6 * (CONST005 * VAR25 * x + z * (CONST004 * VAR07 + CONST046 * VAR17 * x)) + g_7 * (CONST049 * VAR16 * x - CONST051 * VAR07 * y) + g_8 * (CONST008 * VAR25 * x + z * (CONST039 * VAR17 * x - CONST054 * VAR07)) + g_9 * y * (CONST024 * VAR07 + CONST038 * VAR26 * x) g_y += g_1 * (CONST052 * VAR07 * z - CONST052 * VAR25 * x) + g_2 * (- CONST039 * VAR26 * x * y + CONST053 * VAR07 * y) + g_3 * (CONST058 * VAR07 * z + x * (CONST034 * VAR17 * z + CONST057 * VAR25)) + g_4 * ( CONST047 * VAR07 * y + x * (CONST030 * VAR16 + CONST046 * VAR26 * y) ) + g_5 * (CONST001 * VAR17 * (CONST060 * VAR08 + CONST060 * VAR26) + CONST011 * VAR06 + CONST012 * VAR24 + CONST014 * VAR08 * VAR26 - CONST060 * VAR15) + g_6 * (CONST046 * VAR25 * y + z * (CONST031 * VAR16 + CONST046 * VAR08 * y)) + g_7 * (CONST001 * VAR17 * ( CONST057 * VAR08 - CONST057 * VAR26) - CONST061 * VAR06 + CONST061 * VAR24) + g_8 * (CONST021 * VAR25 * y + CONST039 * VAR08 * y * z ) + g_9 * (CONST027 * VAR06 + CONST027 * VAR24 + CONST044 * VAR08 * VAR26) g_z += g_0 * (CONST029 * VAR25 * x + CONST043 * VAR07 * z) + g_1 * y * ( -CONST038 * VAR26 * x + CONST052 * VAR07) + g_10 * (CONST009 * VAR06 + CONST009 * VAR24 + CONST040 * VAR08 * VAR26) + g_2 * ( CONST062 * VAR07 * z + x * (-CONST039 * VAR17 * z + CONST054 * VAR25) ) + g_3 * (CONST058 * VAR07 * y + x * (CONST042 * VAR26 * y - CONST049 * VAR16)) + g_4 * (CONST005 * VAR07 * z + x * (CONST046 * VAR17 * z + CONST050 * VAR25)) + g_5 * (CONST048 * VAR16 * z + y * (CONST019 * VAR08 * z + CONST020 * VAR25)) + g_6 * (CONST001 * VAR26 * (CONST002 * VAR08 + CONST056 * VAR17) + CONST003 * VAR06 + CONST007 * VAR24 + CONST017 * VAR15 + CONST056 * VAR08 * VAR17 ) + g_7 * (-CONST049 * VAR16 * z + CONST051 * VAR25 * y) + g_8 * ( CONST001 * VAR26 * (CONST018 * VAR17 + CONST037 * VAR08) + CONST036 * VAR24 + CONST045 * VAR08 * VAR17 - CONST063 * VAR06) + g_9 * y * ( CONST024 * VAR25 + CONST038 * VAR08 * z) tl.store(coord_grad_ptr + coord_row_offset, g_x, mask=coord_row_offset < coord_numel) tl.store(coord_grad_ptr + coord_row_offset + 1, g_y, mask= coord_row_offset + 1 < coord_numel) tl.store(coord_grad_ptr + coord_row_offset + 2, g_z, mask= coord_row_offset + 2 < coord_numel)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "Compute Bound" ] }
[ "Apache" ]
https://github.com/IntelLabs/EquiTriton/blob/1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c/src/equitriton/sph_harm/direct/y_5.py
e4b5235d-37a5-4b17-8c48-fa82e3aecf4f
paged_attn.py
AlibabaPAI/FLASHNN
flashnn/triton_kernels/paged_attn.py
528a9301587f5fb135b25d973a87ba0a40a703a7
0
@triton.autotune(configs=[triton.Config({'UNROLL_FACTOR': uf}) for uf in [1, 2, 4, 8]], key=['POWER_OF_2_MAX_SEQ_LEN', 'QUERY_GROUP_SIZE', 'USE_PARTITIONING', 'BLOCK_SIZE', 'HEAD_SIZE', 'PARTITION_SIZE']) @triton.jit def _paged_attn_wo_mma_kernel(exp_sums, max_logits, out, q, k_cache, v_cache, scale, block_tables, seq_lens, max_num_blocks_per_seq, alibi_slopes, stride_qm, stride_qn, stride_om, stride_on, stride_ok, stride_km, stride_kn, stride_kk, stride_exp_m, stride_exp_n, BLOCK_SIZE: tl.constexpr, HEAD_SIZE: tl.constexpr, QUERY_GROUP_SIZE: tl.constexpr, PARTITION_SIZE: tl.constexpr, POWER_OF_2_MAX_SEQ_LEN: tl.constexpr, USE_PARTITIONING: tl.constexpr, UNROLL_FACTOR: tl.constexpr): head_idx = tl.program_id(axis=0) kv_head_idx = head_idx // QUERY_GROUP_SIZE seq_idx = tl.program_id(axis=1) par_idx = tl.program_id(axis=2) seq_len = tl.load(seq_lens + seq_idx) if par_idx * PARTITION_SIZE >= seq_len: return num_context_blocks = tl.cdiv(seq_len, BLOCK_SIZE) if USE_PARTITIONING: num_blocks_per_par = PARTITION_SIZE // BLOCK_SIZE start_block_idx = par_idx * num_blocks_per_par end_block_idx = tl.minimum(start_block_idx + num_blocks_per_par, num_context_blocks) else: start_block_idx = 0 end_block_idx = num_context_blocks if alibi_slopes is None: alibi_slope = 0.0 else: alibi_slope = tl.load(alibi_slopes + head_idx) block_offs = tl.arange(0, BLOCK_SIZE) head_size_offs = tl.arange(0, HEAD_SIZE) q = tl.load(q + seq_idx * stride_qm + head_idx * stride_qn + head_size_offs ) q = (q * scale).to(tl.float16) qkv = tl.zeros([BLOCK_SIZE, HEAD_SIZE], dtype=tl.float32) qk_max = float('-inf') exp_sum = 0.0 fp16_0 = tl.zeros([1, 1], dtype=k_cache.dtype.element_ty) base_offs_kv = kv_head_idx * stride_kn + block_offs[:, None ] * stride_kk + head_size_offs[None, :] block_base_ptrs = block_tables + seq_idx * max_num_blocks_per_seq hi_unroll = (end_block_idx - 1) // UNROLL_FACTOR * UNROLL_FACTOR if UNROLL_FACTOR == 1: qkv, qk_max, exp_sum = _inner_paged_attn_unroll_0_kernel(q, k_cache, v_cache, stride_km, block_base_ptrs, base_offs_kv, alibi_slope, block_offs, seq_len, qkv, qk_max, exp_sum, BLOCK_SIZE, start_block_idx, hi_unroll) elif UNROLL_FACTOR == 2: qkv, qk_max, exp_sum = _inner_paged_attn_unroll_2_kernel(q, k_cache, v_cache, stride_km, block_base_ptrs, base_offs_kv, alibi_slope, block_offs, seq_len, qkv, qk_max, exp_sum, BLOCK_SIZE, start_block_idx, hi_unroll) elif UNROLL_FACTOR == 4: qkv, qk_max, exp_sum = _inner_paged_attn_unroll_4_kernel(q, k_cache, v_cache, stride_km, block_base_ptrs, base_offs_kv, alibi_slope, block_offs, seq_len, qkv, qk_max, exp_sum, BLOCK_SIZE, start_block_idx, hi_unroll) elif UNROLL_FACTOR == 8: qkv, qk_max, exp_sum = _inner_paged_attn_unroll_8_kernel(q, k_cache, v_cache, stride_km, block_base_ptrs, base_offs_kv, alibi_slope, block_offs, seq_len, qkv, qk_max, exp_sum, BLOCK_SIZE, start_block_idx, hi_unroll) tl.debug_barrier() for block_idx in range(hi_unroll, end_block_idx): physical_block_idx = tl.load(block_tables + seq_idx * max_num_blocks_per_seq + block_idx) mask = block_offs[:, None] < seq_len - block_idx * BLOCK_SIZE offs_kv = physical_block_idx * stride_km + base_offs_kv k = tl.load(k_cache + offs_kv, mask=mask, other=fp16_0) v = tl.load(v_cache + offs_kv, mask=mask, other=fp16_0) _qk = tl.sum((q[None, :] * k).to(tl.float32), axis=1) _qk = tl.where(block_offs < seq_len - block_idx * BLOCK_SIZE, _qk, float('-inf')) _qk += alibi_slope * (block_idx * BLOCK_SIZE + block_offs - seq_len + 1 ) _qk_max = tl.maximum(tl.max(_qk, axis=0), qk_max) _exp_sum = exp_sum * tl.exp(qk_max - _qk_max) + tl.sum(tl.exp(_qk - _qk_max), axis=0) qkv = qkv * (exp_sum * tl.exp(qk_max - _qk_max)) + tl.exp(_qk[:, None] - _qk_max) * v qkv = qkv / _exp_sum qk_max = _qk_max exp_sum = _exp_sum if USE_PARTITIONING: offs_exp = seq_idx * stride_exp_m + head_idx * stride_exp_n + par_idx tl.store(exp_sums + offs_exp, exp_sum) tl.store(max_logits + offs_exp, qk_max) offs_out = (seq_idx * stride_om + head_idx * stride_on + par_idx * stride_ok + head_size_offs) tl.store(out + offs_out, tl.sum(qkv, axis=0))
{ "Data Type": [ "fp16", "fp32" ], "Functionality": [ "Attention Mechanisms", "Softmax", "Matrix Multiplication" ], "Memory Access Pattern": [ "Blocked Access", "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops", "Persistent Kernels" ], "Performance Objective": [ "High Throughput" ] }
[ "Apache" ]
https://github.com/AlibabaPAI/FLASHNN/blob/528a9301587f5fb135b25d973a87ba0a40a703a7/flashnn/triton_kernels/paged_attn.py
cd64708f-5721-4a20-be92-b7c64e1762ca
GELUglu.py
huyz2023/2by4-pretrain
sparse/GELUglu.py
9e330125dea71e5a3dee235f4efb8869f9e4cdd0
0
@triton.jit def _gelu_glu_fwd_kernel(output_ptr, input_ptr, output_row_stride, input_row_stride, output_col_stride, input_col_stride, output_page_stride, input_page_stride, n_pages, BLOCK_SIZE: tl.constexpr): row_idx = tl.program_id(0) col_idx = tl.program_id(1) x = tl.load(input_ptr + row_idx * input_row_stride + col_idx * input_col_stride + tl.arange(0, BLOCK_SIZE // 2) * input_page_stride, mask=tl.arange(0, BLOCK_SIZE // 2) < n_pages // 2, other=-float('inf')) gate = tl.load(input_ptr + row_idx * input_row_stride + col_idx * input_col_stride + (tl.arange(0, BLOCK_SIZE // 2) + n_pages // 2) * input_page_stride, mask=tl.arange(0, BLOCK_SIZE // 2) < n_pages // 2, other=-float('inf')) gate_cube = gate * gate * gate beta = 0.7978845608028654 kappa = 0.044715 inner = beta * (gate + kappa * gate_cube) inner_tanh = tanh(inner) gate_gelu = 0.5 * gate * (inner_tanh + 1) gelu_glu = gate_gelu * x tl.store(output_ptr + row_idx * output_row_stride + col_idx * output_col_stride + tl.arange(0, BLOCK_SIZE // 2) * output_page_stride, gelu_glu, mask=tl.arange(0, BLOCK_SIZE // 2) < n_pages // 2)
{ "Data Type": [], "Functionality": [ "Activation Functions" ], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "BSD" ]
https://github.com/huyz2023/2by4-pretrain/blob/9e330125dea71e5a3dee235f4efb8869f9e4cdd0/sparse/GELUglu.py
e3441201-2cc6-4bc0-b20c-0cd97d2fe333
triton_welford.py
pytorch-labs/tritonbench
tritonbench/operators/welford/triton_welford.py
3a5dccb159834968567a2e45e561dc1aeaa8f8a8
0
@triton.autotune(configs=[triton.Config({'XBLOCK': 1, 'RBLOCK': 1024}, num_stages=1, num_warps=8), triton.Config({'XBLOCK': 1, 'RBLOCK': 2048}, num_stages=1, num_warps=8)], key=['xnumel', 'rnumel']) @triton.jit def triton_red_fused_native_layer_norm_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex tmp3_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp3_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp3_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r1 = rindex tmp0 = tl.load(in_ptr0 + (r1 + rnumel * x0), rmask, eviction_policy ='evict_last').to(tl.float32) tmp1 = tmp0.to(tl.float32) tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp3_mean_next, tmp3_m2_next, tmp3_weight_next = (triton_helpers. welford_reduce(tmp2, tmp3_mean, tmp3_m2, tmp3_weight, roffset == 0) ) tmp3_mean = tl.where(rmask, tmp3_mean_next, tmp3_mean) tmp3_m2 = tl.where(rmask, tmp3_m2_next, tmp3_m2) tmp3_weight = tl.where(rmask, tmp3_weight_next, tmp3_weight) tmp3_tmp, tmp4_tmp, tmp5_tmp = triton_helpers.welford(tmp3_mean, tmp3_m2, tmp3_weight, 1) tmp3 = tmp3_tmp[:, None] tmp4 = tmp4_tmp[:, None] tmp5 = tmp5_tmp[:, None] tl.store(out_ptr0 + x0, tmp3, None) tmp6 = rnumel tmp7 = tmp4 / tmp6 tmp8 = 1e-05 tmp9 = tmp7 + tmp8 tmp10 = libdevice.rsqrt(tmp9) tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp10, None) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r1 = rindex tmp11 = tl.load(in_ptr0 + (r1 + rnumel * x0), rmask, eviction_policy='evict_first').to(tl.float32) tmp15 = tl.load(in_ptr1 + r1, rmask, eviction_policy='evict_last').to( tl.float32) tmp18 = tl.load(in_ptr2 + r1, rmask, eviction_policy='evict_last').to( tl.float32) tmp12 = tmp11.to(tl.float32) tmp13 = tmp12 - tmp3 tmp14 = tmp13 * tmp10 tmp16 = tmp15.to(tl.float32) tmp17 = tmp14 * tmp16 tmp19 = tmp18.to(tl.float32) tmp20 = tmp17 + tmp19 tmp21 = tmp20.to(tl.float32) tl.store(out_ptr1 + (r1 + rnumel * x0), tmp21, rmask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Normalization" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound", "Memory-Bound" ] }
[ "BSD" ]
https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/operators/welford/triton_welford.py
b6bbdca6-8c98-4528-a967-b358c90a1d6f
triton_fused_local_attn.py
LouChao98/vqtree
ops/triton_fused_local_attn.py
27a53274df7a804bce27dffcce5f5be73f64b6f3
0
@triton.jit def _attn_fwd_inner(acc, l_i, m_i, q, sm_scale, K_block_ptr, V_block_ptr, start_m, offs_m, offs_n, SEQLEN_K: tl.constexpr, WINDOW_SIZE: tl. constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, EVEN_MN: tl. constexpr, STAGE: tl.constexpr): if STAGE == 1: hi = start_m * BLOCK_M - WINDOW_SIZE + BLOCK_M lo = start_m * BLOCK_M - WINDOW_SIZE if hi < 0: hi = 0 if lo < 0: lo = 0 elif STAGE == 2: hi = start_m * BLOCK_M lo = start_m * BLOCK_M - WINDOW_SIZE + BLOCK_M if lo < 0: lo = 0 else: lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M lo = tl.multiple_of(lo, BLOCK_M) hi = min(hi, SEQLEN_K) EVEN_MASK_FREE = EVEN_MN & ((STAGE == 1) | (STAGE == 2)) K_block_ptr = tl.advance(K_block_ptr, (0, lo)) V_block_ptr = tl.advance(V_block_ptr, (lo, 0)) for start_n in range(lo, hi, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) if EVEN_MASK_FREE: k = tl.load(K_block_ptr) else: k = tl.load(K_block_ptr, boundary_check=(1,), padding_option='zero' ) qk = tl.dot(q, k) * (sm_scale * RCP_LN2) if STAGE == 1: mask = offs_m[:, None] <= start_n + WINDOW_SIZE + offs_n[None, :] qk += tl.where(mask, 0, NEGINF) elif STAGE == 3: mask = offs_m[:, None] >= start_n + offs_n[None, :] qk += tl.where(mask, 0, NEGINF) if not EVEN_MASK_FREE: qk += tl.where((start_n + offs_n)[None, :] < SEQLEN_K, 0, NEGINF) m_i_new = tl.maximum(m_i, tl.max(qk, 1)) alpha = tl.math.exp2(m_i - m_i_new) p = tl.math.exp2(qk - m_i_new[:, None]) acc *= alpha[:, None] if EVEN_MASK_FREE: v = tl.load(V_block_ptr) else: v = tl.load(V_block_ptr, boundary_check=(1,), padding_option='zero' ) acc += tl.dot(p.to(V_block_ptr.dtype.element_ty), v) l_i = l_i * alpha + tl.sum(p, 1) m_i = m_i_new K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) return acc, l_i, m_i
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Matrix Multiplication" ], "Memory Access Pattern": [ "Strided Access", "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "Apache" ]
https://github.com/LouChao98/vqtree/blob/27a53274df7a804bce27dffcce5f5be73f64b6f3/ops/triton_fused_local_attn.py
362d6816-df21-46a1-b625-bc3f25aab424
06-fused-attention.py
triton-lang/triton
python/tutorials/06-fused-attention.py
a2b398e0bb1b120f31cf386d6ae3261c3ab84207
0
@triton.jit def _attn_bwd_dkdv(dk, dv, Q, k, v, sm_scale, DO, M, D, stride_tok, stride_d, H, N_CTX, BLOCK_M1: tl.constexpr, BLOCK_N1: tl.constexpr, HEAD_DIM: tl.constexpr, start_n, start_m, num_steps, MASK: tl.constexpr): offs_m = start_m + tl.arange(0, BLOCK_M1) offs_n = start_n + tl.arange(0, BLOCK_N1) offs_k = tl.arange(0, HEAD_DIM) qT_ptrs = Q + offs_m[None, :] * stride_tok + offs_k[:, None] * stride_d do_ptrs = DO + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d tl.static_assert(BLOCK_N1 % BLOCK_M1 == 0) curr_m = start_m step_m = BLOCK_M1 for blk_idx in range(num_steps): qT = tl.load(qT_ptrs) offs_m = curr_m + tl.arange(0, BLOCK_M1) m = tl.load(M + offs_m) qkT = tl.dot(k, qT) pT = tl.math.exp2(qkT - m[None, :]) if MASK: mask = offs_m[None, :] >= offs_n[:, None] pT = tl.where(mask, pT, 0.0) do = tl.load(do_ptrs) ppT = pT ppT = ppT.to(tl.float16) dv += tl.dot(ppT, do) Di = tl.load(D + offs_m) dpT = tl.dot(v, tl.trans(do)).to(tl.float32) dsT = pT * (dpT - Di[None, :]) dsT = dsT.to(tl.float16) dk += tl.dot(dsT, tl.trans(qT)) curr_m += step_m qT_ptrs += step_m * stride_tok do_ptrs += step_m * stride_tok return dk, dv
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Attention Mechanisms" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/triton-lang/triton/blob/a2b398e0bb1b120f31cf386d6ae3261c3ab84207/python/tutorials/06-fused-attention.py
465954ee-4cfe-46e9-8668-a230f02bb257
triton_sll.py
pytorch/FBGEMM
fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py
fe980ab54a6e28818d81c8694b6564e7f804418b
0
@triton.jit def jagged_dense_bmm_kernel(a_ptr, a_offset_ptr, b_ptr, c_ptr, N, K, stride_am, stride_ak, stride_bl, stride_bk, stride_bn, stride_cm, stride_cn, max_seq_len, allow_tf32: tl.constexpr, BLOCK_SIZE_M: tl. constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr): """Kernel for computing the matmul C = A x B. A has shape (sum_B(M_i), K), B has shape (B, K, N) and C has shape (sum_B(M_i), N) """ pid_batch = tl.program_id(0) pid = tl.program_id(1) begin = tl.load(a_offset_ptr + pid_batch) end = tl.load(a_offset_ptr + pid_batch + 1) M = tl.minimum(end - begin, max_seq_len) if M == 0: return num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) pid_m = pid // num_pid_n pid_n = pid % num_pid_n offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) if pid_m * BLOCK_SIZE_M >= M: return offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) if pid_n * BLOCK_SIZE_N >= N: return offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak + begin * stride_am) b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn + pid_batch * stride_bl) c = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, K, BLOCK_SIZE_K): updated_offset = k + offs_k a = tl.load(a_ptrs, mask=(updated_offset[None, :] < K) & (offs_am[:, None] < M), other=0.0) b = tl.load(b_ptrs, mask=(updated_offset[:, None] < K) & (offs_bn[ None, :] < N), other=0.0) c += tl.dot(a, b, allow_tf32=allow_tf32) a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) mask = (offs_m[:, None] < M) & (offs_n[None, :] < N) c_ptrs = c_ptr + stride_cm * offs_m[:, None] + stride_cn * offs_n[None, : ] + begin * stride_cm tl.store(c_ptrs, c, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Strided Access", "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "Memory-Bound" ] }
[ "BSD", "MIT" ]
https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py
ff383b02-6ac6-4d19-8a8c-ff80198f182f
z_order.py
Kitsunetic/space-filling-pytorch
space_filling_pytorch/functional/z_order.py
0de955ad1036973ee7506c5a0124c208acec722d
0
@triton.jit def _encode_z_kernel(xyz_ptr, distance_ptr, B, N, space_size, x_offset, y_offset, z_offset, str_xyz_B, str_xyz_N, str_xyz_C, BLK: tl.constexpr, ASSIGN_BATCH_INDEX: tl.constexpr): pid_b = tl.program_id(0) pid_n = tl.program_id(1) offs_n = pid_n * BLK + tl.arange(0, BLK) mask_n = offs_n < N xyz_ptrs = xyz_ptr + pid_b * str_xyz_B + offs_n * str_xyz_N fx = tl.load(xyz_ptrs + x_offset * str_xyz_C, mask=mask_n) fy = tl.load(xyz_ptrs + y_offset * str_xyz_C, mask=mask_n) fz = tl.load(xyz_ptrs + z_offset * str_xyz_C, mask=mask_n) ret = _calculate_zorder(fx, fy, fz, space_size) if ASSIGN_BATCH_INDEX: ret |= pid_b.to(tl.int64) << 48 tl.store(distance_ptr + pid_b * N + offs_n, ret, mask=mask_n)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/Kitsunetic/space-filling-pytorch/blob/0de955ad1036973ee7506c5a0124c208acec722d/space_filling_pytorch/functional/z_order.py
1f260b65-2aa3-4dd8-ad87-6f5bba941dd2
block_sparse_attention_lut.py
sparklesea/sparse-quant
sparse-attention/muxi/playground/kernels/block_sparse_attention_lut.py
e3d8b6ecab208c31b744913ed8c3caaa43605f86
0
@triton.jit def _sparse_attention_prefill_fwd_kernel(Q, K, V, sm_scale, Out, lut, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_oz, stride_oh, stride_om, stride_on, stride_lz, stride_lh, stride_lx, Z, H, N_CTX, LT, NNZ: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr): start_m = tl.program_id(0) off_hz = tl.program_id(1) lut_indicator = tl.program_id(1) % H qvk_offset = off_hz * stride_qh lut_offset = lut_indicator * stride_lz Q_block_ptr = tl.make_block_ptr(base=Q + qvk_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_qm, stride_qk), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0)) K_block_ptr = tl.make_block_ptr(base=K + qvk_offset, shape=( BLOCK_DMODEL, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0 ), block_shape=(BLOCK_DMODEL, BLOCK_N), order=(0, 1)) V_block_ptr = tl.make_block_ptr(base=V + qvk_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_vk, stride_vn), offsets=(0, 0), block_shape=(BLOCK_N, BLOCK_DMODEL), order=(1, 0)) O_block_ptr = tl.make_block_ptr(base=Out + qvk_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_om, stride_on), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0)) offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf') l_i = tl.zeros([BLOCK_M], dtype=tl.float32) acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) qk_scale = sm_scale * 1.44269504 q = tl.load(Q_block_ptr, boundary_check=(0, 1), padding_option='zero') q = (q * qk_scale).to(tl.float16) last_nnz_id = -1 for nnz_id in range(NNZ): present_nnz_id = tl.load(lut + lut_offset + start_m * stride_lh + nnz_id * stride_lx) start_n = present_nnz_id * BLOCK_N start_n = tl.multiple_of(start_n, BLOCK_N) present_nnz_id = present_nnz_id.to(tl.int32) k = tl.load(tl.advance(K_block_ptr, (0, start_n)), boundary_check=( 0, 1), padding_option='zero') qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) qk += tl.dot(q, k) if LT: qk = tl.where(offs_m[:, None] >= start_n + offs_n[None, :], qk, float('-inf')) qk = tl.where((offs_m[:, None] < N_CTX) & ((start_n + offs_n)[None, :] < N_CTX), qk, float('-inf')) m_ij = tl.max(qk, 1) p = tl.math.exp2(qk - m_ij[:, None]) p = tl.where(m_ij[:, None] == tl.full((BLOCK_M, BLOCK_N), float( '-inf'), tl.float32), 0.0, tl.math.exp2(qk - m_ij[:, None])) p = p * (last_nnz_id != present_nnz_id) l_ij = tl.sum(p, 1) m_i_new = tl.maximum(m_i, m_ij) alpha = tl.math.exp2(m_i - m_i_new) beta = tl.math.exp2(m_ij - m_i_new) l_i *= alpha l_i_new = l_i + beta * l_ij p_scale = beta / l_i_new p = p * p_scale[:, None] acc_scale = l_i / l_i_new acc = acc * acc_scale[:, None] v = tl.load(tl.advance(V_block_ptr, (start_n, 0)), boundary_check=( 0, 1), padding_option='zero') p = p.to(tl.float16) acc += tl.dot(p, v) l_i = l_i_new m_i = m_i_new last_nnz_id = present_nnz_id tl.store(O_block_ptr, acc.to(tl.float16), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Matrix Multiplication" ], "Memory Access Pattern": [ "Strided Access", "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "Apache", "BSD" ]
https://github.com/sparklesea/sparse-quant/blob/e3d8b6ecab208c31b744913ed8c3caaa43605f86/sparse-attention/muxi/playground/kernels/block_sparse_attention_lut.py
33299f98-59f0-48e0-ae23-2da139cb499d
triton_sll.py
pytorch/FBGEMM
fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py
fe980ab54a6e28818d81c8694b6564e7f804418b
0
@triton.jit def jagged_softmax_backward_kernel(grad_output_ptr, softmax_output_ptr, grad_input_ptr, input_offsets_ptr, grad_output_row_stride, grad_output_head_stride, softmax_output_row_stride, softmax_output_head_stride, grad_input_row_stride, grad_input_head_stride, max_seq_len: tl.constexpr, BLOCK_SIZE: tl.constexpr ): """ grad_output_ptr shpae is [SUM_B, H] softmax_output shape is [SUM_B, H] grad_input shape is [SUM_B, H] """ pid_batch = tl.program_id(0) pid_head = tl.program_id(1) row_begin = tl.load(input_offsets_ptr + pid_batch) row_end = tl.load(input_offsets_ptr + pid_batch + 1) N = tl.minimum(max_seq_len, row_end - row_begin) col_offsets = tl.arange(0, BLOCK_SIZE) grad_output_ptrs = (grad_output_ptr + row_begin * grad_output_row_stride + col_offsets * grad_output_row_stride + pid_head * grad_output_head_stride) softmax_output_ptrs = (softmax_output_ptr + row_begin * softmax_output_row_stride + col_offsets * softmax_output_row_stride + pid_head * softmax_output_head_stride) grad_output_row = tl.load(grad_output_ptrs, mask=col_offsets < N, other=0.0 ) softmax_output_row = tl.load(softmax_output_ptrs, mask=col_offsets < N, other=0.0) sum_value = tl.sum(grad_output_row * softmax_output_row, axis=0) grad_input_row = (grad_output_row - sum_value) * softmax_output_row grad_input_ptrs = (grad_input_ptr + row_begin * grad_input_row_stride + col_offsets * grad_input_row_stride + pid_head * grad_input_head_stride ) tl.store(grad_input_ptrs, grad_input_row, mask=col_offsets < N)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Softmax" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "BSD", "MIT" ]
https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py
a5dd6188-758a-4f75-ad16-7e404fe62595
chunk.py
sustcsonglin/flash-linear-attention
fla/ops/linear_attn/chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.jit def chunk_linear_attn_fwd_kernel_h(k, v, h, h0, ht, s_k_h, s_k_t, s_k_d, s_v_h, s_v_t, s_v_d, s_h_h, s_h_t, T: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, NT: tl.constexpr, USE_INITIAL_STATE: tl.constexpr, STORE_FINAL_STATE: tl. constexpr): i_k, i_v, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) b_h = tl.zeros([BK, BV], dtype=tl.float32) if USE_INITIAL_STATE: p_h0 = tl.make_block_ptr(h0 + i_bh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) b_h = tl.load(p_h0, boundary_check=(0, 1)).to(tl.float32) for i_t in range(NT): p_k = tl.make_block_ptr(k + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), ( i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), ( i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_h = tl.make_block_ptr(h + i_bh * s_h_h + i_t * K * V, (K, V), ( s_h_t, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_h += tl.dot(b_k, b_v, allow_tf32=False) if STORE_FINAL_STATE: p_ht = tl.make_block_ptr(ht + i_bh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Matrix Multiplication" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/linear_attn/chunk.py
e7e27939-c077-46e1-9632-7858a429dae5
k_layer_norm.py
cpuhrsch/torchfused
torchfused/triton/k_layer_norm.py
6c40ed160dcecbe7825f268f7c86bccd359e0ebf
0
@triton.jit def _layer_norm_non_affine_fw(X, Y, M, V, stride, N, eps, **META): _store(_layer_norm_non_affine(X, M, V, stride, N, eps, META), Y, stride, N, META)
{ "Data Type": [ "fp32" ], "Functionality": [ "Normalization" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "BSD" ]
https://github.com/cpuhrsch/torchfused/blob/6c40ed160dcecbe7825f268f7c86bccd359e0ebf/torchfused/triton/k_layer_norm.py
a8c30808-d914-41b7-8bd2-094cbdbfcbd0
k_fused_matmul_bw.py
cpuhrsch/torchfused
torchfused/triton/k_fused_matmul_bw.py
6c40ed160dcecbe7825f268f7c86bccd359e0ebf
0
@triton.heuristics({'EVEN_N': lambda *args, **meta: args[3] % meta[ 'BLOCK_COL'] == 0}) @triton.autotune(configs=[triton.Config({'BLOCK_COL': 32}, num_stages=5, num_warps=2), triton.Config({'BLOCK_COL': 64}, num_stages=5, num_warps= 2), triton.Config({'BLOCK_COL': 128}, num_stages=3, num_warps=4), triton.Config({'BLOCK_COL': 256}, num_stages=3, num_warps=8), triton. Config({'BLOCK_COL': 512}, num_stages=3, num_warps=8), triton.Config({ 'BLOCK_COL': 1024}, num_stages=3, num_warps=16)], key=['N']) @triton.jit def kernel_bw(GRAD_ACT, GRAD_OUT, ACT_INPUTS, N, stride_gom, stride_aim, **META ): """ Go over all the activation inputs, compute the corresponding gradient """ BLOCK_N = META['BLOCK_COL'] pid_m, pid_n = tl.program_id(axis=0), tl.program_id(axis=1) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) act_input_ptrs = ACT_INPUTS + pid_m * stride_aim + rn if META['EVEN_N']: act_in = tl.load(act_input_ptrs) else: act_in = tl.load(act_input_ptrs, mask=rn < N, other=0.0) grad_act = META['ACTIVATION_GRAD'](act_in) grad_out_ptrs = GRAD_OUT + pid_m * stride_gom + rn if META['EVEN_N']: grad_out = tl.load(grad_out_ptrs) else: grad_out = tl.load(grad_out_ptrs, mask=rn < N) grad_act *= grad_out grad_act_ptrs = GRAD_ACT + pid_m * stride_gom + rn tl.store(grad_act_ptrs, grad_act, mask=rn < N)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Activation Functions" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "BSD" ]
https://github.com/cpuhrsch/torchfused/blob/6c40ed160dcecbe7825f268f7c86bccd359e0ebf/torchfused/triton/k_fused_matmul_bw.py
e3fb6f4a-8ca3-4994-899f-d62d808652d3
shape.py
2niuhe/triton_utils
src/triton_utils/shape.py
6184906ac3b86dac3ccbfac128ec393ccecde5df
0
@triton.jit def store_1d(vals, ptr, sz: tl.constexpr, n, max, stride=1): """Store 1d block into nth chunk of vector (defined by ptr), where each chunk has size sz""" offs = get_1d_offest(sz, n) mask = get_1d_mask(offs, max) tl.store(ptr + offs, vals, mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Memory-Bound" ] }
[ "Apache" ]
https://github.com/2niuhe/triton_utils/blob/6184906ac3b86dac3ccbfac128ec393ccecde5df/src/triton_utils/shape.py
ad3e39e4-beb3-4789-856e-e24e65695e79
wy_fast.py
sustcsonglin/flash-linear-attention
