Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
Dataset Viewer
Auto-converted to Parquet
condition
imagewidth (px)
1.02k
1.02k
lat
float64
30.3
30.3
lon
float64
-81.7
-81.59
heading
float64
0.01
360
elevation
float64
3.1
20.3
panoid
stringlengths
22
22
30.334505
-81.668389
14.496242
8.799092
e0nCLqydvIErOCouRNriug
30.334616
-81.668356
15.451297
8.921848
m0k51T39N3EPDdsvF-aX6A
30.334701
-81.668323
20.608524
8.706914
94CRl_8eg45vAylst_c13A
30.334795
-81.668237
99.007332
8.888272
mAKUONuCElJcswI8mJW0PA
30.334781
-81.668137
99.717064
8.882215
Tf6yL1jW9G-zuO0BbL2TgQ
30.334767
-81.668039
99.283562
8.866211
JkxH7g65OVqPAGjG6f3GwA
30.334829
-81.668087
104.597115
9.092307
E_Zb67mx_F1OSevZJhJB8w
30.334959
-81.667667
11.554299
9.006894
Zto9W2WLGHFxIngpfLVFqA
30.335049
-81.667644
13.579197
9.074103
D0G2og6Mgj-AWk9lv8xk4A
30.334866
-81.66769
17.971193
9.032441
cFFHv22cYzYJQfx4igDNCg
30.3348
-81.667952
103.87529
9.090689
uY61y2uMG0oP9TWs71gIfQ
30.334772
-81.667835
105.5383
9.12265
p1yKU00OblL0OFElC4fx8A
30.334759
-81.667778
105.481796
9.11888
Df49XnLQhjxKSo4f56ABWQ
30.334733
-81.667668
105.049774
9.13542
S8tLx0EG29ZlfThkBGaOIQ
30.334709
-81.667562
104.322144
9.105482
p3RDMMt6HADBwPS9LLll7Q
30.334755
-81.667944
97.500938
8.898569
s0Sv1E2dvEPfV3bPq-9QyQ
30.334148
-81.668486
12.356924
9.084014
mMt4k8U-0yV1L8seCbW5FQ
30.334241
-81.668461
12.580074
8.994805
b4s9Qz7nheBHc1oZdFdh9g
30.33433
-81.668438
12.946828
8.923968
2d6nEtB-KTR3aWyRufyRPw
30.334418
-81.668414
14.564838
8.849733
nVgLe2V-0-sAytjsPL8ivQ
30.33558
-81.668197
101.809647
9.651047
QaR5AF929a8sbUSFdbG1Sw
30.335744
-81.668454
311.739777
9.699336
EHV2bjlkqT9zAPHOzSUVWg
30.335687
-81.668375
306.591522
9.693312
g1KprChL4XWnFQ8r0ujjOQ
30.335606
-81.668297
108.169281
9.674384
NnyYYkkCms7087lKStqYog
30.335458
-81.668191
308.971436
9.392718
Sm3DvVuR9paN_ZFLcQafNQ
30.335487
-81.668293
282.469666
9.506001
t2SYbNEPq4jKeTcX0m4HYg
30.335517
-81.668391
296.909088
9.579358
E-Hkt1noCdWqmn7eCJa4oA
30.335565
-81.668477
302.919495
9.613358
PD_ntUVc7PkMGxJl99Xa6A
30.335431
-81.66812
18.352207
9.459205
de58DCaEhdpPHBHvEsoZIg
30.33551
-81.668079
40.094143
9.530869
U4AYqc1SmoDQPVcPaU_P-Q
30.335584
-81.668083
283.411499
9.589227
0NMFoRLFZ4WM25DDKn_5Mg
30.334556
-81.667381
155.684189
8.735528
-vNfUy4t67IQgrIy7JqALw
30.334466
-81.667392
194.392776
8.86792
yZceIuDytAEUJEuS7VOmaA
30.334374
-81.66742
193.808487
8.814516
373axGA_uWZzf8cmJjZxdg
30.334286
-81.667444
193.729919
8.770797
u93ayEoOTaP1O6JjdpPUvw
30.334745
-81.66731
54.42609
8.860265
j6hZJBuaS5us2fwSC2iPmw
30.334824
-81.667252
19.830446
8.985537
Udv7-_EpObaDHjQ6pg11ow
30.334665
-81.667356
103.197739
9.058834
NZq08F2qwXshSOrLE_Og7g
30.334654
-81.667303
103.050385
9.03671
3OA_Iwc79bDu9Qq7nLhcwQ
30.334633
-81.667196
103.276283
8.98582
SHT0bs_7N_lhXhfrF1cnMw
30.334611
-81.66709
103.613373
8.92555
P2pY-yaYgriALeVBA4rPWw
30.334686
-81.667459
103.696297
9.090668
dfaCDKDrRj3OrkIXwH9LFw
30.333727
-81.66847
190.384964
9.077583
0xZqSxqhte2xKJo-1gtC2w
30.333822
-81.66844
214.91301
9.048581
gjCvdfLFiZBIhS6YcxfmDA
30.333867
-81.668307
271.177704
8.87167
DRSzob_6dfKL6_eN0QJDng
30.333842
-81.668204
327.757202
8.752073
uOwo1p0WHvWVW0R5wFNLLA
30.333917
-81.668807
341.279236
9.022681
2q9l2TaUSIkTOtk9p-m7bg
30.333748
-81.668606
33.596256
9.11181
u_SrW_Q8BN-Rk5X6htYLng
30.333841
-81.668578
