id
stringlengths
11
95
author
stringlengths
3
36
task_category
stringclasses
16 values
tags
listlengths
1
4.05k
created_time
timestamp[s]date
2022-03-02 23:29:04
2025-03-18 02:34:30
last_modified
timestamp[s]date
2021-05-13 19:09:22
2025-04-17 04:22:08
downloads
int64
0
15.6M
likes
int64
0
4.86k
README
stringlengths
246
1.01M
matched_task
listlengths
1
8
matched_bigbio_names
listlengths
1
8
is_bionlp
stringclasses
3 values
model_cards
stringlengths
0
1M
metadata
stringlengths
2
698k
SEACrowd/mdeberta-v3_sea_translationese
SEACrowd
text-classification
[ "transformers", "safetensors", "deberta-v2", "text-classification", "translationese", "classification", "sea", "southeast asia", "en", "id", "ms", "vi", "th", "lo", "km", "my", "tl", "arxiv:2406.10118", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-05-26T15:01:21
2024-06-18T13:06:30
23
3
--- language: - en - id - ms - vi - th - lo - km - my - tl library_name: transformers license: apache-2.0 metrics: - accuracy pipeline_tag: text-classification tags: - translationese - classification - sea - southeast asia --- <img width="100%" alt="SEACrowd Logo" src="https://github.com/SEACrowd/.github/blob/main/profile/assets/seacrowd-email-banner-without-logo.png?raw=true"> This is our fine-tuned mDeBERTa SEA translationese classifier for the ["SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages"](https://arxiv.org/pdf/2406.10118) paper. SEACrowd is a [collaborative initiative](https://github.com/SEACrowd) that consolidates a [comprehensive resource hub](https://seacrowd.github.io/seacrowd-catalogue/) that fills the resource gap by [providing standardized corpora](https://github.com/SEACrowd/seacrowd-datahub) in nearly 1,000 Southeast Asian (SEA) languages across three modalities. # Model Card for Model ID To analyze the generation quality of LLMs in SEA languages, we build a text classifier to discriminate between translationese and natural texts. We construct a translationese classification training and testing dataset using 49 and 62 data subsets, respectively, covering approximately 39.9k and 51.5k sentences across 9 SEA languages: English (eng), Indonesian (ind), Khmer (khm), Lao (lao), Burmese (mya), Filipino (fil), Thai (tha), Vietnamese (vie), and Malay (zlm). > Our translationese vs. natural train/test data is available on [SEACrowd/sea_translationese_resampled](https://huggingface.co/datasets/SEACrowd/sea_translationese_resampled). To fine-tune the translationese classifier, check out our [experiments repository on GitHub](https://github.com/SEACrowd/seacrowd-experiments). We use a binary label (translationese, i.e., machine-translated or human-translated, or natural, i.e., human-generated) instead of 3 labels (machine-translated, human-translated, human-generated). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** SEACrowd - **Funded by:** SEACrowd - **Shared by:** SEACrowd - **Model type:** Encoder-Only (DebertaV2ForSequenceClassification) - **Language(s) (NLP):** eng, ind, khm, lao, mya, fil, tha, vie, zsm - **License:** Apache 2.0 - **Finetuned from model:** microsoft/mdeberta-v3-base ### Model Sources <!-- Provide the basic links for the model. --> - **Paper:** https://arxiv.org/abs/2406.10118 - **Experiment:** https://github.com/SEACrowd/seacrowd-experiments - **Data Hub:** https://github.com/SEACrowd/seacrowd-datahub ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> To discriminate between translationese and natural texts in 9 SEA languages: English (eng), Indonesian (ind), Khmer (khm), Lao (lao), Burmese (mya), Filipino (fil), Thai (tha), Vietnamese (vie), and Malay (zlm). ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> The model is developed for detecting whether a text is `human-translated`, `machine-translated`, or `natural`. The model supports 9 languages: `eng`, `ind`, `khm`, `lao`, `mya`, `fil`, `tha`, `vie`, `zsm` The label mapping of the model is defined as follows: ``` {0: 'Human-translated', 1: 'Machine-translated', 2: 'Natural'} ``` where both `0` and `1` correspond to translationese and `2` is natural. ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> - Use in any manner that violates applicable laws or regulations (including trade compliance laws). - Use in any other way that is prohibited by the Acceptable Use Policy and Apache 2.0 License. - Use in languages other than the 9 supported languages. ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> The model achieves 79.08% accuracy on `translationese` (combining `human-translated` and `machine-translated`) vs `natural` in our evaluation——averaged across the aforementioned SEA languages. Users should be aware of the risks that there might be potential error produced by the model. See [our paper](https://arxiv.org/pdf/2406.10118) for more details. ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. ## How to Use the Model ``` tokenizer = AutoTokenizer.from_pretrained('SEACrowd/mdeberta-v3_sea_translationese') model = AutoModelForSequenceClassification.from_pretrained('SEACrowd/mdeberta-v3_sea_translationese') inputs = tokenizer('<INPUT_TEXT>', padding='longest', max_length=512, truncation=True) outputs = model(**inputs) ``` ## Citation <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> If you are using any resources from SEACrowd, including datasheets, dataloaders, code, etc., please cite [the following publication](https://arxiv.org/pdf/2406.10118): ``` @article{lovenia2024seacrowd, title={SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages}, author={Holy Lovenia and Rahmad Mahendra and Salsabil Maulana Akbar and Lester James V. Miranda and Jennifer Santoso and Elyanah Aco and Akhdan Fadhilah and Jonibek Mansurov and Joseph Marvin Imperial and Onno P. Kampman and Joel Ruben Antony Moniz and Muhammad Ravi Shulthan Habibi and Frederikus Hudi and Railey Montalan and Ryan Ignatius and Joanito Agili Lopo and William Nixon and Börje F. Karlsson and James Jaya and Ryandito Diandaru and Yuze Gao and Patrick Amadeus and Bin Wang and Jan Christian Blaise Cruz and Chenxi Whitehouse and Ivan Halim Parmonangan and Maria Khelli and Wenyu Zhang and Lucky Susanto and Reynard Adha Ryanda and Sonny Lazuardi Hermawan and Dan John Velasco and Muhammad Dehan Al Kautsar and Willy Fitra Hendria and Yasmin Moslem and Noah Flynn and Muhammad Farid Adilazuarda and Haochen Li and Johanes Lee and R. Damanhuri and Shuo Sun and Muhammad Reza Qorib and Amirbek Djanibekov and Wei Qi Leong and Quyet V. Do and Niklas Muennighoff and Tanrada Pansuwan and Ilham Firdausi Putra and Yan Xu and Ngee Chia Tai and Ayu Purwarianti and Sebastian Ruder and William Tjhi and Peerat Limkonchotiwat and Alham Fikri Aji and Sedrick Keh and Genta Indra Winata and Ruochen Zhang and Fajri Koto and Zheng-Xin Yong and Samuel Cahyawijaya}, year={2024}, eprint={2406.10118}, journal={arXiv preprint arXiv: 2406.10118} } ```
[ "TRANSLATION" ]
[ "CHIA" ]
Non_BioNLP
<img width="100%" alt="SEACrowd Logo" src="https://github.com/SEACrowd/.github/blob/main/profile/assets/seacrowd-email-banner-without-logo.png?raw=true"> This is our fine-tuned mDeBERTa SEA translationese classifier for the ["SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages"](https://arxiv.org/pdf/2406.10118) paper. SEACrowd is a [collaborative initiative](https://github.com/SEACrowd) that consolidates a [comprehensive resource hub](https://seacrowd.github.io/seacrowd-catalogue/) that fills the resource gap by [providing standardized corpora](https://github.com/SEACrowd/seacrowd-datahub) in nearly 1,000 Southeast Asian (SEA) languages across three modalities. # Model Card for Model ID To analyze the generation quality of LLMs in SEA languages, we build a text classifier to discriminate between translationese and natural texts. We construct a translationese classification training and testing dataset using 49 and 62 data subsets, respectively, covering approximately 39.9k and 51.5k sentences across 9 SEA languages: English (eng), Indonesian (ind), Khmer (khm), Lao (lao), Burmese (mya), Filipino (fil), Thai (tha), Vietnamese (vie), and Malay (zlm). > Our translationese vs. natural train/test data is available on [SEACrowd/sea_translationese_resampled](https://huggingface.co/datasets/SEACrowd/sea_translationese_resampled). To fine-tune the translationese classifier, check out our [experiments repository on GitHub](https://github.com/SEACrowd/seacrowd-experiments). We use a binary label (translationese, i.e., machine-translated or human-translated, or natural, i.e., human-generated) instead of 3 labels (machine-translated, human-translated, human-generated). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** SEACrowd - **Funded by:** SEACrowd - **Shared by:** SEACrowd - **Model type:** Encoder-Only (DebertaV2ForSequenceClassification) - **Language(s) (NLP):** eng, ind, khm, lao, mya, fil, tha, vie, zsm - **License:** Apache 2.0 - **Finetuned from model:** microsoft/mdeberta-v3-base ### Model Sources <!-- Provide the basic links for the model. --> - **Paper:** https://arxiv.org/abs/2406.10118 - **Experiment:** https://github.com/SEACrowd/seacrowd-experiments - **Data Hub:** https://github.com/SEACrowd/seacrowd-datahub ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> To discriminate between translationese and natural texts in 9 SEA languages: English (eng), Indonesian (ind), Khmer (khm), Lao (lao), Burmese (mya), Filipino (fil), Thai (tha), Vietnamese (vie), and Malay (zlm). ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> The model is developed for detecting whether a text is `human-translated`, `machine-translated`, or `natural`. The model supports 9 languages: `eng`, `ind`, `khm`, `lao`, `mya`, `fil`, `tha`, `vie`, `zsm` The label mapping of the model is defined as follows: ``` {0: 'Human-translated', 1: 'Machine-translated', 2: 'Natural'} ``` where both `0` and `1` correspond to translationese and `2` is natural. ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> - Use in any manner that violates applicable laws or regulations (including trade compliance laws). - Use in any other way that is prohibited by the Acceptable Use Policy and Apache 2.0 License. - Use in languages other than the 9 supported languages. ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> The model achieves 79.08% accuracy on `translationese` (combining `human-translated` and `machine-translated`) vs `natural` in our evaluation——averaged across the aforementioned SEA languages. Users should be aware of the risks that there might be potential error produced by the model. See [our paper](https://arxiv.org/pdf/2406.10118) for more details. ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. ## How to Use the Model ``` tokenizer = AutoTokenizer.from_pretrained('SEACrowd/mdeberta-v3_sea_translationese') model = AutoModelForSequenceClassification.from_pretrained('SEACrowd/mdeberta-v3_sea_translationese') inputs = tokenizer('<INPUT_TEXT>', padding='longest', max_length=512, truncation=True) outputs = model(**inputs) ``` ## Citation <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> If you are using any resources from SEACrowd, including datasheets, dataloaders, code, etc., please cite [the following publication](https://arxiv.org/pdf/2406.10118): ``` @article{lovenia2024seacrowd, title={SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages}, author={Holy Lovenia and Rahmad Mahendra and Salsabil Maulana Akbar and Lester James V. Miranda and Jennifer Santoso and Elyanah Aco and Akhdan Fadhilah and Jonibek Mansurov and Joseph Marvin Imperial and Onno P. Kampman and Joel Ruben Antony Moniz and Muhammad Ravi Shulthan Habibi and Frederikus Hudi and Railey Montalan and Ryan Ignatius and Joanito Agili Lopo and William Nixon and Börje F. Karlsson and James Jaya and Ryandito Diandaru and Yuze Gao and Patrick Amadeus and Bin Wang and Jan Christian Blaise Cruz and Chenxi Whitehouse and Ivan Halim Parmonangan and Maria Khelli and Wenyu Zhang and Lucky Susanto and Reynard Adha Ryanda and Sonny Lazuardi Hermawan and Dan John Velasco and Muhammad Dehan Al Kautsar and Willy Fitra Hendria and Yasmin Moslem and Noah Flynn and Muhammad Farid Adilazuarda and Haochen Li and Johanes Lee and R. Damanhuri and Shuo Sun and Muhammad Reza Qorib and Amirbek Djanibekov and Wei Qi Leong and Quyet V. Do and Niklas Muennighoff and Tanrada Pansuwan and Ilham Firdausi Putra and Yan Xu and Ngee Chia Tai and Ayu Purwarianti and Sebastian Ruder and William Tjhi and Peerat Limkonchotiwat and Alham Fikri Aji and Sedrick Keh and Genta Indra Winata and Ruochen Zhang and Fajri Koto and Zheng-Xin Yong and Samuel Cahyawijaya}, year={2024}, eprint={2406.10118}, journal={arXiv preprint arXiv: 2406.10118} } ```
{"language": ["en", "id", "ms", "vi", "th", "lo", "km", "my", "tl"], "library_name": "transformers", "license": "apache-2.0", "metrics": ["accuracy"], "pipeline_tag": "text-classification", "tags": ["translationese", "classification", "sea", "southeast asia"]}
croissantllm/CroissantLLMChat-v0.1
croissantllm
text-generation
[ "transformers", "safetensors", "llama", "text-generation", "legal", "code", "text-generation-inference", "art", "conversational", "fr", "en", "dataset:croissantllm/croissant_dataset", "dataset:croissantllm/CroissantLLM-2201-sft", "dataset:cerebras/SlimPajama-627B", "dataset:uonlp/CulturaX", "dataset:pg19", "dataset:bigcode/starcoderdata", "arxiv:2402.00786", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-01-24T09:18:45
2024-04-26T10:02:01
3,614
50
--- datasets: - croissantllm/croissant_dataset - croissantllm/CroissantLLM-2201-sft - cerebras/SlimPajama-627B - uonlp/CulturaX - pg19 - bigcode/starcoderdata language: - fr - en license: mit pipeline_tag: text-generation tags: - legal - code - text-generation-inference - art --- # CroissantLLMChat (190k steps + Chat) This model is part of the CroissantLLM initiative, and corresponds to the checkpoint after 190k steps (2.99 T) tokens and a final Chat finetuning phase. https://arxiv.org/abs/2402.00786 For best performance, it should be used with a temperature of 0.3 or more, and with the exact template described below: ```python chat = [ {"role": "user", "content": "Que puis-je faire à Marseille en hiver?"}, ] chat_input = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) ``` corresponding to: ```python chat_input = """<|im_start|>user {USER QUERY}<|im_end|> <|im_start|>assistant\n""" ``` ## Abstract We introduce CroissantLLM, a 1.3B language model pretrained on a set of 3T English and French tokens, to bring to the research and industrial community a high-performance, fully open-sourced bilingual model that runs swiftly on consumer-grade local hardware. To that end, we pioneer the approach of training an intrinsically bilingual model with a 1:1 English-to-French pretraining data ratio, a custom tokenizer, and bilingual finetuning datasets. We release the training dataset, notably containing a French split with manually curated, high-quality, and varied data sources. To assess performance outside of English, we craft a novel benchmark, FrenchBench, consisting of an array of classification and generation tasks, covering various orthogonal aspects of model performance in the French Language. Additionally, rooted in transparency and to foster further Large Language Model research, we release codebases, and dozens of checkpoints across various model sizes, training data distributions, and training steps, as well as fine-tuned Chat models, and strong translation models. We evaluate our model through the FMTI framework, and validate 81% of the transparency criteria, far beyond the scores of even most open initiatives. This work enriches the NLP landscape, breaking away from previous English-centric work in order to strengthen our understanding of multilinguality in language models. ## Citation Our work can be cited as: ```bash @misc{faysse2024croissantllm, title={CroissantLLM: A Truly Bilingual French-English Language Model}, author={Manuel Faysse and Patrick Fernandes and Nuno M. Guerreiro and António Loison and Duarte M. Alves and Caio Corro and Nicolas Boizard and João Alves and Ricardo Rei and Pedro H. Martins and Antoni Bigata Casademunt and François Yvon and André F. T. Martins and Gautier Viaud and Céline Hudelot and Pierre Colombo}, year={2024}, eprint={2402.00786}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## Usage This model is a Chat model, that is, it is finetuned for Chat function and works best with the provided template. #### With generate This might require a stopping criteria on <|im_end|> token. ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "croissantllm/CroissantLLMChat-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) generation_args = { "max_new_tokens": 256, "do_sample": True, "temperature": 0.3, "top_p": 0.90, "top_k": 40, "repetition_penalty": 1.05, "eos_token_id": [tokenizer.eos_token_id, 32000], } chat = [ {"role": "user", "content": "Qui est le président francais actuel ?"}, ] chat_input = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) inputs = tokenizer(chat_input, return_tensors="pt").to(model.device) tokens = model.generate(**inputs, **generation_args) print(tokenizer.decode(tokens[0])) # print tokens individually print([(tokenizer.decode([tok]), tok) for tok in tokens[0].tolist()]) ``` ## Model limitations Evaluation results indicate the model is strong in its size category, and offers decent performances on writing-based tasks and internal knowledge, and very strong performance on translation tasks. The small size of the CroissantLLM model however hinders its capacity to perform more complex reasoning-based tasks, at least in a zero or few-shot manner in its generalist base or chat-model versions. This is aligned with other models of size and underlines the importance of scale for more abstract tasks. #### Knowledge Cutoff The model training dataset has a data cutoff date corresponding to the November 2023 Wikipedia dump. This is the de facto knowledge cutoff date for our base model, although a lot of information dates back further. Updated versions can be trained through continued pre-training or subsequent fine-tuning. #### Multilingual performance. CroissantLLM is mostly a French and English model. Code performance is relatively limited, and although some amount of data from other languages is included within the SlimPajama training set, out-of-the-box performance in other languages is not to be expected, although some European languages do work quite well. #### Hallucinations. CroissantLLM can hallucinate and output factually incorrect data, especially regarding complex topics. This is to be expected given the small model size, and hallucination rates seem inferior to most models of the same size category although no quantitative assessments have been conducted outside of MT-Bench experiments.