fla/ops/delta_rule/wy_fast.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({}, num_warps=num_warps) for num_warps in [1, 2, 4, 8]], key=['BT', 'BK']) @triton.jit def fwd_recompute_w_kernel(k, beta, w, A, offsets, indices, T: tl.constexpr, H: tl.constexpr, K: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr): i_t, i_bh = tl.program_id(0), tl.program_id(1) i_b, i_h = i_bh // H, i_bh % H if USE_OFFSETS: i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos else: bos, eos = i_b * T, i_b * T + T if HEAD_FIRST: p_beta = tl.make_block_ptr(beta + i_bh * T, (T,), (1,), (i_t * BT,), (BT,), (0,)) p_A = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) else: p_beta = tl.make_block_ptr(beta + bos * H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,)) p_A = tl.make_block_ptr(A + (bos * H + i_h) * BT, (T, BT), (H * BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) b_beta = tl.load(p_beta, boundary_check=(0,)) b_A = tl.load(p_A, boundary_check=(0, 1)).to(k.dtype.element_ty) for i_k in range(tl.cdiv(K, BK)): if HEAD_FIRST: p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_w = tl.make_block_ptr(w + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) else: p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_w = tl.make_block_ptr(w + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_kb = (b_k * b_beta[:, None]).to(b_k.dtype) b_w = tl.dot(b_A, b_kb, allow_tf32=False) tl.store(p_w, b_w.to(p_w.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Strided Access", "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/delta_rule/wy_fast.py
02c185b4-ba6d-4e60-84de-9ccd865f78e9
chunk.py
sustcsonglin/flash-linear-attention
fla/ops/abc/chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.jit def chunk_abc_fwd_kernel_intra_K(v, z, o, A, s_v_h, s_v_t, s_v_d, T: tl. constexpr, V: tl.constexpr, BT: tl.constexpr, BC: tl.constexpr, BV: tl. constexpr, NC: tl.constexpr): i_v, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_t, i_i = i_c // NC, i_c % NC p_z = tl.make_block_ptr(z + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0)) p_zn = tl.make_block_ptr(z + i_bh * s_v_h, (T * V,), (s_v_d,), ((i_t * BT + i_i * BC) * V + i_v * BV,), (BV,), (0,)) b_zn = tl.load(p_zn, boundary_check=(0,)) b_o = tl.zeros([BC, BV], dtype=tl.float32) for i_j in range(0, i_i): p_A = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0)) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), ( i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_A = tl.load(p_A, boundary_check=(0, 1)) b_o += tl.dot(b_A, tl.exp(b_v - b_zn[None, :]).to(b_v.dtype), allow_tf32=False) b_z = tl.load(p_z, boundary_check=(0, 1)) b_o *= tl.exp(b_zn[None, :] - b_z) o_i = tl.arange(0, BC) o_A = i_bh * T * BT + (i_t * BT + i_i * BC + tl.arange(0, BC) ) * BT + i_i * BC m_A = i_t * BT + i_i * BC + tl.arange(0, BC) < T for j in range(0, BC): p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T * V,), (1,), ((i_t * BT + i_i * BC + j) * V + i_v * BV,), (BV,), (0,)) b_A = tl.load(A + o_A + j, mask=m_A, other=0) b_v = tl.load(p_v, boundary_check=(0,)).to(tl.float32) m_i = o_i[:, None] >= j b_o += tl.where(m_i, b_A[:, None] * tl.exp(b_v[None, :] - b_z), 0) p_o = tl.make_block_ptr(o + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0)) tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Tiled", "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "Memory-Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/abc/chunk.py
159f0cc5-72b0-4231-97dc-2a5e3f2c0d0b
hilbert.py
Kitsunetic/space-filling-pytorch
space_filling_pytorch/functional/hilbert.py
0de955ad1036973ee7506c5a0124c208acec722d
0
@triton.jit def _encode_hilbert_unpadded_kernel(xyz_ptr, batch_idx_ptr, code_ptr, space_size, x_offset, y_offset, z_offset, str_xyz_n, str_xyz_c, N, BLK: tl.constexpr, ASSIGN_BATCH_INDEX: tl.constexpr): pid = tl.program_id(0) offs_n = pid * BLK + tl.arange(0, BLK) mask = offs_n < N xyz_ptrs = xyz_ptr + offs_n * str_xyz_n fx = tl.load(xyz_ptrs + x_offset * str_xyz_c, mask=mask) fy = tl.load(xyz_ptrs + y_offset * str_xyz_c, mask=mask) fz = tl.load(xyz_ptrs + z_offset * str_xyz_c, mask=mask) ret = _calculate_hilbert_distance(fx, fy, fz, space_size) if ASSIGN_BATCH_INDEX: batch_idx_ptrs = batch_idx_ptr + offs_n batch_idx = tl.load(batch_idx_ptrs, mask=mask).to(tl.int64) ret |= batch_idx << 48 code_ptrs = code_ptr + offs_n tl.store(code_ptrs, ret, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/Kitsunetic/space-filling-pytorch/blob/0de955ad1036973ee7506c5a0124c208acec722d/space_filling_pytorch/functional/hilbert.py
2c6c706f-18a5-446c-bc50-dd5319c23177
triton_fused_local_attn_rerope.py
LouChao98/vqtree
ops/triton_fused_local_attn_rerope.py
27a53274df7a804bce27dffcce5f5be73f64b6f3
0
@triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args[ 'BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args[ 'BLOCK_N'] == 0}) @triton.jit def _fwd_kernel(Q1, Q2, K1, K2, V, Out, L, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_ob, stride_oh, stride_om, nheads, seqlen_q, seqlen_k, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, WINDOW_SIZE: tl. constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, WRITE_LSE: tl.constexpr): start_m = tl.program_id(0) off_hb = tl.program_id(1) off_b = off_hb // nheads off_h = off_hb % nheads offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) offs_d = tl.arange(0, BLOCK_HEADDIM) Q1_block_ptr = tl.make_block_ptr(base=Q1 + (off_b * stride_qb + off_h * stride_qh), shape=(seqlen_q, BLOCK_HEADDIM), strides=(stride_qm, 1), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_HEADDIM ), order=(1, 0)) Q2_block_ptr = tl.make_block_ptr(base=Q2 + (off_b * stride_qb + off_h * stride_qh), shape=(seqlen_q, BLOCK_HEADDIM), strides=(stride_qm, 1), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_HEADDIM ), order=(1, 0)) K1_block_ptr = tl.make_block_ptr(base=K1 + (off_b * stride_kb + off_h * stride_kh), shape=(BLOCK_HEADDIM, seqlen_k), strides=(1, stride_kn), offsets=(0, 0), block_shape=(BLOCK_HEADDIM, BLOCK_N), order=(0, 1)) K2_block_ptr = tl.make_block_ptr(base=K2 + (off_b * stride_kb + off_h * stride_kh), shape=(BLOCK_HEADDIM, seqlen_k), strides=(1, stride_kn), offsets=(0, 0), block_shape=(BLOCK_HEADDIM, BLOCK_N), order=(0, 1)) V_block_ptr = tl.make_block_ptr(base=V + (off_b * stride_vb + off_h * stride_vh), shape=(seqlen_k, BLOCK_HEADDIM), strides=(stride_vn, 1), offsets=(0, 0), block_shape=(BLOCK_N, BLOCK_HEADDIM), order=(1, 0)) l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0 m_i = tl.zeros([BLOCK_M], dtype=tl.float32) + NEGINF acc = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32) if EVEN_M: q1 = tl.load(Q1_block_ptr) q2 = tl.load(Q2_block_ptr) else: q1 = tl.load(Q1_block_ptr, boundary_check=(0,), padding_option='zero') q2 = tl.load(Q2_block_ptr, boundary_check=(0,), padding_option='zero') acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q1, q2, softmax_scale, K1_block_ptr, K2_block_ptr, V_block_ptr, start_m, offs_m, offs_n, seqlen_k, WINDOW_SIZE, BLOCK_M, BLOCK_N, EVEN_M & EVEN_N, 1) acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q1, q2, softmax_scale, K1_block_ptr, K2_block_ptr, V_block_ptr, start_m, offs_m, offs_n, seqlen_k, WINDOW_SIZE, BLOCK_M, BLOCK_N, EVEN_M & EVEN_N, 2) acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q1, q2, softmax_scale, K1_block_ptr, K2_block_ptr, V_block_ptr, start_m, offs_m, offs_n, seqlen_k, WINDOW_SIZE, BLOCK_M, BLOCK_N, EVEN_M & EVEN_N, 3) if WRITE_LSE: l_ptrs = L + off_hb * seqlen_q + offs_m tl.store(l_ptrs, m_i + tl.math.log2(l_i)) acc = acc / l_i[:, None] start_m = tl.program_id(0) offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_d = tl.arange(0, BLOCK_HEADDIM) out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:, None] * stride_om + offs_d[None, :]) if EVEN_M: tl.store(out_ptrs, acc) else: tl.store(out_ptrs, acc, mask=offs_m[:, None] < seqlen_q)
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Softmax" ], "Memory Access Pattern": [ "Tiled", "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "Apache" ]
https://github.com/LouChao98/vqtree/blob/27a53274df7a804bce27dffcce5f5be73f64b6f3/ops/triton_fused_local_attn_rerope.py
295647f9-b805-4b3f-8f9a-72124ff188fd
relu.py
daemyung/practice-triton
relu.py
27f727726f1507c8380a1c11751d851c7c4a07ce
0
@staticmethod @triton.jit def backward(grad_input_ptr, grad_output_ptr, input_ptr, size, block_size: tl.constexpr): pid = tl.program_id(0) offset = pid * block_size grad_input_block_ptr = tl.make_block_ptr(grad_input_ptr, shape=(size,), strides=(1,), offsets=(offset,), block_shape=(block_size,), order=(0,)) grad_output_block_ptr = tl.make_block_ptr(grad_output_ptr, shape=(size, ), strides=(1,), offsets=(offset,), block_shape=(block_size,), order=(0,)) input_block_ptr = tl.make_block_ptr(input_ptr, shape=(size,), strides=( 1,), offsets=(offset,), block_shape=(block_size,), order=(0,)) grad_output = tl.load(grad_output_block_ptr, boundary_check=(0,)) input = tl.load(input_block_ptr, boundary_check=(0,)) condition = input >= 0 grad_input = tl.where(condition, grad_output, 0) tl.store(grad_input_block_ptr, grad_input, boundary_check=(0,))
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Elementwise Operations" ], "Memory Access Pattern": [ "Coalesced", "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/daemyung/practice-triton/blob/27f727726f1507c8380a1c11751d851c7c4a07ce/relu.py
98f78d67-d8c7-4106-a9bc-6716d5cd0889
sb_varlen_fwd.py
shawntan/stickbreaking-attention
stickbreaking_attention/sb_varlen/sb_varlen_fwd.py
8dd32ad5e58f0ee0232fd4782dc53d354ff8d283
0
@triton.jit def compute_block(q, k, qk_scale, neg_log_acc, M_blk_idxs, N_blk_idxs, cm, on_band: tl.constexpr, ALLOW_TF32: tl.constexpr, backward: tl.constexpr, attend_current: tl.constexpr=False, use_cumsum: tl.constexpr=False, is_compiling: tl.constexpr=False): qk = tl.dot(q, tl.trans(k), allow_tf32=ALLOW_TF32) * qk_scale log_om_beta = -softplus(qk, is_compiling=is_compiling) if on_band: if attend_current: block_mask = M_blk_idxs[:, None] >= N_blk_idxs[None, :] else: block_mask = M_blk_idxs[:, None] > N_blk_idxs[None, :] log_om_beta = tl.where(block_mask, log_om_beta, 0.0) if backward: neg_log_acc -= tl.sum(log_om_beta, axis=1) log_p = qk + neg_log_acc[:, None] if use_cumsum: log_p += tl.cumsum(log_om_beta.to(q.dtype), axis=1, reverse=True) else: log_p = tl.dot(log_om_beta.to(q.dtype), cm, acc=log_p, allow_tf32=ALLOW_TF32) p = tl.math.exp2(log_p) p = tl.where(block_mask, p, 0.0) else: if backward: neg_log_acc -= tl.sum(log_om_beta, axis=1) log_p = qk + neg_log_acc[:, None] if use_cumsum: log_p += tl.cumsum(log_om_beta.to(q.dtype), axis=1, reverse=True) else: log_p = tl.dot(log_om_beta.to(q.dtype), cm, acc=log_p, allow_tf32=ALLOW_TF32) p = tl.math.exp2(log_p) if not backward: neg_log_acc += tl.sum(log_om_beta, axis=1) return p, log_om_beta, neg_log_acc
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Activation Functions" ], "Memory Access Pattern": [ "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "Apache" ]
https://github.com/shawntan/stickbreaking-attention/blob/8dd32ad5e58f0ee0232fd4782dc53d354ff8d283/stickbreaking_attention/sb_varlen/sb_varlen_fwd.py
c3784dfb-4b90-4a4f-9175-4a69cc1f915d
fused_attn.py
thunlp/Delta-CoMe
quant/fused_attn.py
646a1fbf3443295c4b04aba27334c6bc5aa3df4f
0
@triton.jit def rotate_half_kernel(qk_seq_ptr, position_ids_ptr, qk_seq_stride, position_ids_batch_stride, seq_len, HEAD_DIM: tl.constexpr, BLOCK_HEIGHT: tl.constexpr, BLOCK_WIDTH: tl.constexpr, INV_BASE: tl. constexpr): HALF_HEAD: tl.constexpr = HEAD_DIM // 2 STEPS_PER_ROW: tl.constexpr = HALF_HEAD // BLOCK_WIDTH batch_seq = tl.program_id(axis=0) row_blk_x_col_blk = tl.program_id(axis=1) row_blk = row_blk_x_col_blk // STEPS_PER_ROW row = row_blk * BLOCK_HEIGHT if BLOCK_WIDTH < HALF_HEAD: col_blk = row_blk_x_col_blk % STEPS_PER_ROW col = col_blk * BLOCK_WIDTH else: col: tl.constexpr = 0 batch = batch_seq // seq_len seq = batch_seq % seq_len position_id = tl.load(position_ids_ptr + batch * position_ids_batch_stride + seq) freq = tl.libdevice.exp((col + tl.arange(0, BLOCK_WIDTH)).to(tl.float32 ) * INV_BASE) * position_id cos = tl.cos(freq).to(tl.float32) sin = tl.sin(freq).to(tl.float32) col_offsets: tl.constexpr = tl.arange(0, BLOCK_WIDTH) embed_offsets = row * HEAD_DIM + col + col_offsets x_ptrs = qk_seq_ptr + batch_seq * qk_seq_stride + embed_offsets for k in range(0, BLOCK_HEIGHT): x = tl.load(x_ptrs).to(tl.float32) y = tl.load(x_ptrs + HALF_HEAD).to(tl.float32) out_x = x * cos - y * sin tl.store(x_ptrs, out_x) out_y = x * sin + y * cos tl.store(x_ptrs + HALF_HEAD, out_y) x_ptrs += HEAD_DIM
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Tiled", "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "Apache" ]
https://github.com/thunlp/Delta-CoMe/blob/646a1fbf3443295c4b04aba27334c6bc5aa3df4f/quant/fused_attn.py
297bd9f8-dbf4-4cd4-b87b-6208c25245d1
pointwise.py
ServiceNow/Fast-LLM
fast_llm/functional/triton/pointwise.py
8b46289079da67cba99628448a6b6083dac083cf
0
@triton.jit def triton_copy_kernel(input_ptr, out_ptr, numel: tl.constexpr, block_size: tl.constexpr): block_start = tl.program_id(axis=0).to(tl.int64) * block_size offsets = block_start + tl.arange(0, block_size) mask = offsets < numel input_ = tl.load(input_ptr + offsets, mask=mask) tl.store(out_ptr + offsets, input_, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Coalesced", "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Memory-Bound", "High Throughput" ] }
[ "Apache" ]
https://github.com/ServiceNow/Fast-LLM/blob/8b46289079da67cba99628448a6b6083dac083cf/fast_llm/functional/triton/pointwise.py
c7b00225-9961-4819-bb21-d098a0681a35
RzLinearBackward.py
apd10/RzLinear
python/rz_linear/impl/RzLinearBackward.py
eb56657b2de0a97f398f88af421b0fbcbc5469c9
0
@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 256, 'BLOCK_SIZE_M': 32}, num_stages=3, num_warps=8), triton.Config({'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_M': 32}, num_stages=3, num_warps=8), triton.Config({'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 256, 'BLOCK_SIZE_M': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_M': 32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_M': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 256, 'BLOCK_SIZE_M': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_M': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_M': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_M': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_M': 32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_M': 16}, num_stages=2, num_warps=8), triton.Config({'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_M': 16}, num_stages=2, num_warps=4), triton.Config({'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 256, 'BLOCK_SIZE_M': 16}, num_stages=2, num_warps=4), triton.Config({'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_M': 16}, num_stages=2, num_warps=4), triton.Config({'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_M': 16}, num_stages=2, num_warps=4), triton.Config({'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_M': 16}, num_stages=2, num_warps=4), triton.Config({'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_M': 16}, num_stages=2, num_warps=4), triton.Config({'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'BLOCK_SIZE_M': 16}, num_stages=2, num_warps=4), triton.Config({'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 64, 'BLOCK_SIZE_M': 16}, num_stages=2, num_warps=4), triton.Config({'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'BLOCK_SIZE_M': 16}, num_stages=2, num_warps=4), triton.Config({'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 128, 'BLOCK_SIZE_M': 16}, num_stages=2, num_warps=4)], key=['M', 'N', 'K']) @triton.jit def rz_linear_backward_weight_grad_kernel_fp32(a_ptr, b_ptr, c_ptr, init_factor, M, N, K, H, stride_am, stride_ak, stride_bm, stride_bn, R7: int, R6: int, R5: int, R4: int, R3: int, R2: int, R1: int, R0: int, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE: tl.constexpr): rz_linear_backward_weight_grad_core(a_ptr=a_ptr, b_ptr=b_ptr, c_ptr= c_ptr, init_factor=init_factor, M=M, N=N, K=K, H=H, stride_am= stride_am, stride_ak=stride_ak, stride_bm=stride_bm, stride_bn= stride_bn, R7=R7, R6=R6, R5=R5, R4=R4, R3=R3, R2=R2, R1=R1, R0=R0, allow_tf32=False, BLOCK_SIZE_M=BLOCK_SIZE_M, BLOCK_SIZE_N= BLOCK_SIZE_N, BLOCK_SIZE_K=BLOCK_SIZE_K, GROUP_SIZE=GROUP_SIZE)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Matrix Multiplication" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Persistent Kernels" ], "Performance Objective": [ "Memory-Bound", "Compute Bound" ] }
[ "MIT" ]
https://github.com/apd10/RzLinear/blob/eb56657b2de0a97f398f88af421b0fbcbc5469c9/python/rz_linear/impl/RzLinearBackward.py
b43d035a-53a0-4ffb-8bee-abc8a227f8b9
ops.py
shawntan/scattermoe
scattermoe/kernels/ops.py
63b76a2f5f28c052fb4cd7c34479a54158354052
0
@triton.autotune(configs=_scatter2scatter_configs(), key=['M', 'N', 'K']) @triton.heuristics({'NO_K_MASK': lambda args: args['K'] % args['BLOCK_K'] == 0, 'NO_N_MASK': lambda args: args['N'] % args['BLOCK_N'] == 0}) @triton.jit def _scatter2scatter(X_ptr, stride_xm, stride_xk, W_ptr, stride_we, stride_wk, stride_wn, Y_ptr, stride_ym, stride_yn, grouped_idx_ptr, expert_idxs_ptr, block_start_idx_ptr, FAN_OUT: tl.constexpr, M, K: tl. constexpr, N: tl.constexpr, E: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr, ACC_TYPE: tl.constexpr, OUT_M, allow_tf32: tl.constexpr, x_grouped: tl.constexpr, y_grouped: tl .constexpr, NO_K_MASK: tl.constexpr, NO_N_MASK: tl.constexpr): pid = tl.program_id(axis=0) N_BLOCK_COUNT = tl.cdiv(N, BLOCK_N) M_block_id = pid // N_BLOCK_COUNT N_block_id = pid % N_BLOCK_COUNT M_range = tl.arange(0, BLOCK_M) block_start_idx = tl.load(block_start_idx_ptr + M_block_id) M_block = tl.max_contiguous(block_start_idx + M_range, BLOCK_M) E_idxs = tl.load(expert_idxs_ptr + M_block, mask=M_block < FAN_OUT * M, other=E) E_idx = tl.min(E_idxs) E_mask = E_idxs == E_idx M_idx = tl.load(grouped_idx_ptr + M_block, mask=E_mask, other=0) if x_grouped: M_in_idx = M_block else: M_in_idx = M_idx // FAN_OUT if y_grouped: M_out_idx = M_block else: M_out_idx = M_idx K_block = tl.arange(0, BLOCK_K) N_block = N_block_id * BLOCK_N + tl.arange(0, BLOCK_N) N_mask = N_block < N X_blk_ptrs = X_ptr + M_in_idx[:, None] * stride_xm + K_block[None, : ] * stride_xk W_blk_ptrs = W_ptr + K_block[:, None] * stride_wk + N_block[None, : ] * stride_wn + E_idx * stride_we acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=ACC_TYPE) iters = tl.cdiv(K, BLOCK_K) for K_block_id in range(0, iters): if NO_K_MASK: x = tl.load(X_blk_ptrs, mask=E_mask[:, None]) if NO_N_MASK or K_block_id < iters - 1: w = tl.load(W_blk_ptrs) else: w = tl.load(W_blk_ptrs, mask=N_mask[None, :]) else: K_mask = K_block_id * BLOCK_K + K_block < K x = tl.load(X_blk_ptrs, mask=E_mask[:, None] & K_mask[None, :]) w = tl.load(W_blk_ptrs, mask=K_mask[:, None] & N_mask[None, :]) X_blk_ptrs += BLOCK_K * stride_xk W_blk_ptrs += BLOCK_K * stride_wk acc += tl.dot(x, w, allow_tf32=allow_tf32, out_dtype=ACC_TYPE) Y_blk_ptrs = Y_ptr + (M_out_idx[:, None] * stride_ym + N_block[None, :] * stride_yn) tl.store(Y_blk_ptrs, acc, mask=E_mask[:, None] & N_mask[None, :])
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Memory-Bound", "Compute Bound" ] }
[ "Apache" ]
https://github.com/shawntan/scattermoe/blob/63b76a2f5f28c052fb4cd7c34479a54158354052/scattermoe/kernels/ops.py
98ed13e6-3d06-4b48-bf3b-55ccbee71cfb
dw_conv.py
neuro-ml/kerops
kerops/kernels/dw_conv.py
735336775e825d5cb06b8850d25423661b12d1ac
0
@triton.jit def _DWConv_wgrad_cl3d_impl(grad_ptr, input_ptr, weight_grad_ptr, H, W, D, H_stride, W_stride, ACCTYPE: tl.constexpr, channels: tl.constexpr, D_block: tl.constexpr, WD_grid): H_cell = tl.program_id(0) W_D_cell = tl.program_id(1) D_gridsize = tl.cdiv(D, D_block) W_cell = W_D_cell // D_gridsize D_cell = W_D_cell % D_gridsize input_ptr += D_cell * D_block * channels grad_ptr += D_cell * D_block * channels weight_grad_ptr += (H_cell * WD_grid + W_D_cell) * 27 * channels channels_offset = tl.arange(0, channels) channels_offset = tl.max_contiguous(tl.multiple_of(channels_offset, channels), channels) d_offset = tl.arange(0, D_block) near_offset = tl.arange(0, 4) - 1 offset = d_offset[None, None, :] * channels + channels_offset[None, :, None ] + near_offset[:, None, None] * channels mask = d_offset[None, None, :] + near_offset[:, None, None ] < D - D_block * D_cell mask = mask and d_offset[None, None, :] + near_offset[:, None, None ] >= 0 - D_block * D_cell mask = mask and near_offset[:, None, None] != 2 in_offset = d_offset[None, None, :] * channels + channels_offset[None, :, None] in_mask = d_offset[None, None, :] < D - D_block * D_cell H1_load = 2 * H_cell + 1 < H W1_load = 2 * W_cell + 1 < W h0_w0 = tl.zeros([4, channels], dtype=ACCTYPE) h0_w1 = tl.zeros([4, channels], dtype=ACCTYPE) h0_w2 = tl.zeros([4, channels], dtype=ACCTYPE) h1_w0 = tl.zeros([4, channels], dtype=ACCTYPE) h1_w1 = tl.zeros([4, channels], dtype=ACCTYPE) h1_w2 = tl.zeros([4, channels], dtype=ACCTYPE) h2_w0 = tl.zeros([4, channels], dtype=ACCTYPE) h2_w1 = tl.zeros([4, channels], dtype=ACCTYPE) h2_w2 = tl.zeros([4, channels], dtype=ACCTYPE) tmp_input_ptr = input_ptr + 2 * H_cell * H_stride + 2 * W_cell * W_stride x_h0_w0 = tl.load(tmp_input_ptr + in_offset, mask=in_mask, other=0.0) tmp_input_ptr = input_ptr + (2 * H_cell + 1 ) * H_stride + 2 * W_cell * W_stride x_h1_w0 = tl.load(tmp_input_ptr + in_offset, mask=in_mask and H1_load, other=0.0) tmp_input_ptr = input_ptr + 2 * H_cell * H_stride + (2 * W_cell + 1 ) * W_stride x_h0_w1 = tl.load(tmp_input_ptr + in_offset, mask=in_mask and W1_load, other=0.0) tmp_input_ptr = input_ptr + (2 * H_cell + 1) * H_stride + (2 * W_cell + 1 ) * W_stride x_h1_w1 = tl.load(tmp_input_ptr + in_offset, mask=in_mask and (W1_load and H1_load), other=0.0) gradw_offset = tl.arange(0, 4)[:, None] * channels + channels_offset[ None, :] gradw_mask = near_offset[:, None] != 2 load_next = (2 * H_cell - 1 < H and 2 * H_cell - 1 >= 0) and (2 * W_cell - 1 < W and 2 * W_cell - 1 >= 0) tmp_grad_ptr = grad_ptr + (2 * H_cell - 1) * H_stride + (2 * W_cell - 1 ) * W_stride i = -1 j = -1 grad = tl.zeros([4, channels, D_block], dtype=tl.float16) if load_next: grad = tl.load(tmp_grad_ptr + offset, mask=mask) for k in tl.static_range(0, 16): if load_next: if i == -1 and j == -1: h2_w2 += tl.sum(grad * x_h0_w0, axis=2) elif i == -1 and j == 0: h2_w1 += tl.sum(grad * x_h0_w0, axis=2) h2_w2 += tl.sum(grad * x_h0_w1, axis=2) elif i == -1 and j == 1: h2_w0 += tl.sum(grad * x_h0_w0, axis=2) h2_w1 += tl.sum(grad * x_h0_w1, axis=2) elif i == -1 and j == 2: h2_w0 += tl.sum(grad * x_h0_w1, axis=2) elif i == 0 and j == -1: h1_w2 += tl.sum(grad * x_h0_w0, axis=2) h2_w2 += tl.sum(grad * x_h1_w0, axis=2) elif i == 0 and j == 0: h1_w1 += tl.sum(grad * x_h0_w0, axis=2) h2_w1 += tl.sum(grad * x_h1_w0, axis=2) h1_w2 += tl.sum(grad * x_h0_w1, axis=2) h2_w2 += tl.sum(grad * x_h1_w1, axis=2) elif i == 0 and j == 1: h1_w0 += tl.sum(grad * x_h0_w0, axis=2) h2_w0 += tl.sum(grad * x_h1_w0, axis=2) h1_w1 += tl.sum(grad * x_h0_w1, axis=2) h2_w1 += tl.sum(grad * x_h1_w1, axis=2) elif i == 0 and j == 2: h1_w0 += tl.sum(grad * x_h0_w1, axis=2) h2_w0 += tl.sum(grad * x_h1_w1, axis=2) elif i == 1 and j == -1: h0_w2 += tl.sum(grad * x_h0_w0, axis=2) h1_w2 += tl.sum(grad * x_h1_w0, axis=2) elif i == 1 and j == 0: h0_w1 += tl.sum(grad * x_h0_w0, axis=2) h1_w1 += tl.sum(grad * x_h1_w0, axis=2) h0_w2 += tl.sum(grad * x_h0_w1, axis=2) h1_w2 += tl.sum(grad * x_h1_w1, axis=2) elif i == 1 and j == 1: h0_w0 += tl.sum(grad * x_h0_w0, axis=2) h1_w0 += tl.sum(grad * x_h1_w0, axis=2) h0_w1 += tl.sum(grad * x_h0_w1, axis=2) h1_w1 += tl.sum(grad * x_h1_w1, axis=2) elif i == 1 and j == 2: h0_w0 += tl.sum(grad * x_h0_w1, axis=2) h1_w0 += tl.sum(grad * x_h1_w1, axis=2) elif i == 2 and j == -1: h0_w2 += tl.sum(grad * x_h1_w0, axis=2) elif i == 2 and j == 0: h0_w1 += tl.sum(grad * x_h1_w0, axis=2) h0_w2 += tl.sum(grad * x_h1_w1, axis=2) elif i == 2 and j == 1: h0_w0 += tl.sum(grad * x_h1_w0, axis=2) h0_w1 += tl.sum(grad * x_h1_w1, axis=2) else: h0_w0 += tl.sum(grad * x_h1_w1, axis=2) k_ = k + 1 i = k_ % 4 - 1 j = k_ // 4 - 1 load_next = (2 * H_cell + i < H and 2 * H_cell + i >= 0) and (2 * W_cell + j < W and 2 * W_cell + j >= 0) tmp_grad_ptr = grad_ptr + (2 * H_cell + i) * H_stride + (2 * W_cell + j ) * W_stride if load_next and k_ < 16: grad = tl.load(tmp_grad_ptr + offset, mask=mask) tl.store(weight_grad_ptr + gradw_offset, h0_w0, mask=gradw_mask) tl.store(weight_grad_ptr + 3 * channels + gradw_offset, h0_w1, mask= gradw_mask) tl.store(weight_grad_ptr + 6 * channels + gradw_offset, h0_w2, mask= gradw_mask) tl.store(weight_grad_ptr + 9 * channels + gradw_offset, h1_w0, mask= gradw_mask) tl.store(weight_grad_ptr + 12 * channels + gradw_offset, h1_w1, mask= gradw_mask) tl.store(weight_grad_ptr + 15 * channels + gradw_offset, h1_w2, mask= gradw_mask) tl.store(weight_grad_ptr + 18 * channels + gradw_offset, h2_w0, mask= gradw_mask) tl.store(weight_grad_ptr + 21 * channels + gradw_offset, h2_w1, mask= gradw_mask) tl.store(weight_grad_ptr + 24 * channels + gradw_offset, h2_w2, mask= gradw_mask)
{ "Data Type": [ "fp16" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/neuro-ml/kerops/blob/735336775e825d5cb06b8850d25423661b12d1ac/kerops/kernels/dw_conv.py
2f63fe4e-4b75-45aa-b01f-c5b1eed17423
main_triton.py
dwgan/GraphMST
main_triton.py
4d65ed0f108d339e3e4cfff25085a39adc6a48a2
0
@triton.jit def find_kernel(parent, u, ret_ptr, BLOCK_SIZE: tl.constexpr): pu = tl.load(parent + u) while pu != u: u = pu pu = tl.load(parent + u) ret_ptr[u % BLOCK_SIZE] = pu
{ "Data Type": [], "Functionality": [], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/dwgan/GraphMST/blob/4d65ed0f108d339e3e4cfff25085a39adc6a48a2/main_triton.py
fee89749-a0a9-4316-87b5-75545363f010
wy_fast.py
sustcsonglin/flash-linear-attention
fla/ops/delta_rule/wy_fast.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({}, num_warps=num_warps) for num_warps in [1, 2, 4, 8, 16]], key=['BK']) @triton.jit def fwd_prepare_wy_repr_kernel_chunk32(k, beta, A, offsets, indices, T: tl. constexpr, H: tl.constexpr, K: tl.constexpr, BT: tl.constexpr, BK: tl. constexpr, BC: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl. constexpr): i_t, i_bh = tl.program_id(0), tl.program_id(1) i_b, i_h = i_bh // H, i_bh % H if USE_OFFSETS: i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos else: bos, eos = i_b * T, i_b * T + T if HEAD_FIRST: p_beta = tl.make_block_ptr(beta + i_bh * T, (T,), (1,), (i_t * BT,), (BT,), (0,)) else: p_beta = tl.make_block_ptr(beta + bos * H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,)) b_beta = tl.load(p_beta, boundary_check=(0,)) b_A = tl.zeros([BT, BT], dtype=tl.float32) for i_k in range(tl.cdiv(K, BK)): if HEAD_FIRST: p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) else: p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_kb = (b_k * b_beta[:, None]).to(b_k.dtype) b_A += tl.dot(b_kb, tl.trans(b_k), allow_tf32=False) b_A = -tl.where(tl.arange(0, BT)[:, None] > tl.arange(0, BT)[None, :], b_A, 0) for i in range(1, BT): mask = tl.arange(0, BT) == i b_a = tl.sum(tl.where(mask[:, None], b_A, 0), 0) b_a = b_a + tl.sum(b_a[:, None] * b_A, 0) * (tl.arange(0, BT) < i) b_A = tl.where(mask[:, None], b_a, b_A) b_A += tl.arange(0, BT)[:, None] == tl.arange(0, BT)[None, :] if HEAD_FIRST: p_A = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) else: p_A = tl.make_block_ptr(A + (bos * H + i_h) * BT, (T, BT), (H * BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) tl.store(p_A, b_A.to(p_A.dtype.element_ty), boundary_check=(0, 1)) b_A = b_A.to(k.dtype.element_ty)
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/delta_rule/wy_fast.py
3ccfe00c-b0c4-4828-873a-fd5b2174ea1b
kernels.py
pytorch-labs/tritonbench
tritonbench/operators/jagged_mean/kernels.py
3a5dccb159834968567a2e45e561dc1aeaa8f8a8
0