14.093097
9.088548
No-sXNldRaktI0l979S7nQ
30.333925
-81.66855
15.649006
9.056079
dd4IdhQhR20gupLeuTaJZA
30.33413
-81.668852
102.344841
9.3259
ETYjNZuehELGXTSEiL3VkQ
30.334109
-81.668748
103.282822
9.30391
efYo_r51bwI4q1W7_4wq0w
30.334087
-81.668644
104.189293
9.27972
XpLxsqHClWZTtGs7Nkp0Mw
30.334053
-81.668488
103.917542
9.276567
_g0mRADelM0horQnGjqsDg
30.33403
-81.668384
103.742615
9.166553
0fOKOYqlaYMV45kqAa5BRA
30.334009
-81.668282
103.630424
9.098721
HgjO8sf2LoqIectO-FVBGg
30.333987
-81.668179
103.681877
9.045861
CvgP60Fgb4qaskruXxjGCA
30.333965
-81.668077
103.614845
9.003006
LIk0CfoF1hcbo8Y7YpKphQ
30.334064
-81.66854
104.204262
9.293405
HcGpUaeyipyoisJxu-P_tA
30.335563
-81.667982
283.891205
9.576024
QSPyQ2EEuO2kuFdAOKCYjQ
30.335541
-81.667881
284.733368
9.547058
MDlHtAAUWrBHMnLtkPsKCw
30.335495
-81.667678
285.143555
9.47821
IdBMWSnqslvsAxcuCqX9UQ
30.335468
-81.667569
286.304443
9.45094
BmADZ_n21gGqzQ9uPOG7xw
30.335453
-81.668144
187.189728
9.476399
ZWCl1BufJCFIUv6XBaUfCA
30.335923
-81.668844
30.016624
13.904148
di6nmNlFfmE-syzevA9uhA
30.335997
-81.668797
27.471001
13.359578
nsmLaNX3Fa1LHSGAE-OYEg
30.336105
-81.668732
28.812397
12.592783
9_Lk0YPgv4hp3ZJHY33OhA
30.335823
-81.668557
308.195129
9.729295
mJGxjucnphc5fLbsWoRS3w
30.336256
-81.668946
22.469564
15.717288
BATo8VQy2CE0mSZHLz8VJg
30.336193
-81.668976
22.855461
15.700586
8Vu35tpS8MD49A7PWafuWA
30.336205
-81.668667
28.535826
11.846454
I5vmLpVyeGdNxmjC73DHDA
30.336384
-81.668885
21.866283
15.749504
hyG6wzB7m3PocNQXLxcm9w
30.33632
-81.668915
22.225754
15.733138
c8ovicffO2gwyWvCORfu9Q
30.335299
-81.67042
215.83606
15.703239
q82CmYoaAVcryull5kDX1g
30.335355
-81.670375
215.329468
15.684335
FO97cScjPSiWghRoYi5_yg
30.334542
-81.66678
104.478348
8.73572
oZIet4FI0KvfaWJbo5DqRg
30.33452
-81.666678
104.254318
8.654811
Uz-KXgSWAhnzWfhNXbiWfA
30.334565
-81.666882
104.465477
8.783073
SVela3G3sQ-JlJg40SHvKg
30.334588
-81.666985
103.993462
8.855985
GKdVFOqydIQp9LUA4xPKGg
30.333906
-81.667555
194.257507
8.859394
uPFNG87CFNlOEYcLrvQi_A
30.334012
-81.66753
201.737366
8.715891
e3TkyNr_tcNw7NnHACJ4pw
30.3341
-81.6675
194.514145
8.734667
1qFhcXroM8y2c8H_fofB5A
30.333856
-81.667569
103.993385
8.9668
JoLOl4z3nsZPx8MJL0rqJw
30.33418
-81.667431
13.566757
8.686796
MzqIxq1bUP0Qb0yJMhfEqQ
30.333694
-81.668489
286.484406
9.142769
lG9FJj2-oG9mJusZHUIxSA
30.333675
-81.668432
101.58622
9.116081
gRCngsVd5Dexc4swqIyYxw
30.333647
-81.668336
109.618706
9.038199
0iif3EHr4luLM6iWWH_62A
30.333757
-81.668198
17.770292
8.821592
e6Undi-e2z71HxZsqwUdvw
30.333671
-81.668239
42.486378
8.927799
gv0HSDTfzerCmPKsoJMyqQ
30.333586
-81.668266
356.134644
8.919853
zbq9c5XA9BkCe2VOpyWl6Q
30.333922
-81.667873
103.657654
8.913748
paRKSqJBJqm5SlJJxNY93g
30.333901
-81.667772
103.911499
8.89704
WXr6wVnmGGP7NrdFEmmtkg
30.333878
-81.667671
104.107368
8.900424
MmqkHs3a1prsC-RgTdt9oQ
30.333944
-81.667975
103.54808
8.950833
ATgnFdjIqKfLp8dua-CbBA
30.333683
-81.668481
195.042648
9.089176
1Akev9H1gZsYem7d3MrcLw
30.333502
-81.668282
27.386425
8.789509
TxLL6AOm_F1qlf_GU1dMFA
30.333617
-81.668648
15.009953
9.221374
i-M5IzNFHajFP_7plVSVOg
30.333597
-81.668514
197.309433
9.062886
CcnvlSbxwwG2ksqH2kqhKQ
30.333466
-81.668314
61.008202
8.745777
bZ6jWUmsgz-5iOhmtdnfnw
30.333462
-81.668414
109.936241
8.87647
Vpqk9kT1kd2Qee_NgMu2SA
End of preview. Expand in Data Studio