[ "TRANSLATION" ]
[ "CRAFT" ]
Non_BioNLP
# CroissantLLMChat (190k steps + Chat) This model is part of the CroissantLLM initiative, and corresponds to the checkpoint after 190k steps (2.99 T) tokens and a final Chat finetuning phase. https://arxiv.org/abs/2402.00786 For best performance, it should be used with a temperature of 0.3 or more, and with the exact template described below: ```python chat = [ {"role": "user", "content": "Que puis-je faire à Marseille en hiver?"}, ] chat_input = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) ``` corresponding to: ```python chat_input = """<|im_start|>user {USER QUERY}<|im_end|> <|im_start|>assistant\n""" ``` ## Abstract We introduce CroissantLLM, a 1.3B language model pretrained on a set of 3T English and French tokens, to bring to the research and industrial community a high-performance, fully open-sourced bilingual model that runs swiftly on consumer-grade local hardware. To that end, we pioneer the approach of training an intrinsically bilingual model with a 1:1 English-to-French pretraining data ratio, a custom tokenizer, and bilingual finetuning datasets. We release the training dataset, notably containing a French split with manually curated, high-quality, and varied data sources. To assess performance outside of English, we craft a novel benchmark, FrenchBench, consisting of an array of classification and generation tasks, covering various orthogonal aspects of model performance in the French Language. Additionally, rooted in transparency and to foster further Large Language Model research, we release codebases, and dozens of checkpoints across various model sizes, training data distributions, and training steps, as well as fine-tuned Chat models, and strong translation models. We evaluate our model through the FMTI framework, and validate 81% of the transparency criteria, far beyond the scores of even most open initiatives. This work enriches the NLP landscape, breaking away from previous English-centric work in order to strengthen our understanding of multilinguality in language models. ## Citation Our work can be cited as: ```bash @misc{faysse2024croissantllm, title={CroissantLLM: A Truly Bilingual French-English Language Model}, author={Manuel Faysse and Patrick Fernandes and Nuno M. Guerreiro and António Loison and Duarte M. Alves and Caio Corro and Nicolas Boizard and João Alves and Ricardo Rei and Pedro H. Martins and Antoni Bigata Casademunt and François Yvon and André F. T. Martins and Gautier Viaud and Céline Hudelot and Pierre Colombo}, year={2024}, eprint={2402.00786}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## Usage This model is a Chat model, that is, it is finetuned for Chat function and works best with the provided template. #### With generate This might require a stopping criteria on <|im_end|> token. ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "croissantllm/CroissantLLMChat-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) generation_args = { "max_new_tokens": 256, "do_sample": True, "temperature": 0.3, "top_p": 0.90, "top_k": 40, "repetition_penalty": 1.05, "eos_token_id": [tokenizer.eos_token_id, 32000], } chat = [ {"role": "user", "content": "Qui est le président francais actuel ?"}, ] chat_input = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) inputs = tokenizer(chat_input, return_tensors="pt").to(model.device) tokens = model.generate(**inputs, **generation_args) print(tokenizer.decode(tokens[0])) # print tokens individually print([(tokenizer.decode([tok]), tok) for tok in tokens[0].tolist()]) ``` ## Model limitations Evaluation results indicate the model is strong in its size category, and offers decent performances on writing-based tasks and internal knowledge, and very strong performance on translation tasks. The small size of the CroissantLLM model however hinders its capacity to perform more complex reasoning-based tasks, at least in a zero or few-shot manner in its generalist base or chat-model versions. This is aligned with other models of size and underlines the importance of scale for more abstract tasks. #### Knowledge Cutoff The model training dataset has a data cutoff date corresponding to the November 2023 Wikipedia dump. This is the de facto knowledge cutoff date for our base model, although a lot of information dates back further. Updated versions can be trained through continued pre-training or subsequent fine-tuning. #### Multilingual performance. CroissantLLM is mostly a French and English model. Code performance is relatively limited, and although some amount of data from other languages is included within the SlimPajama training set, out-of-the-box performance in other languages is not to be expected, although some European languages do work quite well. #### Hallucinations. CroissantLLM can hallucinate and output factually incorrect data, especially regarding complex topics. This is to be expected given the small model size, and hallucination rates seem inferior to most models of the same size category although no quantitative assessments have been conducted outside of MT-Bench experiments.
{"datasets": ["croissantllm/croissant_dataset", "croissantllm/CroissantLLM-2201-sft", "cerebras/SlimPajama-627B", "uonlp/CulturaX", "pg19", "bigcode/starcoderdata"], "language": ["fr", "en"], "license": "mit", "pipeline_tag": "text-generation", "tags": ["legal", "code", "text-generation-inference", "art"]}
Shashwat13333/msmarco-distilbert-base-v4
Shashwat13333
sentence-similarity
[ "sentence-transformers", "safetensors", "distilbert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:150", "loss:MatryoshkaLoss", "loss:MultipleNegativesRankingLoss", "en", "arxiv:1908.10084", "arxiv:2205.13147", "arxiv:1705.00652", "base_model:sentence-transformers/msmarco-distilbert-base-v4", "base_model:finetune:sentence-transformers/msmarco-distilbert-base-v4", "license:apache-2.0", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
2025-02-03T09:32:05
2025-02-03T14:49:00
12
0
--- base_model: sentence-transformers/msmarco-distilbert-base-v4 language: - en library_name: sentence-transformers license: apache-2.0 metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:150 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: What services does Techchefz Digital offer for AI adoption? sentences: - 'How can we get started with your DevOps solutions? Getting started is easy. Contact us through our website. We''ll schedule a consultation to discuss your needs, evaluate your current infrastructure, and propose a customized DevOps solution designed to achieve your goals.' - "At Techchefz Digital, we specialize in guiding companies through the complexities\ \ of adopting and integrating Artificial Intelligence and Machine Learning technologies.\ \ Our consultancy services are designed to enhance your operational efficiency\ \ and decision-making capabilities across all sectors. With a global network of\ \ AI/ML experts and a commitment to excellence, we are your partners in transforming\ \ innovative possibilities into real-world achievements. \ \ \ \ \n DATA INTELLIGENCE PLATFORMS we\ \ specialize in\nTensorFlow\nDatabricks\nTableau\nPytorch\nOpenAI\nPinecone\"" - 'We are a New breed of innovative digital transformation agency, redefining storytelling for an always-on world. With roots dating back to 2017, we started as a pocket size team of enthusiasts with a goal of helping traditional businesses transform and create dynamic, digital cultures through disruptive strategies and agile deployment of innovative solutions.' - source_sentence: Do you provide support 24/7? sentences: - 'How do we do Custom Development ? We follow below process to develop custom web or mobile Application on Agile Methodology, breaking requirements in pieces and developing and shipping them with considering utmost quality: Requirements Analysis We begin by understanding the client&#39;s needs and objectives for the website. Identify key features, functionality, and any specific design preferences. Project Planning Then create a detailed project plan outlining the scope, timeline, and milestones. Define the technology stack and development tools suitable for the project. User Experience Design Then comes the stage of Developing wireframes or prototypes to visualize the website&#39;s structure and layout. We create a custom design that aligns with the brand identity and user experience goals. Development After getting Sign-off on Design from Client, we break the requirements into Sprints on Agile Methodology, and start developing them.' - 'This is our Portfolio Introducing the world of Housing Finance& Banking Firm. Corporate Website with 10 regional languages in India with analytics and user personalization and Dashboard for Regional Managers, Sales Agents, etc. to manage the Builder Requests, approve/deny Properties, manage visits and appointments, manage leads, etc. Introducing the world of Global Automotive Brand.We have implemented a Multi Locale Multilingual Omnichannel platform for Royal Enfield. The platform supports public websites, customer portals, internal portals, business applications for over 35+ different locations all over the world. Developed Digital Platform for Students, Guardians, Teachers, Tutors, with AI/ML in collaboration with Successive Technologies Inc, USA. Cloud, Dev-Sec-Ops & Data Governance Managing cloud provisioning and modernization alongside automated infrastructure, event-driven microservices, containerization, DevOps, cybersecurity, and 24x7 monitoring support ensures efficient, secure, and responsive IT operations.' - "SERVICES WE PROVIDE\nFlexible engagement models tailored to your needs\nWe specialize\ \ in comprehensive website audits that provide valuable insights and recommendations\ \ to enhance your online presence.\nDigital Strategy & Consulting\nCreating digital\ \ roadmap that transform your digital enterprise and produce a return on investment,\ \ basis our discovery framework, brainstorming sessions & current state analysis.\n\ \nPlatform Selection\nHelping you select the optimal digital experience, commerce,\ \ cloud and marketing platform for your enterprise.\n\nPlatform Builds\nDeploying\ \ next-gen scalable and agile enterprise digital platforms, along with multi-platform\ \ integrations. \nProduct Builds\nHelp you ideate, strategize, and engineer\ \ your product with help of our enterprise frameworks\nInfrastructure\nSpecialize\ \ in multi-cloud infrastructure helping you put forward the right cloud infrastructure\ \ and optimization strategy.\n\nManaged Services\nOperate and monitor your business-critical\ \ applications, data, and IT workloads, along with Application maintenance and\ \ operations.\nTeam Augmentation\nHelp you scale up and augment your existing\ \ team to solve your hiring challenges with our easy to deploy staff augmentation\ \ offerings.\"" - source_sentence: What challenges did the company face in its early days? sentences: - 'Why do we need Microservices ? Instead of building a monolithic application where all functionalities are tightly integrated, microservices break down the system into modular and loosely coupled services. Scalability Flexibility and Agility Resilience and Fault Isolation Technology Diversity Continuous Delivery' - 'After a transformative scuba dive in the Maldives, Mayank Maggon made a pivotal decision to depart from the corporate ladder in December 2016. Fueled by a clear vision to revolutionize the digital landscape, Mayank set out to leverage the best technology ingredients, crafting custom applications and digital ecosystems tailored to clients'' specific needs, limitations, and budgets. However, this solo journey was not without its challenges. Mayank had to initiate the revenue engine by offering corporate trainings and conducting online batches for tech training across the USA. He also undertook small projects and subcontracted modules of larger projects for clients in the US, UK, and India. It was only after this initial groundwork that Mayank was able to hire a group of interns, whom he meticulously trained and groomed to prepare them for handling Enterprise Level Applications. This journey reflects Mayank''s resilience, determination, and entrepreneurial spirit in building TechChefz Digital from the ground up. With a passion for innovation and a relentless drive for excellence, Mayank has steered TechChefz Digital through strategic partnerships, groundbreaking projects, and exponential growth. His leadership has been instrumental in shaping TechChefz Digital into a leading force in the digital transformation arena, inspiring a culture of innovation and excellence that continues to propel the company forward.' - 'What makes your DevOps solutions stand out from the competition? Our DevOps solutions stand out due to our personalized approach, extensive expertise, and commitment to innovation. We focus on delivering measurable results, such as reduced deployment times, improved system reliability, and enhanced security, ensuring you get the maximum benefit from our services.' - source_sentence: What kind of data do you leverage for AI solutions? sentences: - 'Our Solutions Strategy & Digital Transformation Innovate via digital transformation, modernize tech, craft product strategies, enhance customer experiences, optimize data analytics, transition to cloud for growth and efficiency Product Engineering & Custom Development Providing product development, enterprise web and mobile development, microservices integrations, quality engineering, and application support services to drive innovation and enhance operational efficiency.' - 'In what ways can machine learning optimize our operations? Machine learning algorithms can analyze operational data to identify inefficiencies, predict maintenance needs, optimize supply chains, and automate repetitive tasks, significantly improving operational efficiency and reducing costs.' - Our AI/ML services pave the way for transformative change across industries, embodying a client-focused approach that integrates seamlessly with human-centric innovation. Our collaborative teams are dedicated to fostering growth, leveraging data, and harnessing the predictive power of artificial intelligence to forge the next wave of software excellence. We don't just deliver AI; we deliver the future. - source_sentence: What managed services does TechChefz provide ? sentences: - " What we do\n\nDigital Strategy\nCreating digital frameworks that transform\ \ your digital enterprise and produce a return on investment.\n\nPlatform Selection\n\ Helping you select the optimal digital experience, commerce, cloud and marketing\ \ platform for your enterprise.\n\nPlatform Builds\nDeploying next-gen scalable\ \ and agile enterprise digital platforms, along with multi-platform integrations.\n\ \nProduct Builds\nHelp you ideate, strategize, and engineer your product with\ \ help of our enterprise frameworks \n\nTeam Augmentation\nHelp you scale up and\ \ augment your existing team to solve your hiring challenges with our easy to\ \ deploy staff augmentation offerings .\nManaged Services\nOperate and monitor\ \ your business-critical applications, data, and IT workloads, along with Application\ \ maintenance and operations\n" - 'Introducing the world of General Insurance Firm In this project, we implemented Digital Solution and Implementation with Headless Drupal as the CMS, and lightweight React JS (Next JS SSR on Node JS) with the following features: PWA & AMP based Web Pages Page Speed Optimization Reusable and scalable React JS / Next JS Templates and Components Headless Drupal CMS with Content & Experience management, approval workflows, etc for seamless collaboration between the business and marketing teams Minimalistic Buy and Renewal Journeys for various products, with API integrations and adherence to data compliances We achieved 250% Reduction in Operational Time and Effort in managing the Content & Experience for Buy & renew Journeys,220% Reduction in Customer Drops during buy and renewal journeys, 300% Reduction in bounce rate on policy landing and campaign pages' - 'In the Introducing the world of Global Insurance Firm, we crafted Effective Solutions for Complex Problems and delieverd a comprehensive Website Development, Production Support & Managed Services, we optimized customer journeys, integrate analytics, CRM, ERP, and third-party applications, and implement cutting-edge technologies for enhanced performance and efficiency and achievied 200% Reduction in operational time & effort managing content & experience, 70% Reduction in Deployment Errors and Downtime, 2.5X Customer Engagement, Conversion & Retention' model-index: - name: BGE base Financial Matryoshka results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.10666666666666667 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.49333333333333335 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.5333333333333333 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.6266666666666667 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.10666666666666667 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.16444444444444445 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.10666666666666667 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06266666666666666 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.10666666666666667 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.49333333333333335 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5333333333333333 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6266666666666667 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.3696947495406473 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.2864550264550264 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.2993424751990436 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.10666666666666667 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.4666666666666667 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.5333333333333333 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.6133333333333333 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.10666666666666667 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.15555555555555556 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.10666666666666667 