@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_RAGGED': b_r, 'BLOCK_SIZE_M': b_m}, num_warps=w, num_stages=s) for b_r, b_m, w, s in itertools.product(BLOCK_SIZES_RAGGED, BLOCK_SIZES_M, NUM_WARPS, NUM_STAGES)], key=['M']) @triton.jit def triton_jagged_mean_kernel_variable_length_loop_sum_then_buffer( input_ptr_values, input_ptr_offsets, output_ptr, M, BLOCK_SIZE_RAGGED: tl.constexpr, BLOCK_SIZE_M: tl.constexpr): pid = tl.program_id(axis=0) pid_b = pid // tl.cdiv(M, BLOCK_SIZE_M) pid_m = pid % tl.cdiv(M, BLOCK_SIZE_M) buffer = tl.zeros((1, BLOCK_SIZE_M), dtype=tl.float32) block_start_m = pid_m * BLOCK_SIZE_M offsets_m = block_start_m + tl.arange(0, BLOCK_SIZE_M) mask_m = offsets_m < M ragged_start, ragged_end = tl.load(input_ptr_offsets + pid_b), tl.load( input_ptr_offsets + (pid_b + 1)) ragged_len = ragged_end - ragged_start for block_start_ragged in range(ragged_start, ragged_end, BLOCK_SIZE_RAGGED ): offsets_ragged = block_start_ragged + tl.arange(0, BLOCK_SIZE_RAGGED) mask_ragged = offsets_ragged < ragged_end idxs = offsets_ragged[:, None] * M + offsets_m mask = mask_ragged[:, None] & mask_m input = tl.load(input_ptr_values + idxs, mask=mask, other=0) buffer += tl.sum(input, axis=0) buffer_view = buffer.reshape((BLOCK_SIZE_M,)) buffer_view_mean = buffer_view * (1 / ragged_len) output_offsets = offsets_m + pid_b * M output_mask = output_offsets < M * (pid_b + 1) tl.store(output_ptr + output_offsets, buffer_view_mean, mask=output_mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Persistent Kernels" ], "Performance Objective": [ "High Throughput" ] }
[ "BSD" ]
https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/operators/jagged_mean/kernels.py
58fb14a4-ee5b-47db-b1e7-de8b3fd737be
fused_moe.py
Charlie-XIAO/sparse-vllm
vllm/model_executor/layers/fused_moe/fused_moe.py
d228909a30b0c245c35417fb7d2acdf9a3690042
0
@triton.jit def fused_moe_kernel(a_ptr, b_ptr, c_ptr, a_scale_ptr, b_scale_ptr, topk_weights_ptr, sorted_token_ids_ptr, expert_ids_ptr, num_tokens_post_padded_ptr, N, K, EM, num_valid_tokens, stride_am, stride_ak, stride_be, stride_bk, stride_bn, stride_cm, stride_cn, stride_bse, stride_bsn, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl. constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr, MUL_ROUTED_WEIGHT: tl.constexpr, top_k: tl.constexpr, compute_type: tl. constexpr, use_fp8_w8a8: tl.constexpr, use_int8_w8a16: tl.constexpr): """ Implements the fused computation for a Mixture of Experts (MOE) using token and expert matrices. Key Parameters: - A: The input tensor representing tokens with shape (*, K), where '*' can be any shape representing batches and K is the feature dimension of each token. - B: The stacked MOE weight tensor with shape (E, N, K), where E is the number of experts, K is the input feature dimension, and N is the output feature dimension. - C: The output cache tensor with shape (M, topk, N), where M is the total number of tokens post padding, topk is the number of times each token is repeated, and N is the output feature dimension. - sorted_token_ids: A tensor containing the sorted indices of tokens, repeated topk times and arranged by the expert index they are assigned to. - expert_ids: A tensor containing the indices of the expert for each block. It determines which expert matrix from B should be used for each block in A. This kernel performs the multiplication of a token by its corresponding expert matrix as determined by `expert_ids`. The sorting of `sorted_token_ids` by expert index and padding ensures divisibility by BLOCK_SIZE_M, which is necessary to maintain consistency in block matrix multiplication across different blocks processed by the same expert. """ pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(EM, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) num_pid_in_group = GROUP_SIZE_M * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_m = first_pid_m + pid % num_pid_in_group % group_size_m pid_n = pid % num_pid_in_group // group_size_m num_tokens_post_padded = tl.load(num_tokens_post_padded_ptr) if pid_m * BLOCK_SIZE_M >= num_tokens_post_padded: return offs_token_id = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_token = tl.load(sorted_token_ids_ptr + offs_token_id) token_mask = offs_token < num_valid_tokens offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + (offs_token[:, None] // top_k * stride_am + offs_k[ None, :] * stride_ak) off_experts = tl.load(expert_ids_ptr + pid_m) b_ptrs = b_ptr + off_experts * stride_be + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn) if use_int8_w8a16: b_scale_ptrs = b_scale_ptr + off_experts * stride_bse + offs_bn[None, : ] * stride_bsn b_scale = tl.load(b_scale_ptrs) if use_fp8_w8a8: a_scale = tl.load(a_scale_ptr) b_scale = tl.load(b_scale_ptr + off_experts) accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)): a = tl.load(a_ptrs, mask=token_mask[:, None] & (offs_k[None, :] < K - k * BLOCK_SIZE_K), other=0.0) b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0) if use_int8_w8a16: accumulator = tl.dot(a, b.to(compute_type), acc=accumulator) elif use_fp8_w8a8: accumulator = tl.dot(a, b, acc=accumulator) else: accumulator += tl.dot(a, b) a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk if MUL_ROUTED_WEIGHT: moe_weight = tl.load(topk_weights_ptr + offs_token, mask=token_mask, other=0) accumulator = accumulator * moe_weight[:, None] if use_int8_w8a16: accumulator = (accumulator * b_scale).to(compute_type) elif use_fp8_w8a8: accumulator = (accumulator * a_scale * b_scale).to(compute_type) else: accumulator = accumulator.to(compute_type) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = c_ptr + stride_cm * offs_token[:, None] + stride_cn * offs_cn[ None, :] c_mask = token_mask[:, None] & (offs_cn[None, :] < N) tl.store(c_ptrs, accumulator, mask=c_mask)
{ "Data Type": [ "int8", "fp16" ], "Functionality": [ "Matrix Multiplication", "Top-K Selection" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "Apache" ]
https://github.com/Charlie-XIAO/sparse-vllm/blob/d228909a30b0c245c35417fb7d2acdf9a3690042/vllm/model_executor/layers/fused_moe/fused_moe.py
b915901f-25e7-4e07-86fb-3ce11a600e0e
test_triton_varargs.py
facebookresearch/xformers
tests/test_triton_varargs.py
a2f37f8c5f4e3ae0d3459a92e42cd1aeb45b03bc
0
@triton.jit def kernel(x_ptrs: 'VAR_ARGS_ARRAY', y_ptrs: 'VAR_ARGS_ARRAY', numel, BLOCK_SIZE: tl.constexpr): pid = tl.program_id(axis=0) offsets = BLOCK_SIZE * pid + tl.arange(0, BLOCK_SIZE) mask = offsets < numel for i in range(len(x_ptrs)): x_ptr = x_ptrs[i] y_ptr = y_ptrs[i] data = tl.load(x_ptr + offsets, mask) result = data * data tl.store(y_ptr + offsets, result, mask)
{ "Data Type": [], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "BSD" ]
https://github.com/facebookresearch/xformers/blob/a2f37f8c5f4e3ae0d3459a92e42cd1aeb45b03bc/tests/test_triton_varargs.py
b5a86ee1-c573-4ef0-b121-3f8c69923b2c
triton_fused_attention.py
pytorch-labs/tritonbench
tritonbench/kernels/triton_fused_attention.py
3a5dccb159834968567a2e45e561dc1aeaa8f8a8
0
@triton.autotune(list(filter(keep, configsWS)), key=['N_CTX']) @triton.jit def _attn_fwd_ws(Q, K, V, sm_scale, M, Out, desc_q, desc_k, desc_v, desc_o, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_oz, stride_oh, stride_om, stride_on, Z, H, N_CTX, BLOCK_M: tl. constexpr, BLOCK_N: tl.constexpr, HEAD_DIM: tl.constexpr, STAGE: tl. constexpr, ENABLE_TMA: tl.constexpr, LOOP_SCHEDULE: tl.constexpr, ENABLE_WS: tl.constexpr): tl.static_assert(BLOCK_N <= HEAD_DIM) pid = tl.program_id(0) off_hz = tl.program_id(1) _attn_fwd_compute_ws(Q, K, V, sm_scale, M, Out, desc_q, desc_k, desc_v, desc_o, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_oz, stride_oh, stride_om, stride_on, off_hz, pid, Z, H, N_CTX, BLOCK_M, BLOCK_N, HEAD_DIM, STAGE, ENABLE_TMA, LOOP_SCHEDULE)
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Tiled", "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "BSD" ]
https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/kernels/triton_fused_attention.py
ac3a79c4-8892-4afd-bc3a-b1376778c60f
parallel_scan.py
chengkai-liu/RecBLR
parallel_scan.py
66e520c26e28c05a5425ba2e81c9169b7e0176e2
0
@triton.jit def pack64(a, b): tl.static_assert(a.dtype == tl.float32) tl.static_assert(b.dtype == tl.float32) a = a.to(dtype=tl.uint32, bitcast=True).to(tl.uint64) a = a << 32 b = b.to(dtype=tl.uint32, bitcast=True).to(tl.uint64) return a | b
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Register Intensive" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/chengkai-liu/RecBLR/blob/66e520c26e28c05a5425ba2e81c9169b7e0176e2/parallel_scan.py
aeb1d88e-f7a3-4baf-ad05-a447c96fd287
nll_loss_kernels.py
BobMcDear/attorch
attorch/nll_loss_kernels.py
da06cb6236bb47195e33fe3986ed21c675ed94cc
0
@triton.autotune(configs=warps_kernel_configs(), key=['batch_dim', 'spatial_dim']) @triton.heuristics({'BLOCK_SIZE_BATCH': BLOCK_SIZE_BATCH_heuristic, 'BLOCK_SIZE_SPATIAL': lambda args: next_power_of_2(args['spatial_dim'])}) @triton.jit def nll_loss_forward_kernel(input_pointer, target_pointer, weight_pointer, sum_weights_pointer, output_pointer, batch_dim, spatial_dim, input_batch_stride, input_feat_stride, input_spatial_stride, target_batch_stride, target_spatial_stride, output_batch_stride, output_spatial_stride, reduction: tl.constexpr, weighted: tl.constexpr, BLOCK_SIZE_BATCH: tl.constexpr, BLOCK_SIZE_SPATIAL: tl.constexpr): """ Measures the negative log likelihood loss between the input and target, with optional reweighing of each class. Args: input_pointer: Pointer to the input. The input must be of shape [batch_dim, feat_dim, spatial_dim]. target_pointer: Pointer to the target. The target must be of shape [batch_dim, spatial_dim]. weight_pointer: Pointer to an optional class weight vector. The class weight vector, if provided, must be of shape [feat_dim]. sum_weights_pointer: Pointer to a container the sum of the class weights is written to. The container must be of shape [batch_dim/BLOCK_SIZE_BATCH]. output_pointer: Pointer to a container the loss is written to. The container must be of shape [batch_dim, spatial_dim] if reduction is 'none', and otherwise of shape [batch_dim/BLOCK_SIZE]. batch_dim: Batch dimension. spatial_dim: Spatial dimension. input_batch_stride: Stride necessary to jump one element along the input's batch dimension. input_feat_stride: Stride necessary to jump one element along the input's feature dimension. input_spatial_stride: Stride necessary to jump one element along the input's spatial dimension. target_batch_stride: Stride necessary to jump one element along the target's batch dimension. target_spatial_stride: Stride necessary to jump one element along the target's spatial dimension. output_batch_stride: Stride necessary to jump one element along the output container's batch dimension. output_spatial_stride: Stride necessary to jump one element along the output container's spatial dimension. reduction: Reduction strategy for the output. Options are 'none' for no reduction, 'mean' for averaging the loss across all entries, and 'sum' for summing the loss across all entries. If a reduction method is specified, the reduced result of each program is written to a separate index in the summed weights and output container, which should later be summed. weighted: Flag for weighing each class. BLOCK_SIZE_BATCH: Block size across the batch dimension. BLOCK_SIZE_SPATIAL: Block size across the spatial dimension. """ batch_pid = tl.program_id(axis=0) batch_offset = batch_pid * BLOCK_SIZE_BATCH + tl.arange(0, BLOCK_SIZE_BATCH ) spatial_offset = tl.arange(0, BLOCK_SIZE_SPATIAL) batch_mask = batch_offset < batch_dim spatial_mask = spatial_offset < spatial_dim target_pointer += target_batch_stride * batch_offset[:, None ] + target_spatial_stride * spatial_offset[None, :] target = tl.load(target_pointer, mask=batch_mask[:, None] & spatial_mask[None, :]) input_pointer += (input_feat_stride * target + input_batch_stride * batch_offset[:, None] + input_spatial_stride * spatial_offset[None, :]) input = tl.load(input_pointer, mask=batch_mask[:, None] & spatial_mask[ None, :]).to(tl.float32) output = -input if weighted: weight = tl.load(weight_pointer + target, mask=batch_mask[:, None] & spatial_mask[None, :]).to(tl.float32) output *= weight if reduction == 'none': output_pointer += output_batch_stride * batch_offset[:, None ] + output_spatial_stride * spatial_offset[None, :] tl.store(output_pointer, output, mask=batch_mask[:, None] & spatial_mask[None, :]) elif reduction == 'mean': if weighted: tl.store(sum_weights_pointer + batch_pid, tl.sum(weight)) tl.store(output_pointer + batch_pid, tl.sum(output)) else: tl.store(output_pointer + batch_pid, tl.sum(output) / ( batch_dim * spatial_dim)) elif reduction == 'sum': tl.store(output_pointer + batch_pid, tl.sum(output))
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Elementwise Operations" ], "Memory Access Pattern": [ "Tiled", "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "MIT" ]
https://github.com/BobMcDear/attorch/blob/da06cb6236bb47195e33fe3986ed21c675ed94cc/attorch/nll_loss_kernels.py
f9da9e73-4afd-45c7-a28d-2725468622a1
paged_attn.py
AlibabaPAI/FLASHNN
flashnn/triton_kernels/paged_attn.py
528a9301587f5fb135b25d973a87ba0a40a703a7
0
@triton.autotune(configs=[triton.Config({}, num_warps=warps) for warps in [ 4, 8, 16]], key=['QUERY_GROUP_SIZE', 'HEAD_SIZE', 'NUM_PARTITIONS', 'PARTITION_SIZE']) @triton.jit def _paged_attn_w_mma_v2_reduce_kernel(out_ptr, m_i_ptr, l_i_ptr, tmp_out_ptr, context_lens_ptr, max_num_partitions, stride_o0, stride_o1, stride_o2, HEAD_SIZE: tl.constexpr, QUERY_GROUP_SIZE: tl.constexpr, PADDED_QUERY_GROUP_SIZE: tl.constexpr, NUM_KV_HEADS: tl.constexpr, PARTITION_SIZE: tl.constexpr, NUM_PARTITIONS: tl.constexpr): seq_idx = tl.program_id(0) kv_head_idx = tl.program_id(1) context_len = tl.load(context_lens_ptr + seq_idx) num_partitions = tl.cdiv(context_len, PARTITION_SIZE) group_head_offset = tl.arange(0, PADDED_QUERY_GROUP_SIZE)[:, None ] * HEAD_SIZE + tl.arange(0, HEAD_SIZE)[None, :] group_mask = tl.arange(0, PADDED_QUERY_GROUP_SIZE)[:, None ] < QUERY_GROUP_SIZE if num_partitions == 1: tmp_out_offset = ((seq_idx * NUM_KV_HEADS + kv_head_idx) * max_num_partitions * QUERY_GROUP_SIZE * HEAD_SIZE + group_head_offset) tmp_out = tl.load(tmp_out_ptr + tmp_out_offset, mask=group_mask, other=0.0) out_offset = (seq_idx * stride_o0 + kv_head_idx * QUERY_GROUP_SIZE * stride_o1 + group_head_offset * stride_o2) tl.store(out_ptr + out_offset, tmp_out, mask=group_mask) return ml_offset = (seq_idx * NUM_KV_HEADS + kv_head_idx ) * max_num_partitions * QUERY_GROUP_SIZE + tl.arange(0, NUM_PARTITIONS )[:, None] * QUERY_GROUP_SIZE + tl.arange(0, PADDED_QUERY_GROUP_SIZE)[ None, :] mask = (tl.arange(0, NUM_PARTITIONS)[:, None] < num_partitions) & (tl. arange(0, PADDED_QUERY_GROUP_SIZE)[None, :] < QUERY_GROUP_SIZE) m_i = tl.load(m_i_ptr + ml_offset, mask=mask, other=float('-inf')) m = tl.max(m_i, axis=0) l_i = tl.load(l_i_ptr + ml_offset, mask=mask, other=0.0) l_i *= tl.exp(m_i - m[None, :]) l = tl.sum(l_i, axis=0) r = l_i / l[None, :] r = tl.reshape(r, (NUM_PARTITIONS, PADDED_QUERY_GROUP_SIZE, 1)) tmp_out_offset = (seq_idx * NUM_KV_HEADS + kv_head_idx ) * max_num_partitions * QUERY_GROUP_SIZE * HEAD_SIZE + tl.arange(0, NUM_PARTITIONS)[:, None, None ] * QUERY_GROUP_SIZE * HEAD_SIZE + tl.arange(0, PADDED_QUERY_GROUP_SIZE )[None, :, None] * HEAD_SIZE + tl.arange(0, HEAD_SIZE)[None, None, :] tmp_out = tl.load(tmp_out_ptr + tmp_out_offset, mask=mask[:, :, None], other=0.0) out = tl.sum((tmp_out * r).to(tl.float32), axis=0) out_offset = (seq_idx * stride_o0 + kv_head_idx * QUERY_GROUP_SIZE * stride_o1 + group_head_offset * stride_o2) tl.store(out_ptr + out_offset, out, mask=group_mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Softmax" ], "Memory Access Pattern": [ "Tiled", "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "Apache" ]
https://github.com/AlibabaPAI/FLASHNN/blob/528a9301587f5fb135b25d973a87ba0a40a703a7/flashnn/triton_kernels/paged_attn.py
fbbb8e30-59c7-4345-a0af-c5932ca05a42
hello_triton.py
gmgu/study-triton
1_hello_triton/hello_triton.py
3a9a24fd3f1de3e7465535ffe72f6deac8a419bd
0
@triton.jit def hello_kernel(): print('Hello Triton Kernel!')
{ "Data Type": [], "Functionality": [], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "Apache" ]
https://github.com/gmgu/study-triton/blob/3a9a24fd3f1de3e7465535ffe72f6deac8a419bd/1_hello_triton/hello_triton.py
89417c21-0b2b-4b0f-bb94-3113c88d8895
adam.py
ServiceNow/Fast-LLM
fast_llm/functional/triton/adam.py
8b46289079da67cba99628448a6b6083dac083cf
0
@triton.jit def triton_adam_kernel(params_ptr, grads_ptr, exp_avgs_ptr, exp_avg_sqs_ptr, noop_flag_ptr, scale_ptr, step_size, beta1, beta2, bias_correction, decay_factor, epsilon, numel: tl.constexpr, block_size: tl.constexpr): noop_flag = tl.load(noop_flag_ptr) if noop_flag != 0: return scale = tl.load(scale_ptr) block_start = tl.program_id(axis=0).to(tl.int64) * block_size offsets = block_start + tl.arange(0, block_size) mask = offsets < numel params = tl.load(params_ptr + offsets, mask=mask) grads = tl.load(grads_ptr + offsets, mask=mask) grads = scale * grads exp_avgs = tl.load(exp_avgs_ptr + offsets, mask=mask) exp_avgs = beta1 * exp_avgs + (1 - beta1) * grads tl.store(exp_avgs_ptr + offsets, exp_avgs, mask=mask) exp_avg_sqs = tl.load(exp_avg_sqs_ptr + offsets, mask=mask) exp_avg_sqs = beta2 * exp_avg_sqs + (1 - beta2) * grads * grads tl.store(exp_avg_sqs_ptr + offsets, exp_avg_sqs, mask=mask) params = decay_factor * params - step_size * exp_avgs / (tl.sqrt( exp_avg_sqs) / bias_correction + epsilon) tl.store(params_ptr + offsets, params, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access", "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "Apache" ]
https://github.com/ServiceNow/Fast-LLM/blob/8b46289079da67cba99628448a6b6083dac083cf/fast_llm/functional/triton/adam.py
b21323e3-f171-4003-9eda-bd4fcfee5aff
flash_attention.py
falkaer/multi-scale-music
seq/flash_attention.py
a7794ddfb3bbd95b70acf3fe72a08d8a1d47564d
0
@triton.jit def make_bounds(offs_m, offs_n, M, N, EVEN_M: tl.constexpr, EVEN_N: tl. constexpr): if EVEN_M: mask = offs_n[None, :] < N elif EVEN_N: mask = offs_m[:, None] < M else: mask = (offs_m[:, None] < M) & (offs_n[None, :] < N) return mask
{ "Data Type": [], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/falkaer/multi-scale-music/blob/a7794ddfb3bbd95b70acf3fe72a08d8a1d47564d/seq/flash_attention.py
5f6f1215-91df-4856-935d-ad21674c7526
rwkv_log.py
berlino/seq_icl
src/models/sequence/rnn/scan_triton/rwkv_log.py
9b9223d15348b5a415fb453ed988ed5f7ab9fbdc
0
@triton.jit def logaddexp(a, b): max_ab = tl.maximum(a, b) return max_ab + tl.log(tl.exp(a - max_ab) + tl.exp(b - max_ab))
{ "Data Type": [], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "Apache" ]
https://github.com/berlino/seq_icl/blob/9b9223d15348b5a415fb453ed988ed5f7ab9fbdc/src/models/sequence/rnn/scan_triton/rwkv_log.py
aeaaa009-521f-43fd-884c-f286d78d2d44
fused_linear_cross_entropy.py
sustcsonglin/flash-linear-attention
fla/modules/fused_linear_cross_entropy.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.jit def cross_entropy_kernel(logits, lse, target, loss, total, ignore_index, label_smoothing: tl.constexpr, logit_scale: tl.constexpr, reduction: tl .constexpr, V: tl.constexpr, BV: tl.constexpr): """ This kernel computes both cross entropy loss and the gradient of the input. We only consider hard label + mean reduction for now. Please refer to https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html for the math. Args: logits: Pointer to logits tensor. lse: Pointer to logsumexp tensor. target: Pointer to target tensor. loss: Pointer to tensor to store the loss. V (int): The number of columns in the input tensor. total (int): The number of non-ignored classes. ignore_index (int): The index to ignore in the target. label_smoothing (float): The amount of smoothing when computing the loss, where 0.0 means no smoothing. reduction (str): The string for the reduction to apply BV (int): The block size for vocab. """ i_n = tl.program_id(0).to(tl.int64) NV = tl.cdiv(V, BV) b_y = tl.load(target + i_n) logits += i_n * V if b_y == ignore_index: for i in range(0, V, BV): o_v = i + tl.arange(0, BV) tl.store(logits + o_v, 0.0, mask=o_v < V) return b_l = tl.load(logits + b_y) * logit_scale b_lse = tl.load(lse + i_n) b_loss = b_lse - b_l b_z = 0.0 eps = label_smoothing / V tl.debug_barrier() for iv in range(0, NV): o_v = iv * BV + tl.arange(0, BV) b_logits = tl.load(logits + o_v, mask=o_v < V, other=float('-inf') ) * logit_scale if label_smoothing > 0: b_z += tl.sum(tl.where(o_v < V, -eps * b_logits, 0.0)) b_p = (tl.exp(b_logits - b_lse) - eps) * logit_scale if reduction == 'mean': b_p = b_p / total tl.store(logits + o_v, b_p, mask=o_v < V) tl.debug_barrier() if label_smoothing > 0: b_loss = b_loss * (1 - label_smoothing) + (b_z + label_smoothing * b_lse) b_l = tl.load(logits + b_y) if reduction == 'mean': b_loss = b_loss / total b_l += (label_smoothing - 1) / total * logit_scale else: b_l += (label_smoothing - 1) * logit_scale tl.store(loss + i_n, b_loss) tl.store(logits + b_y, b_l)
{ "Data Type": [ "fp32" ], "Functionality": [ "Softmax", "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "Memory-Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/modules/fused_linear_cross_entropy.py
0259cfec-6015-444e-944d-75eaa64eb07f
y_4.py
IntelLabs/EquiTriton
src/equitriton/sph_harm/direct/y_4.py
1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c
0
@triton.jit def fourth_order_fwd(coord_ptr: tl.tensor, output_ptr: tl.tensor, block_size: tl.constexpr, coord_numel: tl.constexpr, output_numel: tl. constexpr, col_offset: tl.constexpr, output_stride: tl.constexpr): coord_stride = 3 block_id = tl.program_id(0) coord_striding = tl.arange(0, block_size) * coord_stride coord_row_offset = coord_striding + block_size * coord_stride * block_id x = tl.load(coord_ptr + coord_row_offset, mask=coord_row_offset < coord_numel) y = tl.load(coord_ptr + coord_row_offset + 1, mask=coord_row_offset + 1 < coord_numel) z = tl.load(coord_ptr + coord_row_offset + 2, mask=coord_row_offset + 2 < coord_numel) CONST000 = 1.125 CONST001 = 2.25 CONST002 = 3.0 CONST005 = 2.21852991866236 CONST007 = 9.48683298050514 CONST010 = 20.1246117974981 CONST011 = -18.8248505970167 CONST012 = -13.3111795119741 CONST013 = -10.0623058987491 CONST014 = -9.0 CONST015 = -8.87411967464942 CONST016 = -7.11512473537885 CONST017 = -6.27495019900557 CONST018 = -3.35410196624968 CONST019 = -1.67705098312484 VAR06 = x * x * x * x VAR07 = x * x * x VAR08 = x * x VAR15 = y * y * y * y VAR16 = y * y * y VAR17 = y * y VAR24 = z * z * z * z VAR25 = z * z * z VAR26 = z * z Y00 = CONST015 * VAR07 * z - CONST015 * VAR25 * x Y01 = y * (-CONST011 * VAR26 * x + CONST017 * VAR07) Y02 = CONST018 * VAR07 * z + x * (CONST010 * VAR17 * z + CONST018 * VAR25) Y03 = CONST016 * VAR07 * y + x * (CONST007 * VAR16 + CONST016 * VAR26 * y) Y04 = (CONST000 * VAR06 + CONST000 * VAR24 + CONST002 * VAR15 + CONST014 * VAR17 * VAR26 + VAR08 * (CONST001 * VAR26 + CONST014 * VAR17)) Y05 = CONST016 * VAR25 * y + z * (CONST007 * VAR16 + CONST016 * VAR08 * y) Y06 = -CONST019 * VAR06 + CONST019 * VAR24 + VAR17 * (CONST013 * VAR08 - CONST013 * VAR26) Y07 = y * (CONST011 * VAR08 * z - CONST017 * VAR25) Y08 = CONST005 * VAR06 + CONST005 * VAR24 + CONST012 * VAR08 * VAR26 output_striding = tl.arange(0, block_size) * output_stride output_row_offset = (output_striding + block_size * output_stride * block_id + col_offset) tl.store(output_ptr + output_row_offset, Y00, mask=output_row_offset < output_numel) tl.store(output_ptr + output_row_offset + 1, Y01, mask= output_row_offset + 1 < output_numel) tl.store(output_ptr + output_row_offset + 2, Y02, mask= output_row_offset + 2 < output_numel) tl.store(output_ptr + output_row_offset + 3, Y03, mask= output_row_offset + 3 < output_numel) tl.store(output_ptr + output_row_offset + 4, Y04, mask= output_row_offset + 4 < output_numel) tl.store(output_ptr + output_row_offset + 5, Y05, mask= output_row_offset + 5 < output_numel) tl.store(output_ptr + output_row_offset + 6, Y06, mask= output_row_offset + 6 < output_numel) tl.store(output_ptr + output_row_offset + 7, Y07, mask= output_row_offset + 7 < output_numel) tl.store(output_ptr + output_row_offset + 8, Y08, mask= output_row_offset + 8 < output_numel)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [] }
[ "Apache" ]
https://github.com/IntelLabs/EquiTriton/blob/1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c/src/equitriton/sph_harm/direct/y_4.py
99554c85-0a2d-42e8-ab1a-65744f560890
chunk.py
sustcsonglin/flash-linear-attention
fla/ops/gla/chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8)], key=['BC']) @triton.jit def chunk_gla_fwd_A_kernel_intra_sub_intra_merge(A, A2, offsets, indices, B: tl.constexpr, T: tl.constexpr, H: tl.constexpr, BT: tl.constexpr, BC: tl.constexpr, NK: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr): i_t, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_b, i_h = i_bh // H, i_bh % H if USE_OFFSETS: i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) all = T T = eos - bos else: bos, eos = i_b * T, i_b * T + T all = B * T if i_t * BT + i_c * BC >= T: return b_A = tl.zeros([BC, BC], dtype=tl.float32) for i_k in range(0, NK): if HEAD_FIRST: p_A = tl.make_block_ptr(A + (i_k * B * H + i_bh) * T * BC, (T, BC), (BC, 1), (i_t * BT + i_c * BC, 0), (BC, BC), (1, 0)) else: p_A = tl.make_block_ptr(A + (i_k * all + bos) * H * BC + i_h * BC, (T, BC), (H * BC, 1), (i_t * BT + i_c * BC, 0), (BC, BC ), (1, 0)) b_A += tl.load(p_A, boundary_check=(0, 1)) if HEAD_FIRST: p_A2 = tl.make_block_ptr(A2 + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT + i_c * BC, i_c * BC), (BC, BC), (1, 0)) else: p_A2 = tl.make_block_ptr(A2 + (bos * H + i_h) * BT, (T, BT), (H * BT, 1), (i_t * BT + i_c * BC, i_c * BC), (BC, BC), (1, 0)) tl.store(p_A2, b_A.to(A2.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/gla/chunk.py
58b3463b-151f-4a0e-bc35-134133839e16
chunk.py
sustcsonglin/flash-linear-attention
fla/ops/abc/chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.jit def chunk_abc_fwd_kernel_V(q, v, z, h, o, A, s_k_h, s_k_t, s_k_d, s_v_h, s_v_t, s_v_d, s_h_h, s_h_t, s_h_d, scale, T: tl.constexpr, K: tl. constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl. constexpr): i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_p = tl.maximum(i_t * BT - 1, 0) b_o = tl.zeros([BT, BV], dtype=tl.float32) for i_k in range(tl.cdiv(K, BK)): p_q = tl.make_block_ptr(q + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), ( i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_z = tl.make_block_ptr(z + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), ( i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_h = tl.make_block_ptr(h + i_bh * s_h_h + i_t * K * V, (K, V), ( s_h_t, s_h_d), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) p_zp = tl.make_block_ptr(z + i_bh * s_k_h, (T * K,), (s_k_d,), (i_p * K + i_k * BK,), (BK,), (0,)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_q = (b_q * scale).to(b_q.dtype) b_z = tl.load(p_z, boundary_check=(0, 1)) b_zp = tl.load(p_zp, boundary_check=(0,)) b_q = (b_q * tl.exp(b_zp[None, :] - b_z)).to(b_q.dtype) b_h = tl.load(p_h, boundary_check=(0, 1)) if i_k >= 0: b_o += tl.dot(b_q, b_h, allow_tf32=False) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_o = tl.make_block_ptr(o + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_A = tl.make_block_ptr(A + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_A = tl.load(p_A, boundary_check=(0, 1)) b_o += tl.dot(b_A, b_v, allow_tf32=False) tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/abc/chunk.py
466944e0-8df6-43af-8e5a-f9a4513cce97
wy_fast.py
sustcsonglin/flash-linear-attention