Satellite to GroundScape - Large-scale Consistent Ground View Generation from Satellite Views

๐ŸŒ Homepage | ๐Ÿ“– arXiv

Introduction

Generating consistent ground-view images from satellite imagery is challenging, primarily due to the large discrepancies in viewing angles and resolution between satellite and ground-level domains. Previous efforts mainly concentrated on single-view generation, often resulting in inconsistencies across neighboring ground views. In this work, we propose a novel cross-view synthesis approach designed to overcome these challenges by ensuring consistency across ground-view images generated from satellite views. Our method, based on a fixed latent diffusion model, introduces two conditioning modules: satellite-guided denoising, which extracts high-level scene layout to guide the denoising process, and satellite-temporal denoising, which captures camera motion to maintain consistency across multiple generated views. We further contribute a large-scale satellite-ground dataset containing over 100,000 perspective pairs to facilitate extensive ground scene or video generation. Experimental results demonstrate that our approach outperforms existing methods on perceptual and temporal metrics, achieving high photorealism and consistency in multi-view outputs.

Description

The Sat2GroundScape contains 25,503 pairs of satellite-ground data in panaroma format. Including:

  • condition: [512x1024x3] satellite rgb texture, rendered from ground-level camera.
  • lat, lon: latitude, longtitude of the ground image.
  • elevation: elevation (meters) of the ground image
  • heading: the heading (degrees) of the ground image in panaroma format.
  • pano_id: used for downloading corresponding GT ground-view image.

Downloading Ground-view image

Each GT ground-view image is associated with a unique ID, pano_id. Please refer to https://github.com/robolyst/streetview for downloading the original ground-view image (512x1024x3).

from streetview import get_streetview

image = get_streetview(
    pano_id="z80QZ1_QgCbYwj7RrmlS0Q",
    api_key=GOOGLE_MAPS_API_KEY,
)

image.save("image.jpg", "jpeg")

Citation

BibTex:

@article{xu2025satellite,
  title={Satellite to GroundScape--Large-scale Consistent Ground View Generation from Satellite Views},
  author={Xu, Ningli and Qin, Rongjun},
  journal={arXiv preprint arXiv:2504.15786},
  year={2025}
}
Downloads last month
352