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06133333333333333 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.10666666666666667 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.4666666666666667 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5333333333333333 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6133333333333333 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.3702942720383175 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.29092063492063486 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.3047495006876888 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.14666666666666667 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.4533333333333333 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.49333333333333335 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.6 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.14666666666666667 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1511111111111111 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.09866666666666667 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.14666666666666667 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.4533333333333333 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.49333333333333335 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.37318151343456746 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.3006455026455026 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.31352550381063704 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.12 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.4533333333333333 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.49333333333333335 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.6 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.12 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1511111111111111 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.09866666666666667 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.12 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.4533333333333333 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.49333333333333335 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.349467831727335 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.26956613756613756 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.2814743968696581 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.16 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.38666666666666666 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.4666666666666667 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5466666666666666 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.16 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1288888888888889 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.09333333333333335 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.05466666666666666 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.16 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.38666666666666666 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.4666666666666667 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5466666666666666 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.34485137335598726 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.28099999999999997 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.29532589563098727 name: Cosine Map@100 --- # BGE base Financial Matryoshka This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/msmarco-distilbert-base-v4](https://huggingface.co/sentence-transformers/msmarco-distilbert-base-v4). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/msmarco-distilbert-base-v4](https://huggingface.co/sentence-transformers/msmarco-distilbert-base-v4) <!-- at revision 19f0f4c73dc418bad0e0fc600611e808b7448a28 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Shashwat13333/msmarco-distilbert-base-v4") # Run inference sentences = [ 'What managed services does TechChefz provide ?', ' What we do\n\nDigital Strategy\nCreating digital frameworks that transform your digital enterprise and produce a return on investment.\n\nPlatform Selection\nHelping you select the optimal digital experience, commerce, cloud and marketing platform for your enterprise.\n\nPlatform Builds\nDeploying next-gen scalable and agile enterprise digital platforms, along with multi-platform integrations.\n\nProduct Builds\nHelp you ideate, strategize, and engineer your product with help of our enterprise frameworks \n\nTeam Augmentation\nHelp you scale up and augment your existing team to solve your hiring challenges with our easy to deploy staff augmentation offerings .\nManaged Services\nOperate and monitor your business-critical applications, data, and IT workloads, along with Application maintenance and operations\n', 'In the Introducing the world of Global Insurance Firm, we crafted Effective Solutions for Complex Problems and delieverd a comprehensive Website Development, Production Support & Managed Services, we optimized customer journeys, integrate analytics, CRM, ERP, and third-party applications, and implement cutting-edge technologies for enhanced performance and efficiency\nand achievied 200% Reduction in operational time & effort managing content & experience, 70% Reduction in Deployment Errors and Downtime, 2.5X Customer Engagement, Conversion & Retention', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 | |:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------| | cosine_accuracy@1 | 0.1067 | 0.1067 | 0.1467 | 0.12 | 0.16 | | cosine_accuracy@3 | 0.4933 | 0.4667 | 0.4533 | 0.4533 | 0.3867 | | cosine_accuracy@5 | 0.5333 | 0.5333 | 0.4933 | 0.4933 | 0.4667 | | cosine_accuracy@10 | 0.6267 | 0.6133 | 0.6 | 0.6 | 0.5467 | | cosine_precision@1 | 0.1067 | 0.1067 | 0.1467 | 0.12 | 0.16 | | cosine_precision@3 | 0.1644 | 0.1556 | 0.1511 | 0.1511 | 0.1289 | | cosine_precision@5 | 0.1067 | 0.1067 | 0.0987 | 0.0987 | 0.0933 | | cosine_precision@10 | 0.0627 | 0.0613 | 0.06 | 0.06 | 0.0547 | | cosine_recall@1 | 0.1067 | 0.1067 | 0.1467 | 0.12 | 0.16 | | cosine_recall@3 | 0.4933 | 0.4667 | 0.4533 | 0.4533 | 0.3867 | | cosine_recall@5 | 0.5333 | 0.5333 | 0.4933 | 0.4933 | 0.4667 | | cosine_recall@10 | 0.6267 | 0.6133 | 0.6 | 0.6 | 0.5467 | | **cosine_ndcg@10** | **0.3697** | **0.3703** | **0.3732** | **0.3495** | **0.3449** | | cosine_mrr@10 | 0.2865 | 0.2909 | 0.3006 | 0.2696 | 0.281 | | cosine_map@100 | 0.2993 | 0.3047 | 0.3135 | 0.2815 | 0.2953 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 150 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 150 samples: | | anchor | positive | |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 7 tokens</li><li>mean: 12.45 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 126.17 tokens</li><li>max: 378 tokens</li></ul> | * Samples: | anchor | positive | |:----------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>How can digital transformation enhance customer interactions across multiple channels?</code> | <code>We offer custom software development, digital marketing strategies, and tailored solutions to drive tangible results for your business. Our expert team combines technical prowess with industry insights to propel your business forward in the digital landscape.<br><br>"Engage, analyze & target your customers<br>Digital transformation enables you to interact with customers across multiple channels, providing personalized experiences. This could include social media engagement, interactive websites, and mobile apps." "Empower your employees & partners<br>The push for digital transformation has led many companies to embrace cloud solutions. However, the migration and integration of legacy systems into the cloud often present challenges." "Optimize & automate your operations<br>The push for digital transformation has led many companies to embrace cloud solutions. However, the migration and integration of legacy systems into the cloud often present challenges." "Transform your products<br>The push for digi...</code> | | <code>How does a CRM system improve customer retention?</code> | <code>Our MarTech capabilities<br><br>Personalization<br>Involves tailoring marketing messages and experiences to individual customers. It enhances customer engagement, loyalty, and ultimately, conversion rates.<br><br>Marketing Automation<br>Marketing automation streamlines repetitive tasks such as email marketing, lead nurturing, and social media posting. It improves efficiency, saves time, and ensures timely communication with customers.<br><br>Customer Relationship Management<br>CRM systems help manage interactions with current and potential customers. They store customer data, track interactions, and facilitate communication, improving customer retention.</code> | | <code>How can your recommendation engines improve our business?</code> | <code>How can your recommendation engines improve our business?<br>Our recommendation engines are designed to analyze customer behavior and preferences to deliver personalized suggestions, enhancing user experience, increasing sales, and boosting customer retention.</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `gradient_accumulation_steps`: 4 - `learning_rate`: 1e-05 - `weight_decay`: 0.01 - `num_train_epochs`: 4 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `fp16`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `push_to_hub`: True - `hub_model_id`: Shashwat13333/msmarco-distilbert-base-v4 - `push_to_hub_model_id`: msmarco-distilbert-base-v4 - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 4 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 1e-05 - `weight_decay`: 0.01 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: True - `resume_from_checkpoint`: None - `hub_model_id`: Shashwat13333/msmarco-distilbert-base-v4 - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: msmarco-distilbert-base-v4 - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 | |:----------:|:-----:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:| | 0.2105 | 1 | 3.5757 | - | - | - | - | - | | **0.8421** | **4** | **-** | **0.3563** | **0.3543** | **0.3378** | **0.3681** | **0.3077** | | 1.2105 | 5 | 4.4031 | - | - | - | - | - | | 1.8421 | 8 | - | 0.3652 | 0.3547 | 0.3574 | 0.3542 | 0.3579 | | 2.4211 | 10 | 3.3423 | - | - | - | - | - | | 2.8421 | 12 | - | 0.3783 | 0.3680 | 0.3558 | 0.3807 | 0.3408 | | 3.6316 | 15 | 2.3695 | - | - | - | - | - | | 3.8421 | 16 | - | 0.3697 | 0.3703 | 0.3732 | 0.3495 | 0.3449 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.3.1 - Transformers: 4.47.1 - PyTorch: 2.5.1+cu124 - Accelerate: 1.2.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
[ "TEXT_CLASSIFICATION" ]
[ "CRAFT" ]
Non_BioNLP
# BGE base Financial Matryoshka This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/msmarco-distilbert-base-v4](https://huggingface.co/sentence-transformers/msmarco-distilbert-base-v4). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/msmarco-distilbert-base-v4](https://huggingface.co/sentence-transformers/msmarco-distilbert-base-v4) <!-- at revision 19f0f4c73dc418bad0e0fc600611e808b7448a28 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Shashwat13333/msmarco-distilbert-base-v4") # Run inference sentences = [ 'What managed services does TechChefz provide ?', ' What we do\n\nDigital Strategy\nCreating digital frameworks that transform your digital enterprise and produce a return on investment.\n\nPlatform Selection\nHelping you select the optimal digital experience, commerce, cloud and marketing platform for your enterprise.\n\nPlatform Builds\nDeploying next-gen scalable and agile enterprise digital platforms, along with multi-platform integrations.\n\nProduct Builds\nHelp you ideate, strategize, and engineer your product with help of our enterprise frameworks \n\nTeam Augmentation\nHelp you scale up and augment your existing team to solve your hiring challenges with our easy to deploy staff augmentation offerings .\nManaged Services\nOperate and monitor your business-critical applications, data, and IT workloads, along with Application maintenance and operations\n', 'In the Introducing the world of Global Insurance Firm, we crafted Effective Solutions for Complex Problems and delieverd a comprehensive Website Development, Production Support & Managed Services, we optimized customer journeys, integrate analytics, CRM, ERP, and third-party applications, and implement cutting-edge technologies for enhanced performance and efficiency\nand achievied 200% Reduction in operational time & effort managing content & experience, 70% Reduction in Deployment Errors and Downtime, 2.5X Customer Engagement, Conversion & Retention', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 | |:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------| | cosine_accuracy@1 | 0.1067 | 0.1067 | 0.1467 | 0.12 | 0.16 | | cosine_accuracy@3 | 0.4933 | 0.4667 | 0.4533 | 0.4533 | 0.3867 | | cosine_accuracy@5 | 0.5333 | 0.5333 | 0.4933 | 0.4933 | 0.4667 | | cosine_accuracy@10 | 0.6267 | 0.6133 | 0.6 | 0.6 | 0.5467 | | cosine_precision@1 | 0.1067 | 0.1067 | 0.1467 | 0.12 | 0.16 | | cosine_precision@3 | 0.1644 | 0.1556 | 0.1511 | 0.1511 | 0.1289 | | cosine_precision@5 | 0.1067 | 0.1067 | 0.0987 | 0.0987 | 0.0933 | | cosine_precision@10 | 0.0627 | 0.0613 | 0.06 | 0.06 | 0.0547 | | cosine_recall@1 | 0.1067 | 0.1067 | 0.1467 | 0.12 | 0.16 | | cosine_recall@3 | 0.4933 | 0.4667 | 0.4533 | 0.4533 | 0.3867 | | cosine_recall@5 | 0.5333 | 0.5333 | 0.4933 | 0.4933 | 0.4667 | | cosine_recall@10 | 0.6267 | 0.6133 | 0.6 | 0.6 | 0.5467 | | **cosine_ndcg@10** | **0.3697** | **0.3703** | **0.3732** | **0.3495** | **0.3449** | | cosine_mrr@10 | 0.2865 | 0.2909 | 0.3006 | 0.2696 | 0.281 | | cosine_map@100 | 0.2993 | 0.3047 | 0.3135 | 0.2815 | 0.2953 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 150 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 150 samples: | | anchor | positive | |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 7 tokens</li><li>mean: 12.45 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 126.17 tokens</li><li>max: 378 tokens</li></ul> | * Samples: | anchor | positive | |:----------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>How can digital transformation enhance customer interactions across multiple channels?</code> | <code>We offer custom software development, digital marketing strategies, and tailored solutions to drive tangible results for your business. Our expert team combines technical prowess with industry insights to propel your business forward in the digital landscape.<br><br>"Engage, analyze & target your customers<br>Digital transformation enables you to interact with customers across multiple channels, providing personalized experiences. This could include social media engagement, interactive websites, and mobile apps." "Empower your employees & partners<br>The push for digital transformation has led many companies to embrace cloud solutions. However, the migration and integration of legacy systems into the cloud often present challenges." "Optimize & automate your operations<br>The push for digital transformation has led many companies to embrace cloud solutions. However, the migration and integration of legacy systems into the cloud often present challenges." "Transform your products<br>The push for digi...</code> | | <code>How does a CRM system improve customer retention?</code> | <code>Our MarTech capabilities<br><br>Personalization<br>Involves tailoring marketing messages and experiences to individual customers. It enhances customer engagement, loyalty, and ultimately, conversion rates.<br><br>Marketing Automation<br>Marketing automation streamlines repetitive tasks such as email marketing, lead nurturing, and social media posting. It improves efficiency, saves time, and ensures timely communication with customers.<br><br>Customer Relationship Management<br>CRM systems help manage interactions with current and potential customers. They store customer data, track interactions, and facilitate communication, improving customer retention.</code> | | <code>How can your recommendation engines improve our business?</code> | <code>How can your recommendation engines improve our business?<br>Our recommendation engines are designed to analyze customer behavior and preferences to deliver personalized suggestions, enhancing user experience, increasing sales, and boosting customer retention.</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `gradient_accumulation_steps`: 4 - `learning_rate`: 1e-05 - `weight_decay`: 0.01 - `num_train_epochs`: 4 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `fp16`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `push_to_hub`: True - `hub_model_id`: Shashwat13333/msmarco-distilbert-base-v4 - `push_to_hub_model_id`: msmarco-distilbert-base-v4 - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 4 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 1e-05 - `weight_decay`: 0.01 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: True - `resume_from_checkpoint`: None - `hub_model_id`: Shashwat13333/msmarco-distilbert-base-v4 - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: msmarco-distilbert-base-v4 - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 | |:----------:|:-----:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:| | 0.2105 | 1 | 3.5757 | - | - | - | - | - | | **0.8421** | **4** | **-** | **0.3563** | **0.3543** | **0.3378** | **0.3681** | **0.3077** | | 1.2105 | 5 | 4.4031 | - | - | - | - | - | | 1.8421 | 8 | - | 0.3652 | 0.3547 | 0.3574 | 0.3542 | 0.3579 | | 2.4211 | 10 | 3.3423 | - | - | - | - | - | | 2.8421 | 12 | - | 0.3783 | 0.3680 | 0.3558 | 0.3807 | 0.3408 | | 3.6316 | 15 | 2.3695 | - | - | - | - | - | | 3.8421 | 16 | - | 0.3697 | 0.3703 | 0.3732 | 0.3495 | 0.3449 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.3.1 - Transformers: 4.47.1 - PyTorch: 2.5.1+cu124 - Accelerate: 1.2.