fla/ops/gated_delta_rule/wy_fast.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({}, num_warps=num_warps) for num_warps in [2, 4, 8]], key=['BT', 'BK', 'BV']) @triton.jit def fwd_recompute_w_u_kernel(k, v, beta, w, u, Aw, Au, offsets, indices, T: tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl .constexpr, BK: tl.constexpr, BV: tl.constexpr, HEAD_FIRST: tl. constexpr, USE_OFFSETS: tl.constexpr): i_t, i_bh = tl.program_id(0), tl.program_id(1) i_b, i_h = i_bh // H, i_bh % H if USE_OFFSETS: i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos else: bos, eos = i_b * T, i_b * T + T if HEAD_FIRST: p_beta = tl.make_block_ptr(beta + i_bh * T, (T,), (1,), (i_t * BT,), (BT,), (0,)) p_Au = tl.make_block_ptr(Au + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) else: p_beta = tl.make_block_ptr(beta + bos * H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,)) p_Au = tl.make_block_ptr(Au + (bos * H + i_h) * BT, (T, BT), (H * BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) b_beta = tl.load(p_beta, boundary_check=(0,)) b_Au = tl.load(p_Au, boundary_check=(0, 1)) for i_v in range(tl.cdiv(V, BV)): if HEAD_FIRST: p_v = tl.make_block_ptr(v + i_bh * T * V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_u = tl.make_block_ptr(u + i_bh * T * V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) else: p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_u = tl.make_block_ptr(u + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_vb = (b_v * b_beta[:, None]).to(b_v.dtype) b_u = tl.dot(b_Au, b_vb, allow_tf32=False) tl.store(p_u, b_u.to(p_u.dtype.element_ty), boundary_check=(0, 1)) tl.debug_barrier() b_Au = None if HEAD_FIRST: p_Aw = tl.make_block_ptr(Aw + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) else: p_Aw = tl.make_block_ptr(Aw + (bos * H + i_h) * BT, (T, BT), (H * BT, 1), (i_t * BT, 0), (BT, BT), (1, 0)) b_Aw = tl.load(p_Aw, boundary_check=(0, 1)) for i_k in range(tl.cdiv(K, BK)): if HEAD_FIRST: p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_w = tl.make_block_ptr(w + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) else: p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_w = tl.make_block_ptr(w + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_kb = (b_k * b_beta[:, None]).to(b_k.dtype) b_w = tl.dot(b_Aw, b_kb) tl.store(p_w, b_w.to(p_w.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/gated_delta_rule/wy_fast.py
b7a78b7c-edba-48ab-88b8-0d8b4fa84948
normalization.py
ServiceNow/Fast-LLM
fast_llm/functional/triton/normalization.py
8b46289079da67cba99628448a6b6083dac083cf
0
@triton.jit def triton_normalization_backward_kernel_2(grad_weight_partial_ptr, grad_bias_partial_ptr, grad_weight_ptr, grad_bias_ptr, m, n_cols, has_bias: tl.constexpr, accumulate_grad: tl.constexpr, block_size_m: tl .constexpr, block_size_n: tl.constexpr): pid = tl.program_id(0) cols = pid * block_size_n + tl.arange(0, block_size_n) grad_weight_partial_sum = tl.zeros((block_size_m, block_size_n), dtype= tl.float32) if has_bias: grad_bias_partial_sum = tl.zeros((block_size_m, block_size_n), dtype=tl.float32) col_mask = cols < n_cols for i in range(0, m, block_size_m): rows = i + tl.arange(0, block_size_m) mask = (rows[:, None] < m) & (cols[None, :] < n_cols) offsets = rows[:, None] * n_cols + cols[None, :] grad_weight_partial_sum += tl.load(grad_weight_partial_ptr + offsets, mask=mask, other=0.0) if has_bias: grad_bias_partial_sum += tl.load(grad_bias_partial_ptr + offsets, mask=mask, other=0.0) grad_weight = tl.sum(grad_weight_partial_sum, axis=0) if accumulate_grad: grad_weight = tl.load(grad_weight_ptr + cols, mask=col_mask ) + grad_weight tl.store(grad_weight_ptr + cols, grad_weight, mask=col_mask) if has_bias: grad_bias = tl.sum(grad_bias_partial_sum, axis=0) if accumulate_grad: grad_bias = tl.load(grad_bias_ptr + cols, mask=col_mask ) + grad_bias tl.store(grad_bias_ptr + cols, grad_bias, mask=col_mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Normalization", "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [] }
[ "Apache" ]
https://github.com/ServiceNow/Fast-LLM/blob/8b46289079da67cba99628448a6b6083dac083cf/fast_llm/functional/triton/normalization.py
26e4d111-f4aa-445c-91fa-fcdaff284554
k_layer_norm.py
cpuhrsch/torchfused
torchfused/triton/k_layer_norm.py
6c40ed160dcecbe7825f268f7c86bccd359e0ebf
0
@triton.jit def _layer_norm_no_affine_bwd(DX, DY, Y, V, stride, N, **META): row = tl.program_id(0) cols = tl.arange(0, META['BLOCK_SIZE_N']) y_ptrs = Y + row * stride + cols dy_ptrs = DY + row * stride + cols y = tl.load(y_ptrs, mask=cols < N, other=0).to(tl.float32) dy = tl.load(dy_ptrs, mask=cols < N, other=0).to(tl.float32) rstd = tl.load(V + row) xhat = tl.where(cols < N, y, 0.0) wdy = tl.where(cols < N, dy, 0.0) mean1 = tl.sum(xhat * wdy, axis=0) / N mean2 = tl.sum(wdy, axis=0) / N dx = (wdy - (xhat * mean1 + mean2)) * rstd _store(dx, DX, stride, N, META)
{ "Data Type": [ "fp32" ], "Functionality": [ "Normalization", "Backpropagation" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [] }
[ "BSD" ]
https://github.com/cpuhrsch/torchfused/blob/6c40ed160dcecbe7825f268f7c86bccd359e0ebf/torchfused/triton/k_layer_norm.py
8cfb5a84-099f-41cc-9d64-f30e70e6e39b
quantization.py
neuro-ml/kerops
kerops/kernels/quantization.py
735336775e825d5cb06b8850d25423661b12d1ac
0
@triton.jit def _QuantUint8Window_impl(input_ptr, output_ptr, numel, window, BLOCK_SIZE: tl.constexpr): tid = tl.program_id(0) input_ptr += tid * BLOCK_SIZE output_ptr += tid * BLOCK_SIZE offset = tl.arange(0, BLOCK_SIZE) mask = offset < numel - tid * BLOCK_SIZE input = tl.load(input_ptr + offset, mask=mask).to(tl.float32) input = tl.minimum(tl.maximum(input, -window), window) input = (input + window) / (2 * window) input *= 255 input = input.to(tl.uint8) tl.store(output_ptr + offset, input, mask=mask)
{ "Data Type": [ "uint8" ], "Functionality": [ "Quantization" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/neuro-ml/kerops/blob/735336775e825d5cb06b8850d25423661b12d1ac/kerops/kernels/quantization.py
ecb649cc-99a1-47b3-abec-69aff2b74328
kernel_benchmark.py
ruikangliu/FlatQuant
benchmarks/kernel_benchmark.py
9d3032065f1688cb3f71ebc8166df6d91440e871
0
@triton.autotune(configs=[triton.Config({}, num_stages=2, num_warps=4), triton.Config({}, num_stages=2, num_warps=2), triton.Config({}, num_stages=3, num_warps=4), triton.Config({}, num_stages=3, num_warps=2 ), triton.Config({}, num_stages=4, num_warps=4), triton.Config({}, num_stages=4, num_warps=2)], key=['B', 'M', 'N']) @triton.jit def matmul_kernel(a_ptr, b_ptr, c_ptr, res_ptr, output_scale, B, M: tl. constexpr, N: tl.constexpr, np2_M: tl.constexpr, np2_N: tl.constexpr, stride_am, stride_ak, stride_bb, stride_bk, stride_bn, stride_ck, stride_cn, stride_resb, stride_resm, stride_resn, BLOCK_SIZE_M: tl. constexpr, is_split: tl.constexpr): """ a @ b @ c a [M, M] b [B, M, N] c [N, N] now only supports BLOCK_SIZE_M == triton.next_power_of_2(BLOCK_SIZE_M) """ pid = tl.program_id(axis=0) batch_id = tl.program_id(axis=1) + tl.program_id(axis=2) * tl.num_programs( axis=1) pid_m = pid offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M offs_bn = tl.arange(0, np2_N) % N offs_k = tl.arange(0, np2_M) a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) b_ptrs = b_ptr + batch_id * stride_bb.to(tl.int64) + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn) accumulator = tl.zeros((BLOCK_SIZE_M, np2_N), dtype=tl.float32) a = tl.load(a_ptrs, mask=offs_k[None, :] < M, other=0.0) b = tl.load(b_ptrs, mask=offs_k[:, None] < M, other=0.0) accumulator += tl.dot(a, b) tmp_ab = accumulator.to(tl.float16) offs_cn = tl.arange(0, np2_N) % N offs_k = tl.arange(0, np2_N) c_ptrs = c_ptr + (offs_k[:, None] * stride_ck + offs_cn[None, :] * stride_cn) c = tl.load(c_ptrs, mask=offs_k[:, None] < N, other=0.0) accumulator = 0 accumulator += tl.dot(tmp_ab, c) if is_split: res = accumulator.to(tl.float16) offs_resm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_resn = tl.arange(0, np2_N) res_ptrs = res_ptr + stride_resb.to(tl.int64 ) * batch_id + stride_resm * offs_resm[:, None ] + stride_resn * offs_resn[None, :] res_mask = (offs_resm[:, None] < M) & (offs_resn[None, :] < N) tl.store(res_ptrs, res, mask=res_mask) else: abs_src_val = tl.abs(accumulator) max_src_val = tl.max(abs_src_val) scale = max_src_val / 7.0 quant_val = libdevice.llrint(accumulator / scale) quant_val = max(-8, min(quant_val, 7)) quant_val = quant_val.reshape(BLOCK_SIZE_M, np2_N // 2, 2, can_reorder=False) quant_val_even, quant_val_odd = quant_val.split() quant_val_odd = quant_val_odd << 4 res = tl.zeros((BLOCK_SIZE_M, np2_N // 2), dtype=tl.int8) res = res | quant_val_odd & 240 res = res | quant_val_even & 15 offs_resm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_resn = tl.arange(0, np2_N // 2) res_ptrs = res_ptr + stride_resb.to(tl.int64 ) * batch_id + stride_resm * offs_resm[:, None ] + stride_resn * offs_resn[None, :] res_mask = (offs_resm[:, None] < M) & (offs_resn[None, :] < N // 2) tl.store(res_ptrs, res, mask=res_mask) tl.store(output_scale + batch_id, scale.to(tl.float16))
{ "Data Type": [ "fp32", "fp16", "int8" ], "Functionality": [ "Matrix Multiplication", "Quantization" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/ruikangliu/FlatQuant/blob/9d3032065f1688cb3f71ebc8166df6d91440e871/benchmarks/kernel_benchmark.py
06a01956-3562-48af-87d8-0ba21f8d29e7
fused_moe_a8w8.py
AlibabaPAI/FLASHNN
flashnn/triton_kernels/fused_moe_a8w8.py
528a9301587f5fb135b25d973a87ba0a40a703a7
0
@triton.jit def _fused_moe_a8w8_kernel(A, B, C, alpha_row_ptr, alpha_col_ptr, topk_weights_ptr, sorted_token_ids_ptr, expert_ids_ptr, num_tokens_post_padded_ptr, N, K, EM, num_valid_tokens, stride_am, stride_ak, stride_be, stride_bn, stride_bk, stride_cm, stride_cn, stride_scale_be, stride_scale_bn, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr, MUL_ROUTED_WEIGHT: tl.constexpr, top_k: tl.constexpr): pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(EM, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) num_pid_in_group = GROUP_SIZE_M * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_m = first_pid_m + pid % num_pid_in_group % group_size_m pid_n = pid % num_pid_in_group // group_size_m num_tokens_post_padded = tl.load(num_tokens_post_padded_ptr) if pid_m * BLOCK_SIZE_M >= num_tokens_post_padded: return offs_token_id = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_token = tl.load(sorted_token_ids_ptr + offs_token_id) token_mask = offs_token < num_valid_tokens offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = A + (offs_token[:, None] // top_k * stride_am + offs_k[None, : ] * stride_ak) off_experts = tl.load(expert_ids_ptr + pid_m) b_ptrs = B + off_experts * stride_be + (offs_bn[None, :] * stride_bn + offs_k[:, None] * stride_bk) accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.int32) _A0 = tl.zeros([1, 1], dtype=a_ptrs.dtype.element_ty) _B0 = tl.zeros([1, 1], dtype=b_ptrs.dtype.element_ty) lo = 0 hi = tl.cdiv(K, BLOCK_SIZE_K) for k in range(lo, hi - 1): a = tl.load(a_ptrs, mask=token_mask[:, None], other=_A0) b = tl.load(b_ptrs) accumulator += tl.dot(a, b) a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk for k in range(hi - 1, hi): a = tl.load(a_ptrs, mask=token_mask[:, None] & (offs_k[None, :] < K - k * BLOCK_SIZE_K), other=_A0) b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=_B0) accumulator += tl.dot(a, b) a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk offs_token_id = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_token = tl.load(sorted_token_ids_ptr + offs_token_id) token_mask = offs_token < num_valid_tokens offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) alpha_row_ptrs = alpha_row_ptr + offs_token // top_k alpha_col_ptrs = alpha_col_ptr + off_experts * stride_scale_be + offs_cn _ALPHA0 = tl.zeros([1], dtype=alpha_row_ptr.dtype.element_ty) alpha_row = tl.load(alpha_row_ptrs, mask=token_mask, other=_ALPHA0).to(tl .float32) alpha_col = tl.load(alpha_col_ptrs, mask=offs_cn < N, other=_ALPHA0).to(tl .float32) accumulator = accumulator * alpha_row[:, None] accumulator = accumulator * alpha_col[None, :] if MUL_ROUTED_WEIGHT: moe_weight = tl.load(topk_weights_ptr + offs_token, mask=token_mask, other=0) accumulator = accumulator * moe_weight[:, None] accumulator = accumulator.to(tl.float16) c_ptrs = C + stride_cm * offs_token[:, None] + stride_cn * offs_cn[None, :] c_mask = token_mask[:, None] & (offs_cn[None, :] < N) tl.store(c_ptrs, accumulator, mask=c_mask)
{ "Data Type": [ "fp16" ], "Functionality": [ "Matrix Multiplication", "Top-K Selection" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "Apache" ]
https://github.com/AlibabaPAI/FLASHNN/blob/528a9301587f5fb135b25d973a87ba0a40a703a7/flashnn/triton_kernels/fused_moe_a8w8.py
18bdbd68-3013-4acb-9efe-c2827d61c4ee
y_7.py
IntelLabs/EquiTriton
src/equitriton/sph_harm/direct/y_7.py
1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c
0
@triton.jit def seventh_order_bwd(coord_ptr: tl.tensor, coord_grad_ptr: tl.tensor, sph_grad_ptr: tl.tensor, block_size: tl.constexpr, coord_numel: tl. constexpr, output_numel: tl.constexpr, col_offset: tl.constexpr, output_stride: tl.constexpr): block_id = tl.program_id(0) coord_stride = 3 coord_striding = tl.arange(0, block_size) * coord_stride coord_row_offset = coord_striding + block_size * coord_stride * block_id x = tl.load(coord_ptr + coord_row_offset, mask=coord_row_offset < coord_numel) y = tl.load(coord_ptr + coord_row_offset + 1, mask=coord_row_offset + 1 < coord_numel) z = tl.load(coord_ptr + coord_row_offset + 2, mask=coord_row_offset + 2 < coord_numel) output_striding = tl.arange(0, block_size) * output_stride output_row_offset = (output_striding + block_size * output_stride * block_id + col_offset) g_0 = tl.load(sph_grad_ptr + output_row_offset, mask=output_row_offset < output_numel) g_1 = tl.load(sph_grad_ptr + output_row_offset + 1, mask= output_row_offset + 1 < output_numel) g_2 = tl.load(sph_grad_ptr + output_row_offset + 2, mask= output_row_offset + 2 < output_numel) g_3 = tl.load(sph_grad_ptr + output_row_offset + 3, mask= output_row_offset + 3 < output_numel) g_4 = tl.load(sph_grad_ptr + output_row_offset + 4, mask= output_row_offset + 4 < output_numel) g_5 = tl.load(sph_grad_ptr + output_row_offset + 5, mask= output_row_offset + 5 < output_numel) g_6 = tl.load(sph_grad_ptr + output_row_offset + 6, mask= output_row_offset + 6 < output_numel) g_7 = tl.load(sph_grad_ptr + output_row_offset + 7, mask= output_row_offset + 7 < output_numel) g_8 = tl.load(sph_grad_ptr + output_row_offset + 8, mask= output_row_offset + 8 < output_numel) g_9 = tl.load(sph_grad_ptr + output_row_offset + 9, mask= output_row_offset + 9 < output_numel) g_10 = tl.load(sph_grad_ptr + output_row_offset + 10, mask= output_row_offset + 10 < output_numel) g_11 = tl.load(sph_grad_ptr + output_row_offset + 11, mask= output_row_offset + 11 < output_numel) g_12 = tl.load(sph_grad_ptr + output_row_offset + 12, mask= output_row_offset + 12 < output_numel) g_13 = tl.load(sph_grad_ptr + output_row_offset + 13, mask= output_row_offset + 13 < output_numel) g_14 = tl.load(sph_grad_ptr + output_row_offset + 14, mask= output_row_offset + 14 < output_numel) CONST000 = 1.66389743899677 CONST001 = 3.0 CONST003 = 5.0 CONST004 = 3.32779487799353 CONST009 = 11.7655316231354 CONST012 = 16.5555704843566 CONST014 = 20.4939015319192 CONST016 = 22.0740939791422 CONST018 = 23.5310632462709 CONST019 = 20.4939015319192 CONST020 = 27.1108834234519 CONST022 = 33.1111409687132 CONST024 = 36.7901566319036 CONST025 = 36.7901566319036 CONST026 = 38.4260653723485 CONST027 = 38.4260653723485 CONST029 = 38.4260653723485 CONST030 = 44.1481879582843 CONST032 = -4.9916923169903 CONST037 = 47.0621264925417 CONST039 = 56.2781179722634 CONST044 = -441.481879582843 CONST045 = -441.481879582843 CONST048 = 76.852130744697 CONST049 = 76.852130744697 CONST050 = -8.47215106982872 CONST054 = 110.370469895711 CONST055 = 110.370469895711 CONST056 = -399.335385359224 CONST057 = 117.655316231354 CONST058 = 122.963409191515 CONST059 = 122.963409191515 CONST061 = -376.497011940334 CONST062 = -376.497011940334 CONST064 = 141.186379477625 CONST066 = 147.160626527614 CONST067 = 153.704261489394 CONST069 = -350.955726374425 CONST072 = 203.331625675889 CONST073 = 203.331625675889 CONST074 = -307.408522978788 CONST075 = -9.60651634308713 CONST076 = -9.37968632871057 CONST079 = -281.390589861317 CONST080 = -1.66389743899677 CONST081 = -266.223590239483 CONST082 = -263.216794780819 CONST084 = -263.216794780818 CONST085 = -250.998007960223 CONST089 = 281.390589861317 CONST091 = -220.740939791422 CONST092 = -220.740939791422 CONST093 = -199.667692679612 CONST094 = -1.60108605718119 CONST095 = -187.593726574211 CONST096 = -177.482393492989 CONST097 = -9.60651634308712 CONST098 = -9.1975391579759 CONST100 = -153.704261489394 CONST101 = -147.160626527614 CONST102 = -140.695294930659 CONST104 = -133.111795119741 CONST105 = -133.111795119741 CONST106 = -125.499003980111 CONST107 = -125.499003980111 CONST109 = -105.286717912327 CONST110 = -101.665812837945 CONST111 = -99.833846339806 CONST112 = -101.665812837945 CONST113 = -4.80325817154356 CONST114 = -81.3326502703558 CONST115 = -81.3326502703557 CONST116 = -76.852130744697 CONST117 = -75.2994023880668 CONST119 = -70.5931897388126 CONST121 = -66.2222819374265 CONST122 = -66.5558975598707 CONST123 = -66.5558975598707 CONST124 = -62.7495019900557 CONST125 = -56.2781179722634 CONST126 = -55.1852349478554 CONST127 = -55.1852349478554 CONST128 = -50.8329064189723 CONST129 = -50.8329064189723 CONST130 = -562.781179722634 CONST131 = -47.0621264925418 CONST132 = -50.8329064189724 CONST133 = -44.1481879582843 CONST134 = -44.3705983732471 CONST135 = -40.6663251351779 CONST136 = -40.6663251351779 CONST137 = -8.31948719498384 CONST138 = -37.6497011940334 CONST139 = -33.2779487799353 CONST140 = -29.9501539019418 CONST141 = -25.4164532094862 CONST142 = -25.4164532094862 CONST143 = -23.5310632462709 CONST144 = -532.447180478965 CONST145 = -19.2130326861743 CONST146 = -17.5477863187212 CONST147 = -12.8765548211663 CONST148 = -11.6472820729774 CONST149 = -11.2076024002683 CONST150 = -9.1975391579759 CONST151 = -11.0370469895711 CONST152 = -11.7655316231354 CONST153 = -12.8765548211663 CONST154 = -4.80325817154356 CONST155 = -3.32779487799353 CONST156 = -1.60108605718119 VAR06 = x * x * x * x VAR07 = x * x * x VAR08 = x * x VAR04 = VAR07 * VAR07 VAR05 = VAR07 * VAR08 VAR16 = y * y * y VAR17 = y * y VAR13 = VAR16 * VAR16 VAR14 = VAR16 * VAR17 VAR15 = VAR17 * VAR17 VAR25 = z * z * z VAR26 = z * z VAR22 = VAR25 * VAR25 VAR23 = VAR25 * VAR26 VAR24 = VAR26 * VAR26 g_x = tl.load(coord_grad_ptr + coord_row_offset, mask=coord_row_offset < coord_numel) g_y = tl.load(coord_grad_ptr + coord_row_offset + 1, mask= coord_row_offset + 1 < coord_numel) g_z = tl.load(coord_grad_ptr + coord_row_offset + 2, mask= coord_row_offset + 2 < coord_numel) g_x += g_0 * (CONST082 * VAR08 * VAR24 - CONST084 * VAR06 * VAR26 + CONST146 * VAR04 - CONST146 * VAR22) + g_1 * y * (CONST039 * VAR23 + CONST089 * VAR06 * z + CONST130 * VAR08 * VAR25) + g_10 * (CONST155 * VAR23 * x + VAR25 * (-CONST105 * VAR17 * x + CONST139 * VAR07) + z * (-CONST056 * VAR07 * VAR17 + CONST081 * VAR15 * x + CONST140 * VAR05) ) + g_11 * (VAR16 * (CONST044 * VAR26 * x - CONST101 * VAR07) + y * (CONST054 * VAR24 * x - CONST091 * VAR07 * VAR26 + CONST121 * VAR05) ) + g_12 * (CONST022 * VAR23 * x + VAR25 * (CONST024 * VAR07 + CONST045 * VAR17 * x) + z * (-CONST044 * VAR07 * VAR17 + CONST126 * VAR05)) + g_13 * y * (CONST079 * VAR24 * x + CONST125 * VAR05 - CONST130 * VAR07 * VAR26) + g_14 * (-CONST069 * VAR07 * VAR25 + CONST109 * VAR05 * z + CONST109 * VAR23 * x) + g_2 * (CONST001 * VAR08 * (CONST091 * VAR17 * VAR26 - CONST150 * VAR24) + CONST003 * VAR06 * (CONST012 * VAR26 + CONST016 * VAR17) + CONST055 * VAR17 * VAR24 + CONST147 * VAR04 + CONST150 * VAR22) + g_3 * (VAR16 * ( CONST044 * VAR08 * z + CONST066 * VAR25) + y * (-CONST091 * VAR06 * z + CONST133 * VAR23)) + g_4 * (CONST001 * VAR08 * (CONST122 * VAR17 * VAR26 + CONST134 * VAR15 - CONST137 * VAR24) + CONST003 * VAR06 * (CONST000 * VAR26 - CONST139 * VAR17) - CONST032 * VAR22 - CONST105 * VAR15 * VAR26 + CONST111 * VAR17 * VAR24 + CONST148 * VAR04 ) + g_5 * (CONST001 * VAR08 * (CONST106 * VAR16 * z - CONST131 * VAR25 * y) + CONST057 * VAR06 * y * z + CONST107 * VAR16 * VAR25 - CONST117 * VAR14 * z - CONST143 * VAR23 * y) + g_6 * (CONST001 * VAR08 * (CONST116 * VAR15 - CONST116 * VAR17 * VAR26 + CONST154 * VAR24) + CONST003 * VAR06 * (CONST026 * VAR17 + CONST113 * VAR26) + CONST014 * VAR13 + CONST027 * VAR17 * VAR24 + CONST116 * VAR15 * VAR26 + CONST149 * VAR04 + CONST156 * VAR22) + g_7 * (CONST114 * VAR14 * x + VAR16 * (CONST072 * VAR07 + CONST073 * VAR26 * x) + y * (CONST110 * VAR07 * VAR26 + CONST128 * VAR05 + CONST129 * VAR24 * x) ) + g_8 * (CONST075 * VAR23 * x + VAR25 * (-CONST100 * VAR17 * x + CONST145 * VAR07) + z * (CONST067 * VAR07 * VAR17 + CONST097 * VAR05 + CONST100 * VAR15 * x)) + g_9 * (-CONST085 * VAR07 * VAR16 + CONST117 * VAR14 * x + y * (CONST018 * VAR24 * x + CONST119 * VAR05 + CONST131 * VAR07 * VAR26)) g_y += g_1 * (CONST039 * VAR23 * x + CONST095 * VAR07 * VAR25 - CONST125 * VAR05 * z) + g_10 * (CONST123 * VAR23 * y + VAR25 * (- CONST096 * VAR16 - CONST105 * VAR08 * y) + z * (-CONST093 * VAR06 * y + CONST144 * VAR08 * VAR16)) + g_11 * (CONST001 * VAR17 * ( CONST025 * VAR06 + CONST025 * VAR24 + CONST092 * VAR08 * VAR26) - CONST126 * VAR06 * VAR26 - CONST126 * VAR08 * VAR24 + CONST151 * VAR04 + CONST151 * VAR22) + g_12 * (CONST030 * VAR23 * y + CONST045 * VAR08 * VAR25 * y - CONST092 * VAR06 * y * z) + g_13 * (CONST076 * VAR04 - CONST076 * VAR22 - CONST102 * VAR06 * VAR26 + CONST102 * VAR08 * VAR24) + g_2 * (CONST030 * VAR05 * y + CONST045 * VAR07 * VAR26 * y - CONST092 * VAR24 * x * y) + g_3 * (CONST001 * VAR17 * ( CONST066 * VAR25 * x + CONST101 * VAR07 * z) - CONST133 * VAR05 * z + CONST133 * VAR23 * x) + g_4 * (-CONST123 * VAR05 * y + VAR07 * ( CONST096 * VAR16 + CONST104 * VAR26 * y) + x * (CONST093 * VAR24 * y - CONST144 * VAR16 * VAR26)) + g_5 * (-CONST143 * VAR05 * z + VAR07 * (CONST062 * VAR17 * z - CONST131 * VAR25) + x * (CONST061 * VAR17 * VAR25 - CONST062 * VAR15 * z - CONST143 * VAR23)) + g_6 * ( CONST048 * VAR05 * y + VAR07 * (CONST074 * VAR16 - CONST100 * VAR26 * y) + x * (CONST058 * VAR14 + CONST074 * VAR16 * VAR26 - CONST116 * VAR24 * y)) + g_7 * (CONST001 * VAR17 * (-CONST112 * VAR08 * VAR26 - CONST128 * VAR06 - CONST128 * VAR24) + CONST003 * VAR15 * (CONST135 * VAR08 + CONST136 * VAR26) + CONST020 * VAR13 + CONST050 * VAR04 + CONST050 * VAR22 + CONST141 * VAR06 * VAR26 + CONST142 * VAR08 * VAR24 ) + g_8 * (CONST048 * VAR23 * y + VAR25 * (CONST074 * VAR16 - CONST100 * VAR08 * y) + z * (CONST049 * VAR06 * y + CONST059 * VAR14 + CONST074 * VAR08 * VAR16)) + g_9 * (CONST001 * VAR17 * (- CONST124 * VAR06 + CONST124 * VAR24) + CONST003 * VAR15 * (CONST138 * VAR08 - CONST138 * VAR26) + CONST009 * VAR08 * VAR24 + CONST152 * VAR04 + CONST152 * VAR06 * VAR26 - CONST152 * VAR22) g_z += g_0 * (CONST069 * VAR07 * VAR25 - CONST109 * VAR05 * z - CONST109 * VAR23 * x) + g_1 * y * (-CONST079 * VAR24 * x - CONST125 * VAR05 + CONST130 * VAR07 * VAR26) + g_10 * (CONST001 * VAR26 * (- CONST123 * VAR08 * VAR17 - CONST134 * VAR15 + CONST137 * VAR06) + CONST003 * VAR24 * (CONST080 * VAR08 + CONST139 * VAR17) + CONST032 * VAR04 + CONST105 * VAR08 * VAR15 - CONST111 * VAR06 * VAR17 - CONST148 * VAR22) + g_11 * (VAR16 * (CONST044 * VAR08 * z - CONST101 * VAR25) + y * (CONST054 * VAR06 * z - CONST091 * VAR08 * VAR25 + CONST121 * VAR23)) + g_12 * (CONST001 * VAR26 * (CONST091 * VAR08 * VAR17 - CONST098 * VAR06) + CONST003 * VAR24 * (CONST012 * VAR08 + CONST016 * VAR17) + CONST055 * VAR06 * VAR17 + CONST098 * VAR04 + CONST153 * VAR22) + g_13 * y * (-CONST079 * VAR06 * z - CONST125 * VAR23 + CONST130 * VAR08 * VAR25) + g_14 * (-CONST082 * VAR06 * VAR26 + CONST084 * VAR08 * VAR24 + CONST146 * VAR04 - CONST146 * VAR22) + g_2 * (CONST022 * VAR05 * z + VAR07 * (CONST025 * VAR25 + CONST045 * VAR17 * z) + x * (-CONST044 * VAR17 * VAR25 + CONST127 * VAR23)) + g_3 * (VAR16 * (-CONST045 * VAR26 * x + CONST101 * VAR07) + y * (CONST091 * VAR24 * x - CONST133 * VAR05) ) + g_4 * (CONST004 * VAR05 * z + VAR07 * (CONST104 * VAR17 * z - CONST139 * VAR25) + x * (CONST056 * VAR17 * VAR25 - CONST081 * VAR15 * z - CONST140 * VAR23)) + g_5 * (-CONST143 * VAR05 * y + VAR07 * (CONST064 * VAR26 * y + CONST106 * VAR16) + x * (CONST057 * VAR24 * y + CONST061 * VAR16 * VAR26 - CONST117 * VAR14)) + g_6 * ( CONST097 * VAR05 * z + VAR07 * (-CONST100 * VAR17 * z + CONST145 * VAR25) + x * (CONST075 * VAR23 + CONST100 * VAR15 * z - CONST100 * VAR17 * VAR25)) + g_7 * (CONST115 * VAR14 * z + VAR16 * (CONST072 * VAR25 + CONST073 * VAR08 * z) + y * (CONST112 * VAR08 * VAR25 + CONST128 * VAR23 + CONST132 * VAR06 * z)) + g_8 * (CONST001 * VAR26 * (-CONST116 * VAR08 * VAR17 + CONST116 * VAR15 + CONST154 * VAR06) + CONST003 * VAR24 * (CONST026 * VAR17 + CONST154 * VAR08) + CONST019 * VAR13 + CONST029 * VAR06 * VAR17 + CONST094 * VAR04 + CONST116 * VAR08 * VAR15 + CONST149 * VAR22) + g_9 * (CONST085 * VAR16 * VAR25 - CONST117 * VAR14 * z + y * (CONST037 * VAR08 * VAR25 - CONST119 * VAR23 + CONST143 * VAR06 * z)) tl.store(coord_grad_ptr + coord_row_offset, g_x, mask=coord_row_offset < coord_numel) tl.store(coord_grad_ptr + coord_row_offset + 1, g_y, mask= coord_row_offset + 1 < coord_numel) tl.store(coord_grad_ptr + coord_row_offset + 2, g_z, mask= coord_row_offset + 2 < coord_numel)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [ "Compute Bound" ] }
[ "Apache" ]
https://github.com/IntelLabs/EquiTriton/blob/1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c/src/equitriton/sph_harm/direct/y_7.py
cf434cf1-eaa7-43a8-af57-ed65644e78a1
tritonFun.py
microsoft/Givens-Orthogonal-Backprop
rotMat/triton/tritonFun.py
3040fa287aacbf07be56eb12ddd7c513f7800191
0
@triton.jit def _forward_kernel(c_ptr, s_ptr, u_ptr, col_stride, row_stride, **meta): n, n_tilde, dead_index, d_max, tournament_step, BLOCK_SIZE = meta['N' ], meta['N_TILDE'], meta['DEAD_INDEX'], meta['D_MAX'], meta['STEP' ], meta['BLOCK_SIZE'] pid_x = tl.program_id(axis=0) temp = n_tilde - 1 i = pid_x + tournament_step if pid_x == 0: i = 0 if i >= n_tilde: i -= temp j = temp - pid_x + tournament_step if j >= n_tilde: j -= temp if i > j: i, j = j, i if (j == dead_index) | (j > d_max) & (i > d_max): return theta_offset = i * n - (i + 2) * (i + 1) // 2 + j c = tl.load(c_ptr + theta_offset) s = tl.load(s_ptr + theta_offset) offsets = tl.program_id(axis=1) * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) output_offsets_i = i * row_stride + offsets * col_stride output_offsets_j = j * row_stride + offsets * col_stride maximum = n * row_stride + n * col_stride maski = output_offsets_i < maximum maskj = output_offsets_j < maximum ui = tl.load(u_ptr + output_offsets_i, mask=maski) uj = tl.load(u_ptr + output_offsets_j, mask=maskj) ioutput = ui * c - uj * s joutput = uj * c + ui * s ui = tl.store(u_ptr + output_offsets_i, ioutput, mask=maski) uj = tl.store(u_ptr + output_offsets_j, joutput, mask=maskj)
{ "Data Type": [], "Functionality": [], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/microsoft/Givens-Orthogonal-Backprop/blob/3040fa287aacbf07be56eb12ddd7c513f7800191/rotMat/triton/tritonFun.py
ba747cf4-08d3-4408-bf74-1154ad010718
triton_chunk.py
NX-AI/xlstm-jax
xlstm_jax/models/xlstm_pytorch/blocks/mlstm/backend/triton_chunk.py
6615e620ba4ecdbe4fd9cc4e9a5a313b133e84a7
0