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
{"base_model": "sentence-transformers/msmarco-distilbert-base-v4", "language": ["en"], "library_name": "sentence-transformers", "license": "apache-2.0", "metrics": ["cosine_accuracy@1", "cosine_accuracy@3", "cosine_accuracy@5", "cosine_accuracy@10", "cosine_precision@1", "cosine_precision@3", "cosine_precision@5", "cosine_precision@10", "cosine_recall@1", "cosine_recall@3", "cosine_recall@5", "cosine_recall@10", "cosine_ndcg@10", "cosine_mrr@10", "cosine_map@100"], "pipeline_tag": "sentence-similarity", "tags": ["sentence-transformers", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:150", "loss:MatryoshkaLoss", "loss:MultipleNegativesRankingLoss"], "widget": [{"source_sentence": "What services does Techchefz Digital offer for AI adoption?", "sentences": ["How can we get started with your DevOps solutions?\nGetting started is easy. Contact us through our website. We'll schedule a consultation to discuss your needs, evaluate your current infrastructure, and propose a customized DevOps solution designed to achieve your goals.", "At Techchefz Digital, we specialize in guiding companies through the complexities of adopting and integrating Artificial Intelligence and Machine Learning technologies. Our consultancy services are designed to enhance your operational efficiency and decision-making capabilities across all sectors. With a global network of AI/ML experts and a commitment to excellence, we are your partners in transforming innovative possibilities into real-world achievements. \n DATA INTELLIGENCE PLATFORMS we specialize in\nTensorFlow\nDatabricks\nTableau\nPytorch\nOpenAI\nPinecone\"", "We are a New breed of innovative digital transformation agency, redefining storytelling for an always-on world.\nWith roots dating back to 2017, we started as a pocket size team of enthusiasts with a goal of helping traditional businesses transform and create dynamic, digital cultures through disruptive strategies and agile deployment of innovative solutions."]}, {"source_sentence": "Do you provide support 24/7?", "sentences": ["How do we do Custom Development ?\nWe follow below process to develop custom web or mobile Application on Agile Methodology, breaking requirements in pieces and developing and shipping them with considering utmost quality:\nRequirements Analysis\nWe begin by understanding the client&#39;s needs and objectives for the website. Identify key features, functionality, and any specific design preferences.\n\nProject Planning\nThen create a detailed project plan outlining the scope, timeline, and milestones. Define the technology stack and development tools suitable for the project.\n\nUser Experience Design\nThen comes the stage of Developing wireframes or prototypes to visualize the website&#39;s structure and layout. We create a custom design that aligns with the brand identity and user experience goals.\n\nDevelopment\nAfter getting Sign-off on Design from Client, we break the requirements into Sprints on Agile Methodology, and start developing them.", "This is our Portfolio\nIntroducing the world of Housing Finance& Banking Firm.\nCorporate Website with 10 regional languages in India with analytics and user personalization and Dashboard for Regional Managers, Sales Agents, etc. to manage the Builder Requests, approve/deny Properties, manage visits and appointments, manage leads, etc.\n\n\nIntroducing the world of Global Automotive Brand.We have implemented a Multi Locale Multilingual Omnichannel platform for Royal Enfield. The platform supports public websites, customer portals, internal portals, business applications for over 35+ different locations all over the world.\n\nDeveloped Digital Platform for Students, Guardians, Teachers, Tutors, with AI/ML in collaboration with Successive Technologies Inc, USA. Cloud, Dev-Sec-Ops & Data Governance\nManaging cloud provisioning and modernization alongside automated infrastructure, event-driven microservices, containerization, DevOps, cybersecurity, and 24x7 monitoring support ensures efficient, secure, and responsive IT operations.", "SERVICES WE PROVIDE\nFlexible engagement models tailored to your needs\nWe specialize in comprehensive website audits that provide valuable insights and recommendations to enhance your online presence.\nDigital Strategy & Consulting\nCreating digital roadmap that transform your digital enterprise and produce a return on investment, basis our discovery framework, brainstorming sessions & current state analysis.\n\nPlatform Selection\nHelping you select the optimal digital experience, commerce, cloud and marketing platform for your enterprise.\n\nPlatform Builds\nDeploying next-gen scalable and agile enterprise digital platforms, along with multi-platform integrations. \nProduct Builds\nHelp you ideate, strategize, and engineer your product with help of our enterprise frameworks\nInfrastructure\nSpecialize in multi-cloud infrastructure helping you put forward the right cloud infrastructure and optimization strategy.\n\nManaged Services\nOperate and monitor your business-critical applications, data, and IT workloads, along with Application maintenance and operations.\nTeam Augmentation\nHelp you scale up and augment your existing team to solve your hiring challenges with our easy to deploy staff augmentation offerings.\""]}, {"source_sentence": "What challenges did the company face in its early days?", "sentences": ["Why do we need Microservices ?\nInstead of building a monolithic application where all functionalities are tightly integrated, microservices break down the system into modular and loosely coupled services.\n\nScalability\nFlexibility and Agility\nResilience and Fault Isolation\nTechnology Diversity\nContinuous Delivery", "After a transformative scuba dive in the Maldives, Mayank Maggon made a pivotal decision to depart from the corporate ladder in December 2016. Fueled by a clear vision to revolutionize the digital landscape, Mayank set out to leverage the best technology ingredients, crafting custom applications and digital ecosystems tailored to clients' specific needs, limitations, and budgets.\n\nHowever, this solo journey was not without its challenges. Mayank had to initiate the revenue engine by offering corporate trainings and conducting online batches for tech training across the USA. He also undertook small projects and subcontracted modules of larger projects for clients in the US, UK, and India. It was only after this initial groundwork that Mayank was able to hire a group of interns, whom he meticulously trained and groomed to prepare them for handling Enterprise Level Applications. This journey reflects Mayank's resilience, determination, and entrepreneurial spirit in building TechChefz Digital from the ground up.\n\nWith a passion for innovation and a relentless drive for excellence, Mayank has steered TechChefz Digital through strategic partnerships, groundbreaking projects, and exponential growth. His leadership has been instrumental in shaping TechChefz Digital into a leading force in the digital transformation arena, inspiring a culture of innovation and excellence that continues to propel the company forward.", "What makes your DevOps solutions stand out from the competition?\nOur DevOps solutions stand out due to our personalized approach, extensive expertise, and commitment to innovation. We focus on delivering measurable results, such as reduced deployment times, improved system reliability, and enhanced security, ensuring you get the maximum benefit from our services."]}, {"source_sentence": "What kind of data do you leverage for AI solutions?", "sentences": ["Our Solutions\nStrategy & Digital Transformation\nInnovate via digital transformation, modernize tech, craft product strategies, enhance customer experiences, optimize data analytics, transition to cloud for growth and efficiency\n\nProduct Engineering & Custom Development\nProviding product development, enterprise web and mobile development, microservices integrations, quality engineering, and application support services to drive innovation and enhance operational efficiency.", "In what ways can machine learning optimize our operations?\nMachine learning algorithms can analyze operational data to identify inefficiencies, predict maintenance needs, optimize supply chains, and automate repetitive tasks, significantly improving operational efficiency and reducing costs.", "Our AI/ML services pave the way for transformative change across industries, embodying a client-focused approach that integrates seamlessly with human-centric innovation. Our collaborative teams are dedicated to fostering growth, leveraging data, and harnessing the predictive power of artificial intelligence to forge the next wave of software excellence. We don't just deliver AI; we deliver the future."]}, {"source_sentence": "What managed services does TechChefz provide ?", "sentences": [" What we do\n\nDigital Strategy\nCreating digital frameworks that transform your digital enterprise and produce a return on investment.\n\nPlatform Selection\nHelping you select the optimal digital experience, commerce, cloud and marketing platform for your enterprise.\n\nPlatform Builds\nDeploying next-gen scalable and agile enterprise digital platforms, along with multi-platform integrations.\n\nProduct Builds\nHelp you ideate, strategize, and engineer your product with help of our enterprise frameworks \n\nTeam Augmentation\nHelp you scale up and augment your existing team to solve your hiring challenges with our easy to deploy staff augmentation offerings .\nManaged Services\nOperate and monitor your business-critical applications, data, and IT workloads, along with Application maintenance and operations\n", "Introducing the world of General Insurance Firm\nIn this project, we implemented Digital Solution and Implementation with Headless Drupal as the CMS, and lightweight React JS (Next JS SSR on Node JS) with the following features:\nPWA & AMP based Web Pages\nPage Speed Optimization\nReusable and scalable React JS / Next JS Templates and Components\nHeadless Drupal CMS with Content & Experience management, approval workflows, etc for seamless collaboration between the business and marketing teams\nMinimalistic Buy and Renewal Journeys for various products, with API integrations and adherence to data compliances\n\nWe achieved 250% Reduction in Operational Time and Effort in managing the Content & Experience for Buy & renew Journeys,220% Reduction in Customer Drops during buy and renewal journeys, 300% Reduction in bounce rate on policy landing and campaign pages", "In the Introducing the world of Global Insurance Firm, we crafted Effective Solutions for Complex Problems and delieverd a comprehensive Website Development, Production Support & Managed Services, we optimized customer journeys, integrate analytics, CRM, ERP, and third-party applications, and implement cutting-edge technologies for enhanced performance and efficiency\nand achievied 200% Reduction in operational time & effort managing content & experience, 70% Reduction in Deployment Errors and Downtime, 2.5X Customer Engagement, Conversion & Retention"]}], "model-index": [{"name": "BGE base Financial Matryoshka", "results": [{"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "dim 768", "type": "dim_768"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.10666666666666667, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.49333333333333335, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.5333333333333333, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.6266666666666667, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.10666666666666667, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.16444444444444445, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.10666666666666667, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.06266666666666666, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.10666666666666667, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.49333333333333335, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.5333333333333333, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.6266666666666667, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.3696947495406473, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.2864550264550264, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.2993424751990436, "name": "Cosine Map@100"}]}, {"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "dim 512", "type": "dim_512"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.10666666666666667, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.4666666666666667, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.5333333333333333, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.6133333333333333, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.10666666666666667, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.15555555555555556, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.10666666666666667, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.06133333333333333, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.10666666666666667, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.4666666666666667, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.5333333333333333, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.6133333333333333, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.3702942720383175, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.29092063492063486, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.3047495006876888, "name": "Cosine Map@100"}]}, {"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "dim 256", "type": "dim_256"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.14666666666666667, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.4533333333333333, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.49333333333333335, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.6, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.14666666666666667, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.1511111111111111, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.09866666666666667, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.06, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.14666666666666667, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.4533333333333333, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.49333333333333335, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.6, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.37318151343456746, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.3006455026455026, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.31352550381063704, "name": "Cosine Map@100"}]}, {"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "dim 128", "type": "dim_128"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.12, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.4533333333333333, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.49333333333333335, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.6, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.12, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.1511111111111111, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.09866666666666667, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.06, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.12, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.4533333333333333, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.49333333333333335, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.6, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.349467831727335, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.26956613756613756, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.2814743968696581, "name": "Cosine Map@100"}]}, {"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "dim 64", "type": "dim_64"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.16, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.38666666666666666, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.4666666666666667, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.5466666666666666, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.16, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.1288888888888889, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.09333333333333335, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.05466666666666666, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.16, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.38666666666666666, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.4666666666666667, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.5466666666666666, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.34485137335598726, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.28099999999999997, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.29532589563098727, "name": "Cosine Map@100"}]}]}]}
linhphanff/stella_en_1.5B_v5_clone
linhphanff
sentence-similarity
[ "sentence-transformers", "pytorch", "safetensors", "qwen2", "text-generation", "mteb", "transformers", "sentence-similarity", "custom_code", "arxiv:2205.13147", "license:mit", "model-index", "autotrain_compatible", "text-generation-inference", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
2024-09-25T02:13:25
2024-09-27T02:04:02
15
0