@triton.jit def chunk_mlstm_fwd_kernel_h(q, k, v, C, n, m, m_total, i, f, h, norm, s_qk_h, s_qk_t, s_qk_d, s_vh_h, s_vh_t, s_vh_d, s_C_h, s_C_t, s_n_h, scale, H: tl.constexpr, T: tl.constexpr, K: tl.constexpr, V: tl. constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, NT: tl .constexpr): i_v, i_t, i_bC = tl.program_id(0), tl.program_id(1), tl.program_id(2) h_i = tl.arange(0, BT) m_s = h_i[:, None] >= h_i[None, :] b_h = tl.zeros([BT, BV], dtype=tl.float32) b_s = tl.zeros([BT, BT], dtype=tl.float32) b_norm = tl.zeros([BT, BV], dtype=tl.float32) for i_k in range(tl.cdiv(K, BK)): p_q = tl.make_block_ptr(q + i_bC * s_qk_h, (T, K), (s_qk_t, s_qk_d), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_k = tl.make_block_ptr(k + i_bC * s_qk_h, (K, T), (s_qk_d, s_qk_t), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_C = tl.make_block_ptr(C + i_bC * s_C_h + i_t * K * V, (K, V), ( s_C_t, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) p_n = tl.make_block_ptr(n + i_bC * s_n_h + i_t * K, (K, BV), (1, 0), (i_k * BK, 0), (BK, BV), (0, 1)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_C = tl.load(p_C, boundary_check=(0, 1)) b_n = tl.load(p_n, boundary_check=(0,)) b_h += tl.dot(b_q, b_C, allow_tf32=False) b_s += tl.dot(b_q, b_k, allow_tf32=False) b_n2 = tl.dot(b_q, b_n, allow_tf32=False) b_norm += b_n2 p_f = f + i_bC * T + i_t * BT + tl.arange(0, BT) b_f = tl.load(p_f) p_i = i + i_bC * T + i_t * BT + tl.arange(0, BT) b_i = tl.load(p_i) b_m = tl.load(m + i_bC * (NT + 1) + i_t) b_logD = b_i[None, :] + b_f[:, None] - b_f[None, :] b_logD = tl.where(m_s, b_logD, -float('inf')) b_mlogD = tl.max(b_logD, axis=1) b_m_total = tl.maximum(b_f + b_m, b_mlogD) p_m_total = tl.make_block_ptr(m_total + T * i_bC, (T,), (1,), (i_t * BT ,), (BT,), (0,)) tl.store(p_m_total, b_m_total.to(p_m_total.dtype.element_ty), boundary_check=(0,)) b_D = tl.math.exp2(b_logD - b_m_total[:, None]) b_h = b_h * tl.math.exp2(b_f + b_m - b_m_total)[:, None] * scale b_s = b_s * b_D * scale b_norm = b_norm * tl.math.exp2(b_f + b_m - b_m_total)[:, None] * scale b_s = tl.where(m_s, b_s, 0) b_norm += tl.sum(b_s, axis=1)[:, None] b_norm = tl.abs(b_norm) b_norm = tl.maximum(b_norm, tl.math.exp2(-b_m_total)[:, None]) tl.store(norm + i_bC * T + i_t * BT + tl.arange(0, BT), tl.max(b_norm, axis=1)) p_v = tl.make_block_ptr(v + i_bC * s_vh_h, (T, V), (s_vh_t, s_vh_d), ( i_t * BT, i_v * BV), (BT, BV), (1, 0)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_h = (b_h + tl.dot(b_s.to(b_v.dtype), b_v, allow_tf32=False)) / b_norm p_h = tl.make_block_ptr(h + i_bC * s_vh_h, (T, V), (s_vh_t, s_vh_d), ( i_t * BT, i_v * BV), (BT, BV), (1, 0)) tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Recurrent Neural Networks", "Matrix Multiplication" ], "Memory Access Pattern": [ "Strided Access", "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "Apache", "BSD" ]
https://github.com/NX-AI/xlstm-jax/blob/6615e620ba4ecdbe4fd9cc4e9a5a313b133e84a7/xlstm_jax/models/xlstm_pytorch/blocks/mlstm/backend/triton_chunk.py
185656ec-3bff-4006-8c3e-b0f32117c386
triton_sll.py
pytorch/FBGEMM
fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py
fe980ab54a6e28818d81c8694b6564e7f804418b
0
@triton.jit def array_jagged_bmm_kernel(a_ptr, b_ptr, c_ptr, a_offsets_ptr, b_offsets_ptr, c_offsets_ptr, D, stride_bk, stride_bn, stride_cm, stride_cn, transpose, max_seq_len, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, allow_tf32: tl. constexpr): pid_batch = tl.program_id(2) pid_m = tl.program_id(1) pid_n = tl.program_id(0) batch_offset_am = tl.load(a_offsets_ptr + pid_batch) batch_offset_bk = tl.load(b_offsets_ptr + pid_batch) batch_offset_cm = tl.load(c_offsets_ptr + pid_batch) batch_K = tl.load(b_offsets_ptr + pid_batch + 1) - batch_offset_bk batch_M = tl.load(c_offsets_ptr + pid_batch + 1) - batch_offset_cm stride_am = batch_M * (1 - transpose) + 1 * transpose stride_ak = batch_M * transpose + 1 * (1 - transpose) batch_K = tl.minimum(batch_K, max_seq_len) batch_M = tl.minimum(batch_M, max_seq_len) if batch_K == 0: return batch_N = D if pid_m * BLOCK_SIZE_M >= batch_M or pid_n * BLOCK_SIZE_N >= batch_N: return offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % batch_M offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % batch_N offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + batch_offset_am + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) b_ptrs = b_ptr + batch_offset_bk * stride_bk + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn) c = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, tl.cdiv(batch_K, BLOCK_SIZE_K)): a = tl.load(a_ptrs, mask=offs_k[None, :] < batch_K - k * BLOCK_SIZE_K, other=0.0) b = tl.load(b_ptrs, mask=offs_k[:, None] < batch_K - k * BLOCK_SIZE_K, other=0.0) c += tl.dot(a, b, allow_tf32=allow_tf32) a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = c_ptr + stride_cm * batch_offset_cm + stride_cm * offs_cm[:, None ] + stride_cn * offs_cn[None, :] c_mask = (offs_cm[:, None] < batch_M) & (offs_cn[None, :] < batch_N) tl.store(c_ptrs, c, mask=c_mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Blocked Access", "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "High Throughput" ] }
[ "BSD", "MIT" ]
https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py
022c4cc0-b308-49be-b921-b32509712645
empty.py
triton-lang/triton
python/examples/empty.py
a2b398e0bb1b120f31cf386d6ae3261c3ab84207
0
@triton.jit def kernel(X, stride_xm, stride_xn, BLOCK: tl.constexpr): pass
{ "Data Type": [], "Functionality": [], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/triton-lang/triton/blob/a2b398e0bb1b120f31cf386d6ae3261c3ab84207/python/examples/empty.py
e008b2d4-e5d7-4904-adbb-d6d877357da0
gemm_a16w8.py
AlibabaPAI/FLASHNN
flashnn/triton_kernels/gemm_a16w8.py
528a9301587f5fb135b25d973a87ba0a40a703a7
0
@triton.jit def _triton_gemm_a16w8_per_channel_kernel(A, B, C, scale_b, bias, zero_points, M, N, K, stride_am, stride_ak, stride_bn, stride_bk, stride_cm, stride_cn, stride_zpk, stride_zpn, stride_scalek, stride_scalen, add_bias: tl.constexpr, add_zero_points: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr, GROUP_M: tl.constexpr, SPLIT_K: tl.constexpr): pid = tl.program_id(0) pid_z = tl.program_id(1) grid_m = tl.cdiv(M, BLOCK_M) grid_n = tl.cdiv(N, BLOCK_N) width = GROUP_M * grid_n group_id = pid // width group_size = min(grid_m - group_id * GROUP_M, GROUP_M) pid_m = group_id * GROUP_M + pid % group_size pid_n = pid % width // group_size rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M) rbn = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N) rk = pid_z * BLOCK_K + tl.arange(0, BLOCK_K) A = A + (ram[:, None] * stride_am + rk[None, :] * stride_ak) B = B + (rbn[:, None] * stride_bn + rk[None, :] * stride_bk) acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32) if add_zero_points: offs_zero_points = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) zero_points_ptrs = zero_points + offs_zero_points _ZERO_POINT0 = tl.zeros([1], dtype=zero_points.dtype.element_ty) zero_points_vals = tl.load(zero_points_ptrs, mask=offs_zero_points < N, other=_ZERO_POINT0) for k in range(0, tl.cdiv(K, BLOCK_K * SPLIT_K)): k_remaining = K - k * (BLOCK_K * SPLIT_K) _A0 = tl.zeros((1, 1), dtype=A.dtype.element_ty) a = tl.load(A, mask=rk[None, :] < k_remaining, other=_A0) _B0 = tl.zeros((1, 1), dtype=B.dtype.element_ty) b = tl.load(B, mask=rk[None, :] < k_remaining, other=_B0) if add_zero_points: b = b - zero_points_vals[:, None] b_fp = b.to(A.dtype.element_ty) b_fp = tl.trans(b_fp) acc += tl.dot(a, b_fp, out_dtype=tl.float32, allow_tf32=True) A += BLOCK_K * SPLIT_K * stride_ak B += BLOCK_K * SPLIT_K * stride_bk offs_scale = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) scale_ptrs = scale_b + offs_scale _SCALE0 = tl.zeros([1], dtype=scale_b.dtype.element_ty) scales = tl.load(scale_ptrs, mask=offs_scale < N, other=_SCALE0) acc *= scales acc = acc.to(C.dtype.element_ty) rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) C = C + (rm[:, None] * stride_cm + rn[None, :] * stride_cn) mask = (rm < M)[:, None] & (rn < N)[None, :] if add_bias: offs_bias = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) bias_ptrs = bias + offs_bias _BIAS0 = tl.zeros([1], dtype=bias.dtype.element_ty) bias_vals = tl.load(bias_ptrs, mask=offs_bias < N, other=_BIAS0) if pid_z == 0: acc += bias_vals[None, :] if SPLIT_K == 1: tl.store(C, acc, mask=mask) else: tl.atomic_add(C, acc, mask=mask)
{ "Data Type": [ "int8" ], "Functionality": [ "Matrix Multiplication", "Quantization" ], "Memory Access Pattern": [ "Strided Access", "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "Apache" ]
https://github.com/AlibabaPAI/FLASHNN/blob/528a9301587f5fb135b25d973a87ba0a40a703a7/flashnn/triton_kernels/gemm_a16w8.py
0193e573-d1a1-4efc-bba9-db1a33827ad0
z_order.py
Kitsunetic/space-filling-pytorch
space_filling_pytorch/functional/z_order.py
0de955ad1036973ee7506c5a0124c208acec722d
0
@triton.jit def _encode_z_unpadded_kernel(xyz_ptr, batch_idx_ptr, code_ptr, space_size, x_offset, y_offset, z_offset, str_xyz_n, str_xyz_c, N, BLK: tl. constexpr, ASSIGN_BATCH_INDEX: tl.constexpr): pid = tl.program_id(0) offs_n = pid * BLK + tl.arange(0, BLK) mask = offs_n < N xyz_ptrs = xyz_ptr + offs_n * str_xyz_n fx = tl.load(xyz_ptrs + x_offset * str_xyz_c, mask=mask) fy = tl.load(xyz_ptrs + y_offset * str_xyz_c, mask=mask) fz = tl.load(xyz_ptrs + z_offset * str_xyz_c, mask=mask) ret = _calculate_zorder(fx, fy, fz, space_size) if ASSIGN_BATCH_INDEX: batch_idx_ptrs = batch_idx_ptr + offs_n batch_idx = tl.load(batch_idx_ptrs, mask=mask).to(tl.int64) ret |= batch_idx << 48 code_ptrs = code_ptr + offs_n tl.store(code_ptrs, ret, mask=mask)
{ "Data Type": [], "Functionality": [], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/Kitsunetic/space-filling-pytorch/blob/0de955ad1036973ee7506c5a0124c208acec722d/space_filling_pytorch/functional/z_order.py
86d2fa4b-e481-4a17-9385-cbf6f0389011
triton_sll.py
pytorch/FBGEMM
fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py
fe980ab54a6e28818d81c8694b6564e7f804418b
0
@triton.jit def jagged_dense_flash_attention_fwd_kernel(q_ptr, k_ptr, v_ptr, ab_ptr, o_ptr, lse_ptr, jagged_offsets_ptr, max_seq_len, stride_ql, stride_qd, stride_kb, stride_kd, stride_kt, stride_vn, stride_vd, stride_ab_b, stride_ab_n, stride_ab_t, stride_ob, stride_ot, stride_od, D: tl. constexpr, T: tl.constexpr, allow_tf32: tl.constexpr, BLOCK_T: tl. constexpr, BLOCK_L: tl.constexpr, BLOCK_D: tl.constexpr): pid_t = tl.program_id(0) pid_batch = tl.program_id(1) begin = tl.load(jagged_offsets_ptr + pid_batch) end = tl.load(jagged_offsets_ptr + pid_batch + 1) length = end - begin length = tl.minimum(length, max_seq_len) if length == 0: return q_start_ptr = q_ptr + begin * stride_ql k_start_ptr = k_ptr + pid_batch * stride_kb ab_start_ptr = ab_ptr + pid_batch * stride_ab_b v_start_ptr = v_ptr + begin * stride_vn offs_t = pid_t * BLOCK_T + tl.arange(0, BLOCK_T) offs_d = tl.arange(0, BLOCK_D) ki_ptrs = k_start_ptr + offs_d[:, None] * stride_kd + offs_t[None, : ] * stride_kt ki = tl.load(ki_ptrs, mask=(offs_d[:, None] < D) & (offs_t[None, :] < T ), other=0.0) mi = tl.zeros([BLOCK_T], dtype=tl.float32) - float('inf') li = tl.zeros([BLOCK_T], dtype=tl.float32) oi = tl.zeros([BLOCK_T, BLOCK_D], dtype=tl.float32) for start_l in range(0, length, BLOCK_L): offs_l = start_l + tl.arange(0, BLOCK_L) qj_ptrs = q_start_ptr + offs_l[:, None] * stride_ql + offs_d[None, : ] * stride_qd qj = tl.load(qj_ptrs, mask=(offs_l[:, None] < length) & (offs_d[ None, :] < D), other=0.0) qk = tl.dot(qj, ki, allow_tf32=allow_tf32) ab_ptrs = ab_start_ptr + offs_l[:, None] * stride_ab_n + offs_t[None, : ] * stride_ab_t abij = tl.load(ab_ptrs, mask=(offs_l[:, None] < length) & (offs_t[ None, :] < T), other=0.0) qk = qk + abij mij_hat = tl.max(qk, axis=0) mi_new = tl.maximum(mi, mij_hat) pij_hat = tl.exp(qk - mi_new[None, :]) pij_hat = tl.where((offs_l[:, None] < length) & (offs_t[None, :] < T), pij_hat, 0.0) lij_hat = tl.sum(pij_hat, axis=0) alpha = tl.exp(mi - mi_new) li_new = alpha * li + lij_hat oi = alpha[:, None] * oi vj_ptrs = v_start_ptr + offs_l[:, None] * stride_vn + offs_d[None, : ] * stride_vd vj = tl.load(vj_ptrs, mask=(offs_l[:, None] < length) & (offs_d[ None, :] < D), other=0.0) pij_hat = pij_hat.to(v_ptr.dtype.element_ty) oi = oi + tl.dot(tl.trans(pij_hat), vj, allow_tf32=allow_tf32) mi = mi_new li = li_new oi = oi / li[:, None] lse_ptrs = lse_ptr + pid_batch * T + offs_t lse_i = mi + tl.log(li) tl.store(lse_ptrs, lse_i, mask=offs_t < T) attn_out_ptrs = o_ptr + pid_batch * stride_ob + offs_t[:, None ] * stride_ot + offs_d[None, :] * stride_od tl.store(attn_out_ptrs, oi, mask=(offs_t[:, None] < T) & (offs_d[None, :] < D))
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Matrix Multiplication" ], "Memory Access Pattern": [ "Strided Access", "Blocked Access" ], "Parallelization Strategy": [], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "BSD", "MIT" ]
https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py
25c4864d-4f48-498d-bd92-b326c89bc547
math.py
BobMcDear/attorch
attorch/math.py
da06cb6236bb47195e33fe3986ed21c675ed94cc
0
@triton.jit def nll_loss(input, size, reduction: tl.constexpr): """ Measures the negative log likelihood loss given log-probabilities of target class. Args: input: Input containing predicted log-probabilities corresponding to target class. The input can have arbitrary shape. size: Number of elements in the input. This value is used only if reduction is 'mean'. reduction: Reduction strategy for the output. Options are 'none' for no reduction, 'mean' for averaging the loss across all entries, and 'sum' for summing the loss across all entries. Returns: Loss. """ input = input.to(tl.float32) if reduction == 'none': output = -input elif reduction == 'mean': output = -tl.sum(input) / size elif reduction == 'sum': output = -tl.sum(input) return output
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [], "Performance Objective": [ "Low Latency", "Single Instance" ] }
[ "MIT" ]
https://github.com/BobMcDear/attorch/blob/da06cb6236bb47195e33fe3986ed21c675ed94cc/attorch/math.py
f9b8875f-1555-4a1e-a553-4f8289afd403
triton_fused_local_attn.py
LouChao98/vqtree
ops/triton_fused_local_attn.py
27a53274df7a804bce27dffcce5f5be73f64b6f3
0
@triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args[ 'BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args[ 'BLOCK_N'] == 0}) @triton.jit def _fwd_kernel(Q, K, V, Out, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_ob, stride_oh, stride_om, nheads, seqlen_q, seqlen_k, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, WINDOW_SIZE: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr): start_m = tl.program_id(0) off_hb = tl.program_id(1) off_b = off_hb // nheads off_h = off_hb % nheads offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) offs_d = tl.arange(0, BLOCK_HEADDIM) Q_block_ptr = tl.make_block_ptr(base=Q + (off_b * stride_qb + off_h * stride_qh), shape=(seqlen_q, BLOCK_HEADDIM), strides=(stride_qm, 1), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_HEADDIM ), order=(1, 0)) K_block_ptr = tl.make_block_ptr(base=K + (off_b * stride_kb + off_h * stride_kh), shape=(BLOCK_HEADDIM, seqlen_k), strides=(1, stride_kn), offsets=(0, 0), block_shape=(BLOCK_HEADDIM, BLOCK_N), order=(0, 1)) V_block_ptr = tl.make_block_ptr(base=V + (off_b * stride_vb + off_h * stride_vh), shape=(seqlen_k, BLOCK_HEADDIM), strides=(stride_vn, 1), offsets=(0, 0), block_shape=(BLOCK_N, BLOCK_HEADDIM), order=(1, 0)) l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0 m_i = tl.zeros([BLOCK_M], dtype=tl.float32) + NEGINF acc = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32) if EVEN_M: q = tl.load(Q_block_ptr) else: q = tl.load(Q_block_ptr, boundary_check=(0,), padding_option='zero') acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, softmax_scale, K_block_ptr, V_block_ptr, start_m, offs_m, offs_n, seqlen_k, WINDOW_SIZE, BLOCK_M, BLOCK_N, EVEN_M & EVEN_N, 1) acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, softmax_scale, K_block_ptr, V_block_ptr, start_m, offs_m, offs_n, seqlen_k, WINDOW_SIZE, BLOCK_M, BLOCK_N, EVEN_M & EVEN_N, 2) acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, softmax_scale, K_block_ptr, V_block_ptr, start_m, offs_m, offs_n, seqlen_k, WINDOW_SIZE, BLOCK_M, BLOCK_N, EVEN_M & EVEN_N, 3) acc = acc / l_i[:, None] start_m = tl.program_id(0) offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_d = tl.arange(0, BLOCK_HEADDIM) out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:, None] * stride_om + offs_d[None, :]) if EVEN_M: tl.store(out_ptrs, acc) else: tl.store(out_ptrs, acc, mask=offs_m[:, None] < seqlen_q)
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Matrix Multiplication", "Softmax" ], "Memory Access Pattern": [ "Tiled", "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "Apache" ]
https://github.com/LouChao98/vqtree/blob/27a53274df7a804bce27dffcce5f5be73f64b6f3/ops/triton_fused_local_attn.py
d220be62-ce65-4110-8341-90c6b7412373
scatter_reduce.py
pyg-team/pyg-lib
pyg_lib/ops/scatter_reduce.py
bdd392a7093c5016f42ec7ae1945ca77dbdd97db
0
@triton.jit def _fused_scatter_reduce_forward_kernel(inputs_ptr, index_ptr, out_ptr, num_feats, num_reductions, numel, REDUCE0, REDUCE1, REDUCE2, REDUCE3, BLOCK_SIZE: tl.constexpr): pid = tl.program_id(axis=0) block_start = pid * BLOCK_SIZE offsets = block_start + tl.arange(0, BLOCK_SIZE) mask = offsets < numel inputs = tl.load(inputs_ptr + offsets, mask=mask) index_offsets = offsets // num_feats index = tl.load(index_ptr + index_offsets, mask=mask) if REDUCE0 > 0: out_offsets = num_feats * num_reductions * index out_offsets = out_offsets + offsets % num_feats if REDUCE0 == 1: tl.atomic_add(out_ptr + out_offsets, inputs, mask=mask) elif REDUCE0 == 2: tl.atomic_add(out_ptr + out_offsets, inputs, mask=mask) elif REDUCE0 == 3: tl.atomic_min(out_ptr + out_offsets, inputs, mask=mask) elif REDUCE0 == 4: tl.atomic_max(out_ptr + out_offsets, inputs, mask=mask) if REDUCE1 > 0: out_offsets = num_feats * num_reductions * index out_offsets = out_offsets + num_feats out_offsets = out_offsets + offsets % num_feats if REDUCE1 == 1: tl.atomic_add(out_ptr + out_offsets, inputs, mask=mask) elif REDUCE1 == 2: tl.atomic_add(out_ptr + out_offsets, inputs, mask=mask) elif REDUCE2 == 3: tl.atomic_min(out_ptr + out_offsets, inputs, mask=mask) elif REDUCE3 == 4: tl.atomic_max(out_ptr + out_offsets, inputs, mask=mask) if REDUCE2 > 0: out_offsets = num_feats * num_reductions * index out_offsets = out_offsets + 2 * num_feats out_offsets = out_offsets + offsets % num_feats if REDUCE2 == 1: tl.atomic_add(out_ptr + out_offsets, inputs, mask=mask) elif REDUCE2 == 2: tl.atomic_add(out_ptr + out_offsets, inputs, mask=mask) elif REDUCE2 == 3: tl.atomic_min(out_ptr + out_offsets, inputs, mask=mask) elif REDUCE2 == 4: tl.atomic_max(out_ptr + out_offsets, inputs, mask=mask) if REDUCE3 > 0: out_offsets = num_feats * num_reductions * index out_offsets = out_offsets + 3 * num_feats out_offsets = out_offsets + offsets % num_feats if REDUCE3 == 1: tl.atomic_add(out_ptr + out_offsets, inputs, mask=mask) elif REDUCE3 == 2: tl.atomic_add(out_ptr + out_offsets, inputs, mask=mask) elif REDUCE3 == 3: tl.atomic_min(out_ptr + out_offsets, inputs, mask=mask) elif REDUCE3 == 4: tl.atomic_max(out_ptr + out_offsets, inputs, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Memory-Bound" ] }
[ "MIT" ]
https://github.com/pyg-team/pyg-lib/blob/bdd392a7093c5016f42ec7ae1945ca77dbdd97db/pyg_lib/ops/scatter_reduce.py
04221a8d-0acd-483c-9226-c62cc41c67fe
layer_norm.py
chengzeyi/stable-fast
src/sfast/triton/ops/layer_norm.py
3a6f35c7045f8f6812515957ca62ef37260ff080
0
@triton.jit def _layer_norm_fwd_fused(X, Y, W, B, Mean, Rstd, stride: tl.constexpr, N: tl.constexpr, eps, BLOCK_SIZE: tl.constexpr): row = tl.program_id(0) Y += row * stride X += row * stride if BLOCK_SIZE >= N: cols = tl.arange(0, BLOCK_SIZE) x = tl.load(X + cols, mask=cols < N).to(tl.float32) m2_ = tl.zeros((BLOCK_SIZE,), dtype=tl.float32) weight_ = (cols < N).to(tl.float32) _mean, _m2, _weight = x, m2_, weight_ else: _mean = tl.zeros((BLOCK_SIZE,), dtype=tl.float32) _m2 = tl.zeros((BLOCK_SIZE,), dtype=tl.float32) _weight = tl.zeros((BLOCK_SIZE,), dtype=tl.float32) for off in range(0, N, BLOCK_SIZE): cols = off + tl.arange(0, BLOCK_SIZE) x = tl.load(X + cols, mask=cols < N).to(tl.float32) m2_ = tl.zeros((BLOCK_SIZE,), dtype=tl.float32) weight_ = (cols < N).to(tl.float32) if off == 0: _mean, _m2, _weight = x, m2_, weight_ else: _mean, _m2, _weight = welford_combine(_mean, _m2, _weight, x, m2_, weight_) mean, m2, weight = tl.reduce((_mean, _m2, _weight), 0, welford_combine) var = m2 / weight rstd = 1 / tl.sqrt(var + eps) mean = mean.to(x.dtype) rstd = rstd.to(x.dtype) if Mean is not None: tl.store(Mean + row, mean) if Rstd is not None: tl.store(Rstd + row, rstd) if BLOCK_SIZE >= N: cols = tl.arange(0, BLOCK_SIZE) mask = cols < N if W is None: w = tl.full((BLOCK_SIZE,), 1.0, dtype=x.dtype) else: w = tl.load(W + cols, mask=mask) if B is None: b = tl.zeros((BLOCK_SIZE,), dtype=x.dtype) else: b = tl.load(B + cols, mask=mask) x_hat = (x - mean) * rstd y = x_hat * w + b tl.store(Y + cols, y, mask=mask) else: for off in range(0, N, BLOCK_SIZE): cols = off + tl.arange(0, BLOCK_SIZE) mask = cols < N if W is None: w = tl.full((BLOCK_SIZE,), 1.0, dtype=x.dtype) else: w = tl.load(W + cols, mask=mask) if B is None: b = tl.zeros((BLOCK_SIZE,), dtype=x.dtype) else: b = tl.load(B + cols, mask=mask) x = tl.load(X + cols, mask=mask) x_hat = (x - mean) * rstd y = x_hat * w + b tl.store(Y + cols, y, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Normalization" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound", "Memory-Bound" ] }
[ "MIT" ]
https://github.com/chengzeyi/stable-fast/blob/3a6f35c7045f8f6812515957ca62ef37260ff080/src/sfast/triton/ops/layer_norm.py
747983d8-2740-48f1-a5b4-0b2b362c5601
qkv_concat.py
ai-compiler-study/triton-kernels
triton_kernels/ops/qkv_concat.py
2308e5e9d965059fe2d19b4d535debac4970b69e
0
@triton.jit def triton_qkv_concat(txt_qkv, img_qkv, out_q_ptr, out_k_ptr, out_v_ptr, seq_len, num_heads, head_dim, hidden_dim, seq_txt_len, stride_txt_a, stride_txt_b, stride_img_a, stride_img_b, stride_output_a, stride_output_b, stride_output_c, XBLOCK: tl.constexpr): pid = tl.program_id(0) xoffset = pid * XBLOCK + tl.arange(0, XBLOCK)[:] seq_idx = xoffset // hidden_dim % seq_len batch_idx = xoffset // stride_output_a hidden_dim_idx = xoffset % hidden_dim headdim_idx = xoffset % head_dim head_idx = xoffset // head_dim % num_heads txt_seq_end = tl.full([1], seq_txt_len, tl.int64) txt_mask = seq_idx < txt_seq_end img_mask = seq_idx >= txt_seq_end txt_q_data = tl.load(txt_qkv + (hidden_dim * 0 + hidden_dim_idx + stride_txt_b * seq_idx + stride_txt_a * batch_idx), txt_mask, other=0.0 ).to(tl.float32) zero_mask = tl.full(txt_q_data.shape, 0.0, txt_q_data.dtype) masked_txt_q = tl.where(txt_mask, txt_q_data, zero_mask) img_q_data = tl.load(img_qkv + (-stride_txt_a + hidden_dim * 0 + hidden_dim_idx + stride_img_b * seq_idx + stride_img_a * batch_idx), img_mask, other=0.0).to(tl.float32) zero_mask = tl.full(img_q_data.shape, 0.0, img_q_data.dtype) masked_img_q = tl.where(img_mask, img_q_data, zero_mask) out_q = tl.where(txt_mask, masked_txt_q, masked_img_q) tl.store(out_q_ptr + (headdim_idx + stride_output_c * seq_idx + stride_output_b * head_idx + stride_output_a * batch_idx), out_q, None) txt_k_data = tl.load(txt_qkv + (hidden_dim * 1 + hidden_dim_idx + stride_txt_b * seq_idx + stride_txt_a * batch_idx), txt_mask, other=0.0 ).to(tl.float32) zero_mask = tl.full(txt_k_data.shape, 0.0, txt_k_data.dtype) masked_txt_q = tl.where(txt_mask, txt_k_data, zero_mask) img_k_data = tl.load(img_qkv + (-stride_txt_a + hidden_dim * 1 + hidden_dim_idx + stride_img_b * seq_idx + stride_img_a * batch_idx), img_mask, other=0.0).to(tl.float32) zero_mask = tl.full(img_k_data.shape, 0.0, img_k_data.dtype) masked_img_k = tl.where(img_mask, img_k_data, zero_mask) out_k = tl.where(txt_mask, masked_txt_q, masked_img_k) tl.store(out_k_ptr + (headdim_idx + stride_output_c * seq_idx + stride_output_b * head_idx + stride_output_a * batch_idx), out_k, None) txt_v_data = tl.load(txt_qkv + (hidden_dim * 2 + hidden_dim_idx + stride_txt_b * seq_idx + stride_txt_a * batch_idx), txt_mask, other=0.0 ).to(tl.float32) zero_mask = tl.full(txt_v_data.shape, 0.0, txt_v_data.dtype) masked_txt_v = tl.where(txt_mask, txt_v_data, zero_mask) img_v_data = tl.load(img_qkv + (-stride_txt_a + hidden_dim * 2 + hidden_dim_idx + stride_img_b * seq_idx + stride_img_a * batch_idx), img_mask, other=0.0).to(tl.float32) zero_mask = tl.full(img_v_data.shape, 0.0, img_v_data.dtype) masked_img_q = tl.where(img_mask, img_v_data, zero_mask) output_v = tl.where(txt_mask, masked_txt_v, masked_img_q) tl.store(out_v_ptr + (headdim_idx + stride_output_c * seq_idx + stride_output_b * head_idx + stride_output_a * batch_idx), output_v, None)
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput" ] }
[ "MIT" ]
https://github.com/ai-compiler-study/triton-kernels/blob/2308e5e9d965059fe2d19b4d535debac4970b69e/triton_kernels/ops/qkv_concat.py
5d836130-3356-4d7b-9797-41b5b20290c8
fp8_matmul.py
drisspg/transformer_nuggets
transformer_nuggets/fp8/fp8_matmul.py
a4c66bbeebaa479ad8b6ed82d7efbafa41b17260
0
@triton.jit def apply_scaling(accumulator, a_scale, b_scale, ROW_WISE_SCALING: tl. constexpr, offs_cm, offs_cn, M, N, stride_a_scale_m, stride_b_scale_n): if ROW_WISE_SCALING: a_scales = tl.load(a_scale + offs_cm * stride_a_scale_m, mask= offs_cm < M, other=0.0) b_scales = tl.load(b_scale + offs_cn * stride_b_scale_n, mask= offs_cn < N, other=0.0) acc_scale = a_scales[:, None] * b_scales[None, :] else: acc_scale = a_scale * b_scale return accumulator * acc_scale
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "BSD" ]
https://github.com/drisspg/transformer_nuggets/blob/a4c66bbeebaa479ad8b6ed82d7efbafa41b17260/transformer_nuggets/fp8/fp8_matmul.py
da11f109-9ed7-4901-b57c-0a34d0fda019
chunk.py
sustcsonglin/flash-linear-attention
fla/ops/gsa/chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.jit def chunk_gsa_bwd_k_kernel_intra_dvg(v, g, o, A, do, dv, dg, offsets, indices, T: tl.constexpr, HQ: tl.constexpr, H: tl.constexpr, V: tl. constexpr, BT: tl.constexpr, BC: tl.constexpr, BV: tl.constexpr, NC: tl .constexpr, NG: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl .constexpr): i_v, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_bg = i_bh // NG i_b, i_hq = i_bh // HQ, i_bh % HQ i_h = i_hq // NG i_t, i_i = i_c // NC, i_c % NC if USE_OFFSETS: i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos else: bos, eos = i_b * T, i_b * T + T o_v = i_v * BV + tl.arange(0, BV) m_v = o_v < V if i_t * BT + i_i * BC > T: return if HEAD_FIRST: p_gv = tl.make_block_ptr(g + i_bg * T * V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0)) p_gn = tl.max_contiguous(tl.multiple_of(g + i_bg * T * V + (min(i_t * BT + i_i * BC + BC, T) - 1) * V + o_v, BV), BV) else: p_gv = tl.make_block_ptr(g + (bos * H + i_h) * V, (T, V), (H * V, 1 ), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0)) p_gn = tl.max_contiguous(tl.multiple_of(g + (bos + min(i_t * BT + i_i * BC + BC, T) - 1) * H * V + i_h * V + o_v, BV), BV) b_gn = tl.load(p_gn, mask=m_v, other=0) b_gv = tl.load(p_gv, boundary_check=(0, 1)) b_dv = tl.zeros([BC, BV], dtype=tl.float32) for i_j in range(i_i + 1, NC): if HEAD_FIRST: p_g = tl.make_block_ptr(g + i_bg * T * V, (T, V), (V, 1), (i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0)) p_A = tl.make_block_ptr(A + i_bh * T * BT, (BT, T), (1, BT), ( i_i * BC, i_t * BT + i_j * BC), (BC, BC), (0, 1)) p_do = tl.make_block_ptr(do + i_bh * T * V, (T, V), (V, 1), ( i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0)) else: p_g = tl.make_block_ptr(g + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0)) p_A = tl.make_block_ptr(A + (bos * HQ + i_hq) * BT, (BT, T), (1, HQ * BT), (i_i * BC, i_t * BT + i_j * BC), (BC, BC), (0, 1)) p_do = tl.make_block_ptr(do + (bos * HQ + i_hq) * V, (T, V), ( HQ * V, 1), (i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0)) b_g = tl.load(p_g, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)) b_do = (b_do * tl.exp(b_g - b_gn[None, :])).to(b_do.dtype) b_A = tl.load(p_A, boundary_check=(0, 1)) b_dv += tl.dot(b_A, b_do) b_dv *= tl.exp(b_gn[None, :] - b_gv) o_i = tl.arange(0, BC) o_c = i_i * BC + tl.arange(0, BC) if HEAD_FIRST: p_g = tl.max_contiguous(tl.multiple_of(g + i_bg * T * V + (i_t * BT + i_i * BC) * V + o_v, BV), BV) p_A = tl.max_contiguous(tl.multiple_of(A + i_bh * T * BT + (i_t * BT + i_i * BC) * BT + o_c, BC), BC) p_do = tl.max_contiguous(tl.multiple_of(do + i_bh * T * V + (i_t * BT + i_i * BC) * V + o_v, BV), BV) else: p_g = tl.max_contiguous(tl.multiple_of(g + (bos + i_t * BT + i_i * BC) * H * V + i_h * V + o_v, BV), BV) p_A = tl.max_contiguous(tl.multiple_of(A + (bos + i_t * BT + i_i * BC) * HQ * BT + i_hq * BT + o_c, BC), BC) p_do = tl.max_contiguous(tl.multiple_of(do + (bos + i_t * BT + i_i * BC) * HQ * V + i_hq * V + o_v, BV), BV) for j in range(0, min(BC, T - i_t * BT - i_i * BC)): b_A = tl.load(p_A) b_g = tl.load(p_g, mask=m_v, other=0) b_do = tl.load(p_do, mask=m_v, other=0) m_i = o_i[:, None] <= j b_dv += tl.where(m_i, tl.exp(b_g[None, :] - b_gv) * b_A[:, None] * b_do[None, :], 0.0) p_g += (1 if HEAD_FIRST else H) * V p_A += (1 if HEAD_FIRST else HQ) * BT p_do += (1 if HEAD_FIRST else HQ) * V if HEAD_FIRST: p_o = tl.make_block_ptr(o + i_bh * T * V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0)) p_v = tl.make_block_ptr(v + i_bg * T * V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0)) p_do = tl.make_block_ptr(do + i_bh * T * V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0)) p_dv = tl.make_block_ptr(dv + i_bh * T * V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0)) p_dg = tl.make_block_ptr(dg + i_bh * T * V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0)) else: p_o = tl.make_block_ptr(o + (bos * HQ + i_hq) * V, (T, V), (HQ * V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0)) p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0)) p_do = tl.make_block_ptr(do + (bos * HQ + i_hq) * V, (T, V), (HQ * V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0)) p_dv = tl.make_block_ptr(dv + (bos * HQ + i_hq) * V, (T, V), (HQ * V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0)) p_dg = tl.make_block_ptr(dg + (bos * HQ + i_hq) * V, (T, V), (HQ * V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0)) b_o = tl.load(p_o, boundary_check=(0, 1)).to(tl.float32) b_v = tl.load(p_v, boundary_check=(0, 1)).to(tl.float32) b_do = tl.load(p_do, boundary_check=(0, 1)).to(tl.float32) b_dv = b_dv + tl.load(p_dv, boundary_check=(0, 1)).to(tl.float32) b_dg = b_o * b_do - b_v * b_dv tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Attention Mechanisms" ], "Memory Access Pattern": [ "Tiled", "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops", "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/gsa/chunk.py