--- license: mit tags: - mteb - sentence-transformers - transformers - sentence-similarity model-index: - name: stella_en_1.5B_v5 results: - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: mteb/amazon_counterfactual config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 92.86567164179104 - type: ap value: 72.13503907102613 - type: ap_weighted value: 72.13503907102613 - type: f1 value: 89.5586886376355 - type: f1_weighted value: 93.13621183004571 - type: main_score value: 92.86567164179104 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification type: mteb/amazon_polarity config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 97.16485 - type: ap value: 96.05546315415225 - type: ap_weighted value: 96.05546315415225 - type: f1 value: 97.16351087403213 - type: f1_weighted value: 97.16351087403213 - type: main_score value: 97.16485 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: mteb/amazon_reviews_multi config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 59.358 - type: f1 value: 59.0264615883114 - type: f1_weighted value: 59.0264615883114 - type: main_score value: 59.358 - task: type: Retrieval dataset: name: MTEB ArguAna type: mteb/arguana config: default split: test revision: c22ab2a51041ffd869aaddef7af8d8215647e41a metrics: - type: main_score value: 65.269 - type: map_at_1 value: 41.607 - type: map_at_10 value: 57.104 - type: map_at_100 value: 57.621 - type: map_at_1000 value: 57.621 - type: map_at_20 value: 57.533 - type: map_at_3 value: 52.891999999999996 - type: map_at_5 value: 55.371 - type: mrr_at_1 value: 42.318634423897585 - type: mrr_at_10 value: 57.353970511865406 - type: mrr_at_100 value: 57.88398078476526 - type: mrr_at_1000 value: 57.88467807648422 - type: mrr_at_20 value: 57.796730533206166 - type: mrr_at_3 value: 53.200568990042775 - type: mrr_at_5 value: 55.6330014224753 - type: nauc_map_at_1000_diff1 value: 24.54414600428287 - type: nauc_map_at_1000_max value: -8.389738078358459 - type: nauc_map_at_1000_std value: -18.188787645801366 - type: nauc_map_at_100_diff1 value: 24.543138576462308 - type: nauc_map_at_100_max value: -8.390896839752044 - type: nauc_map_at_100_std value: -18.192549240185247 - type: nauc_map_at_10_diff1 value: 24.219607088995822 - type: nauc_map_at_10_max value: -8.245734391254308 - type: nauc_map_at_10_std value: -18.229706566466447 - type: nauc_map_at_1_diff1 value: 29.325201664812788 - type: nauc_map_at_1_max value: -11.742800494823971 - type: nauc_map_at_1_std value: -18.610215769702528 - type: nauc_map_at_20_diff1 value: 24.471097562798803 - type: nauc_map_at_20_max value: -8.318035874000799 - type: nauc_map_at_20_std value: -18.171541096773108 - type: nauc_map_at_3_diff1 value: 24.275846107642824 - type: nauc_map_at_3_max value: -8.212242049581894 - type: nauc_map_at_3_std value: -17.920379368937496 - type: nauc_map_at_5_diff1 value: 23.873692493209255 - type: nauc_map_at_5_max value: -8.110347163828767 - type: nauc_map_at_5_std value: -18.20863325596931 - type: nauc_mrr_at_1000_diff1 value: 22.656410956419975 - type: nauc_mrr_at_1000_max value: -8.924888102233243 - type: nauc_mrr_at_1000_std value: -18.103674384502526 - type: nauc_mrr_at_100_diff1 value: 22.655448817140968 - type: nauc_mrr_at_100_max value: -8.926034318499038 - type: nauc_mrr_at_100_std value: -18.10743930104164 - type: nauc_mrr_at_10_diff1 value: 22.297536272996872 - type: nauc_mrr_at_10_max value: -8.836407556658274 - type: nauc_mrr_at_10_std value: -18.1598393044477 - type: nauc_mrr_at_1_diff1 value: 27.419572424489708 - type: nauc_mrr_at_1_max value: -11.42241314820691 - type: nauc_mrr_at_1_std value: -18.54893865856313 - type: nauc_mrr_at_20_diff1 value: 22.590227214657418 - type: nauc_mrr_at_20_max value: -8.849986456376993 - type: nauc_mrr_at_20_std value: -18.0862391777352 - type: nauc_mrr_at_3_diff1 value: 22.415270167774988 - type: nauc_mrr_at_3_max value: -8.692871854156435 - type: nauc_mrr_at_3_std value: -17.6740102891955 - type: nauc_mrr_at_5_diff1 value: 21.96284578521464 - type: nauc_mrr_at_5_max value: -8.757031535546025 - type: nauc_mrr_at_5_std value: -18.210766964081294 - type: nauc_ndcg_at_1000_diff1 value: 23.939400161569115 - type: nauc_ndcg_at_1000_max value: -7.866999120512983 - type: nauc_ndcg_at_1000_std value: -17.981457019643617 - type: nauc_ndcg_at_100_diff1 value: 23.920033349619317 - type: nauc_ndcg_at_100_max value: -7.889849409678031 - type: nauc_ndcg_at_100_std value: -18.054931990360537 - type: nauc_ndcg_at_10_diff1 value: 22.543020461303534 - type: nauc_ndcg_at_10_max value: -7.072111788010867 - type: nauc_ndcg_at_10_std value: -18.26397604573537 - type: nauc_ndcg_at_1_diff1 value: 29.325201664812788 - type: nauc_ndcg_at_1_max value: -11.742800494823971 - type: nauc_ndcg_at_1_std value: -18.610215769702528 - type: nauc_ndcg_at_20_diff1 value: 23.551587021207972 - type: nauc_ndcg_at_20_max value: -7.298056222649139 - type: nauc_ndcg_at_20_std value: -18.056004880930608 - type: nauc_ndcg_at_3_diff1 value: 22.669089506345273 - type: nauc_ndcg_at_3_max value: -7.278024373570137 - type: nauc_ndcg_at_3_std value: -17.816657759914193 - type: nauc_ndcg_at_5_diff1 value: 21.72619728226575 - type: nauc_ndcg_at_5_max value: -6.959741647471228 - type: nauc_ndcg_at_5_std value: -18.35173705190235 - type: nauc_precision_at_1000_diff1 value: 5.0388241058076995 - type: nauc_precision_at_1000_max value: 34.439879624882145 - type: nauc_precision_at_1000_std value: 77.22610895194498 - type: nauc_precision_at_100_diff1 value: 1.340670767252794 - type: nauc_precision_at_100_max value: 19.30870025961241 - type: nauc_precision_at_100_std value: 35.37688289157788 - type: nauc_precision_at_10_diff1 value: 7.734227153124332 - type: nauc_precision_at_10_max value: 4.202399088422237 - type: nauc_precision_at_10_std value: -18.383890254046698 - type: nauc_precision_at_1_diff1 value: 29.325201664812788 - type: nauc_precision_at_1_max value: -11.742800494823971 - type: nauc_precision_at_1_std value: -18.610215769702528 - type: nauc_precision_at_20_diff1 value: 9.48070999361637 - type: nauc_precision_at_20_max value: 19.056709637253025 - type: nauc_precision_at_20_std value: -13.266821166159485 - type: nauc_precision_at_3_diff1 value: 17.245260303409747 - type: nauc_precision_at_3_max value: -4.202455033452335 - type: nauc_precision_at_3_std value: -17.514264039955332 - type: nauc_precision_at_5_diff1 value: 12.074628162049974 - type: nauc_precision_at_5_max value: -1.9145501461107832 - type: nauc_precision_at_5_std value: -19.162525528916344 - type: nauc_recall_at_1000_diff1 value: 5.038824105805915 - type: nauc_recall_at_1000_max value: 34.43987962487738 - type: nauc_recall_at_1000_std value: 77.22610895193765 - type: nauc_recall_at_100_diff1 value: 1.3406707672497025 - type: nauc_recall_at_100_max value: 19.30870025960776 - type: nauc_recall_at_100_std value: 35.37688289157515 - type: nauc_recall_at_10_diff1 value: 7.734227153124366 - type: nauc_recall_at_10_max value: 4.202399088421976 - type: nauc_recall_at_10_std value: -18.38389025404673 - type: nauc_recall_at_1_diff1 value: 29.325201664812788 - type: nauc_recall_at_1_max value: -11.742800494823971 - type: nauc_recall_at_1_std value: -18.610215769702528 - type: nauc_recall_at_20_diff1 value: 9.480709993616845 - type: nauc_recall_at_20_max value: 19.05670963725301 - type: nauc_recall_at_20_std value: -13.266821166158651 - type: nauc_recall_at_3_diff1 value: 17.24526030340978 - type: nauc_recall_at_3_max value: -4.202455033452323 - type: nauc_recall_at_3_std value: -17.51426403995538 - type: nauc_recall_at_5_diff1 value: 12.074628162049992 - type: nauc_recall_at_5_max value: -1.914550146110865 - type: nauc_recall_at_5_std value: -19.162525528916362 - type: ndcg_at_1 value: 41.607 - type: ndcg_at_10 value: 65.269 - type: ndcg_at_100 value: 67.289 - type: ndcg_at_1000 value: 67.29899999999999 - type: ndcg_at_20 value: 66.76299999999999 - type: ndcg_at_3 value: 56.604 - type: ndcg_at_5 value: 61.07900000000001 - type: precision_at_1 value: 41.607 - type: precision_at_10 value: 9.118 - type: precision_at_100 value: 0.996 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.8469999999999995 - type: precision_at_3 value: 22.451 - type: precision_at_5 value: 15.647 - type: recall_at_1 value: 41.607 - type: recall_at_10 value: 91.181 - type: recall_at_100 value: 99.57300000000001 - type: recall_at_1000 value: 99.644 - type: recall_at_20 value: 96.942 - type: recall_at_3 value: 67.354 - type: recall_at_5 value: 78.236 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P type: mteb/arxiv-clustering-p2p config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: main_score value: 55.437138353189994 - type: v_measure value: 55.437138353189994 - type: v_measure_std value: 14.718556601335491 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S type: mteb/arxiv-clustering-s2s config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: main_score value: 50.65858459544658 - type: v_measure value: 50.65858459544658 - type: v_measure_std value: 14.887033747525146 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions type: mteb/askubuntudupquestions-reranking config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: main_score value: 67.32597152838535 - type: map value: 67.32597152838535 - type: mrr value: 78.98683111286988 - type: nAUC_map_diff1 value: 16.8624639710487 - type: nAUC_map_max value: 24.91996491142433 - type: nAUC_map_std value: 17.91865808793225 - type: nAUC_mrr_diff1 value: 25.03766425631947 - type: nAUC_mrr_max value: 41.64561939958336 - type: nAUC_mrr_std value: 23.179909345891968 - task: type: STS dataset: name: MTEB BIOSSES type: mteb/biosses-sts config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cosine_pearson value: 85.790820496042 - type: cosine_spearman value: 83.10731534330517 - type: euclidean_pearson value: 84.61741304343133 - type: euclidean_spearman value: 83.17297949010973 - type: main_score value: 83.10731534330517 - type: manhattan_pearson value: 85.2137696526676 - type: manhattan_spearman value: 84.39168195786738 - type: pearson value: 85.790820496042 - type: spearman value: 83.10731534330517 - task: type: Classification dataset: name: MTEB Banking77Classification type: mteb/banking77 config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 89.78896103896105 - type: f1 value: 89.76107366333488 - type: f1_weighted value: 89.76107366333488 - type: main_score value: 89.78896103896105 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P type: mteb/biorxiv-clustering-p2p config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: main_score value: 50.68092296236376 - type: v_measure value: 50.68092296236376 - type: v_measure_std value: 0.7832640983085436 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S type: mteb/biorxiv-clustering-s2s config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: main_score value: 46.86629236732983 - type: v_measure value: 46.86629236732983 - type: v_measure_std value: 0.8784322236350974 - task: type: Retrieval dataset: name: MTEB CQADupstackRetrieval type: mteb/cqadupstack config: default split: test revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 metrics: - type: main_score value: 47.74883333333334 - type: map_at_1 value: 30.179249999999996 - type: map_at_10 value: 41.60824999999999 - type: map_at_100 value: 42.94008333333332 - type: map_at_1000 value: 43.04666666666667 - type: map_at_20 value: 42.36833333333334 - type: map_at_3 value: 38.23491666666666 - type: map_at_5 value: 40.10183333333333 - type: mrr_at_1 value: 36.47676085808166 - type: mrr_at_10 value: 46.300991916437155 - type: mrr_at_100 value: 47.12155753713262 - type: mrr_at_1000 value: 47.168033610799945 - type: mrr_at_20 value: 46.80405724560391 - type: mrr_at_3 value: 43.77000352801797 - type: mrr_at_5 value: 45.22295361704542 - type: nauc_map_at_1000_diff1 value: 46.953671666941524 - type: nauc_map_at_1000_max value: 32.260396316089675 - type: nauc_map_at_1000_std value: 0.6657766120094878 - type: nauc_map_at_100_diff1 value: 46.94717463394555 - type: nauc_map_at_100_max value: 32.25088350678177 - type: nauc_map_at_100_std value: 0.6257017014549283 - type: nauc_map_at_10_diff1 value: 46.974678429336464 - type: nauc_map_at_10_max value: 31.862230807295504 - type: nauc_map_at_10_std value: -0.14758828549579284 - type: nauc_map_at_1_diff1 value: 52.48913346466124 - type: nauc_map_at_1_max value: 29.874374024967725 - type: nauc_map_at_1_std value: -2.433547569836134 - type: nauc_map_at_20_diff1 value: 46.96088684217651 - type: nauc_map_at_20_max value: 32.08954208613205 - type: nauc_map_at_20_std value: 0.25946321113436527 - type: nauc_map_at_3_diff1 value: 47.703230121518345 - type: nauc_map_at_3_max value: 30.977880095983107 - type: nauc_map_at_3_std value: -1.342777563991804 - type: nauc_map_at_5_diff1 value: 47.1615010199957 - type: nauc_map_at_5_max value: 31.420885812683284 - type: nauc_map_at_5_std value: -0.8789297099444306 - type: nauc_mrr_at_1000_diff1 value: 46.69178645962615 - type: nauc_mrr_at_1000_max value: 34.392807413340655 - type: nauc_mrr_at_1000_std value: 1.6155464863667934 - type: nauc_mrr_at_100_diff1 value: 46.67417236349189 - type: nauc_mrr_at_100_max value: 34.384607045512624 - type: nauc_mrr_at_100_std value: 1.6259917384109652 - type: nauc_mrr_at_10_diff1 value: 46.60497560446239 - type: nauc_mrr_at_10_max value: 34.32918897817958 - type: nauc_mrr_at_10_std value: 1.39387793769014 - type: nauc_mrr_at_1_diff1 value: 51.61608573254137 - type: nauc_mrr_at_1_max value: 35.18105023234596 - type: nauc_mrr_at_1_std value: 0.17943702145478177 - type: nauc_mrr_at_20_diff1 value: 46.635943069860254 - type: nauc_mrr_at_20_max value: 34.37050973118794 - type: nauc_mrr_at_20_std value: 1.5346464678860607 - type: nauc_mrr_at_3_diff1 value: 47.154389369038334 - type: nauc_mrr_at_3_max value: 34.41036411855465 - type: nauc_mrr_at_3_std value: 0.924551812357872 - type: nauc_mrr_at_5_diff1 value: 46.6690101691763 - type: nauc_mrr_at_5_max value: 34.29740388138466 - type: nauc_mrr_at_5_std value: 1.0567184149139792 - type: nauc_ndcg_at_1000_diff1 value: 45.375448289173264 - type: nauc_ndcg_at_1000_max value: 33.47957083714482 - type: nauc_ndcg_at_1000_std value: 3.192251100225568 - type: nauc_ndcg_at_100_diff1 value: 44.93601014699499 - type: nauc_ndcg_at_100_max value: 33.21249888295249 - type: nauc_ndcg_at_100_std value: 3.609842852934217 - type: nauc_ndcg_at_10_diff1 value: 44.87893284011915 - type: nauc_ndcg_at_10_max value: 32.384885249478515 - type: nauc_ndcg_at_10_std value: 1.454493065035396 - type: nauc_ndcg_at_1_diff1 value: 51.61608573254137 - type: nauc_ndcg_at_1_max value: 35.18105023234596 - type: nauc_ndcg_at_1_std value: 0.17943702145478177 - type: nauc_ndcg_at_20_diff1 value: 44.867752179050605 - type: nauc_ndcg_at_20_max value: 32.689535921840196 - type: nauc_ndcg_at_20_std value: 2.337765158573901 - type: nauc_ndcg_at_3_diff1 value: 45.87485821381341 - type: nauc_ndcg_at_3_max value: 32.33282450558947 - type: nauc_ndcg_at_3_std value: 0.0681643829273283 - type: nauc_ndcg_at_5_diff1 value: 45.202902131892394 - type: nauc_ndcg_at_5_max value: 32.1026971523917 - type: nauc_ndcg_at_5_std value: 0.3565572833774486 - type: nauc_precision_at_1000_diff1 value: -8.935267931198956 - type: nauc_precision_at_1000_max value: 6.464981960169269 - type: nauc_precision_at_1000_std value: 10.662786182234633 - type: nauc_precision_at_100_diff1 value: -1.64091517847155 - type: nauc_precision_at_100_max value: 15.175617871025024 - type: nauc_precision_at_100_std value: 16.924256989248075 - type: nauc_precision_at_10_diff1 value: 15.676651966277047 - type: nauc_precision_at_10_max value: 26.243734188847117 - type: nauc_precision_at_10_std value: 10.601741034956333 - type: nauc_precision_at_1_diff1 value: 51.61608573254137 - type: nauc_precision_at_1_max value: 35.18105023234596 - type: nauc_precision_at_1_std value: 0.17943702145478177 - type: nauc_precision_at_20_diff1 value: 9.447267260198654 - type: nauc_precision_at_20_max value: 23.024130858142723 - type: nauc_precision_at_20_std value: 13.739145648899603 - type: nauc_precision_at_3_diff1 value: 30.11583572134629 - type: nauc_precision_at_3_max value: 31.37321080069495 - type: nauc_precision_at_3_std value: 4.705512374126024 - type: nauc_precision_at_5_diff1 value: 23.192015335996093 - type: nauc_precision_at_5_max value: 29.415746835998764 - type: nauc_precision_at_5_std value: 6.843498772798558 - type: nauc_recall_at_1000_diff1 value: 25.36573313426033 - type: nauc_recall_at_1000_max value: 43.06672256524168 - type: nauc_recall_at_1000_std value: 47.93664853815292 - type: nauc_recall_at_100_diff1 value: 31.222880916617406 - type: nauc_recall_at_100_max value: 31.761159904172658 - type: nauc_recall_at_100_std value: 23.034218976635877 - type: nauc_recall_at_10_diff1 value: 36.23439028915225 - type: nauc_recall_at_10_max value: 28.473458977606438 - type: nauc_recall_at_10_std value: 3.7797969934159 - type: nauc_recall_at_1_diff1 value: 52.48913346466124 - type: nauc_recall_at_1_max value: 29.874374024967725 - type: nauc_recall_at_1_std value: -2.433547569836134 - type: nauc_recall_at_20_diff1 value: 34.678676952584766 - type: nauc_recall_at_20_max value: 29.04638392522168 - type: nauc_recall_at_20_std value: 8.148894982082549 - type: nauc_recall_at_3_diff1 value: 41.31029996231311 - type: nauc_recall_at_3_max value: 28.44199443414157 - type: nauc_recall_at_3_std value: -0.747324057600377 - type: nauc_recall_at_5_diff1 value: 38.535873899920674 - type: nauc_recall_at_5_max value: 27.942667805948375 - type: nauc_recall_at_5_std value: 0.30652206930973686 - type: ndcg_at_1 value: 36.47675 - type: ndcg_at_10 value: 47.74883333333334 - type: ndcg_at_100 value: 52.902416666666674 - type: ndcg_at_1000 value: 54.69116666666667 - type: ndcg_at_20 value: 49.89758333333333 - type: ndcg_at_3 value: 42.462250000000004 - type: ndcg_at_5 value: 44.91841666666667 - type: precision_at_1 value: 36.47675 - type: precision_at_10 value: 8.582416666666665 - type: precision_at_100 value: 1.31475 - type: precision_at_1000 value: 0.16458333333333333 - type: precision_at_20 value: 5.021833333333333 - type: precision_at_3 value: 20.004499999999997 - type: precision_at_5 value: 14.178666666666665 - type: recall_at_1 value: 30.179249999999996 - type: recall_at_10 value: 60.950166666666675 - type: recall_at_100 value: 83.19025 - type: recall_at_1000 value: 95.27774999999998 - type: recall_at_20 value: 68.80175 - type: recall_at_3 value: 46.01841666666666 - type: recall_at_5 value: 52.482416666666666 - task: type: Retrieval dataset: name: MTEB ClimateFEVER type: mteb/climate-fever config: default split: test revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 metrics: - type: main_score value: 46.113 - type: map_at_1 value: 20.122999999999998 - type: map_at_10 value: 35.474 - type: map_at_100 value: 37.592 - type: map_at_1000 value: 37.773 - type: map_at_20 value: 36.637 - type: map_at_3 value: 29.731 - type: map_at_5 value: 32.964 - type: mrr_at_1 value: 46.71009771986971 - type: mrr_at_10 value: 58.855669303552105 - type: mrr_at_100 value: 59.389249674038425 - type: mrr_at_1000 value: 59.408448104362364 - type: mrr_at_20 value: 59.23881203149016 - type: mrr_at_3 value: 56.18892508143328 - type: mrr_at_5 value: 57.85342019543985 - type: nauc_map_at_1000_diff1 value: 27.047031037721958 - type: nauc_map_at_1000_max value: 43.25240279148033 - type: nauc_map_at_1000_std value: 20.795849418696037 - type: nauc_map_at_100_diff1 value: 27.044739015116452 - type: nauc_map_at_100_max value: 43.24042159787812 - type: nauc_map_at_100_std