8dbbd600-4b51-4d60-9081-c24273378c71
y_0.py
IntelLabs/EquiTriton
src/equitriton/sph_harm/direct/y_0.py
1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c
0
@triton.jit def zeroth_order_fwd(coord_ptr: tl.tensor, output_ptr: tl.tensor, block_size: tl.constexpr, coord_numel: tl.constexpr, output_numel: tl. constexpr, col_offset: tl.constexpr, output_stride: tl.constexpr): block_id = tl.program_id(0) output_striding = tl.arange(0, block_size) * output_stride output_row_offset = (output_striding + block_size * output_stride * block_id + col_offset) tl.store(output_ptr + output_row_offset, 1.0, mask=output_row_offset < output_numel)
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Low Latency" ] }
[ "Apache" ]
https://github.com/IntelLabs/EquiTriton/blob/1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c/src/equitriton/sph_harm/direct/y_0.py
98296604-5ff6-454d-b957-63e6735444c9
fused_chunk.py
sustcsonglin/flash-linear-attention
fla/ops/gla/fused_chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.jit def fused_chunk_gla_bwd_kernel(q, k, v, g, do, dq, dk, dv, h0, s_k_h, s_k_t, s_k_d, s_v_h, s_v_t, s_v_d, scale, B: tl.constexpr, H: tl.constexpr, T: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, USE_INITIAL_STATE: tl.constexpr, CHECK: tl.constexpr): i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) b_h = tl.zeros([BV, BK], dtype=tl.float32) if USE_INITIAL_STATE: p_h = tl.make_block_ptr(h0 + i_bh * K * V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) b_h += tl.load(p_h, boundary_check=(0, 1)).to(tl.float32) mask = i_k * BK + tl.arange(0, BK) < K for i in range(0, tl.cdiv(T, BT)): p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), ( i * BT, i_k * BK), (BT, BK), (1, 0)) p_db = g + i_bh * s_k_h + ((i + 1) * BT - 1 ) * s_k_t + i_k * BK + tl.arange(0, BK) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (V, T), (s_v_d, s_v_t), ( i_v * BV, i * BT), (BV, BT), (0, 1)) p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i * BT, i_v * BV), (BT, BV), (1, 0)) p_dq = tl.make_block_ptr(dq + (i_bh + i_v * B * H) * s_k_h, (T, K), (s_k_t, s_k_d), (i * BT, i_k * BK), (BT, BK), (1, 0)) b_dq = tl.zeros([BT, BK], dtype=tl.float32) b_k = tl.load(p_k, boundary_check=(0, 1)) d_b = tl.load(p_db, mask=mask, other=0).to(tl.float32) b_v = tl.load(p_v, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)) if CHECK and i == 0: b_dq += tl.dot(b_do, b_h.to(b_do.dtype), allow_tf32=False) b_h = b_h * tl.exp(d_b)[None, :] + tl.dot(b_v, b_k.to(b_v.dtype ), allow_tf32=False) else: b_dq += tl.dot(b_do, b_h.to(b_do.dtype), allow_tf32=False) b_h = b_h * tl.exp(d_b)[None, :] + tl.dot(b_v, b_k.to(b_v.dtype ), allow_tf32=False) b_dq *= scale tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1)) b_h = None tl.debug_barrier() b_dh = tl.zeros([BK, BV], dtype=tl.float32) for i in range(1, tl.cdiv(T, BT) + 1): p_q = tl.make_block_ptr(q + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), ( i_k * BK, T - i * BT), (BK, BT), (0, 1)) p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), ( T - i * BT, i_k * BK), (BT, BK), (1, 0)) p_db = g + i_bh * s_k_h + (T - (i - 1) * BT - 1 ) * s_k_t + i_k * BK + tl.arange(0, BK) p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), ( T - i * BT, i_v * BV), (BT, BV), (1, 0)) p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (T - i * BT, i_v * BV), (BT, BV), (1, 0)) p_dk = tl.make_block_ptr(dk + (i_bh + i_v * B * H) * s_k_h, (T, K), (s_k_t, s_k_d), (T - i * BT, i_k * BK), (BT, BK), (1, 0)) p_dv = tl.make_block_ptr(dv + (i_bh + i_k * B * H) * s_v_h, (T, V), (s_v_t, s_v_d), (T - i * BT, i_v * BV), (BT, BV), (1, 0)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)) b_db = tl.load(p_db, mask=mask, other=0).to(tl.float32) if CHECK and i == 1: b_dk = tl.trans(tl.dot(b_dh.to(b_v.dtype), tl.trans(b_v), allow_tf32=False)) b_dv = tl.dot(b_k.to(b_v.dtype), b_dh.to(b_v.dtype), allow_tf32 =False) b_dh = b_dh * tl.exp(b_db)[:, None] + tl.dot(b_q.to(b_do.dtype), b_do, allow_tf32=False) else: b_dk = tl.trans(tl.dot(b_dh.to(b_v.dtype), tl.trans(b_v), allow_tf32=False)) b_dv = tl.dot(b_k.to(b_v.dtype), b_dh.to(b_v.dtype), allow_tf32 =False) b_dh = b_dh * tl.exp(b_db)[:, None] + tl.dot(b_q.to(b_do.dtype), b_do, allow_tf32=False) tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Attention Mechanisms" ], "Memory Access Pattern": [ "Tiled", "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/gla/fused_chunk.py
601dc13f-efe7-4189-8251-9423cd04334d
foward.py
Forkxz/TritonDeepLearningKernel
kernel/dropconnect/foward.py
add54b6318e8fa5fdbf8c7b47659de9fceaa5691
0
@triton.jit def dropconnect_fwd_kernel(x_ptr, w_ptr, y_ptr, seed, M, K, N, stride_xm, stride_xk, stride_wk, stride_wn, stride_ym, stride_yn, stride_dm, stride_dk, stride_dn, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl. constexpr, BLOCK_SIZE_K: tl.constexpr, ALLOWTF32: tl.constexpr): pid_m = tl.program_id(0) pid_n = tl.program_id(1) offset_m = pid_m * BLOCK_SIZE_M offset_n = pid_n * BLOCK_SIZE_N offset_k = 0 x_offsets = block_offsets_2d(M, K, stride_xm, stride_xk, offset_m, offset_k, BLOCK_SIZE_M, BLOCK_SIZE_K) w_offsets = block_offsets_2d(K, N, stride_wk, stride_wn, offset_k, offset_n, BLOCK_SIZE_K, BLOCK_SIZE_N) d_offsets = block_offsets_3d(M, K, N, stride_dm, stride_dk, stride_dn, offset_m, offset_k, offset_n, BLOCK_SIZE_M, BLOCK_SIZE_K, BLOCK_SIZE_N) x_offsets = x_offsets.reshape(BLOCK_SIZE_M, BLOCK_SIZE_K, 1) w_offsets = w_offsets.reshape(1, BLOCK_SIZE_K, BLOCK_SIZE_N) offs_k = tl.arange(0, BLOCK_SIZE_K) x_tile = x_ptr + x_offsets w_tile = w_ptr + w_offsets ASM: tl.constexpr = 'cvt.rna.tf32.f32 $0, $1;' accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)): random_masks = tl.random.rand(seed, d_offsets) > 0.5 k_mask = offs_k[None, :, None] < K - k * BLOCK_SIZE_K x_load = tl.load(x_tile, mask=k_mask, other=0.0) w_load = tl.load(w_tile, mask=k_mask, other=0.0) a = tl.where(random_masks, x_load, 0.0) b = tl.where(random_masks, w_load, 0.0) mul = a * b accumulator += tl.sum(mul, axis=1) x_tile += BLOCK_SIZE_K * stride_xk w_tile += BLOCK_SIZE_K * stride_wk d_offsets += BLOCK_SIZE_K * stride_dk y_offset, y_mask = block_offsets_2d(M, N, stride_ym, stride_yn, offset_m, offset_n, BLOCK_SIZE_M, BLOCK_SIZE_N, True) y_tile = y_ptr + y_offset y = accumulator.to(y_tile.dtype.element_ty) tl.store(y_tile, y, mask=y_mask)
{ "Data Type": [ "fp32", "int8" ], "Functionality": [ "Elementwise Operations", "Quantization" ], "Memory Access Pattern": [ "Tiled", "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/Forkxz/TritonDeepLearningKernel/blob/add54b6318e8fa5fdbf8c7b47659de9fceaa5691/kernel/dropconnect/foward.py
eceee47a-7f5a-4c5d-a084-f79da7308114
bwd_inner_dq.py
ROCm/aotriton
tritonsrc/bwd_inner_dq.py
016f733e8ff746450e066f78bed68709ccd93e60
0
@triton.jit def bwd_inner_dq(dq, qk_scale, bias_scale, DB_block_ptr, store_db, q, kt_ptrs, k_stride, vt_ptrs, v_stride, B_block_ptr, do, Di, l_i, seqlen_q, seqlen_k, head_dim, start_q, lo, hi, dropout_p, dropout_scale, philox_seed, batch_philox_offset, max_seqlen_k, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, FULL_BLOCKS: tl. constexpr, CAUSAL: tl.constexpr, ENABLE_DROPOUT: tl.constexpr, PADDED_HEAD: tl.constexpr, BIAS_TYPE: tl.constexpr): offs_q = start_q + tl.arange(0, BLOCK_M) offs_k = tl.arange(0, BLOCK_N) offs_d = tl.arange(0, BLOCK_DMODEL) ld_offs_d = None if not PADDED_HEAD else tl.arange(0, BLOCK_DMODEL) kt_ptrs += lo * k_stride vt_ptrs += lo * v_stride if BIAS_TYPE == 1: B_block_ptr = tl.advance(B_block_ptr, (0, lo)) DB_block_ptr = tl.advance(DB_block_ptr, (0, lo)) """ K1 K2 (d)V dO Q1 qk11 qk12 (d)v1 dO1 Q2 qk21 qk22 (d)v2 dO2 QK: (seqlen_q, seqlen_k) dO: (seqlen_q, hdim) dV: (seqlen_k, hdim) """ for start_k in range(lo, hi, BLOCK_N): offs_k_curr = offs_k[None, :] + start_k if not FULL_BLOCKS: kt = load_fn(kt_ptrs, ld_offs_d, offs_k + start_k, head_dim, seqlen_k) else: kt = load_fn(kt_ptrs, ld_offs_d, None, head_dim, seqlen_k) if not FULL_BLOCKS: vt = load_fn(vt_ptrs, ld_offs_d, offs_k + start_k, head_dim, seqlen_k) else: vt = load_fn(vt_ptrs, ld_offs_d, None, head_dim, seqlen_k) qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) qk += dot(BLOCK_M, BLOCK_DMODEL, BLOCK_DMODEL, q, kt) if not FULL_BLOCKS: k_boundary = tl.full((BLOCK_M,), seqlen_k, dtype=tl.int32) mask = offs_k_curr < k_boundary[:, None] qk = tl.where(mask, qk, float('-inf')) if CAUSAL: qk = tl.where(offs_q[:, None] >= offs_k_curr, qk, float('-inf')) if BIAS_TYPE == 0: pass elif BIAS_TYPE == 1: bias = tl.load(B_block_ptr, boundary_check=(0, 1), padding_option='zero') qk += bias * bias_scale else: tl.static_assert(False, f'Unsupported BIAS_TYPE {BIAS_TYPE}') p = tl.math.exp2(qk_scale * qk - l_i[:, None]) if not FULL_BLOCKS or CAUSAL: if qk_scale == 0.0: p = tl.where(libdevice.isnan(p), 0.0, p) dp = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) dp += dot(BLOCK_M, BLOCK_DMODEL, BLOCK_DMODEL, do, vt) if ENABLE_DROPOUT: philox_offset = (batch_philox_offset + start_q * max_seqlen_k + start_k) keep = dropout_mask(philox_seed, philox_offset, dropout_p, BLOCK_M, BLOCK_N, max_seqlen_k) dp = tl.where(keep, dp * dropout_scale, 0) ds = p * (dp - Di[:, None]) if BLOCK_M == 1: dq += tl.view(kt, [BLOCK_DMODEL]) * ds.to(q.type.element_ty) else: dq = tl.dot(ds.to(q.type.element_ty), tl.trans(kt), acc=dq) if BIAS_TYPE == 1: if store_db: tl.store(DB_block_ptr, ds.to(DB_block_ptr.type.element_ty), boundary_check=(0, 1)) kt_ptrs += BLOCK_N * k_stride vt_ptrs += BLOCK_N * v_stride if BIAS_TYPE == 1: B_block_ptr = tl.advance(B_block_ptr, (0, BLOCK_N)) DB_block_ptr = tl.advance(DB_block_ptr, (0, BLOCK_N)) return dq
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Attention Mechanisms" ], "Memory Access Pattern": [ "Strided Access", "Tiled Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/ROCm/aotriton/blob/016f733e8ff746450e066f78bed68709ccd93e60/tritonsrc/bwd_inner_dq.py
774b2df7-3308-4be6-9859-ced86bcaa8fc
gemm_a16w4.py
AlibabaPAI/FLASHNN
flashnn/triton_kernels/gemm_a16w4.py
528a9301587f5fb135b25d973a87ba0a40a703a7
0
@triton.jit def _triton_gemm_a16w4_per_channel_kernel(A, B, C, scale_b, bias, zero_points, M, N, K, rescale_m, rescale_n, rescale_k, stride_am, stride_ak, stride_bn, stride_bk, stride_cm, stride_cn, stride_zpk, stride_zpn, stride_scalek, stride_scalen, add_bias: tl.constexpr, add_zero_points: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl. constexpr, BLOCK_K: tl.constexpr, GROUP_M: tl.constexpr, SPLIT_K: tl. constexpr): pid = tl.program_id(0) pid_z = tl.program_id(1) grid_m = tl.cdiv(M, BLOCK_M) grid_n = tl.cdiv(N, BLOCK_N) width = GROUP_M * grid_n group_id = pid // width group_size = min(grid_m - group_id * GROUP_M, GROUP_M) pid_m = group_id * GROUP_M + pid % group_size pid_n = pid % width // group_size rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M) rbn = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N) rk = pid_z * BLOCK_K + tl.arange(0, BLOCK_K) A = A + (ram[:, None] * stride_am + rk[None, :] * stride_ak) B = B + (rbn[:, None] * stride_bn + rk[None, :] * stride_bk) acc_l = tl.zeros((BLOCK_N, BLOCK_M), dtype=tl.float32) acc_h = tl.zeros((BLOCK_N, BLOCK_M), dtype=tl.float32) _A0 = tl.zeros((1, 1), dtype=A.dtype.element_ty) _B0 = tl.zeros((1, 1), dtype=B.dtype.element_ty) if add_zero_points: offs_zero_points = pid_n * BLOCK_N * 2 + tl.arange(0, 2 * BLOCK_N) zero_points_ptrs = zero_points + offs_zero_points _ZERO_POINT0 = tl.zeros([1], dtype=zero_points.dtype.element_ty) zero_points_vals = tl.load(zero_points_ptrs, mask=offs_zero_points < 2 * N, other=_ZERO_POINT0) zero_points_vals = tl.reshape(zero_points_vals, (BLOCK_N, 2)) zp_l, zp_h = tl.split(zero_points_vals) offs_scale = pid_n * BLOCK_N * 2 + tl.arange(0, 2 * BLOCK_N) scale_ptrs = scale_b + offs_scale _SCALE0 = tl.zeros([1], dtype=scale_b.dtype.element_ty) scales = tl.load(scale_ptrs, mask=offs_scale < 2 * N, other=_SCALE0) for k in range(0, tl.cdiv(K, BLOCK_K * SPLIT_K)): k_remaining = K - k * (BLOCK_K * SPLIT_K) b_int4_two = tl.load(B, mask=rk[None, :] < k_remaining, other=_B0) b_int4_l = b_int4_two.__lshift__(4).to(tl.int8).__rshift__(4).to(A. dtype.element_ty) b_int4_h = b_int4_two.__rshift__(4).to(A.dtype.element_ty) a = tl.load(A, mask=rk[None, :] < k_remaining, other=_A0) a = tl.trans(a) if add_zero_points: b_int4_l -= zp_l[:, None] b_int4_h -= zp_h[:, None] acc_l += tl.dot(b_int4_l, a, out_dtype=tl.float32, allow_tf32=True) acc_h += tl.dot(b_int4_h, a, out_dtype=tl.float32, allow_tf32=True) A += BLOCK_K * SPLIT_K * stride_ak B += BLOCK_K * SPLIT_K * stride_bk acc_l = tl.trans(acc_l) acc_h = tl.trans(acc_h) acc = tl.interleave(acc_l, acc_h) offs_scale = pid_n * BLOCK_N * 2 + tl.arange(0, 2 * BLOCK_N) scale_ptrs = scale_b + offs_scale _SCALE0 = tl.zeros([1], dtype=scale_b.dtype.element_ty) scales = tl.load(scale_ptrs, mask=offs_scale < 2 * N, other=_SCALE0) acc *= scales[None, :] acc = acc.to(C.dtype.element_ty) rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N * 2 + tl.arange(0, 2 * BLOCK_N) mask = (rm < M)[:, None] & (rn < 2 * N)[None, :] if add_bias: offs_bias = pid_n * BLOCK_N * 2 + tl.arange(0, 2 * BLOCK_N) bias_ptrs = bias + offs_bias _BIAS0 = tl.zeros([1], dtype=bias.dtype.element_ty) bias_vals = tl.load(bias_ptrs, mask=offs_bias < 2 * N, other=_BIAS0) if pid_z == 0: acc += bias_vals[None, :] if SPLIT_K == 1: tl.store(C + rm[:, None] * stride_cm + rn[None, :], acc, mask=mask) else: tl.atomic_add(C + rm[:, None] * stride_cm + rn[None, :], acc, mask=mask )
{ "Data Type": [ "int8", "fp32" ], "Functionality": [ "Matrix Multiplication", "Quantization" ], "Memory Access Pattern": [ "Tiled", "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops", "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "Apache" ]
https://github.com/AlibabaPAI/FLASHNN/blob/528a9301587f5fb135b25d973a87ba0a40a703a7/flashnn/triton_kernels/gemm_a16w4.py
32a86171-95db-478d-aace-264ce85654bc
chunk_h_parallel.py
sustcsonglin/flash-linear-attention
fla/ops/common/chunk_h_parallel.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'STORE_INITIAL_STATE_GRADIENT': lambda args: args['dh0' ] is not None, 'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not None, 'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({'BK': BK, 'BV': BV}, num_warps= num_warps, num_stages=num_stages) for BK in [32, 64, 128] for BV in [32, 64, 128] for num_warps in [2, 4, 8] for num_stages in [2, 3, 4]], key=[ 'BT', 'USE_G', 'USE_GK', 'USE_GV']) @triton.jit def chunk_bwd_kernel_dh_parallel(q, g, gk, gv, do, dh, dht, dh0, offsets, indices, scale, T: tl.constexpr, HQ: tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, NG: tl.constexpr, USE_G: tl.constexpr, USE_GK: tl. constexpr, USE_GV: tl.constexpr, STORE_INITIAL_STATE_GRADIENT: tl. constexpr, USE_FINAL_STATE_GRADIENT: tl.constexpr, USE_OFFSETS: tl. constexpr, HEAD_FIRST: tl.constexpr): i_kv, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) NV = tl.cdiv(V, BV) i_k, i_v = i_kv // NV, i_kv % NV i_b, i_hq, i_bg = i_bh // HQ, i_bh % HQ, i_bh // NG i_h = i_hq // NG if USE_OFFSETS: i_tg = i_t i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos NT = tl.cdiv(T, BT) else: bos, eos = i_b * T, i_b * T + T NT = tl.cdiv(T, BT) i_n, i_tg = i_b, i_b * NT + i_t i_nh = i_n * HQ + i_hq if HEAD_FIRST: p_q = tl.make_block_ptr(q + i_bh * T * K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_do = tl.make_block_ptr(do + i_bh * T * V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_dh = tl.make_block_ptr(dh + (i_bh * NT + i_t) * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) else: p_q = tl.make_block_ptr(q + (bos * HQ + i_hq) * K, (K, T), (1, HQ * K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_do = tl.make_block_ptr(do + (bos * HQ + i_hq) * V, (T, V), (HQ * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_dh = tl.make_block_ptr(dh + (i_tg * H + i_h) * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) if i_t == NT - 1: if USE_FINAL_STATE_GRADIENT: p_dht = tl.make_block_ptr(dht + i_nh * K * V, (K, V), (V, 1), ( i_k * BK, i_v * BV), (BK, BV), (1, 0)) b_dh = tl.load(p_dht, boundary_check=(0, 1)).to(tl.float32) else: b_dh = tl.zeros([BK, BV], dtype=tl.float32) tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_q = (b_q * scale).to(b_q.dtype) b_do = tl.load(p_do, boundary_check=(0, 1)) if USE_G: if HEAD_FIRST: p_g = g + i_bg * T + i_t * BT + tl.arange(0, BT) p_g = tl.max_contiguous(tl.multiple_of(p_g, BT), BT) else: p_g = g + (bos + i_t * BT + tl.arange(0, BT)) * H + i_h b_g = tl.load(p_g, mask=i_t * BT + tl.arange(0, BT) < T, other=0.0) b_q = (b_q * tl.exp(b_g)[None, :]).to(b_q.dtype) if USE_GK: if HEAD_FIRST: p_gk = tl.make_block_ptr(gk + i_bg * T * K, (K, T), (1, K), ( i_k * BK, i_t * BT), (BK, BT), (0, 1)) else: p_gk = tl.make_block_ptr(gk + (bos * H + i_h) * K, (K, T), (1, H * K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) b_gk = tl.load(p_gk, boundary_check=(0, 1)) b_q = (b_q * tl.exp(b_gk)).to(b_q.dtype) if USE_GV: if HEAD_FIRST: p_gv = tl.make_block_ptr(gv + i_bg * T * V, (T, V), (V, 1), ( i_t * BT, i_v * BV), (BT, BV), (1, 0)) else: p_gv = tl.make_block_ptr(gv + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) b_gv = tl.load(p_gv, boundary_check=(0, 1)) b_do = (b_do * tl.exp(b_gv)).to(b_do.dtype) b_dh = tl.dot(b_q, b_do) if i_t > 0: if HEAD_FIRST: p_dh = tl.make_block_ptr(dh + (i_bh * NT + i_t - 1) * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) else: p_dh = tl.make_block_ptr(dh + ((i_tg - 1) * H + i_h) * K * V, ( K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1)) elif STORE_INITIAL_STATE_GRADIENT: p_dh0 = tl.make_block_ptr(dh0 + i_nh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Attention Mechanisms" ], "Memory Access Pattern": [ "Strided Access", "Tiled Access" ], "Parallelization Strategy": [ "Grid-Stride Loops", "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/common/chunk_h_parallel.py
10461b26-96c5-475b-b85e-1317b069b740
mlstm_scan.py
LukasBluebaum/xLSTM-Triton-CUDA-Implementation
mlstm_scan.py
6fb49b89cc74e7dadd0f3d56db05684bb4e86f4b
0
@triton.jit def scan_op(x1, y1, x2, y2): z1 = x2 * x1 z2 = x2 * y1 + y2 return z1, z2
{ "Data Type": [], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "MIT" ]
https://github.com/LukasBluebaum/xLSTM-Triton-CUDA-Implementation/blob/6fb49b89cc74e7dadd0f3d56db05684bb4e86f4b/mlstm_scan.py
e72ea98e-3167-44ec-923d-f412cbff14b8
naive_associative_rnn_scan.py
TushaarGVS/linear-rnn
linear_rnn/triton/naive_associative_rnn_scan.py
48320589b73154484be7d09a144923a2b9e56b85
0
@triton.jit def _associative_scan_op(a_l, x_l, a_r, x_r): return a_r * a_l, a_r * x_l + x_r
{ "Data Type": [], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [], "Parallelization Strategy": [], "Performance Objective": [] }
[ "Apache" ]
https://github.com/TushaarGVS/linear-rnn/blob/48320589b73154484be7d09a144923a2b9e56b85/linear_rnn/triton/naive_associative_rnn_scan.py
489248a3-bb60-40d3-a95f-13874bdd6bf8
chunk.py
sustcsonglin/flash-linear-attention
fla/ops/gated_delta_rule/chunk.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({}, num_warps=num_warps) for num_warps in [2, 4]], key=['BT', 'BK', 'BV']) @triton.jit def chunk_gated_delta_rule_bwd_kernel_dqkw(q, k, v, w, g, h, do, dh, dq, dk, dv, dw, dg, offsets, indices, scale, T: tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, NT: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr): i_k, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_b, i_h = i_bh // H, i_bh % H if USE_OFFSETS: i_tg = i_t i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos NT = tl.cdiv(T, BT) else: NT = tl.cdiv(T, BT) i_tg = i_b * NT + i_t bos, eos = i_b * T, i_b * T + T o_i = tl.arange(0, BT) if HEAD_FIRST: p_q = tl.make_block_ptr(q + i_bh * T * K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) else: p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (K, T), (1, H * K), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) b_dq = tl.zeros([BT, BK], dtype=tl.float32) b_dk = tl.zeros([BT, BK], dtype=tl.float32) b_dw = tl.zeros([BT, BK], dtype=tl.float32) b_ds = tl.zeros([BT, BT], dtype=tl.float32) b_dg = tl.zeros([BT], dtype=tl.float32) b_dg_last = tl.zeros([1], dtype=tl.float32) last_idx = min((i_t + 1) * BT, T) - 1 if HEAD_FIRST: b_g_last = tl.load(g + i_bh * T + last_idx) else: b_g_last = tl.load(g + (bos + last_idx) * H + i_h) for i_v in range(tl.cdiv(V, BV)): if HEAD_FIRST: p_v = tl.make_block_ptr(v + i_bh * T * V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_do = tl.make_block_ptr(do + i_bh * T * V, (T, V), (V, 1), ( i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_dv = tl.make_block_ptr(dv + i_bh * T * V, (T, V), (V, 1), ( i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_h = tl.make_block_ptr(h + i_bh * NT * K * V + i_t * K * V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) p_dh = tl.make_block_ptr(dh + i_bh * NT * K * V + i_t * K * V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) else: p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_do = tl.make_block_ptr(do + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_dv = tl.make_block_ptr(dv + (bos * H + i_h) * V, (T, V), (H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_h = tl.make_block_ptr(h + (i_tg * H + i_h) * K * V, (V, K), ( 1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) p_dh = tl.make_block_ptr(dh + (i_tg * H + i_h) * K * V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)) b_h = tl.load(p_h, boundary_check=(0, 1)) b_dh = tl.load(p_dh, boundary_check=(0, 1)) b_dg_last += tl.sum(b_h * b_dh) b_ds += tl.dot(b_do, tl.trans(b_v), allow_tf32=False) b_dq += tl.dot(b_do, b_h, allow_tf32=False) b_dk += tl.dot(b_v, b_dh, allow_tf32=False) b_dv = tl.load(p_dv, boundary_check=(0, 1)) b_dw += tl.dot(b_dv.to(b_v.dtype), b_h.to(b_v.dtype), allow_tf32=False) b_dg_last *= tl.exp(b_g_last) if HEAD_FIRST: p_q = tl.make_block_ptr(q + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_w = tl.make_block_ptr(w + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dq = tl.make_block_ptr(dq + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dk = tl.make_block_ptr(dk + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dw = tl.make_block_ptr(dw + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_g = tl.make_block_ptr(g + i_bh * T, (T,), (1,), (i_t * BT,), (BT, ), (0,)) p_dg = tl.make_block_ptr(dg + i_bh * T, (T,), (1,), (i_t * BT,), ( BT,), (0,)) else: p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_w = tl.make_block_ptr(w + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dq = tl.make_block_ptr(dq + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dk = tl.make_block_ptr(dk + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dw = tl.make_block_ptr(dw + (bos * H + i_h) * K, (T, K), (H * K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_g = tl.make_block_ptr(g + bos * H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,)) p_dg = tl.make_block_ptr(dg + bos * H + i_h, (T,), (H,), (i_t * BT, ), (BT,), (0,)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_g = tl.load(p_g, boundary_check=(0,)) b_w = tl.load(p_w, boundary_check=(0, 1)) b_g_exp_qw = tl.exp(b_g) b_dq *= b_g_exp_qw[:, None] * scale b_dg += tl.sum(b_dq * b_q, axis=1) b_dw *= b_g_exp_qw[:, None] b_dg -= tl.sum(b_dw * b_w, axis=1) b_dk *= tl.exp(b_g_last - b_g)[:, None] b_dg -= tl.sum(b_dk * b_k, axis=1) b_dg_last += tl.sum(b_dk * b_k) b_g_exp_qw = None b_ds = tl.where(o_i[:, None] >= o_i[None, :], b_ds * scale * tl.exp(b_g [:, None] - b_g[None, :]), 0).to(b_q.dtype) b_dg_mask = tl.dot(b_q, tl.trans(b_k), allow_tf32=False) * b_ds b_dg += tl.sum(b_dg_mask, axis=1) b_dg -= tl.sum(b_dg_mask, axis=0) b_dq += tl.dot(b_ds, b_k, allow_tf32=False) b_dk += tl.trans(tl.dot(tl.trans(b_q), b_ds, allow_tf32=False)) b_dg = tl.where(o_i < min(BT, T - i_t * BT) - 1, b_dg, b_dg + b_dg_last) tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dw, -b_dw.to(p_dw.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0,))
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Attention Mechanisms" ], "Memory Access Pattern": [ "Tiled", "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "Memory-Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/gated_delta_rule/chunk.py
ba1125e7-41b5-4aee-9a38-9f0cb8548a00
math.py
BobMcDear/attorch
attorch/math.py
da06cb6236bb47195e33fe3986ed21c675ed94cc
0
@triton.jit def accum_linear(accum, input1, input2, fp16: tl.constexpr, tf32: tl.constexpr ): """ Accumulates matrix multiplications of input tensors for linear functions. Args: accum: Accumulator holding aggregation of matrix multiplications. The accumulator must be of shape [BLOCK_SIZE1, BLOCK_SIZE3]. input1: First operand of matrix multiplication. The operand must be of shape [BLOCK_SIZE1, BLOCK_SIZE2]. input2: Second operand of matrix multiplication. The operand must be of shape [BLOCK_SIZE2, BLOCK_SIZE3]. fp16: Flag for converting operands to FP16. tf32: Flag for performing matrix multiplication in TF32. Returns: Accumulator with the result of the new matrix multiplication added to it. """ if fp16: input1 = input1.to(tl.float16) input2 = input2.to(tl.float16) return accum + tl.dot(input1, input2, allow_tf32=tf32)
{ "Data Type": [ "fp16" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/BobMcDear/attorch/blob/da06cb6236bb47195e33fe3986ed21c675ed94cc/attorch/math.py
cecb82d3-5254-4b2d-9ca3-137d666bad12
tuned_bwd.py
ROCm/aotriton
tritonsrc/tuned_bwd.py
016f733e8ff746450e066f78bed68709ccd93e60
0
@triton.autotune(configs=TRITON_CONFIG_LIST_BWD, key=['BLOCK_DMODEL', 'max_seqlen_q', 'max_seqlen_k']) @triton.jit def tuned_bwd_kernel_dk_dv(Q, K, V, B, sm_scale, Out, DO, DK, DV, L, D, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_bz, stride_bh, stride_bm, stride_bn, stride_oz, stride_oh, stride_om, stride_ok, stride_dkz, stride_dkh, stride_dkn, stride_dkk, stride_dvz, stride_dvh, stride_dvk, stride_dvn, cu_seqlens_q, cu_seqlens_k, num_seqlens, max_seqlen_q, max_seqlen_k, head_dim, dropout_p, philox_seed, philox_offset_base, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, CAUSAL: tl.constexpr, ENABLE_DROPOUT: tl.constexpr, PADDED_HEAD: tl.constexpr, BIAS_TYPE: tl. constexpr): bare_bwd_kernel_dk_dv(Q, K, V, B, sm_scale, Out, DO, DK, DV, L, D, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_bz, stride_bh, stride_bm, stride_bn, stride_oz, stride_oh, stride_om, stride_ok, stride_dkz, stride_dkh, stride_dkn, stride_dkk, stride_dvz, stride_dvh, stride_dvk, stride_dvn, cu_seqlens_q, cu_seqlens_k, num_seqlens, max_seqlen_q, max_seqlen_k, head_dim, dropout_p, philox_seed, philox_offset_base, BLOCK_M, BLOCK_DMODEL, BLOCK_N, CAUSAL, ENABLE_DROPOUT, PADDED_HEAD= PADDED_HEAD, BIAS_TYPE=BIAS_TYPE)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Attention Mechanisms" ], "Memory Access Pattern": [ "Tiled", "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "Memory-Bound" ] }
[ "MIT" ]
https://github.com/ROCm/aotriton/blob/016f733e8ff746450e066f78bed68709ccd93e60/tritonsrc/tuned_bwd.py
0bb116ff-c023-4106-b0ff-399e5628a32e
layernorm.py
sustcsonglin/flash-linear-attention
fla/modules/layernorm.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'RECOMPUTE_OUTPUT': lambda args: args['Y'] is not None}) @triton.autotune(configs=[triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8), triton.Config({}, num_warps=16), triton.Config({}, num_warps=32)], key=['N', 'HAS_DRESIDUAL', 'STORE_DRESIDUAL', 'IS_RMS_NORM', 'HAS_BIAS']) @triton.jit def layer_norm_bwd_kernel(X, W, B, Y, DY, DX, DW, DB, DRESIDUAL, DRESIDUAL_IN, Mean, Rstd, stride_x_row, stride_y_row, stride_dy_row, stride_dx_row, stride_dres_row, stride_dres_in_row, M, N, G, rows_per_program, programs_per_group, IS_RMS_NORM: tl.constexpr, BLOCK_N: tl.constexpr, HAS_DRESIDUAL: tl.constexpr, STORE_DRESIDUAL: tl .constexpr, HAS_WEIGHT: tl.constexpr, HAS_BIAS: tl.constexpr, RECOMPUTE_OUTPUT: tl.constexpr): row_block_id = tl.program_id(0) group_id, program_id_in_group = (row_block_id // programs_per_group, row_block_id % programs_per_group) row_start = group_id + program_id_in_group * G * rows_per_program row_end = min(row_start + G * rows_per_program, M) cols = tl.arange(0, BLOCK_N) mask = cols < N if HAS_WEIGHT: w = tl.load(W + group_id * stride_x_row + cols, mask=mask).to(tl. float32) dw = tl.zeros((BLOCK_N,), dtype=tl.float32) if RECOMPUTE_OUTPUT and HAS_BIAS: b = tl.load(B + group_id * stride_x_row + cols, mask=mask, other=0.0 ).to(tl.float32) if HAS_BIAS: db = tl.zeros((BLOCK_N,), dtype=tl.float32) for row in range(row_start, row_end, G): x = tl.load(X + row * stride_x_row + cols, mask=mask, other=0).to(tl .float32) dy = tl.load(DY + row * stride_dy_row + cols, mask=mask, other=0).to(tl .float32) if not IS_RMS_NORM: mean = tl.load(Mean + row) rstd = tl.load(Rstd + row) xhat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd xhat = tl.where(mask, xhat, 0.0) if RECOMPUTE_OUTPUT: y = xhat * w if HAS_WEIGHT else xhat if HAS_BIAS: y = y + b tl.store(Y + row * stride_y_row + cols, y, mask=mask) wdy = dy if HAS_WEIGHT: wdy = dy * w dw += dy * xhat if HAS_BIAS: db += dy if not IS_RMS_NORM: c1 = tl.sum(xhat * wdy, axis=0) / N c2 = tl.sum(wdy, axis=0) / N dx = (wdy - (xhat * c1 + c2)) * rstd else: c1 = tl.sum(xhat * wdy, axis=0) / N dx = (wdy - xhat * c1) * rstd if HAS_DRESIDUAL: dres = tl.load(DRESIDUAL + row * stride_dres_row + cols, mask= mask, other=0).to(tl.float32) dx += dres if STORE_DRESIDUAL: tl.store(DRESIDUAL_IN + row * stride_dres_in_row + cols, dx, mask=mask) tl.store(DX + row * stride_dx_row + cols, dx, mask=mask) if HAS_WEIGHT: tl.store(DW + row_block_id * N + cols, dw, mask=mask) if HAS_BIAS: tl.store(DB + row_block_id * N + cols, db, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Normalization", "Backpropagation" ], "Memory Access Pattern": [ "Tiled", "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/modules/layernorm.py
bbfcb74d-d097-408e-89dc-20d7bdf56c4b
09-experimental-tma-matrix-multiplication.py
hgl71964/SIP
benchmarks/09-experimental-tma-matrix-multiplication.py
767ed720d4bd5cee21670b125b62c434258c532b
0
@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages =7, num_warps=4)], key=['M', 'N', 'K']) @triton.jit def matmul_kernel(a_ptr, b_ptr, z_ptr, M, N, K, stride_am, stride_ak, stride_bk, stride_bn, stride_zm, stride_zn, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr, A_ORDER_0: tl.constexpr, A_ORDER_1: tl.constexpr, B_ORDER_0: tl.constexpr, B_ORDER_1: tl.constexpr): pid = tl.program_id(axis=0) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_in_group = GROUP_SIZE_M * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_m = first_pid_m + pid % group_size_m pid_n = pid % num_pid_in_group // group_size_m block_offset_m = pid_m * BLOCK_SIZE_M block_offset_n = pid_n * BLOCK_SIZE_N a_tile_ptr = tl.make_block_ptr(base=a_ptr, shape=(M, K), strides=( stride_am, stride_ak), offsets=(block_offset_m, 0), block_shape=( BLOCK_SIZE_M, BLOCK_SIZE_K), order=(A_ORDER_0, A_ORDER_1)) b_tile_ptr = tl.make_block_ptr(base=b_ptr, shape=(K, N), strides=( stride_bk, stride_bn), offsets=(0, block_offset_n), block_shape=( BLOCK_SIZE_K, BLOCK_SIZE_N), order=(B_ORDER_0, B_ORDER_1)) z = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) offs_m = block_offset_m + tl.arange(0, BLOCK_SIZE_M) offs_n = block_offset_n + tl.arange(0, BLOCK_SIZE_N) z_ptrs = z_ptr + offs_m[:, None] * stride_zm + offs_n[None, :] * stride_zn mask = (offs_m < M)[:, None] & (offs_n < N)[None, :] for k in range(0, K, BLOCK_SIZE_K): a = tl.load(a_tile_ptr) b = tl.load(b_tile_ptr) z += tl.dot(a, b) a_tile_ptr = tl.advance(a_tile_ptr, [0, BLOCK_SIZE_K]) b_tile_ptr = tl.advance(b_tile_ptr, [BLOCK_SIZE_K, 0]) z = z.to(tl.float16) tl.store(z_ptrs, z, mask=mask)
{ "Data Type": [ "fp16" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Tiled", "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "MIT" ]
https://github.com/hgl71964/SIP/blob/767ed720d4bd5cee21670b125b62c434258c532b/benchmarks/09-experimental-tma-matrix-multiplication.py
6901e5d7-7826-4fb5-b04f-6731b4bdf651
lstm_bw.py
NX-AI/flashrnn
flashrnn/flashrnn/triton_fused/lstm_bw.py
3fca666a81c8740af4878d7bc5e2a51900e4fe14
0
@triton.jit def _backward_sequence_kernel(delta_states_all_outside, delta_states_last_outside, R, states_all, gates_all, delta_states_initial, delta_Wx, delta_R, delta_b, T: tl.constexpr, NS: tl.constexpr, B: tl.constexpr, NH: tl.constexpr, DH: tl.constexpr, NGI: tl.constexpr, NGR: tl.constexpr, siz_B: tl.constexpr, DTYPE: tl. constexpr=tl.float32, backward_recurrent_clip_val: tl.constexpr=-1.0): idx_b_NH, idx_b_B = tl.program_id(0), tl.program_id(1) str_matR_B = NH * NGR * DH * DH str_matR_NH = NGR * DH * DH str_matR_NGR = DH * DH str_matStatesAll_NH = (T + 1) * NS * B * DH str_matStatesAll_T = NS * B * DH str_matGatesAll_NH = T * NGI * B * DH str_matGatesAll_T = NGI * B * DH str_delta_states_all_outside_NH = T * NS * B * DH str_delta_states_all_outside_T = NS * B * DH str_matDeltaWx_NH = T * NGI * B * DH str_matDeltaWx_T = NGI * B * DH matDeltaHtrans_last_ptr = tl.make_block_ptr(base= delta_states_last_outside + idx_b_NH * NS * B * DH + 0 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) matDeltaH_tplus1 = tl.load(matDeltaHtrans_last_ptr).to(tl.float32) matDeltaCtrans_last_ptr = tl.make_block_ptr(base= delta_states_last_outside + idx_b_NH * NS * B * DH + 1 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) matDeltaC_tplus1 = tl.load(matDeltaCtrans_last_ptr).to(tl.float32) matR_i_ptr = tl.make_block_ptr(base=R + idx_b_NH * str_matR_NH + 0 * str_matR_NGR, shape=(DH, DH), strides=(DH, 1), offsets=(0, 0), block_shape=(DH, DH), order=(0, 1)) matR_i = tl.load(matR_i_ptr) matR_f_ptr = tl.make_block_ptr(base=R + idx_b_NH * str_matR_NH + 1 * str_matR_NGR, shape=(DH, DH), strides=(DH, 1), offsets=(0, 0), block_shape=(DH, DH), order=(0, 1)) matR_f = tl.load(matR_f_ptr) matR_z_ptr = tl.make_block_ptr(base=R + idx_b_NH * str_matR_NH + 2 * str_matR_NGR, shape=(DH, DH), strides=(DH, 1), offsets=(0, 0), block_shape=(DH, DH), order=(0, 1)) matR_z = tl.load(matR_z_ptr) matR_o_ptr = tl.make_block_ptr(base=R + idx_b_NH * str_matR_NH + 3 * str_matR_NGR, shape=(DH, DH), strides=(DH, 1), offsets=(0, 0), block_shape=(DH, DH), order=(0, 1)) matR_o = tl.load(matR_o_ptr) matDeltaR_i = tl.zeros((DH, DH), dtype=tl.float32) matDeltaR_f = tl.zeros((DH, DH), dtype=tl.float32) matDeltaR_z = tl.zeros((DH, DH), dtype=tl.float32) matDeltaR_o = tl.zeros((DH, DH), dtype=tl.float32) vecDeltaB_i = tl.zeros((DH,), dtype=tl.float32) vecDeltaB_f = tl.zeros((DH,), dtype=tl.float32) vecDeltaB_z = tl.zeros((DH,), dtype=tl.float32) vecDeltaB_o = tl.zeros((DH,), dtype=tl.float32) for idx_t in range(T - 1, -1, -1): matG_i_ptr = tl.make_block_ptr(base=gates_all + idx_b_NH * str_matGatesAll_NH + idx_t * str_matGatesAll_T + 0 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) matG_i = tl.load(matG_i_ptr) matG_f_ptr = tl.make_block_ptr(base=gates_all + idx_b_NH * str_matGatesAll_NH + idx_t * str_matGatesAll_T + 1 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) matG_f = tl.load(matG_f_ptr) matG_z_ptr = tl.make_block_ptr(base=gates_all + idx_b_NH * str_matGatesAll_NH + idx_t * str_matGatesAll_T + 2 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) matG_z = tl.load(matG_z_ptr) matG_o_ptr = tl.make_block_ptr(base=gates_all + idx_b_NH * str_matGatesAll_NH + idx_t * str_matGatesAll_T + 3 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) matG_o = tl.load(matG_o_ptr) matC_t_ptr = tl.make_block_ptr(base=states_all + idx_b_NH * str_matStatesAll_NH + (idx_t + 1) * str_matStatesAll_T + 1 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0 ), block_shape=(siz_B, DH), order=(0, 1)) matC_t = tl.load(matC_t_ptr) matC_tminus1_ptr = tl.make_block_ptr(base=states_all + idx_b_NH * str_matStatesAll_NH + idx_t * str_matStatesAll_T + 1 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) matC_tminus1 = tl.load(matC_tminus1_ptr) matH_tminus1_ptr = tl.make_block_ptr(base=states_all + idx_b_NH * str_matStatesAll_NH + idx_t * str_matStatesAll_T + 0 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) matH_tminus1 = tl.load(matH_tminus1_ptr) matDeltaCtrans_out_t_ptr = tl.make_block_ptr(base= delta_states_all_outside + idx_b_NH * str_delta_states_all_outside_NH + idx_t * str_delta_states_all_outside_T + 1 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=( siz_B, DH), order=(0, 1)) matDeltaCtrans_out_t = tl.load(matDeltaCtrans_out_t_ptr) matDeltaHtrans_out_t_ptr = tl.make_block_ptr(base= delta_states_all_outside + idx_b_NH * str_delta_states_all_outside_NH + idx_t * str_delta_states_all_outside_T + 0 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=( siz_B, DH), order=(0, 1)) matDeltaHtrans_out_t = tl.load(matDeltaHtrans_out_t_ptr) matDeltaH_t = matDeltaHtrans_out_t + matDeltaH_tplus1 matDeltaC_t = matDeltaCtrans_out_t + matDeltaC_tplus1 matCtrans_t_tanh = triton_tanh(matC_t) matDeltaC_t = matDeltaC_t + matDeltaH_t * matG_o * (1 - matCtrans_t_tanh * matCtrans_t_tanh) matDeltaGI = matDeltaC_t * matG_z * (1 - matG_i) * matG_i matDeltaGF = matDeltaC_t * matC_tminus1 * (1 - matG_f) * matG_f matDeltaGZ = matDeltaC_t * matG_i * (1 - matG_z * matG_z) matDeltaGO = matDeltaH_t * matCtrans_t_tanh * (1 - matG_o) * matG_o matDeltaC_tminus1 = matDeltaC_t * matG_f matDeltaH_tminus1 = tl.dot(matDeltaGI.to(DTYPE), matR_i) matDeltaH_tminus1 += tl.dot(matDeltaGF.to(DTYPE), matR_f) matDeltaH_tminus1 += tl.dot(matDeltaGZ.to(DTYPE), matR_z) matDeltaH_tminus1 += tl.dot(matDeltaGO.to(DTYPE), matR_o) matDeltaR_i += tl.dot(tl.trans(matDeltaGI.to(DTYPE)), matH_tminus1) matDeltaR_f += tl.dot(tl.trans(matDeltaGF.to(DTYPE)), matH_tminus1) matDeltaR_z += tl.dot(tl.trans(matDeltaGZ.to(DTYPE)), matH_tminus1) matDeltaR_o += tl.dot(tl.trans(matDeltaGO.to(DTYPE)), matH_tminus1) vecDeltaB_i += tl.sum(matDeltaGI, axis=0) vecDeltaB_f += tl.sum(matDeltaGF, axis=0) vecDeltaB_z += tl.sum(matDeltaGZ, axis=0) vecDeltaB_o += tl.sum(matDeltaGO, axis=0) matDeltaGI_ptr = tl.make_block_ptr(base=delta_Wx + idx_b_NH * str_matDeltaWx_NH + idx_t * str_matDeltaWx_T + 0 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) tl.store(matDeltaGI_ptr, matDeltaGI.to(DTYPE)) matDeltaGF_ptr = tl.make_block_ptr(base=delta_Wx + idx_b_NH * str_matDeltaWx_NH + idx_t * str_matDeltaWx_T + 1 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) tl.store(matDeltaGF_ptr, matDeltaGF.to(DTYPE)) matDeltaGZ_ptr = tl.make_block_ptr(base=delta_Wx + idx_b_NH * str_matDeltaWx_NH + idx_t * str_matDeltaWx_T + 2 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) tl.store(matDeltaGZ_ptr, matDeltaGZ.to(DTYPE)) matDeltaGO_ptr = tl.make_block_ptr(base=delta_Wx + idx_b_NH * str_matDeltaWx_NH + idx_t * str_matDeltaWx_T + 3 * B * DH, shape=(B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape=(siz_B, DH), order=(0, 1)) tl.store(matDeltaGO_ptr, matDeltaGO.to(DTYPE)) matDeltaH_tplus1 = matDeltaH_tminus1 matDeltaC_tplus1 = matDeltaC_tminus1 matDeltaHtrans_initial_ptr = tl.make_block_ptr(base= delta_states_initial + idx_b_NH * NS * B * DH + 0 * B * DH, shape=( B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape= (siz_B, DH), order=(0, 1)) tl.store(matDeltaHtrans_initial_ptr, matDeltaH_tplus1.to(DTYPE)) matDeltaCtrans_initial_ptr = tl.make_block_ptr(base= delta_states_initial + idx_b_NH * NS * B * DH + 1 * B * DH, shape=( B, DH), strides=(DH, 1), offsets=(idx_b_B * siz_B, 0), block_shape= (siz_B, DH), order=(0, 1)) tl.store(matDeltaCtrans_initial_ptr, matDeltaC_tplus1.to(DTYPE)) matDeltaR_i_ptr = tl.make_block_ptr(base=delta_R + idx_b_B * str_matR_B + idx_b_NH * str_matR_NH + 0 * str_matR_NGR, shape=(DH, DH), strides= (DH, 1), offsets=(0, 0), block_shape=(DH, DH), order=(0, 1)) tl.store(matDeltaR_i_ptr, matDeltaR_i.to(DTYPE)) matDeltaR_f_ptr = tl.make_block_ptr(base=delta_R + idx_b_B * str_matR_B + idx_b_NH * str_matR_NH + 1 * str_matR_NGR, shape=(DH, DH), strides= (DH, 1), offsets=(0, 0), block_shape=(DH, DH), order=(0, 1)) tl.store(matDeltaR_f_ptr, matDeltaR_f.to(DTYPE)) matDeltaR_z_ptr = tl.make_block_ptr(base=delta_R + idx_b_B * str_matR_B + idx_b_NH * str_matR_NH + 2 * str_matR_NGR, shape=(DH, DH), strides= (DH, 1), offsets=(0, 0), block_shape=(DH, DH), order=(0, 1)) tl.store(matDeltaR_z_ptr, matDeltaR_z.to(DTYPE)) matDeltaR_o_ptr = tl.make_block_ptr(base=delta_R + idx_b_B * str_matR_B + idx_b_NH * str_matR_NH + 3 * str_matR_NGR, shape=(DH, DH), strides= (DH, 1), offsets=(0, 0), block_shape=(DH, DH), order=(0, 1)) tl.store(matDeltaR_o_ptr, matDeltaR_o.to(DTYPE)) vecDeltaB_i_ptr = (delta_b + idx_b_B * NH * NGI * DH + idx_b_NH * NGI * DH + 0 * DH + tl.arange(0, DH)) tl.store(vecDeltaB_i_ptr, vecDeltaB_i.to(DTYPE)) vecDeltaB_f_ptr = (delta_b + idx_b_B * NH * NGI * DH + idx_b_NH * NGI * DH + 1 * DH + tl.arange(0, DH)) tl.store(vecDeltaB_f_ptr, vecDeltaB_f.to(DTYPE)) vecDeltaB_z_ptr = (delta_b + idx_b_B * NH * NGI * DH + idx_b_NH * NGI * DH + 2 * DH + tl.arange(0, DH)) tl.store(vecDeltaB_z_ptr, vecDeltaB_z.to(DTYPE)) vecDeltaB_o_ptr = (delta_b + idx_b_B * NH * NGI * DH + idx_b_NH * NGI * DH + 3 * DH + tl.arange(0, DH)) tl.store(vecDeltaB_o_ptr, vecDeltaB_o.to(DTYPE))
{ "Data Type": [ "fp32" ], "Functionality": [ "Recurrent Neural Networks", "Backpropagation" ], "Memory Access Pattern": [ "Tiled", "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "Memory-Bound" ] }
[ "MIT", "BSD" ]
https://github.com/NX-AI/flashrnn/blob/3fca666a81c8740af4878d7bc5e2a51900e4fe14/flashrnn/flashrnn/triton_fused/lstm_bw.py
67e19a21-a90d-4dc1-acd6-5034e67c1d5c
FleetAttention_triton.py
Computational-Machine-Intelligence/LeetDecoding
leetDecoding/methods/FleetAttention_triton.py
1b545c2f5bacc155255250d1f70ac9484744559a
0
@triton.jit def FleetAttention_kernel(B_ptr, C_ptr, V_ptr, ans_ptr, seqlen: tl. constexpr, dim: tl.constexpr, rank: tl.constexpr, stride_vbh: tl. constexpr, stride_bbh: tl.constexpr, dim_BLOCK: tl.constexpr): rank_idx = tl.program_id(axis=0) bz = tl.program_id(axis=1) dim_block_idx = tl.program_id(axis=2) off_b = tl.arange(0, 1) off_dim = tl.arange(0, dim_BLOCK) cv = tl.zeros([1, dim_BLOCK], dtype=tl.float32) o = tl.zeros([1, dim_BLOCK], dtype=tl.float32) for seq_idx in range(seqlen): offs_bc = bz * stride_bbh + seq_idx * rank + rank_idx + off_b[None, :] offs_v = (bz * stride_vbh + seq_idx * dim + dim_block_idx * dim_BLOCK + off_dim[None, :]) ans_ptrs = (ans_ptr + bz * stride_vbh + seq_idx * dim + dim_block_idx * dim_BLOCK + off_dim[None, :]) v_ptrs = V_ptr + offs_v b_ptr = B_ptr + offs_bc c_ptr = C_ptr + offs_bc b = tl.load(b_ptr, mask=off_b[None, :] < 1, other=0) c = tl.load(c_ptr, mask=off_b[None, :] < 1, other=0) v = tl.load(v_ptrs, mask=off_dim[None, :] < dim, other=0) cv = c * v + cv o = b * cv ans = tl.load(ans_ptrs, mask=off_dim[None, :] < dim, other=0) tl.store(ans_ptrs, ans + o, mask=off_dim[None, :] < dim)
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Matrix Multiplication" ], "Memory Access Pattern": [ "Tiled", "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound", "High Throughput" ] }
[ "MIT" ]
https://github.com/Computational-Machine-Intelligence/LeetDecoding/blob/1b545c2f5bacc155255250d1f70ac9484744559a/leetDecoding/methods/FleetAttention_triton.py
1352a7a5-ebd7-4fa6-b706-8efe63475295
fwd_kernel.py
ROCm/aotriton
test/fwd_kernel.py
016f733e8ff746450e066f78bed68709ccd93e60
0
@triton.jit def attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr, V_block_ptr, start_m, seqlen_q, seqlen_k, dropout_p, philox_seed, batch_philox_offset, encoded_softmax_block_ptr, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl. constexpr, BLOCK_N: tl.constexpr, STAGE: tl.constexpr, offs_m: tl. constexpr, offs_n: tl.constexpr, pre_load_v: tl.constexpr, ENABLE_DROPOUT: tl.constexpr, RETURN_ENCODED_SOFTMAX: tl.constexpr): if STAGE == 1: lo, hi = 0, min(seqlen_k, start_m * BLOCK_M) elif STAGE == 2: lo, hi = start_m * BLOCK_M, min(seqlen_k, start_m * BLOCK_M + BLOCK_M) lo = tl.multiple_of(lo, BLOCK_M) K_block_ptr = tl.advance(K_block_ptr, (0, lo)) V_block_ptr = tl.advance(V_block_ptr, (lo, 0)) if RETURN_ENCODED_SOFTMAX: encoded_softmax_block_ptr = tl.advance(encoded_softmax_block_ptr, (0, lo)) else: lo, hi = 0, seqlen_k for start_n in range(lo, hi, BLOCK_N): if STAGE == 1 or STAGE == 3: start_n = tl.multiple_of(start_n, BLOCK_N) k = tl.load(K_block_ptr) if pre_load_v: v = tl.load(V_block_ptr) qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) if STAGE == 2: mask = offs_m[:, None] >= start_n + offs_n[None, :] qk = tl.where(mask, qk, float('-inf')) if BLOCK_M == 1: qk += tl.sum(tl.view(q, [BLOCK_DMODEL]) * tl.view(k, [ BLOCK_DMODEL])) else: qk += tl.dot(q, k) m_ij = tl.maximum(m_i, tl.max(qk, 1)) qk = qk - m_ij[:, None] p = tl.math.exp2(qk) l_ij = tl.sum(p, 1) if ENABLE_DROPOUT: philox_offset = (batch_philox_offset + start_m * BLOCK_M * seqlen_k + start_n) keep = dropout_mask(philox_seed, philox_offset, dropout_p, BLOCK_M, BLOCK_N, seqlen_k) if RETURN_ENCODED_SOFTMAX: tl.store(encoded_softmax_block_ptr, tl.where(keep, p, -p). to(encoded_softmax_block_ptr.type.element_ty)) p = tl.where(keep, p, 0.0) elif RETURN_ENCODED_SOFTMAX: tl.store(encoded_softmax_block_ptr, p.to( encoded_softmax_block_ptr.type.element_ty)) alpha = tl.math.exp2(m_i - m_ij) acc = acc * alpha[:, None] if not pre_load_v: v = tl.load(V_block_ptr) """ if ENABLE_DROPOUT: v = (v / (1.0 - dropout_p)).to(V_block_ptr.type.element_ty) """ l_i = l_i * alpha + l_ij m_i = m_ij if BLOCK_M == 1: acc += tl.view(p.to(V_block_ptr.type.element_ty), [1]) * tl.view(v, [BLOCK_DMODEL]) else: acc += tl.dot(p.to(V_block_ptr.type.element_ty), v) V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) if RETURN_ENCODED_SOFTMAX: encoded_softmax_block_ptr = tl.advance(encoded_softmax_block_ptr, (0, BLOCK_N)) return acc, l_i, m_i
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Softmax" ], "Memory Access Pattern": [ "Tiled", "Coalesced" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "Compute Bound" ] }
[ "MIT" ]
https://github.com/ROCm/aotriton/blob/016f733e8ff746450e066f78bed68709ccd93e60/test/fwd_kernel.py
1310b43a-9ced-4062-b861-4e7f7c35f090
cumsum.py
sustcsonglin/flash-linear-attention
fla/ops/utils/cumsum.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None}) @triton.autotune(configs=[triton.Config({'BS': BS}, num_warps=num_warps) for BS in [16, 32, 64] for num_warps in [2, 4, 8]], key=['S', 'BT']) @triton.jit def chunk_local_cumsum_vector_kernel(s, o, offsets, indices, T: tl. constexpr, H: tl.constexpr, S: tl.constexpr, BT: tl.constexpr, BS: tl. constexpr, HEAD_FIRST: tl.constexpr, USE_OFFSETS: tl.constexpr): i_s, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_b, i_h = i_bh // H, i_bh % H if USE_OFFSETS: i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32) bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32) T = eos - bos else: bos, eos = i_b * T, i_b * T + T o_i = tl.arange(0, BT) m_s = tl.where(o_i[:, None] >= o_i[None, :], 1.0, 0.0) if HEAD_FIRST: p_s = tl.make_block_ptr(s + i_bh * T * S, (T, S), (S, 1), (i_t * BT, i_s * BS), (BT, BS), (1, 0)) p_o = tl.make_block_ptr(o + i_bh * T * S, (T, S), (S, 1), (i_t * BT, i_s * BS), (BT, BS), (1, 0)) else: p_s = tl.make_block_ptr(s + (bos * H + i_h) * S, (T, S), (H * S, 1), (i_t * BT, i_s * BS), (BT, BS), (1, 0)) p_o = tl.make_block_ptr(o + (bos * H + i_h) * S, (T, S), (H * S, 1), (i_t * BT, i_s * BS), (BT, BS), (1, 0)) b_s = tl.load(p_s, boundary_check=(0, 1)).to(tl.float32) b_o = tl.dot(m_s, b_s, allow_tf32=False) tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Tiled", "Blocked Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/utils/cumsum.py
5f884ba7-afb8-4c7b-b7f8-8c0bdc99e57f
gemm_streamk_benchmark.py
intel/intel-xpu-backend-for-triton
benchmarks/triton_kernels_benchmark/gemm_streamk_benchmark.py
6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2
0
@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 4, 'grf_mode': 'large'}, num_stages=2, num_warps=32)], key=['M', 'N', 'K']) @triton.jit def first_wave(a_ptr, b_ptr, c_ptr, M: tl.constexpr, N: tl.constexpr, K: tl .constexpr, stride_am: tl.constexpr, stride_ak: tl.constexpr, stride_bk: tl.constexpr, stride_bn: tl.constexpr, stride_cm: tl.constexpr, stride_cn: tl.constexpr, full_tiles, partial_tiles, iters_per_tile, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr): pid = tl.program_id(axis=0) start_iter = pid * full_tiles + tl.minimum(pid, partial_tiles) last_iter = (pid + 1) * full_tiles + tl.minimum(pid + 1, partial_tiles) while start_iter < last_iter: end_iter = start_iter + (iters_per_tile - start_iter % iters_per_tile) end_iter = tl.minimum(end_iter, last_iter) mac_loop(a_ptr, b_ptr, c_ptr, M, N, K, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, iters_per_tile, start_iter, end_iter, BLOCK_SIZE_M, BLOCK_SIZE_N, BLOCK_SIZE_K, GROUP_SIZE_M) start_iter = end_iter
{ "Data Type": [ "fp32" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Tiled", "Blocked Access" ], "Parallelization Strategy": [ "Persistent Kernels" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/intel/intel-xpu-backend-for-triton/blob/6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2/benchmarks/triton_kernels_benchmark/gemm_streamk_benchmark.py
76e5f84e-91fd-40d6-b973-5c5374ec218d
triton_fused_attn.py
LouChao98/vqtree
ops/triton_fused_attn.py
27a53274df7a804bce27dffcce5f5be73f64b6f3
0
@triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args[ 'BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args[ 'BLOCK_N'] == 0}) @triton.jit def _fwd_kernel(Q, K, V, Out, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_ob, stride_oh, stride_om, nheads, seqlen_q, seqlen_k, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr): start_m = tl.program_id(0) off_hb = tl.program_id(1) off_b = off_hb // nheads off_h = off_hb % nheads offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) offs_d = tl.arange(0, BLOCK_HEADDIM) q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + (offs_m[:, None] * stride_qm + offs_d[None, :]) k_ptrs = K + off_b * stride_kb + off_h * stride_kh + (offs_n[:, None] * stride_kn + offs_d[None, :]) v_ptrs = V + off_b * stride_vb + off_h * stride_vh + (offs_n[:, None] * stride_vn + offs_d[None, :]) lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) + NEGINF m_i = tl.zeros([BLOCK_M], dtype=tl.float32) + NEGINF acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32) if EVEN_M: q = tl.load(q_ptrs) else: q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0) end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k) for start_n in range(0, end_n, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) if EVEN_N & EVEN_M: k = tl.load(k_ptrs + start_n * stride_kn) else: k = tl.load(k_ptrs + start_n * stride_kn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0) qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) qk += tl.dot(q, tl.trans(k)) if not EVEN_N: qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, NEGINF) if IS_CAUSAL: qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, NEGINF) m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i) p = tl.exp(qk * softmax_scale - m_ij[:, None]) l_ij = tl.sum(p, 1) acc_o_scale = tl.exp(m_i - m_ij) acc_o = acc_o * acc_o_scale[:, None] if EVEN_N & EVEN_M: v = tl.load(v_ptrs + start_n * stride_vn) else: v = tl.load(v_ptrs + start_n * stride_vn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0) p = p.to(v.dtype) acc_o += tl.dot(p, v) m_i = m_ij l_i_new = tl.exp(lse_i - m_ij) + l_ij lse_i = m_ij + tl.log(l_i_new) o_scale = tl.exp(m_i - lse_i) acc_o = acc_o * o_scale[:, None] start_m = tl.program_id(0) offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m tl.store(lse_ptrs, lse_i) offs_d = tl.arange(0, BLOCK_HEADDIM) out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:, None] * stride_om + offs_d[None, :]) if EVEN_M: tl.store(out_ptrs, acc_o) else: tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Softmax" ], "Memory Access Pattern": [ "Tiled", "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "Apache" ]
https://github.com/LouChao98/vqtree/blob/27a53274df7a804bce27dffcce5f5be73f64b6f3/ops/triton_fused_attn.py
fbe7dd6a-e642-49e2-85ae-30c92f1c7dd6
gemm_preop_exp_benchmark.py
intel/intel-xpu-backend-for-triton
benchmarks/triton_kernels_benchmark/gemm_preop_exp_benchmark.py
6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2
0
@triton.autotune(configs=[triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 4, 'grf_mode': 'large'}, num_stages=2, num_warps=32), triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 4, 'grf_mode': 'large'}, num_stages=3, num_warps=32), triton.Config({ 'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 4, 'grf_mode': 'large'}, num_stages=2, num_warps=32), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 4, 'grf_mode': 'large'}, num_stages=2, num_warps=32 ), triton.Config({'BLOCK_SIZE_M': 8, 'BLOCK_SIZE_N': 512, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 1, 'grf_mode': 'large'}, num_stages =2, num_warps=32)], key=['M', 'N', 'K']) @triton.jit def matmul_kernel_with_block_pointers(a_ptr, b_ptr, c_ptr, M: tl.constexpr, N: tl.constexpr, K: tl.constexpr, stride_am: tl.constexpr, stride_ak: tl.constexpr, stride_bk: tl.constexpr, stride_bn: tl.constexpr, stride_cm: tl.constexpr, stride_cn: tl.constexpr, BLOCK_SIZE_M: tl. constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr): pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) num_pid_in_group = GROUP_SIZE_M * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_m = first_pid_m + pid % group_size_m pid_n = pid % num_pid_in_group // group_size_m a_block_ptr = tl.make_block_ptr(base=a_ptr, shape=(M, K), strides=( stride_am, stride_ak), offsets=(pid_m * BLOCK_SIZE_M, 0), block_shape=(BLOCK_SIZE_M, BLOCK_SIZE_K), order=(1, 0)) b_block_ptr = tl.make_block_ptr(base=b_ptr, shape=(K, N), strides=( stride_bk, stride_bn), offsets=(0, pid_n * BLOCK_SIZE_N), block_shape=(BLOCK_SIZE_K, BLOCK_SIZE_N), order=(1, 0)) accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for _ in range(0, K, BLOCK_SIZE_K): a = tl.load(a_block_ptr, boundary_check=(0, 1)) a = a.to(tl.float32) a = tl.math.exp(a) a = a.to(tl.bfloat16) b = tl.load(b_block_ptr, boundary_check=(0, 1)) accumulator += tl.dot(a, b) a_block_ptr = tl.advance(a_block_ptr, (0, BLOCK_SIZE_K)) b_block_ptr = tl.advance(b_block_ptr, (BLOCK_SIZE_K, 0)) c = accumulator.to(tl.float32) c_block_ptr = tl.make_block_ptr(base=c_ptr, shape=(M, N), strides=( stride_cm, stride_cn), offsets=(pid_m * BLOCK_SIZE_M, pid_n * BLOCK_SIZE_N), block_shape=(BLOCK_SIZE_M, BLOCK_SIZE_N), order=(1, 0)) tl.store(c_block_ptr, c, boundary_check=(0, 1))
{ "Data Type": [ "bf16" ], "Functionality": [ "Matrix Multiplication" ], "Memory Access Pattern": [ "Tiled", "Blocked Access", "Transposed Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/intel/intel-xpu-backend-for-triton/blob/6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2/benchmarks/triton_kernels_benchmark/gemm_preop_exp_benchmark.py
8fbd1eee-ae83-4f46-9244-6b0b3bf3bee6
softmax_online_v1.py
iclementine/optimize_softmax
softmax_online_v1.py
6ddeee3481dd5e63f4a30b946c417e97bc4494bf
0
@triton.jit def softmax_kernel_online_v1(output_ptr, input_ptr, M, N, TILE_N: tl.constexpr ): pid_m = tl.program_id(0) m = tl.full((), value=-float('inf'), dtype=output_ptr.dtype.element_ty) z = tl.full((), value=0, dtype=output_ptr.dtype.element_ty) for start_n in range(0, N, TILE_N): n_offsets = start_n + tl.arange(0, TILE_N) offset = pid_m * N + n_offsets input_ptrs = input_ptr + offset mask = n_offsets < N inp = tl.load(input_ptrs, mask=mask, other=-float('inf')).to(output_ptr .dtype.element_ty) new_m = tl.maximum(m, tl.max(inp, 0)) new_z = tl.exp(m - new_m) * z + tl.sum(tl.exp(inp - new_m), 0) m = new_m z = new_z for start_n in range(0, N, TILE_N): n_offsets = start_n + tl.arange(0, TILE_N) offset = pid_m * N + n_offsets input_ptrs = input_ptr + offset mask = n_offsets < N inp = tl.load(input_ptrs, mask=mask, other=-float('inf')).to(output_ptr .dtype.element_ty) e = tl.exp(inp - m) out = e / z output_ptrs = output_ptr + offset tl.store(output_ptrs, out, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Softmax" ], "Memory Access Pattern": [ "Tiled" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "BSD" ]
https://github.com/iclementine/optimize_softmax/blob/6ddeee3481dd5e63f4a30b946c417e97bc4494bf/softmax_online_v1.py
1370ad45-ebfb-4938-8f50-14f7af621077
fused_recurrent.py
sustcsonglin/flash-linear-attention
fla/ops/linear_attn/fused_recurrent.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.jit def fused_recurrent_linear_attn_fwd_kernel(q, k, v, o, h0, ht, s_k_h, s_v_h, scale, B, H, T, K: tl.constexpr, V: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, USE_INITIAL_STATE: tl.constexpr, STORE_FINAL_STATE: tl. constexpr): i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) p_q = q + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) p_k = k + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) p_v = v + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) p_o = o + (i_bh + i_k * B * H) * s_v_h + i_v * BV + tl.arange(0, BV) mask_bk = i_k * BK + tl.arange(0, BK) < K mask_bv = i_v * BV + tl.arange(0, BV) < V mask_kv = mask_bk[None, :] & mask_bv[:, None] b_h = tl.zeros([BV, BK], dtype=tl.float32) if USE_INITIAL_STATE: p_h0 = h0 + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[None, :] ) * V + (i_v * BV + tl.arange(0, BV)[:, None]) b_h += tl.load(p_h0, mask=mask_kv, other=0).to(tl.float32) for _ in range(0, T): b_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32) b_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32) b_q = tl.load(p_q, mask=mask_bk, other=0).to(tl.float32) * scale b_h += b_k[None, :] * b_v[:, None] b_o = b_h * b_q[None, :] b_o = tl.sum(b_o, axis=1) tl.store(p_o, b_o.to(p_o.dtype.element_ty), mask=mask_bv) p_q += K p_k += K p_o += V p_v += V if STORE_FINAL_STATE: p_ht = ht + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[None, :] ) * V + (i_v * BV + tl.arange(0, BV)[:, None]) tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), mask=mask_kv)
{ "Data Type": [ "fp32" ], "Functionality": [ "Recurrent Neural Networks", "Attention Mechanisms" ], "Memory Access Pattern": [ "Tiled", "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/linear_attn/fused_recurrent.py
8bddc46d-3ecf-45eb-88d1-ea5dd55dfb8c
fp8_gemm.py
pytorch/FBGEMM
fbgemm_gpu/experimental/gemm/triton_gemm/fp8_gemm.py
fe980ab54a6e28818d81c8694b6564e7f804418b
0
@triton.jit def _kernel_quantize_fp8_block(A, A_scale, A_fp8, scale_ub, M, K, stride_am, stride_ak, stride_om, stride_ok, stride_a_scale_m, stride_a_scale_k, TL_FP8_DTYPE: tl.constexpr, MAX_FP8: tl.constexpr, EPS: tl.constexpr, CLAMP_MAX: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_K: tl.constexpr ) ->None: """Quantize and scale each [BLOCK_M, BLOCK_K] block. Scale per block i, j is computed as 1 / (MAX_FP8 / max(abs(A[i:i+BLOCK_M, j:j+BLOCK_K]))) Kernel naively iterates through matrix with [BLOCK_M, BLOCK_K] tiles. Todo: * Better tiling and ordering schemes. Args: A (Tensor): [M, K] higher precision input tensor. A_scale (Tensor): [cdiv(M, BLOCK_M), cdiv(K, BLOCK_K)] reciprocal scale tensor per block. A_fp8 (Tensor): [M, K] fp8 scaled tensor. A_fp8 = A * a_scale scale_ub (Tensor): [1] Maximum allowed value for scale. M (int): Number of rows. K (int): Number of columns. stride_am (int): Stride of m dimension of A. stride_ak (int): Stride of k dimension of A. stride_om (int): Stride of m dimension of output. stride_ok (int): Stride of k dimension of output. stride_a_scale_m (int): Stride of m dimension of A_scale. stride_a_scale_k (int): Stride of k dimension of A_scale. TL_FP8_DTYPE (tl.dtype): Target fp8 datatype. MAX_FP8 (float): Maxmimum expressible value for FP8. EPS (float): Epsilon value for numerical stability. CLAMP_MAX (bool): Whether to apply scale_ub. BLOCK_M (int): Block size for M dimension of A_scale and kernel. BLOCK_K (int): Block size for K dimension of A_scale and kernel. """ pid = tl.program_id(0) grid_k = tl.cdiv(K, BLOCK_K) block_m = pid // grid_k block_k = pid % grid_k rm = block_m * BLOCK_M + tl.arange(0, BLOCK_M) rk = block_k * BLOCK_K + tl.arange(0, BLOCK_K) a_offset = rm[:, None] * stride_am + rk[None, :] * stride_ak out_offset = rm[:, None] * stride_om + rk[None, :] * stride_ok a_mask = (rm < M)[:, None] & (rk < K)[None, :] a_block = tl.load(A + a_offset, mask=a_mask, other=0.0) block_max = tl.max(tl.abs(a_block)) if CLAMP_MAX: ub = tl.load(scale_ub) block_max = tl.clamp(block_max, EPS, ub) else: block_max = tl.maximum(block_max, EPS) scale = MAX_FP8 / block_max tl.store(A_scale + block_m * stride_a_scale_m + block_k * stride_a_scale_k, 1.0 / scale) a_fp8 = a_block * scale a_fp8 = tl.clamp(a_fp8, -MAX_FP8, MAX_FP8) a_fp8.to(TL_FP8_DTYPE) tl.store(A_fp8 + out_offset, a_fp8, mask=a_mask)
{ "Data Type": [ "int8" ], "Functionality": [ "Quantization" ], "Memory Access Pattern": [ "Tiled", "Blocked Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Memory-Bound", "Compute Bound" ] }
[ "BSD", "MIT" ]
https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/experimental/gemm/triton_gemm/fp8_gemm.py
26a51175-e022-44f8-9ec3-2d92fe596611
parallel.py
sustcsonglin/flash-linear-attention
fla/ops/retention/parallel.py
5968de9a22c096326b19859cfe05dac36155c31d
0
@triton.jit def parallel_retention_bwd_kernel_dq(i_bh, i_t, i_k, i_v, i_h, k, v, do, dq, scale, B: tl.constexpr, H: tl.constexpr, T: tl.constexpr, K: tl. constexpr, V: tl.constexpr, BT: tl.constexpr, BS: tl.constexpr, BK: tl. constexpr, BV: tl.constexpr): p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (0, i_k * BK), (BS, BK), (1, 0)) p_v = tl.make_block_ptr(v + i_bh * T * V, (V, T), (1, V), (i_v * BV, 0), (BV, BS), (0, 1)) p_do = tl.make_block_ptr(do + i_bh * T * V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) b_do = tl.load(p_do, boundary_check=(0, 1)) b_dq = tl.zeros([BT, BK], dtype=tl.float32) b_b = tl.math.log2(1 - tl.math.exp2(-5 - i_h * 1.0)) d_b = tl.math.exp2(b_b * BS) d_h = tl.math.exp2((BS - tl.arange(0, BS)) * b_b) for i in range(0, i_t * BT, BS): b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_ds = tl.dot(b_do, b_v, allow_tf32=False) * d_h[None, :] if i != 0: b_dq *= d_b b_dq += tl.dot(b_ds.to(b_v.dtype), b_k, allow_tf32=False) p_k = tl.advance(p_k, (BS, 0)) p_v = tl.advance(p_v, (0, BS)) b_dq *= tl.math.exp2(tl.arange(0, BT) * b_b)[:, None] * scale o_q = tl.arange(0, BT) o_k = tl.arange(0, BS) p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BS, BK), (1, 0)) p_v = tl.make_block_ptr(v + i_bh * T * V, (V, T), (1, V), (i_v * BV, i_t * BT), (BV, BS), (0, 1)) for _ in range(i_t * BT, (i_t + 1) * BT, BS): b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) m_s = o_q[:, None] >= o_k[None, :] d_s = tl.where(m_s, tl.math.exp2((o_q[:, None] - o_k[None, :]) * b_b), 0) b_ds = tl.dot(b_do, b_v, allow_tf32=False) * d_s * scale b_dq += tl.dot(b_ds.to(b_k.dtype), b_k, allow_tf32=False) p_k = tl.advance(p_k, (BS, 0)) p_v = tl.advance(p_v, (0, BS)) o_k += BS p_dq = tl.make_block_ptr(dq + (i_bh + B * H * i_v) * T * K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation" ], "Memory Access Pattern": [ "Coalesced", "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Memory-Bound", "Compute Bound" ] }
[ "MIT" ]
https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/retention/parallel.py
96564198-2f7d-486f-97bf-e992926034e9
paged_attn_v2.py
AlibabaPAI/FLASHNN
flashnn/triton_kernels/paged_attn_v2.py
528a9301587f5fb135b25d973a87ba0a40a703a7
0
@triton.jit def _single_query_cached_kv_attention_v2(exp_sums, max_logits, out, q, k_cache, v_cache, head_mapping, scale, block_tables, seq_lens, partiton_size, max_num_blocks_per_seq, alibi_slopes, stride_qm, stride_qn, stride_om, stride_on, stride_ok, stride_km, stride_kn, stride_kk, stride_exp_m, stride_exp_n, BLOCK_SIZE: tl.constexpr, HEAD_SIZE: tl.constexpr): seq_idx = tl.program_id(axis=1) par_idx = tl.program_id(axis=2) seq_len = tl.load(seq_lens + seq_idx) if par_idx * partiton_size >= seq_len: return num_context_blocks = tl.cdiv(seq_len, BLOCK_SIZE) num_blocks_per_par = partiton_size // BLOCK_SIZE start_block_idx = par_idx * num_blocks_per_par end_block_idx = tl.minimum(start_block_idx + num_blocks_per_par, num_context_blocks) head_idx = tl.program_id(axis=0) kv_head_idx = tl.load(head_mapping + head_idx) if alibi_slopes is None: alibi_slope = 0.0 else: alibi_slope = tl.load(alibi_slopes + head_idx) block_offs = tl.arange(0, BLOCK_SIZE) head_size_offs = tl.arange(0, HEAD_SIZE) q = tl.load(q + seq_idx * stride_qm + head_idx * stride_qn + head_size_offs ) q = (q * scale).to(tl.float16) qkv = tl.zeros([BLOCK_SIZE, HEAD_SIZE], dtype=tl.float32) qk_max = float('-inf') exp_sum = 0.0 fp16_0 = tl.zeros([1, 1], dtype=k_cache.dtype.element_ty) base_offs_kv = kv_head_idx * stride_kn + block_offs[:, None ] * stride_kk + head_size_offs[None, :] for block_idx in range(start_block_idx, end_block_idx): physical_block_idx = tl.load(block_tables + seq_idx * max_num_blocks_per_seq + block_idx) mask = (block_offs[:, None] < seq_len - block_idx * BLOCK_SIZE) & ( head_size_offs[None, :] < HEAD_SIZE) offs_kv = physical_block_idx * stride_km + base_offs_kv k = tl.load(k_cache + offs_kv, mask=mask, other=fp16_0) v = tl.load(v_cache + offs_kv, mask=mask, other=fp16_0) _qk = tl.sum((q[None, :] * k).to(tl.float32), axis=1) _qk += alibi_slope * (block_idx * BLOCK_SIZE + block_offs - seq_len + 1 ) _qk_max = tl.maximum(tl.max(_qk, axis=0), qk_max) qk = tl.where(block_offs[:, None] < seq_len - block_idx * BLOCK_SIZE, _qk[:, None], float('-inf')) _exp_sum = exp_sum * tl.exp(qk_max - _qk_max) + tl.sum(tl.exp(_qk - _qk_max), axis=0) qkv = qkv * (exp_sum * tl.exp(qk_max - _qk_max) / _exp_sum) + tl.exp( qk - _qk_max) / _exp_sum * v qk_max = _qk_max exp_sum = _exp_sum offs_exp = seq_idx * stride_exp_m + head_idx * stride_exp_n + par_idx tl.store(exp_sums + offs_exp, exp_sum) tl.store(max_logits + offs_exp, qk_max) offs_out = (seq_idx * stride_om + head_idx * stride_on + par_idx * stride_ok + head_size_offs) tl.store(out + offs_out, tl.sum(qkv, axis=0))
{ "Data Type": [ "fp16" ], "Functionality": [ "Attention Mechanisms" ], "Memory Access Pattern": [ "Tiled", "Blocked Access" ], "Parallelization Strategy": [ "Thread-Block Mappings" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "Apache" ]
https://github.com/AlibabaPAI/FLASHNN/blob/528a9301587f5fb135b25d973a87ba0a40a703a7/flashnn/triton_kernels/paged_attn_v2.py
b70199cf-0316-4688-b762-de62481ca266
bwd_split_kernel.py
ROCm/aotriton
test/bwd_split_kernel.py
016f733e8ff746450e066f78bed68709ccd93e60
0
@triton.jit def bwd_kernel_dq(Q, K, V, sm_scale, Out, DO, DQ, L, D, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, seqlen_q, seqlen_k, dropout_p, philox_seed, philox_offset_base, BLOCK_M: tl. constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, CAUSAL: tl.constexpr, ENABLE_DROPOUT: tl.constexpr): start_m = tl.program_id(0) * BLOCK_M off_h = tl.program_id(1) off_z = tl.program_id(2) num_h = tl.num_programs(1) num_z = tl.num_programs(2) offs_m = start_m + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) q_offset = off_h * stride_qh + off_z * stride_qz Q_block_ptr = tl.make_block_ptr(base=Q + q_offset, shape=(seqlen_q, BLOCK_DMODEL), strides=(stride_qm, stride_qk), offsets=(start_m, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0)) k_offset = off_h * stride_kh + off_z * stride_kz K_block_ptr = tl.make_block_ptr(base=K + k_offset, shape=(BLOCK_DMODEL, seqlen_k), strides=(stride_kk, stride_kn), offsets=(0, 0), block_shape=(BLOCK_DMODEL, BLOCK_N), order=(0, 1)) v_offset = off_h * stride_vh + off_z * stride_vz V_block_ptr = tl.make_block_ptr(base=V + v_offset, shape=(BLOCK_DMODEL, seqlen_k), strides=(stride_vn, stride_vk), offsets=(0, 0), block_shape=(BLOCK_DMODEL, BLOCK_N), order=(0, 1)) DO_block_ptr = tl.make_block_ptr(base=DO + q_offset, shape=(seqlen_q, BLOCK_DMODEL), strides=(stride_qm, stride_qk), offsets=(start_m, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0)) off_zh = off_z * num_h + off_h * 1 D_ptrs = D + off_zh * seqlen_q l_ptrs = L + off_zh * seqlen_q qk_scale = sm_scale * 1.44269504 q = tl.load(Q_block_ptr) q = (q * qk_scale).to(Q_block_ptr.type.element_ty) do = tl.load(DO_block_ptr) Di = tl.load(D_ptrs + offs_m) l_i = tl.load(l_ptrs + offs_m) dq = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) lo = 0 hi = min(start_m + BLOCK_M, seqlen_k) if CAUSAL else seqlen_k batch_philox_offset = philox_offset_base + off_zh * seqlen_q * seqlen_k """ K1 K2 (d)V dO Q1 qk11 qk12 (d)v1 dO1 Q2 qk21 qk22 (d)v2 dO2 QK: (seqlen_q, seqlen_k) dO: (seqlen_q, hdim) dV: (seqlen_k, hdim) """ for start_n in range(lo, hi, BLOCK_N): kt = tl.load(K_block_ptr) vt = tl.load(V_block_ptr) qk = dot(BLOCK_M, BLOCK_DMODEL, BLOCK_DMODEL, q, kt) if CAUSAL: qk = tl.where(offs_m[:, None] >= offs_n[None, :] + start_n, qk, float('-inf')) p = tl.math.exp2(qk - l_i[:, None]) dp = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) dp += dot(BLOCK_M, BLOCK_DMODEL, BLOCK_DMODEL, do, vt) if ENABLE_DROPOUT: philox_offset = batch_philox_offset + start_m * seqlen_k + start_n keep = dropout_mask(philox_seed, philox_offset, dropout_p, BLOCK_M, BLOCK_N, seqlen_k) dp = tl.where(keep, dp / (1 - dropout_p), 0) ds = p * (dp - Di[:, None]) if BLOCK_M == 1: dq += tl.view(kt, [BLOCK_DMODEL]) * ds.to(Q.type.element_ty) else: dq += tl.dot(ds.to(Q.type.element_ty), tl.trans(kt)) K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) V_block_ptr = tl.advance(V_block_ptr, (0, BLOCK_N)) DQ_block_ptr = tl.make_block_ptr(base=DQ + q_offset, shape=(seqlen_q, BLOCK_DMODEL), strides=(stride_qm, stride_qk), offsets=(start_m, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0)) tl.store(DQ_block_ptr, (dq * sm_scale).to(DQ_block_ptr.type.element_ty))
{ "Data Type": [ "fp32" ], "Functionality": [ "Attention Mechanisms", "Backpropagation", "Matrix Multiplication", "Softmax", "Elementwise Operations" ], "Memory Access Pattern": [ "Blocked Access", "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/ROCm/aotriton/blob/016f733e8ff746450e066f78bed68709ccd93e60/test/bwd_split_kernel.py
01fdb3bd-4c8f-4387-a609-7db94baec8e2
geglu.py
Kitsunetic/kitsu
kitsu/nn/geglu.py
826967a493c89753ac2cf1e28b52b79998fc9076
0
@triton.jit def cosh(x): return (tl.exp(x) + tl.exp(-x)) * 0.5
{ "Data Type": [ "fp32" ], "Functionality": [ "Activation Functions", "Elementwise Operations" ], "Memory Access Pattern": [ "Coalesced", "Non-Tiled" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "Low Latency" ] }
[ "MIT" ]
https://github.com/Kitsunetic/kitsu/blob/826967a493c89753ac2cf1e28b52b79998fc9076/kitsu/nn/geglu.py
5abc2eaa-cbaa-4445-b0ea-d0fd89b0f5ac
chunk_fuse.py
elephantmipt/rebased_minimal
flash_linear_attention/fla/ops/triton/abc/chunk_fuse.py
e7b945509972fab9f9c1c7be431abf7d6bf62c95
0
@triton.jit def chunk_abc_bwd_kernel_dq(k, rk, ck, dq, ds, s_qk_h, s_qk_t, s_qk_d, s_sk_h, s_sk_t, s_sk_m, T, BT: tl.constexpr, BK: tl.constexpr, BM: tl. constexpr, DK: tl.constexpr, DM: tl.constexpr, NT: tl.constexpr): i_k, i_m, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) n_bh = tl.num_programs(2) p_k = tl.make_block_ptr(k + i_bh * s_qk_h, (T, DK), (s_qk_t, s_qk_d), ( 0, i_k * BK), (BT, BK), (1, 0)) p_rk = tl.make_block_ptr(rk + i_bh * s_sk_t * NT, (NT * DM,), (s_sk_m,), (i_m * BM,), (BM,), (0,)) p_ck = tl.make_block_ptr(ck + i_bh * s_sk_h, (DM, T), (s_sk_m, s_sk_t), (i_m * BM, 0), (BM, BT), (0, 1)) p_dq = tl.make_block_ptr(dq + (i_m * n_bh + i_bh) * s_qk_h, (T, DK), ( s_qk_t, s_qk_d), (0, i_k * BK), (BT, BK), (1, 0)) p_ds = tl.make_block_ptr(ds + i_bh * s_sk_h, (T, DM), (s_sk_t, s_sk_m), (0, i_m * BM), (BT, BM), (1, 0)) o_i = tl.arange(0, BT) m_s = o_i[:, None] >= o_i[None, :] b_hk = tl.zeros([BM, BK], dtype=tl.float32) for _ in range(NT): b_k = tl.load(p_k, boundary_check=(0, 1)) b_rk = tl.load(p_rk, boundary_check=(0,)) b_ck = tl.load(p_ck, boundary_check=(0, 1)) b_ds = tl.load(p_ds, boundary_check=(0, 1)) b_inter = tl.dot((b_ds * b_rk[None, :]).to(b_k.dtype), b_hk.to(b_k. dtype), allow_tf32=False) b_intra = tl.dot(tl.where(m_s, tl.dot(b_ds, b_ck, allow_tf32=False), 0).to(b_k.dtype), b_k, allow_tf32=False) b_dq = b_inter + b_intra b_hk = b_hk * b_rk[:, None] + tl.dot(b_ck, b_k, allow_tf32=False) tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1)) p_k = tl.advance(p_k, (BT, 0)) p_rk = tl.advance(p_rk, (DM,)) p_ck = tl.advance(p_ck, (0, BT)) p_dq = tl.advance(p_dq, (BT, 0)) p_ds = tl.advance(p_ds, (BT, 0))
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Matrix Multiplication", "Elementwise Operations" ], "Memory Access Pattern": [ "Blocked Access", "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "Apache" ]
https://github.com/elephantmipt/rebased_minimal/blob/e7b945509972fab9f9c1c7be431abf7d6bf62c95/flash_linear_attention/fla/ops/triton/abc/chunk_fuse.py
4eae1f4c-27a6-472e-83b1-3c5bb1e82ddf
bwd_preprocess.py
ROCm/aotriton
test/bwd_preprocess.py
016f733e8ff746450e066f78bed68709ccd93e60
0
@triton.jit def bwd_preprocess(Out, DO, Delta, stride_oz, stride_oh, stride_om, stride_on, stride_doz, stride_doh, stride_dom, stride_don, seqlen_q, BLOCK_M: tl.constexpr, D_HEAD: tl.constexpr): off_m = tl.program_id(0) * BLOCK_M off_h = tl.program_id(1) off_z = tl.program_id(2) num_h = tl.num_programs(1) o_offset = off_h * stride_oh + off_z * stride_oz O_block_ptr = tl.make_block_ptr(base=Out + o_offset, shape=(seqlen_q, D_HEAD), strides=(stride_om, stride_on), offsets=(off_m, 0), block_shape=(BLOCK_M, D_HEAD), order=(1, 0)) do_offset = off_h * stride_doh + off_z * stride_doz DO_block_ptr = tl.make_block_ptr(base=DO + do_offset, shape=(seqlen_q, D_HEAD), strides=(stride_dom, stride_don), offsets=(off_m, 0), block_shape=(BLOCK_M, D_HEAD), order=(1, 0)) o = tl.load(O_block_ptr).to(tl.float32) do = tl.load(DO_block_ptr).to(tl.float32) delta = tl.sum(o * do, axis=1) off_zh = off_z * num_h + off_h * 1 tl.store(Delta + off_zh * seqlen_q + off_m + tl.arange(0, BLOCK_M), delta)
{ "Data Type": [ "fp32" ], "Functionality": [ "Backpropagation", "Elementwise Operations" ], "Memory Access Pattern": [ "Blocked Access", "Coalesced", "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/ROCm/aotriton/blob/016f733e8ff746450e066f78bed68709ccd93e60/test/bwd_preprocess.py
b3fcb89f-85fb-4bab-969a-d45fd9c5cb9e
ln_linear_triton.py
ethansmith2000/fused-layer-norm
ln_linear_triton.py
84fe243a829364acdcfd7cd70b699db04838af0f
0
@triton.jit def _layer_norm_fwd_fused(X_ptr, Y_ptr, W_ptr, B_ptr, Mean_ptr, RSTD_ptr, stride, n_cols, eps, BLOCK_SIZE: tl.constexpr): row_idx = tl.program_id(0) col_offsets = tl.arange(0, BLOCK_SIZE) mask = col_offsets < n_cols Y_ptr += row_idx * stride X_ptr += row_idx * stride Mean_ptr += row_idx RSTD_ptr += row_idx X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0) W_row = tl.load(W_ptr + col_offsets, mask=mask, other=0) B_row = tl.load(B_ptr + col_offsets, mask=mask, other=0) mean = tl.sum(X_row, axis=0) / n_cols demeaned = X_row - mean var = tl.sum(demeaned * demeaned, axis=0) / n_cols rstd = rsqrt(var + eps) tl.store(Mean_ptr, mean) tl.store(RSTD_ptr, rstd) Y_row = tl.fma(demeaned * rstd, W_row, B_row) tl.store(Y_ptr + col_offsets, Y_row, mask=mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Normalization", "Elementwise Operations" ], "Memory Access Pattern": [ "Blocked Access", "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/ethansmith2000/fused-layer-norm/blob/84fe243a829364acdcfd7cd70b699db04838af0f/ln_linear_triton.py
be6a1d21-b2db-4870-b6b3-b6ac680f6a72
mlstm_scan.py
LukasBluebaum/xLSTM-Triton-CUDA-Implementation
mlstm_scan.py
6fb49b89cc74e7dadd0f3d56db05684bb4e86f4b
0
@triton.jit def mlstm_triton_scan(Q, K, V, F, I, O, F_REDUCED, C, N, M, H, NH: tl. constexpr, S: tl.constexpr, D: tl.constexpr, SB: tl.constexpr, VB: tl. constexpr): bh_id = tl.program_id(0) sb_id = tl.program_id(1) vb_id = tl.program_id(2) num_sequence_blocks = tl.num_programs(1) batch_id = bh_id // NH head_id = bh_id % NH v_range = tl.arange(0, VB) + vb_id * VB v_range_3d = v_range[None, :, None] k_range = tl.arange(0, VB) sb_range = tl.arange(0, SB) sb_range_2d = tl.arange(0, SB)[:, None] sb_range_3d = tl.arange(0, SB)[:, None, None] sb_range_offset = tl.arange(0, SB) + sb_id * SB sb_range_offset_2d = sb_range_offset[:, None] batch_offset_fi = batch_id * NH * S + head_id * S batch_offset_f_reduced = (batch_id * NH * num_sequence_blocks + head_id * num_sequence_blocks) batch_offset_qkv = batch_id * NH * S * D + head_id * S * D batch_offset_n = (batch_id * NH * num_sequence_blocks * D + head_id * num_sequence_blocks * D) batch_offset_c = (batch_id * NH * num_sequence_blocks * D * D + head_id * num_sequence_blocks * D * D) f = tl.load(F + batch_offset_fi + sb_range_offset, sb_range_offset < S) i = tl.load(I + batch_offset_fi + sb_range_offset, sb_range_offset < S) f_reduced_range = batch_offset_f_reduced + sb_range * 0 + sb_id - 1 f_reduced_mask = (sb_range == 0) & (sb_id != 0) f_reduced = tl.load(F_REDUCED + f_reduced_range, f_reduced_mask, other=1.0) vo_range = batch_offset_qkv + sb_range_offset_2d * D + v_range[None, :] vo_mask = (sb_range_offset_2d < S) & (v_range[None, :] < D) v = tl.load(V + vo_range, vo_mask) normalizer = tl.zeros((SB,), dtype=tl.float32) h = tl.zeros((SB, VB), dtype=tl.float32) k_scale_factor = tl.sqrt(tl.full((1,), D, dtype=tl.float32)) for j in tl.range(tl.cdiv(D, VB)): k_range_ = batch_offset_qkv + sb_range_offset_2d * D + k_range[None, :] k_mask = (sb_range_offset_2d < S) & (k_range[None, :] < D) k = tl.load(K + k_range_, k_mask) / k_scale_factor q = tl.load(Q + k_range_, k_mask) c_range = batch_offset_c + sb_range_3d + (sb_id - 1 ) * D * D + v_range_3d * D + k_range[None, None, :] c_mask = (sb_range_3d == 0) & (v_range_3d < D) & (k_range[None, None, :] < D) & (sb_id != 0) c_reduced = tl.load(C + c_range, c_mask, other=0) vk = v[:, :, None] * k[:, None, :] * i[:, None, None] f_tmp, vk_tmp = scan_op(f_reduced[:, None, None], c_reduced, f[:, None, None], vk) f_tmp = tl.broadcast_to(f_tmp, (SB, VB, VB)) _, c = tl.associative_scan((f_tmp, vk_tmp), 0, scan_op) h += tl.sum(c * q[:, None, :], -1) n_range = batch_offset_n + sb_range_2d + (sb_id - 1) * D + k_range[ None, :] n_mask = (sb_range_2d == 0) & (k_range[None, :] < D) & (sb_id != 0) n = tl.load(N + n_range, n_mask, other=0.0) f_tmp, n_tmp = scan_op(f_reduced[:, None], n, f[:, None], k * i[:, None]) _, n = tl.associative_scan((tl.broadcast_to(f_tmp, (SB, VB)), n_tmp ), 0, scan_op) normalizer += tl.sum(n * q, -1) k_range += VB m = tl.load(M + batch_offset_fi + sb_range_offset, sb_range_offset < S) o = tl.load(O + vo_range, vo_mask) normalizer = tl.maximum(tl.abs(normalizer), tl.exp(-m))[:, None] + 1e-06 h = h / normalizer * silu(o) tl.store(H + vo_range, h, vo_mask)
{ "Data Type": [ "fp32" ], "Functionality": [ "Recurrent Neural Networks", "Attention Mechanisms", "Matrix Multiplication", "Elementwise Operations" ], "Memory Access Pattern": [ "Blocked Access", "Coalesced" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/LukasBluebaum/xLSTM-Triton-CUDA-Implementation/blob/6fb49b89cc74e7dadd0f3d56db05684bb4e86f4b/mlstm_scan.py
8e56e989-ac16-4909-9f0e-4ab0f6c13dae
math.py
BobMcDear/attorch
attorch/math.py
da06cb6236bb47195e33fe3986ed21c675ed94cc
0
@triton.jit def glu(input1, input2, param, act_func: tl.constexpr): """ Applies the gated linear unit with an arbitrary activation function to the input. Args: input1: First half of input to gate. The first half must be of the same shape as the second half. input2: Second half of input to gate. The second half must be of the same shape as the first half. param: Parameter in the case of parameterized activation functions. act_func: Name of activation function to apply. Options are 'sigmoid', 'tanh', 'relu', 'gelu', 'silu', 'relu6', 'hardsigmoid', 'hardswish', 'selu', 'mish', and 'leaky_relu'. param: Parameter in the case of parameterized activation functions. Args: Input transformed by the gated linear unit with an arbitrary activation function. """ return input1 * apply_act_func(input2, None, None, None, param, act_func, False)
{ "Data Type": [ "fp32" ], "Functionality": [ "Activation Functions", "Elementwise Operations" ], "Memory Access Pattern": [ "Coalesced", "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "MIT" ]
https://github.com/BobMcDear/attorch/blob/da06cb6236bb47195e33fe3986ed21c675ed94cc/attorch/math.py
fdd2e0b1-dd78-4f2b-8862-5b13f1fc1f97
k_layer_norm.py
cpuhrsch/torchfused
torchfused/triton/k_layer_norm.py
6c40ed160dcecbe7825f268f7c86bccd359e0ebf
0
@triton.jit def _affine(W, B, N, x, META): cols = tl.arange(0, META['BLOCK_SIZE_N']) w = tl.load(W + cols, mask=cols < N, other=1.0) zero = 0.0 zero = zero.to(w.dtype) w = tl.where(cols < N, w, zero) b = tl.load(B + cols, mask=cols < N, other=0.0) b = tl.where(cols < N, b, zero) y = x * w + b return y
{ "Data Type": [ "fp32" ], "Functionality": [ "Elementwise Operations" ], "Memory Access Pattern": [ "Coalesced", "Strided Access" ], "Parallelization Strategy": [ "Grid-Stride Loops" ], "Performance Objective": [ "High Throughput", "Compute Bound" ] }
[ "BSD" ]
https://github.com/cpuhrsch/torchfused/blob/6c40ed160dcecbe7825f268f7c86bccd359e0ebf/torchfused/triton/k_layer_norm.py