value: 20.799952124137683 - type: nauc_map_at_10_diff1 value: 27.372696854670338 - type: nauc_map_at_10_max value: 43.054456574721684 - type: nauc_map_at_10_std value: 19.537162110136645 - type: nauc_map_at_1_diff1 value: 43.65424623953092 - type: nauc_map_at_1_max value: 45.17986509998762 - type: nauc_map_at_1_std value: 8.497107052335414 - type: nauc_map_at_20_diff1 value: 27.224535846566074 - type: nauc_map_at_20_max value: 43.12222854561229 - type: nauc_map_at_20_std value: 20.29982972202669 - type: nauc_map_at_3_diff1 value: 30.87847002319001 - type: nauc_map_at_3_max value: 42.890027891707575 - type: nauc_map_at_3_std value: 13.857451947580929 - type: nauc_map_at_5_diff1 value: 27.966867093591542 - type: nauc_map_at_5_max value: 42.35826637592201 - type: nauc_map_at_5_std value: 16.993102524058624 - type: nauc_mrr_at_1000_diff1 value: 30.191544077608164 - type: nauc_mrr_at_1000_max value: 44.959438920351644 - type: nauc_mrr_at_1000_std value: 24.065801376465114 - type: nauc_mrr_at_100_diff1 value: 30.170368115494 - type: nauc_mrr_at_100_max value: 44.955868115761156 - type: nauc_mrr_at_100_std value: 24.093510767847707 - type: nauc_mrr_at_10_diff1 value: 30.128430637520175 - type: nauc_mrr_at_10_max value: 44.97689261350708 - type: nauc_mrr_at_10_std value: 24.037049561818897 - type: nauc_mrr_at_1_diff1 value: 35.323351939108214 - type: nauc_mrr_at_1_max value: 43.85026244855636 - type: nauc_mrr_at_1_std value: 17.040662141218974 - type: nauc_mrr_at_20_diff1 value: 30.192006556160443 - type: nauc_mrr_at_20_max value: 45.02814530774032 - type: nauc_mrr_at_20_std value: 24.20885865448696 - type: nauc_mrr_at_3_diff1 value: 29.88250163424518 - type: nauc_mrr_at_3_max value: 44.25768944883186 - type: nauc_mrr_at_3_std value: 22.804183393364198 - type: nauc_mrr_at_5_diff1 value: 30.269824490420767 - type: nauc_mrr_at_5_max value: 44.97443265796657 - type: nauc_mrr_at_5_std value: 23.894159916141177 - type: nauc_ndcg_at_1000_diff1 value: 24.533764005407356 - type: nauc_ndcg_at_1000_max value: 44.50902713386608 - type: nauc_ndcg_at_1000_std value: 27.589506980238404 - type: nauc_ndcg_at_100_diff1 value: 24.209785073940353 - type: nauc_ndcg_at_100_max value: 44.18257063893669 - type: nauc_ndcg_at_100_std value: 27.963150866401943 - type: nauc_ndcg_at_10_diff1 value: 25.168069201989486 - type: nauc_ndcg_at_10_max value: 43.84940910683214 - type: nauc_ndcg_at_10_std value: 24.810707270956435 - type: nauc_ndcg_at_1_diff1 value: 35.323351939108214 - type: nauc_ndcg_at_1_max value: 43.85026244855636 - type: nauc_ndcg_at_1_std value: 17.040662141218974 - type: nauc_ndcg_at_20_diff1 value: 24.829924800466834 - type: nauc_ndcg_at_20_max value: 43.738574327059716 - type: nauc_ndcg_at_20_std value: 26.252370278684072 - type: nauc_ndcg_at_3_diff1 value: 27.321943393906274 - type: nauc_ndcg_at_3_max value: 42.16584786993447 - type: nauc_ndcg_at_3_std value: 18.24775079455969 - type: nauc_ndcg_at_5_diff1 value: 26.043785418347998 - type: nauc_ndcg_at_5_max value: 42.874593895388344 - type: nauc_ndcg_at_5_std value: 21.294004555506117 - type: nauc_precision_at_1000_diff1 value: -22.073027615308582 - type: nauc_precision_at_1000_max value: -6.549723766317357 - type: nauc_precision_at_1000_std value: 18.301749191241306 - type: nauc_precision_at_100_diff1 value: -15.654286887593619 - type: nauc_precision_at_100_max value: 6.401516251421999 - type: nauc_precision_at_100_std value: 29.170680324929805 - type: nauc_precision_at_10_diff1 value: -4.362381972892247 - type: nauc_precision_at_10_max value: 22.10943515872447 - type: nauc_precision_at_10_std value: 31.869699459530022 - type: nauc_precision_at_1_diff1 value: 35.323351939108214 - type: nauc_precision_at_1_max value: 43.85026244855636 - type: nauc_precision_at_1_std value: 17.040662141218974 - type: nauc_precision_at_20_diff1 value: -7.50749661117875 - type: nauc_precision_at_20_max value: 16.80584016023257 - type: nauc_precision_at_20_std value: 31.976755897112437 - type: nauc_precision_at_3_diff1 value: 7.402667538773083 - type: nauc_precision_at_3_max value: 31.2088401330676 - type: nauc_precision_at_3_std value: 24.287905698405662 - type: nauc_precision_at_5_diff1 value: 0.7479172565343901 - type: nauc_precision_at_5_max value: 26.28427734237825 - type: nauc_precision_at_5_std value: 28.246947120310317 - type: nauc_recall_at_1000_diff1 value: 2.4778431086370496 - type: nauc_recall_at_1000_max value: 40.2231995797509 - type: nauc_recall_at_1000_std value: 52.62124052183862 - type: nauc_recall_at_100_diff1 value: 8.960962419741463 - type: nauc_recall_at_100_max value: 35.81132850291491 - type: nauc_recall_at_100_std value: 40.020903251786166 - type: nauc_recall_at_10_diff1 value: 15.603400751376636 - type: nauc_recall_at_10_max value: 37.570127529136485 - type: nauc_recall_at_10_std value: 28.07128410238545 - type: nauc_recall_at_1_diff1 value: 43.65424623953092 - type: nauc_recall_at_1_max value: 45.17986509998762 - type: nauc_recall_at_1_std value: 8.497107052335414 - type: nauc_recall_at_20_diff1 value: 13.844820282832346 - type: nauc_recall_at_20_max value: 36.0106148516309 - type: nauc_recall_at_20_std value: 31.453103910565254 - type: nauc_recall_at_3_diff1 value: 24.359328154117748 - type: nauc_recall_at_3_max value: 39.93774251377568 - type: nauc_recall_at_3_std value: 16.214921517509648 - type: nauc_recall_at_5_diff1 value: 18.75788451360292 - type: nauc_recall_at_5_max value: 38.177646107055516 - type: nauc_recall_at_5_std value: 22.17196825834675 - type: ndcg_at_1 value: 46.71 - type: ndcg_at_10 value: 46.113 - type: ndcg_at_100 value: 53.035 - type: ndcg_at_1000 value: 55.724 - type: ndcg_at_20 value: 48.929 - type: ndcg_at_3 value: 39.501999999999995 - type: ndcg_at_5 value: 41.792 - type: precision_at_1 value: 46.71 - type: precision_at_10 value: 14.274000000000001 - type: precision_at_100 value: 2.1870000000000003 - type: precision_at_1000 value: 0.269 - type: precision_at_20 value: 8.375 - type: precision_at_3 value: 29.881 - type: precision_at_5 value: 22.697 - type: recall_at_1 value: 20.122999999999998 - type: recall_at_10 value: 52.22 - type: recall_at_100 value: 75.388 - type: recall_at_1000 value: 89.938 - type: recall_at_20 value: 60.077000000000005 - type: recall_at_3 value: 35.150999999999996 - type: recall_at_5 value: 42.748000000000005 - task: type: Retrieval dataset: name: MTEB DBPedia type: mteb/dbpedia config: default split: test revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 metrics: - type: main_score value: 52.276999999999994 - type: map_at_1 value: 9.949 - type: map_at_10 value: 24.891 - type: map_at_100 value: 37.111 - type: map_at_1000 value: 39.266 - type: map_at_20 value: 29.685 - type: map_at_3 value: 16.586000000000002 - type: map_at_5 value: 19.982 - type: mrr_at_1 value: 76.25 - type: mrr_at_10 value: 82.4518849206349 - type: mrr_at_100 value: 82.70302194564499 - type: mrr_at_1000 value: 82.70909729942254 - type: mrr_at_20 value: 82.60492765962964 - type: mrr_at_3 value: 81.33333333333331 - type: mrr_at_5 value: 82.14583333333331 - type: nauc_map_at_1000_diff1 value: 21.427201262456556 - type: nauc_map_at_1000_max value: 35.357361590816076 - type: nauc_map_at_1000_std value: 24.785419223353717 - type: nauc_map_at_100_diff1 value: 22.82358692021537 - type: nauc_map_at_100_max value: 35.07399692072945 - type: nauc_map_at_100_std value: 22.679878828987025 - type: nauc_map_at_10_diff1 value: 26.491769223479643 - type: nauc_map_at_10_max value: 20.78079385443902 - type: nauc_map_at_10_std value: -4.910406292079661 - type: nauc_map_at_1_diff1 value: 35.20851030208876 - type: nauc_map_at_1_max value: 5.783003346365858 - type: nauc_map_at_1_std value: -21.11679133835354 - type: nauc_map_at_20_diff1 value: 24.80097499300491 - type: nauc_map_at_20_max value: 26.807021360774975 - type: nauc_map_at_20_std value: 4.793103995429955 - type: nauc_map_at_3_diff1 value: 29.238193458890173 - type: nauc_map_at_3_max value: 10.300839972189456 - type: nauc_map_at_3_std value: -17.889666731981592 - type: nauc_map_at_5_diff1 value: 28.773624870573926 - type: nauc_map_at_5_max value: 14.951435645422887 - type: nauc_map_at_5_std value: -13.319697827173565 - type: nauc_mrr_at_1000_diff1 value: 55.232544856708785 - type: nauc_mrr_at_1000_max value: 64.73225637682637 - type: nauc_mrr_at_1000_std value: 37.57480399594188 - type: nauc_mrr_at_100_diff1 value: 55.219251601773735 - type: nauc_mrr_at_100_max value: 64.73305063663611 - type: nauc_mrr_at_100_std value: 37.56458562909293 - type: nauc_mrr_at_10_diff1 value: 55.123463838253464 - type: nauc_mrr_at_10_max value: 64.91914041040233 - type: nauc_mrr_at_10_std value: 37.76482503851598 - type: nauc_mrr_at_1_diff1 value: 56.45461238513347 - type: nauc_mrr_at_1_max value: 63.11782510293676 - type: nauc_mrr_at_1_std value: 33.592561284868985 - type: nauc_mrr_at_20_diff1 value: 55.15401961460458 - type: nauc_mrr_at_20_max value: 64.77145835613156 - type: nauc_mrr_at_20_std value: 37.471561418305804 - type: nauc_mrr_at_3_diff1 value: 54.64387438697658 - type: nauc_mrr_at_3_max value: 64.27618995019164 - type: nauc_mrr_at_3_std value: 39.391637295269014 - type: nauc_mrr_at_5_diff1 value: 55.08702591239485 - type: nauc_mrr_at_5_max value: 64.6071475650635 - type: nauc_mrr_at_5_std value: 37.97185134269896 - type: nauc_ndcg_at_1000_diff1 value: 31.696698876400387 - type: nauc_ndcg_at_1000_max value: 52.12183760001191 - type: nauc_ndcg_at_1000_std value: 40.197596211778716 - type: nauc_ndcg_at_100_diff1 value: 33.253120193433666 - type: nauc_ndcg_at_100_max value: 49.47167758554746 - type: nauc_ndcg_at_100_std value: 32.643833139756204 - type: nauc_ndcg_at_10_diff1 value: 27.065541392580013 - type: nauc_ndcg_at_10_max value: 45.83504281289289 - type: nauc_ndcg_at_10_std value: 27.11739500732328 - type: nauc_ndcg_at_1_diff1 value: 49.42808250022517 - type: nauc_ndcg_at_1_max value: 53.502615048520354 - type: nauc_ndcg_at_1_std value: 27.17555908836708 - type: nauc_ndcg_at_20_diff1 value: 29.374791382330308 - type: nauc_ndcg_at_20_max value: 43.91246842479055 - type: nauc_ndcg_at_20_std value: 23.419410620550316 - type: nauc_ndcg_at_3_diff1 value: 26.71550354496204 - type: nauc_ndcg_at_3_max value: 43.9641457892003 - type: nauc_ndcg_at_3_std value: 27.320024167947686 - type: nauc_ndcg_at_5_diff1 value: 27.020654974589487 - type: nauc_ndcg_at_5_max value: 46.130417266030584 - type: nauc_ndcg_at_5_std value: 28.392009019010068 - type: nauc_precision_at_1000_diff1 value: -21.47455482181002 - type: nauc_precision_at_1000_max value: -9.721907229236024 - type: nauc_precision_at_1000_std value: -1.061132062651487 - type: nauc_precision_at_100_diff1 value: -12.35759246101943 - type: nauc_precision_at_100_max value: 15.509512444892168 - type: nauc_precision_at_100_std value: 36.21183578592014 - type: nauc_precision_at_10_diff1 value: -6.136998947343125 - type: nauc_precision_at_10_max value: 32.30037906748288 - type: nauc_precision_at_10_std value: 41.4500302476981 - type: nauc_precision_at_1_diff1 value: 56.45461238513347 - type: nauc_precision_at_1_max value: 63.11782510293676 - type: nauc_precision_at_1_std value: 33.592561284868985 - type: nauc_precision_at_20_diff1 value: -7.335890123683174 - type: nauc_precision_at_20_max value: 28.31417075291312 - type: nauc_precision_at_20_std value: 41.405935715061815 - type: nauc_precision_at_3_diff1 value: 7.117255890225942 - type: nauc_precision_at_3_max value: 39.19894132683829 - type: nauc_precision_at_3_std value: 38.48255841994843 - type: nauc_precision_at_5_diff1 value: 1.861523090114206 - type: nauc_precision_at_5_max value: 38.11649223007208 - type: nauc_precision_at_5_std value: 40.52993530374645 - type: nauc_recall_at_1000_diff1 value: 26.497648584314636 - type: nauc_recall_at_1000_max value: 44.48069746734414 - type: nauc_recall_at_1000_std value: 53.16438130228715 - type: nauc_recall_at_100_diff1 value: 26.353456899511446 - type: nauc_recall_at_100_max value: 37.57379787884197 - type: nauc_recall_at_100_std value: 29.197468295989548 - type: nauc_recall_at_10_diff1 value: 22.80445738351114 - type: nauc_recall_at_10_max value: 15.895630778449046 - type: nauc_recall_at_10_std value: -8.746224797644501 - type: nauc_recall_at_1_diff1 value: 35.20851030208876 - type: nauc_recall_at_1_max value: 5.783003346365858 - type: nauc_recall_at_1_std value: -21.11679133835354 - type: nauc_recall_at_20_diff1 value: 22.34028867678706 - type: nauc_recall_at_20_max value: 21.42373427646772 - type: nauc_recall_at_20_std value: 0.4533036151015875 - type: nauc_recall_at_3_diff1 value: 24.96853445599229 - type: nauc_recall_at_3_max value: 6.245185375804208 - type: nauc_recall_at_3_std value: -20.200240127099622 - type: nauc_recall_at_5_diff1 value: 24.749259476710623 - type: nauc_recall_at_5_max value: 11.024592845995942 - type: nauc_recall_at_5_std value: -16.15683085641543 - type: ndcg_at_1 value: 64.125 - type: ndcg_at_10 value: 52.276999999999994 - type: ndcg_at_100 value: 57.440000000000005 - type: ndcg_at_1000 value: 64.082 - type: ndcg_at_20 value: 51.383 - type: ndcg_at_3 value: 55.769000000000005 - type: ndcg_at_5 value: 53.978 - type: precision_at_1 value: 76.25 - type: precision_at_10 value: 43.05 - type: precision_at_100 value: 14.09 - type: precision_at_1000 value: 2.662 - type: precision_at_20 value: 33.112 - type: precision_at_3 value: 59.833000000000006 - type: precision_at_5 value: 53.05 - type: recall_at_1 value: 9.949 - type: recall_at_10 value: 30.424 - type: recall_at_100 value: 64.062 - type: recall_at_1000 value: 85.916 - type: recall_at_20 value: 39.895 - type: recall_at_3 value: 17.876 - type: recall_at_5 value: 22.536 - task: type: Classification dataset: name: MTEB EmotionClassification type: mteb/emotion config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 84.29499999999999 - type: f1 value: 79.76188258172078 - type: f1_weighted value: 84.96026012933847 - type: main_score value: 84.29499999999999 - task: type: Retrieval dataset: name: MTEB FEVER type: mteb/fever config: default split: test revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 metrics: - type: main_score value: 94.83200000000001 - type: map_at_1 value: 87.339 - type: map_at_10 value: 92.92099999999999 - type: map_at_100 value: 93.108 - type: map_at_1000 value: 93.116 - type: map_at_20 value: 93.041 - type: map_at_3 value: 92.219 - type: map_at_5 value: 92.664 - type: mrr_at_1 value: 93.99939993999399 - type: mrr_at_10 value: 96.55188137861403 - type: mrr_at_100 value: 96.5652366009286 - type: mrr_at_1000 value: 96.5652625550811 - type: mrr_at_20 value: 96.5601781754844 - type: mrr_at_3 value: 96.45714571457142 - type: mrr_at_5 value: 96.544904490449 - type: nauc_map_at_1000_diff1 value: 51.81676454961933 - type: nauc_map_at_1000_max value: 24.904822914926118 - type: nauc_map_at_1000_std value: -3.8110347821630404 - type: nauc_map_at_100_diff1 value: 51.77514975011158 - type: nauc_map_at_100_max value: 24.912497341800094 - type: nauc_map_at_100_std value: -3.76229517662447 - type: nauc_map_at_10_diff1 value: 51.29608296382479 - type: nauc_map_at_10_max value: 24.78704970246707 - type: nauc_map_at_10_std value: -3.723130815783328 - type: nauc_map_at_1_diff1 value: 59.90813138005125 - type: nauc_map_at_1_max value: 24.58479295693794 - type: nauc_map_at_1_std value: -8.056152492777027 - type: nauc_map_at_20_diff1 value: 51.428639331678326 - type: nauc_map_at_20_max value: 24.849214517705086 - type: nauc_map_at_20_std value: -3.685550123874596 - type: nauc_map_at_3_diff1 value: 50.94399923719279 - type: nauc_map_at_3_max value: 24.359700180006207 - type: nauc_map_at_3_std value: -5.407767408816422 - type: nauc_map_at_5_diff1 value: 50.767302682959546 - type: nauc_map_at_5_max value: 24.491113461892215 - type: nauc_map_at_5_std value: -4.058336127339082 - type: nauc_mrr_at_1000_diff1 value: 79.86042313551833 - type: nauc_mrr_at_1000_max value: 23.20960445633933 - type: nauc_mrr_at_1000_std value: -23.54334295120471 - type: nauc_mrr_at_100_diff1 value: 79.85991247027636 - type: nauc_mrr_at_100_max value: 23.210085926780106 - type: nauc_mrr_at_100_std value: -23.542508200789197 - type: nauc_mrr_at_10_diff1 value: 79.71095155563415 - type: nauc_mrr_at_10_max value: 23.24128650883908 - type: nauc_mrr_at_10_std value: -23.408502781834102 - type: nauc_mrr_at_1_diff1 value: 82.6349900233902 - type: nauc_mrr_at_1_max value: 21.994548214014227 - type: nauc_mrr_at_1_std value: -22.549769792179262 - type: nauc_mrr_at_20_diff1 value: 79.76465012873038 - type: nauc_mrr_at_20_max value: 23.17575026523213 - type: nauc_mrr_at_20_std value: -23.492660166315048 - type: nauc_mrr_at_3_diff1 value: 79.91074933379953 - type: nauc_mrr_at_3_max value: 24.14246499097892 - type: nauc_mrr_at_3_std value: -25.22601708389664 - type: nauc_mrr_at_5_diff1 value: 79.62092651565847 - type: nauc_mrr_at_5_max value: 23.315937737034425 - type: nauc_mrr_at_5_std value: -23.317659360058403 - type: nauc_ndcg_at_1000_diff1 value: 54.404537986779225 - type: nauc_ndcg_at_1000_max value: 25.38408304128995 - type: nauc_ndcg_at_1000_std value: -4.916709117696968 - type: nauc_ndcg_at_100_diff1 value: 53.2448598868241 - type: nauc_ndcg_at_100_max value: 25.75325255295546 - type: nauc_ndcg_at_100_std value: -3.680507005630751 - type: nauc_ndcg_at_10_diff1 value: 50.81057355170232 - type: nauc_ndcg_at_10_max value: 25.006448273343807 - type: nauc_ndcg_at_10_std value: -2.8979899112515577 - type: nauc_ndcg_at_1_diff1 value: 82.6349900233902 - type: nauc_ndcg_at_1_max value: 21.994548214014227 - type: nauc_ndcg_at_1_std value: -22.549769792179262 - type: nauc_ndcg_at_20_diff1 value: 51.205023097166304 - type: nauc_ndcg_at_20_max value: 25.22133626556826 - type: nauc_ndcg_at_20_std value: -2.9506328244150155 - type: nauc_ndcg_at_3_diff1 value: 51.79780256736321 - type: nauc_ndcg_at_3_max value: 24.81137324438439 - type: nauc_ndcg_at_3_std value: -6.881223858227807 - type: nauc_ndcg_at_5_diff1 value: 50.290038260564565 - type: nauc_ndcg_at_5_max value: 24.57250792165796 - type: nauc_ndcg_at_5_std value: -3.5124628344654596 - type: nauc_precision_at_1000_diff1 value: -20.215211396894333 - type: nauc_precision_at_1000_max value: -14.165452298769171 - type: nauc_precision_at_1000_std value: -2.0952871214470816 - type: nauc_precision_at_100_diff1 value: -22.340257474494607 - type: nauc_precision_at_100_max value: -12.697885641360282 - type: nauc_precision_at_100_std value: 1.0688624940286244 - type: nauc_precision_at_10_diff1 value: -24.78271817420798 - type: nauc_precision_at_10_max value: -12.625257500222656 - type: nauc_precision_at_10_std value: 3.223250450607087 - type: nauc_precision_at_1_diff1 value: 82.6349900233902 - type: nauc_precision_at_1_max value: 21.994548214014227 - type: nauc_precision_at_1_std value: -22.549769792179262 - type: nauc_precision_at_20_diff1 value: -24.375756227194177 - type: nauc_precision_at_20_max value: -12.341015011563536 - type: nauc_precision_at_20_std value: 2.7475274619387955 - type: nauc_precision_at_3_diff1 value: -24.8251306777365 - type: nauc_precision_at_3_max value: -13.109579709589042 - type: nauc_precision_at_3_std value: -1.2233442335420748 - type: nauc_precision_at_5_diff1 value: -26.955418583344894 - type: nauc_precision_at_5_max value: -13.598630838071015 - type: nauc_precision_at_5_std value: 2.545780631940738 - type: nauc_recall_at_1000_diff1 value: 0.2542680835344437 - type: nauc_recall_at_1000_max value: 49.38194243035277 - type: nauc_recall_at_1000_std value: 57.021502715846026 - type: nauc_recall_at_100_diff1 value: 5.062154815367015 - type: nauc_recall_at_100_max value: 45.41178380188437 - type: nauc_recall_at_100_std value: 50.78382225901813 - type: nauc_recall_at_10_diff1 value: 20.429153629007818 - type: nauc_recall_at_10_max value: 27.516855026155508 - type: nauc_recall_at_10_std value: 21.367491371755467 - type: nauc_recall_at_1_diff1 value: 59.90813138005125 - type: nauc_recall_at_1_max value: 24.58479295693794 - type: nauc_recall_at_1_std value: -8.056152492777027 - type: nauc_recall_at_20_diff1 value: 13.072430858896942 - type: nauc_recall_at_20_max value: 29.5522659183247 - type: nauc_recall_at_20_std value: 28.70569974090291 - type: nauc_recall_at_3_diff1 value: 30.419084482663617 - type: nauc_recall_at_3_max value: 25.627389580252835 - type: nauc_recall_at_3_std value: 2.5557690877637054 - type: nauc_recall_at_5_diff1 value: 22.92561435069869 - type: nauc_recall_at_5_max value: 25.545265063475455 - type: nauc_recall_at_5_std value: 14.736172663072786 - type: ndcg_at_1 value: 93.999 - type: ndcg_at_10 value: 94.83200000000001 - type: ndcg_at_100 value: 95.363 - type: ndcg_at_1000 value: 95.478 - type: ndcg_at_20 value: 95.077 - type: ndcg_at_3 value: 94.143 - type: ndcg_at_5 value: 94.525 - type: precision_at_1 value: 93.999 - type: precision_at_10 value: 11.029 - type: precision_at_100 value: 1.1560000000000001 - type: precision_at_1000 value: 0.11800000000000001 - type: precision_at_20 value: 5.62 - type: precision_at_3 value: 35.219 - type: precision_at_5 value: 21.584 - type: recall_at_1 value: 87.339 - type: recall_at_10 value: 97.026 - type: recall_at_100 value: 98.936 - type: recall_at_1000 value: 99.599 - type: recall_at_20 value: 97.744 - type: recall_at_3 value: 95.069 - type: recall_at_5 value: 96.177 - task: type: Retrieval dataset: name: MTEB FiQA2018 type: mteb/fiqa config: default split: test revision: 27a168819829fe9bcd655c2df245fb19452e8e06 metrics: - type: main_score value: 60.480000000000004 - type: map_at_1 value: 31.529 - type: map_at_10 value: 52.081 - type: map_at_100 value: 54.342 - type: map_at_1000 value: 54.449000000000005 - type: map_at_20 value: 53.479 - type: map_at_3 value: 45.471000000000004 - type: map_at_5 value: 49.164 - type: mrr_at_1 value: 60.03086419753087 - type: mrr_at_10 value: 67.73754409171075 - type: mrr_at_100 value: 68.332432152368 - type: mrr_at_1000 value: 68.34150941774908 - type: mrr_at_20 value: 68.14780993838725 - type: mrr_at_3 value: 65.6378600823045 - type: mrr_at_5 value: 66.88014403292176 - type: nauc_map_at_1000_diff1 value: 45.36598134579052 - type: nauc_map_at_1000_max value: 31.891451119906943 - type: nauc_map_at_1000_std value: -15.41454384137943 - type: nauc_map_at_100_diff1 value: 45.31268291874018 - type: nauc_map_at_100_max value: 31.811055683002092 - type: nauc_map_at_100_std value: -15.348503855591417 - type: nauc_map_at_10_diff1 value: 45.22606983565892 - type: nauc_map_at_10_max value: 30.46108534749699 - type: nauc_map_at_10_std value: -16.618086029682555 - type: nauc_map_at_1_diff1 value: 49.94952823753276 - type: nauc_map_at_1_max value: 13.770377574254548 - type: nauc_map_at_1_std value: -14.946357968858653 - type: nauc_map_at_20_diff1 value: 45.29274207897926 - type: nauc_map_at_20_max value: 31.27332015148257 - type: nauc_map_at_20_std value: -15.782946115613129 - type: nauc_map_at_3_diff1 value: 47.94248233566038 - type: nauc_map_at_3_max value: 24.022838776825456 - type: nauc_map_at_3_std value: -17.103518542262208 - type: nauc_map_at_5_diff1 value: 45.85345590031722 - type: nauc_map_at_5_max value: 27.78341379004547 - type: nauc_map_at_5_std value: -17.490850791756326 - type: nauc_mrr_at_1000_diff1 value: 58.225141047822824 - type: nauc_mrr_at_1000_max value: 43.39606904140525 - type: nauc_mrr_at_1000_std value: -14.64093518199122 - type: nauc_mrr_at_100_diff1 value: 58.22137274179545 - type: nauc_mrr_at_100_max value: 43.39567568136935 - type: nauc_mrr_at_100_std value: -14.62512313985582 - type: nauc_mrr_at_10_diff1 value: 58.03217329957151 - type: nauc_mrr_at_10_max value: 43.633561683075186 - type: nauc_mrr_at_10_std value: -14.563703576023808 - type: nauc_mrr_at_1_diff1 value: 61.48979902647692 - type: nauc_mrr_at_1_max value: 43.1938079066948 - type: nauc_mrr_at_1_std value: -15.808138277440465 - type: nauc_mrr_at_20_diff1 value: 58.13185370150794 - type: nauc_mrr_at_20_max value: 43.35607721183147 - type: nauc_mrr_at_20_std value: -14.635812702971263 - type: nauc_mrr_at_3_diff1 value: 58.698963168321264 - type: nauc_mrr_at_3_max value: 43.633129249785405 - type: nauc_mrr_at_3_std value: -15.733246346983854 - type: nauc_mrr_at_5_diff1 value: 57.94156745229547 - type: nauc_mrr_at_5_max value: 43.14152462640525 - type: nauc_mrr_at_5_std value: -15.318685307750895 - type: nauc_ndcg_at_1000_diff1 value: 47.871896043731496 - type: nauc_ndcg_at_1000_max value: 37.159845167533426 - type: nauc_ndcg_at_1000_std value: -13.067288160833485 - type: nauc_ndcg_at_100_diff1 value: 47.046171407204426 - type: nauc_ndcg_at_100_max value: 36.422514360855835 - type: nauc_ndcg_at_100_std value: -11.636859259571441 - type: nauc_ndcg_at_10_diff1 value: 46.232628149078096 - type: nauc_ndcg_at_10_max value: 34.82402625088358 - type: nauc_ndcg_at_10_std value: -14.768545542980114 - type: nauc_ndcg_at_1_diff1 value: 61.48979902647692 - type: nauc_ndcg_at_1_max value: 43.1938079066948 - type: nauc_ndcg_at_1_std value: -15.808138277440465 - type: nauc_ndcg_at_20_diff1 value: 46.51116172390955 - type: nauc_ndcg_at_20_max value: 35.36362650568298 - type: nauc_ndcg_at_20_std value: -12.849406209182826 - type: nauc_ndcg_at_3_diff1 value: 47.39832263785871 - type: nauc_ndcg_at_3_max value: 35.67466264628456 - type: nauc_ndcg_at_3_std value: -17.257717349296943 - type: nauc_ndcg_at_5_diff1 value: 45.91049493804232 - type: nauc_ndcg_at_5_max value: 33.8405091138445 - type: nauc_ndcg_at_5_std value: -17.477069902735895 - type: nauc_precision_at_1000_diff1 value: -12.037873000917767 - type: nauc_precision_at_1000_max value: 26.043220150002295 - type: nauc_precision_at_1000_std value: 6.84910668321572 - type: nauc_precision_at_100_diff1 value: -9.383403459051864 - type: nauc_precision_at_100_max value: 29.68713170610003 - type: nauc_precision_at_100_std value: 10.079531587056152 - type: nauc_precision_at_10_diff1 value: 3.3433323353925135 - type: nauc_precision_at_10_max value: 38.31790111725993 - type: nauc_precision_at_10_std value: 0.7888123304710856 - type: nauc_precision_at_1_diff1 value: 61.48979902647692 - type: nauc_precision_at_1_max value: 43.1938079066948 - type: nauc_precision_at_1_std value: -15.808138277440465 - type: nauc_precision_at_20_diff1 value: -2.083500986294448 - type: nauc_precision_at_20_max value: 35.77143835726343 - type: nauc_precision_at_20_std value: 5.318547021874003 - type: nauc_precision_at_3_diff1 value: 23.335617788912586 - type: nauc_precision_at_3_max value: 39.81973275320871 - type: nauc_precision_at_3_std value: -8.442769390555561 - type: nauc_precision_at_5_diff1 value: 11.521087842589482 - type: nauc_precision_at_5_max value: 39.527792539828255 - type: nauc_precision_at_5_std value: -5.412729503701626 - type: nauc_recall_at_1000_diff1 value: 10.6830893047453 - type: nauc_recall_at_1000_max value: 8.834504311238423 - type: nauc_recall_at_1000_std value: 24.670754304859692 - type: nauc_recall_at_100_diff1 value: 20.646020385527358 - type: nauc_recall_at_100_max value: 20.121595011523294 - type: nauc_recall_at_100_std value: 19.42307459311791 - type: nauc_recall_at_10_diff1 value: 33.01029313733417 - type: nauc_recall_at_10_max value: 27.948634980368702 - type: nauc_recall_at_10_std value: -10.239767371462975 - type: nauc_recall_at_1_diff1 value: 49.94952823753276 - type: nauc_recall_at_1_max value: 13.770377574254548 - type: nauc_recall_at_1_std value: -14.946357968858653 - type: nauc_recall_at_20_diff1 value: 30.040111045267963 - type: nauc_recall_at_20_max value: 25.984919302418184 - type: nauc_recall_at_20_std value: -1.4998001817460804 - type: nauc_recall_at_3_diff1 value: 42.24410559113653 - type: nauc_recall_at_3_max value: 20.269503583626914 - type: nauc_recall_at_3_std value: -17.09578532600584 - type: nauc_recall_at_5_diff1 value: 36.124149735848945 - type: nauc_recall_at_5_max value: 22.708022306002622 - type: nauc_recall_at_5_std value: -16.966976847236193 - type: ndcg_at_1 value: 60.031 - type: ndcg_at_10 value: 60.480000000000004 - type: ndcg_at_100 value: 66.94099999999999 - type: ndcg_at_1000 value: 68.303 - type: ndcg_at_20 value: 63.536 - type: ndcg_at_3 value: 55.903999999999996 - type: ndcg_at_5 value: 57.387 - type: precision_at_1 value: 60.031 - type: precision_at_10 value: 16.682 - type: precision_at_100 value: 2.336 - type: precision_at_1000 value: 0.259 - type: precision_at_20 value: 9.66 - type: precision_at_3 value: 37.191 - type: precision_at_5 value: 27.253 - type: recall_at_1 value: 31.529 - type: recall_at_10 value: 68.035 - type: recall_at_100 value: 90.925 - type: recall_at_1000 value: 98.688 - type: recall_at_20 value: 77.453 - type: recall_at_3 value: 50.221000000000004 - type: recall_at_5 value: 58.209999999999994 - task: type: Retrieval dataset: name: MTEB HotpotQA type: mteb/hotpotqa config: default split: test revision: ab518f4d6fcca38d87c25209f94beba119d02014 metrics: - type: main_score value: 76.67399999999999 - type: map_at_1 value: 43.822 - type: map_at_10 value: 68.82000000000001 - type: map_at_100 value: 69.659 - type: map_at_1000 value: 69.714 - type: map_at_20 value: 69.305 - type: map_at_3 value: 65.517 - type: map_at_5 value: 67.633 - type: mrr_at_1 value: 87.643484132343 - type: mrr_at_10 value: 91.28134679485098 - type: mrr_at_100 value: 91.37985230614755 - type: mrr_at_1000 value: 91.38202467630681 - type: mrr_at_20 value: 91.34718855278429 - type: mrr_at_3 value: 90.75849651136599 - type: mrr_at_5 value: 91.10961062345235 - type: nauc_map_at_1000_diff1 value: 3.7670405082837477 - type: nauc_map_at_1000_max value: 14.410594409695182 - type: nauc_map_at_1000_std value: 7.94738583292685 - type: nauc_map_at_100_diff1 value: 3.738796209193936 - type: nauc_map_at_100_max value: 14.408029101534694 - type: nauc_map_at_100_std value: 7.979641077687816 - type: nauc_map_at_10_diff1 value: 3.334917978089454 - type: nauc_map_at_10_max value: 13.975255289147748 - type: nauc_map_at_10_std value: 7.491959628012161 - type: nauc_map_at_1_diff1 value: 75.35066482050009 - type: nauc_map_at_1_max value: 53.573503488571475 - type: nauc_map_at_1_std value: -6.542030594426993 - type: nauc_map_at_20_diff1 value: 3.5197129341582083 - type: nauc_map_at_20_max value: 14.159880698006816 - type: nauc_map_at_20_std value: 7.856574384998483 - type: nauc_map_at_3_diff1 value: 3.0992333232864064 - type: nauc_map_at_3_max value: 12.513959281222112 - type: nauc_map_at_3_std value: 4.352912866014865 - type: nauc_map_at_5_diff1 value: 3.0351688998572537 - type: nauc_map_at_5_max value: 13.21599457624529 - type: nauc_map_at_5_std value: 6.246882983214777 - type: nauc_mrr_at_1000_diff1 value: 75.23953736361132 - type: nauc_mrr_at_1000_max value: 56.64260717262164 - type: nauc_mrr_at_1000_std value: -4.865932053762276 - type: nauc_mrr_at_100_diff1 value: 75.24091372816497 - type: nauc_mrr_at_100_max value: 56.64831104504846 - type: nauc_mrr_at_100_std value: -4.850966297943324 - type: nauc_mrr_at_10_diff1 value: 75.26540178053416 - type: nauc_mrr_at_10_max value: 56.828755673428965 - type: nauc_mrr_at_10_std value: -4.8401126970944635 - type: nauc_mrr_at_1_diff1 value: 75.35066482050009 - type: nauc_mrr_at_1_max value: 53.573503488571475 - type: nauc_mrr_at_1_std value: -6.542030594426993 - type: nauc_mrr_at_20_diff1 value: 75.24453050729845 - type: nauc_mrr_at_20_max value: 56.69220588401435 - type: nauc_mrr_at_20_std value: -4.843700730832108 - type: nauc_mrr_at_3_diff1 value: 74.98411648336175 - type: nauc_mrr_at_3_max value: 56.766537573537114 - type: nauc_mrr_at_3_std value: -4.909712671649337 - type: nauc_mrr_at_5_diff1 value: 75.20599020991028 - type: nauc_mrr_at_5_max value: 56.64236207782237 - type: nauc_mrr_at_5_std value: -5.208907367513977 - type: nauc_ndcg_at_1000_diff1 value: 11.48307079099774 - type: nauc_ndcg_at_1000_max value: 20.893326881675176 - type: nauc_ndcg_at_1000_std value: 10.43489838692119 - type: nauc_ndcg_at_100_diff1 value: 10.395588735754927 - type: nauc_ndcg_at_100_max value: 20.529573302516912 - type: nauc_ndcg_at_100_std value: 11.252973083654268 - type: nauc_ndcg_at_10_diff1 value: 8.596739352741972 - type: nauc_ndcg_at_10_max value: 18.475863682540673 - type: nauc_ndcg_at_10_std value: 9.175831033463352 - type: nauc_ndcg_at_1_diff1 value: 75.35066482050009 - type: nauc_ndcg_at_1_max value: 53.573503488571475 - type: nauc_ndcg_at_1_std value: -6.542030594426993 - type: nauc_ndcg_at_20_diff1 value: 8.998033972471749 - type: nauc_ndcg_at_20_max value: 18.892085875404522 - type: nauc_ndcg_at_20_std value: 10.3241608901084 - type: nauc_ndcg_at_3_diff1 value: 8.796384949533579 - type: nauc_ndcg_at_3_max value: 16.515261419885274 - type: nauc_ndcg_at_3_std value: 4.081902976576701 - type: nauc_ndcg_at_5_diff1 value: 8.277259464605025 - type: nauc_ndcg_at_5_max value: 17.163053202909527 - type: nauc_ndcg_at_5_std value: 6.652669449704474 - type: nauc_precision_at_1000_diff1 value: -3.490556596304827 - type: nauc_precision_at_1000_max value: 31.0473259001597 - type: nauc_precision_at_1000_std value: 52.36921397692622 - type: nauc_precision_at_100_diff1 value: -6.420747959222489 - type: nauc_precision_at_100_max value: 20.555887056005936 - type: nauc_precision_at_100_std value: 36.119132870798495 - type: nauc_precision_at_10_diff1 value: -6.461726057290426 - type: nauc_precision_at_10_max value: 12.161081825341915 - type: nauc_precision_at_10_std value: 17.961318451839993 - type: nauc_precision_at_1_diff1 value: 75.35066482050009 - type: nauc_precision_at_1_max value: 53.573503488571475 - type: nauc_precision_at_1_std value: -6.542030594426993 - type: nauc_precision_at_20_diff1 value: -7.361461296416161 - type: nauc_precision_at_20_max value: 12.663621261696733 - type: nauc_precision_at_20_std value: 23.312476851670286 - type: nauc_precision_at_3_diff1 value: -3.299056912774522 - type: nauc_precision_at_3_max value: 9.85602375812038 - type: nauc_precision_at_3_std value: 6.4962782003155475 - type: nauc_precision_at_5_diff1 value: -5.3155827772027795 - type: nauc_precision_at_5_max value: 10.32907751171833 - type: nauc_precision_at_5_std value: 11.384098087196932 - type: nauc_recall_at_1000_diff1 value: -3.4905565963043332 - type: nauc_recall_at_1000_max value: 31.04732590016041 - type: nauc_recall_at_1000_std value: 52.36921397692641 - type: nauc_recall_at_100_diff1 value: -6.420747959222586 - type: nauc_recall_at_100_max value: 20.55588705600596 - type: nauc_recall_at_100_std value: 36.11913287079825 - type: nauc_recall_at_10_diff1 value: -6.461726057290347 - type: nauc_recall_at_10_max value: 12.161081825342022 - type: nauc_recall_at_10_std value: 17.96131845184002 - type: nauc_recall_at_1_diff1 value: 75.35066482050009 - type: nauc_recall_at_1_max value: 53.573503488571475 - type: nauc_recall_at_1_std value: -6.542030594426993 - type: nauc_recall_at_20_diff1 value: -7.361461296416054 - type: nauc_recall_at_20_max value: 12.66362126169679 - type: nauc_recall_at_20_std value: 23.312476851670382 - type: nauc_recall_at_3_diff1 value: -3.2990569127745886 - type: nauc_recall_at_3_max value: 9.856023758120296 - type: nauc_recall_at_3_std value: 6.496278200315444 - type: nauc_recall_at_5_diff1 value: -5.315582777202729 - type: nauc_recall_at_5_max value: 10.329077511718229 - type: nauc_recall_at_5_std value: 11.384098087196932 - type: ndcg_at_1 value: 87.643 - type: ndcg_at_10 value: 76.67399999999999 - type: ndcg_at_100 value: 79.462 - type: ndcg_at_1000 value: 80.43599999999999 - type: ndcg_at_20 value: 77.83 - type: ndcg_at_3 value: 72.256 - type: ndcg_at_5 value: 74.789 - type: precision_at_1 value: 87.643 - type: precision_at_10 value: 15.726999999999999 - type: precision_at_100 value: 1.791 - type: precision_at_1000 value: 0.192 - type: precision_at_20 value: 8.236 - type: precision_at_3 value: 45.919 - type: precision_at_5 value: 29.558 - type: recall_at_1 value: 43.822 - type: recall_at_10 value: 78.636 - type: recall_at_100 value: 89.527 - type: recall_at_1000 value: 95.868 - type: recall_at_20 value: 82.363 - type: recall_at_3 value: 68.879 - type: recall_at_5 value: 73.896 - task: type: Classification dataset: name: MTEB ImdbClassification type: mteb/imdb config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 96.6608 - type: ap value: 95.14657820401189 - type: ap_weighted value: 95.14657820401189 - type: f1 value: 96.66029695623422 - type: f1_weighted value: 96.66029695623423 - type: main_score value: 96.6608 - task: type: Retrieval dataset: name: MTEB MSMARCO type: mteb/msmarco config: default split: dev revision: c5a29a104738b98a9e76336939199e264163d4a0 metrics: - type: main_score value: 45.217 - type: map_at_1 value: 24.728 - type: map_at_10 value: 37.933 - type: map_at_100 value: 39.074999999999996 - type: map_at_1000 value: 39.115 - type: map_at_20 value: 38.663 - type: map_at_3 value: 33.904 - type: map_at_5 value: 36.217 - type: mrr_at_1 value: 25.44412607449857 - type: mrr_at_10 value: 38.52640196479737 - type: mrr_at_100 value: 39.60462889736067 - type: mrr_at_1000 value: 39.638904296248526 - type: mrr_at_20 value: 39.2234365827559 - type: mrr_at_3 value: 34.59646609360076 - type: mrr_at_5 value: 36.8801337153773 - type: nauc_map_at_1000_diff1 value: 37.645652178132174 - type: nauc_map_at_1000_max value: 9.953357023361367 - type: nauc_map_at_1000_std value: -20.800238036721503 - type: nauc_map_at_100_diff1 value: 37.643073495974555 - type: nauc_map_at_100_max value: 9.95921239641703 - type: nauc_map_at_100_std value: -20.76517765535793 - type: nauc_map_at_10_diff1 value: 37.44380763335014 - type: nauc_map_at_10_max value: 9.917273043055342 - type: nauc_map_at_10_std value: -21.467951225710898 - type: nauc_map_at_1_diff1 value: 41.02118887981969 - type: nauc_map_at_1_max value: 8.301113449711778 - type: nauc_map_at_1_std value: -19.436814224415027 - type: nauc_map_at_20_diff1 value: 37.58156586490493 - type: nauc_map_at_20_max value: 9.972927967610659 - type: nauc_map_at_20_std value: -20.951374218839387 - type: nauc_map_at_3_diff1 value: 37.67246795684178 - type: nauc_map_at_3_max value: 9.307031378909478 - type: nauc_map_at_3_std value: -21.77026217965021 - type: nauc_map_at_5_diff1 value: 37.39086482095963 - type: nauc_map_at_5_max value: 9.732739107368566 - type: nauc_map_at_5_std value: -21.8424296893692 - type: nauc_mrr_at_1000_diff1 value: 37.36666719603192 - type: nauc_mrr_at_1000_max value: 9.79040465289953 - type: nauc_mrr_at_1000_std value: -20.590147245965568 - type: nauc_mrr_at_100_diff1 value: 37.36560296629318 - type: nauc_mrr_at_100_max value: 9.798113710672162 - type: nauc_mrr_at_100_std value: -20.556791838504292 - type: nauc_mrr_at_10_diff1 value: 37.19257605840734 - type: nauc_mrr_at_10_max value: 9.749429811638063 - type: nauc_mrr_at_10_std value: -21.206407664327276 - type: nauc_mrr_at_1_diff1 value: 40.98478651095172 - type: nauc_mrr_at_1_max value: 8.173841799119707 - type: nauc_mrr_at_1_std value: -19.530027987868017 - type: nauc_mrr_at_20_diff1 value: 37.29973172861245 - type: nauc_mrr_at_20_max value: 9.815127660001345 - type: nauc_mrr_at_20_std value: -20.700860112175928 - type: nauc_mrr_at_3_diff1 value: 37.282848009425734 - type: nauc_mrr_at_3_max value: 9.172741713108193 - type: nauc_mrr_at_3_std value: -21.563630513502996 - type: nauc_mrr_at_5_diff1 value: 37.08609827303586 - type: nauc_mrr_at_5_max value: 9.604643424273284 - type: nauc_mrr_at_5_std value: -21.580110806494094 - type: nauc_ndcg_at_1000_diff1 value: 37.086587020218545 - type: nauc_ndcg_at_1000_max value: 10.696860688467472 - type: nauc_ndcg_at_1000_std value: -19.50989939916873 - type: nauc_ndcg_at_100_diff1 value: 37.03794531268128 - type: nauc_ndcg_at_100_max value: 10.940820719182339 - type: nauc_ndcg_at_100_std value: -18.28651832370893 - type: nauc_ndcg_at_10_diff1 value: 36.21062857920633 - type: nauc_ndcg_at_10_max value: 10.845172882571733 - type: nauc_ndcg_at_10_std value: -21.454301679510106 - type: nauc_ndcg_at_1_diff1 value: 40.98478651095172 - type: nauc_ndcg_at_1_max value: 8.173841799119707 - type: nauc_ndcg_at_1_std value: -19.530027987868017 - type: nauc_ndcg_at_20_diff1 value: 36.583262733100526 - type: nauc_ndcg_at_20_max value: 11.10492720898974 - type: nauc_ndcg_at_20_std value: -19.41753284137609 - type: nauc_ndcg_at_3_diff1 value: 36.57271365035382 - type: nauc_ndcg_at_3_max value: 9.56073433062999 - type: nauc_ndcg_at_3_std value: -22.324263670932915 - type: nauc_ndcg_at_5_diff1 value: 36.09419372820154 - type: nauc_ndcg_at_5_max value: 10.357384992631271 - type: nauc_ndcg_at_5_std value: -22.389578276324894 - type: nauc_precision_at_1000_diff1 value: -2.7435338714030597 - type: nauc_precision_at_1000_max value: 4.302274933383809 - type: nauc_precision_at_1000_std value: 8.456846348638948 - type: nauc_precision_at_100_diff1 value: 15.149466332615983 - type: nauc_precision_at_100_max value: 12.501013731673163 - type: nauc_precision_at_100_std value: 15.909667509021785 - type: nauc_precision_at_10_diff1 value: 28.699788688314214 - type: nauc_precision_at_10_max value: 13.024586051842347 - type: nauc_precision_at_10_std value: -19.197658937078703 - type: nauc_precision_at_1_diff1 value: 40.98478651095172 - type: nauc_precision_at_1_max value: 8.173841799119707 - type: nauc_precision_at_1_std value: -19.530027987868017 - type: nauc_precision_at_20_diff1 value: 26.519292942353395 - type: nauc_precision_at_20_max value: 14.389979272056438 - type: nauc_precision_at_20_std value: -7.030956994938155 - type: nauc_precision_at_3_diff1 value: 32.87913492278213 - type: nauc_precision_at_3_max value: 9.673660161387776 - type: nauc_precision_at_3_std value: -23.905612656592172 - type: nauc_precision_at_5_diff1 value: 30.903850113238597 - type: nauc_precision_at_5_max value: 11.482375434154898 - type: nauc_precision_at_5_std value: -23.828657095254247 - type: nauc_recall_at_1000_diff1 value: 35.80765639589219 - type: nauc_recall_at_1000_max value: 50.94532805969448 - type: nauc_recall_at_1000_std value: 66.79910877083275 - type: nauc_recall_at_100_diff1 value: 34.96182828311028 - type: nauc_recall_at_100_max value: 21.729699631790556 - type: nauc_recall_at_100_std value: 23.509439011686474 - type: nauc_recall_at_10_diff1 value: 31.88371369567137 - type: nauc_recall_at_10_max value: 14.425389702697073 - type: nauc_recall_at_10_std value: -20.95578001880924 - type: nauc_recall_at_1_diff1 value: 41.02118887981969 - type: nauc_recall_at_1_max value: 8.301113449711778 - type: nauc_recall_at_1_std value: -19.436814224415027 - type: nauc_recall_at_20_diff1 value: 32.42718780622455 - type: nauc_recall_at_20_max value: 16.90686126329399 - type: nauc_recall_at_20_std value: -9.38158227016737 - type: nauc_recall_at_3_diff1 value: 33.68966646043966 - type: nauc_recall_at_3_max value: 10.336277419708532 - type: nauc_recall_at_3_std value: -23.80165869168538 - type: nauc_recall_at_5_diff1 value: 32.26258807452426 - type: nauc_recall_at_5_max value: 12.303713005399935 - type: nauc_recall_at_5_std value: -23.87721891164968 - type: ndcg_at_1 value: 25.444 - type: ndcg_at_10 value: 45.217 - type: ndcg_at_100 value: 50.575 - type: ndcg_at_1000 value: 51.519999999999996 - type: ndcg_at_20 value: 47.786 - type: ndcg_at_3 value: 37.067 - type: ndcg_at_5 value: 41.184 - type: precision_at_1 value: 25.444 - type: precision_at_10 value: 7.07 - type: precision_at_100 value: 0.9730000000000001 - type: precision_at_1000 value: 0.106 - type: precision_at_20 value: 4.072 - type: precision_at_3 value: 15.754999999999999 - type: precision_at_5 value: 11.544 - type: recall_at_1 value: 24.728 - type: recall_at_10 value: 67.607 - type: recall_at_100 value: 92.094 - type: recall_at_1000 value: 99.165 - type: recall_at_20 value: 77.529 - type: recall_at_3 value: 45.535 - type: recall_at_5 value: 55.394 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: mteb/mtop_domain config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 99.01276789785682 - type: f1 value: 98.9288649250924 - type: f1_weighted value: 99.01406884928141 - type: main_score value: 99.01276789785682 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: mteb/mtop_intent config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 92.78385772913816 - type: f1 value: 79.78115704297824 - type: f1_weighted value: 93.90424147486428 - type: main_score value: 92.78385772913816 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: mteb/amazon_massive_intent config: en split: test revision: 4672e20407010da34463acc759c162ca9734bca6 metrics: - type: accuracy value: 85.83053127101546 - type: f1 value: 82.72036139888232 - type: f1_weighted value: 85.81759723866098 - type: main_score value: 85.83053127101546 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: mteb/amazon_massive_scenario config: en split: test revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 metrics: - type: accuracy value: 90.19838601210489 - type: f1 value: 89.55260197964978 - type: f1_weighted value: 90.11422965504119 - type: main_score value: 90.19838601210489 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P type: mteb/medrxiv-clustering-p2p config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: main_score value: 46.866746897607094 - type: v_measure value: 46.866746897607094 - type: v_measure_std value: 1.0966477896919726 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S type: mteb/medrxiv-clustering-s2s config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: main_score value: 44.6538827415503 - type: v_measure value: 44.6538827415503 - type: v_measure_std value: 1.1649569936599116 - task: type: Reranking dataset: name: MTEB MindSmallReranking type: mteb/mind_small config: default split: test revision: 59042f120c80e8afa9cdbb224f67076cec0fc9a7 metrics: - type: main_score value: 33.05449204940555 - type: map value: 33.05449204940555 - type: mrr value: 34.32562058439585 - type: nAUC_map_diff1 value: 11.465656013162807 - type: nAUC_map_max value: -20.400088169502308 - type: nAUC_map_std value: -2.638964886362445 - type: nAUC_mrr_diff1 value: 10.644290702481207 - type: nAUC_mrr_max value: -15.304687384645769 - type: nAUC_mrr_std value: -0.519919931348978 - task: type: Retrieval dataset: name: MTEB NFCorpus type: mteb/nfcorpus config: default split: test revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 metrics: - type: main_score value: 41.998000000000005 - type: map_at_1 value: 6.907000000000001 - type: map_at_10 value: 16.397000000000002 - type: map_at_100 value: 21.69 - type: map_at_1000 value: 23.652 - type: map_at_20 value: 18.629 - type: map_at_3 value: 11.969000000000001 - type: map_at_5 value: 13.894 - type: mrr_at_1 value: 53.25077399380805 - type: mrr_at_10 value: 61.8561108653988 - type: mrr_at_100 value: 62.42447851935404 - type: mrr_at_1000 value: 62.459626424428095 - type: mrr_at_20 value: 62.287236389990696 - type: mrr_at_3 value: 60.42311661506711 - type: mrr_at_5 value: 61.36738906088753 - type: nauc_map_at_1000_diff1 value: 17.159461939643844 - type: nauc_map_at_1000_max value: 32.42764938789903 - type: nauc_map_at_1000_std value: 11.039427848422093 - type: nauc_map_at_100_diff1 value: 19.089532984187503 - type: nauc_map_at_100_max value: 31.96721085058713 - type: nauc_map_at_100_std value: 6.947468655726444 - type: nauc_map_at_10_diff1 value: 25.77255342629802 - type: nauc_map_at_10_max value: 26.163590320961543 - type: nauc_map_at_10_std value: -5.2588093720998375 - type: nauc_map_at_1_diff1 value: 46.31602607957798 - type: nauc_map_at_1_max value: 11.807757660801942 - type: nauc_map_at_1_std value: -13.984889089354317 - type: nauc_map_at_20_diff1 value: 22.308161130465365 - type: nauc_map_at_20_max value: 29.070587307827722 - type: nauc_map_at_20_std value: -1.0103056620851558 - type: nauc_map_at_3_diff1 value: 33.580827849617506 - type: nauc_map_at_3_max value: 17.661630885799042 - type: nauc_map_at_3_std value: -11.463282544041888 - type: nauc_map_at_5_diff1 value: 30.32603342696912 - type: nauc_map_at_5_max value: 20.938905485667245 - type: nauc_map_at_5_std value: -10.537086968155755 - type: nauc_mrr_at_1000_diff1 value: 24.45065397805829 - type: nauc_mrr_at_1000_max value: 48.17519860927417 - type: nauc_mrr_at_1000_std value: 30.350767549118903 - type: nauc_mrr_at_100_diff1 value: 24.444061606534486 - type: nauc_mrr_at_100_max value: 48.1922894212229 - type: nauc_mrr_at_100_std value: 30.379257816584094 - type: nauc_mrr_at_10_diff1 value: 24.25598717198779 - type: nauc_mrr_at_10_max value: 48.10437607774264 - type: nauc_mrr_at_10_std value: 30.090202482685996 - type: nauc_mrr_at_1_diff1 value: 26.907595285201264 - type: nauc_mrr_at_1_max value: 44.006974050369955 - type: nauc_mrr_at_1_std value: 26.921001962861062 - type: nauc_mrr_at_20_diff1 value: 24.462771570553738 - type: nauc_mrr_at_20_max value: 48.264688196799746 - type: nauc_mrr_at_20_std value: 30.498095141265914 - type: nauc_mrr_at_3_diff1 value: 24.76829388237229 - type: nauc_mrr_at_3_max value: 48.213758704739924 - type: nauc_mrr_at_3_std value: 30.1502853918892 - type: nauc_mrr_at_5_diff1 value: 24.476494932330247 - type: nauc_mrr_at_5_max value: 47.977250552198804 - type: nauc_mrr_at_5_std value: 29.65248143104835 - type: nauc_ndcg_at_1000_diff1 value: 13.055818920426246 - type: nauc_ndcg_at_1000_max value: 46.00986444256306 - type: nauc_ndcg_at_1000_std value: 29.622662054922085 - type: nauc_ndcg_at_100_diff1 value: 12.260551238228816 - type: nauc_ndcg_at_100_max value: 39.89783048267698 - type: nauc_ndcg_at_100_std value: 23.806961617956613 - type: nauc_ndcg_at_10_diff1 value: 11.002915931619567 - type: nauc_ndcg_at_10_max value: 39.79323759244374 - type: nauc_ndcg_at_10_std value: 23.053072152911046 - type: nauc_ndcg_at_1_diff1 value: 27.560910719974434 - type: nauc_ndcg_at_1_max value: 41.21084046258119 - type: nauc_ndcg_at_1_std value: 26.112891742912893 - type: nauc_ndcg_at_20_diff1 value: 10.085854089024496 - type: nauc_ndcg_at_20_max value: 37.88629173784684 - type: nauc_ndcg_at_20_std value: 23.17664322248358 - type: nauc_ndcg_at_3_diff1 value: 16.58969583405987 - type: nauc_ndcg_at_3_max value: 41.282222954101435 - type: nauc_ndcg_at_3_std value: 21.080670648392747 - type: nauc_ndcg_at_5_diff1 value: 13.893127947909885 - type: nauc_ndcg_at_5_max value: 40.21188015992804 - type: nauc_ndcg_at_5_std value: 21.417443978842652 - type: nauc_precision_at_1000_diff1 value: -17.227504530334564 - type: nauc_precision_at_1000_max value: 3.798554468439066 - type: nauc_precision_at_1000_std value: 35.73617809452683 - type: nauc_precision_at_100_diff1 value: -17.63388230218776 - type: nauc_precision_at_100_max value: 15.079399882407094 - type: nauc_precision_at_100_std value: 41.83698491321226 - type: nauc_precision_at_10_diff1 value: -11.850925959645156 - type: nauc_precision_at_10_max value: 35.93283968364352 - type: nauc_precision_at_10_std value: 34.391271855921296 - type: nauc_precision_at_1_diff1 value: 27.730860778824823 - type: nauc_precision_at_1_max value: 43.97462471516834 - type: nauc_precision_at_1_std value: 27.491068270978896 - type: nauc_precision_at_20_diff1 value: -14.281328840943347 - type: nauc_precision_at_20_max value: 29.469099781759006 - type: nauc_precision_at_20_std value: 38.54703022340941 - type: nauc_precision_at_3_diff1 value: 3.486986910413196 - type: nauc_precision_at_3_max value: 41.21107780473768 - type: nauc_precision_at_3_std value: 24.057479124531216 - type: nauc_precision_at_5_diff1 value: -3.0623787872866233 - type: nauc_precision_at_5_max value: 37.49266386466702 - type: nauc_precision_at_5_std value: 26.894454268004935 - type: nauc_recall_at_1000_diff1 value: -2.446891864334283 - type: nauc_recall_at_1000_max value: 23.867293584643377 - type: nauc_recall_at_1000_std value: 16.34707128224595 - type: nauc_recall_at_100_diff1 value: 4.891133690841179 - type: nauc_recall_at_100_max value: 24.56727964996522 - type: nauc_recall_at_100_std value: 9.847212953200797 - type: nauc_recall_at_10_diff1 value: 19.211912363585288 - type: nauc_recall_at_10_max value: 24.825344777920737 - type: nauc_recall_at_10_std value: -5.447989195041898 - type: nauc_recall_at_1_diff1 value: 46.31602607957798 - type: nauc_recall_at_1_max value: 11.807757660801942 - type: nauc_recall_at_1_std value: -13.984889089354317 - type: nauc_recall_at_20_diff1 value: 12.233372054304805 - type: nauc_recall_at_20_max value: 22.284108685207148 - type: nauc_recall_at_20_std value: -4.317138366746209 - type: nauc_recall_at_3_diff1 value: 28.394631527225815 - type: nauc_recall_at_3_max value: 15.593864852625462 - type: nauc_recall_at_3_std value: -12.383531804314593 - type: nauc_recall_at_5_diff1 value: 24.457441304950343 - type: nauc_recall_at_5_max value: 19.080049396281623 - type: nauc_recall_at_5_std value: -11.879747703626627 - type: ndcg_at_1 value: 51.548 - type: ndcg_at_10 value: 41.998000000000005 - type: ndcg_at_100 value: 39.626 - type: ndcg_at_1000 value: 48.707 - type: ndcg_at_20 value: 40.181 - type: ndcg_at_3 value: 48.06 - type: ndcg_at_5 value: 45.829 - type: precision_at_1 value: 52.941 - type: precision_at_10 value: 31.330999999999996 - type: precision_at_100 value: 10.421 - type: precision_at_1000 value: 2.428 - type: precision_at_20 value: 24.118000000000002 - type: precision_at_3 value: 45.408 - type: precision_at_5 value: 39.938 - type: recall_at_1 value: 6.907000000000001 - type: recall_at_10 value: 20.51 - type: recall_at_100 value: 40.857 - type: recall_at_1000 value: 73.616 - type: recall_at_20 value: 26.52 - type: recall_at_3 value: 13.267999999999999 - type: recall_at_5 value: 16.141 - task: type: Retrieval dataset: name: MTEB NQ type: mteb/nq config: default split: test revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 metrics: - type: main_score value: 71.8 - type: map_at_1 value: 47.629 - type: map_at_10 value: 64.846 - type: map_at_100 value: 65.40899999999999 - type: map_at_1000 value: 65.416 - type: map_at_20 value: 65.239 - type: map_at_3 value: 61.185 - type: map_at_5 value: 63.583 - type: mrr_at_1 value: 53.15758980301275 - type: mrr_at_10 value: 67.12880961577366 - type: mrr_at_100 value: 67.44006405426018 - type: mrr_at_1000 value: 67.44519150402294 - type: mrr_at_20 value: 67.34317135515428 - type: mrr_at_3 value: 64.5905755117805 - type: mrr_at_5 value: 66.24613750482806 - type: nauc_map_at_1000_diff1 value: 45.73812106517133 - type: nauc_map_at_1000_max value: 35.21262031755756 - type: nauc_map_at_1000_std value: -5.549443574026027 - type: nauc_map_at_100_diff1 value: 45.74254652176879 - type: nauc_map_at_100_max value: 35.22349167515518 - type: nauc_map_at_100_std value: -5.53697496044773 - type: nauc_map_at_10_diff1 value: 45.62837128377087 - type: nauc_map_at_10_max value: 35.3261562342222 - type: nauc_map_at_10_std value: -5.761924414031163 - type: nauc_map_at_1_diff1 value: 48.69187848570499 - type: nauc_map_at_1_max value: 28.687996096473476 - type: nauc_map_at_1_std value: -7.518605958272523 - type: nauc_map_at_20_diff1 value: 45.702303442220035 - type: nauc_map_at_20_max value: 35.30719944705456 - type: nauc_map_at_20_std value: -5.59505654742681 - type: nauc_map_at_3_diff1 value: 45.376813726832474 - type: nauc_map_at_3_max value: 34.68452149643597 - type: nauc_map_at_3_std value: -7.329014950379634 - type: nauc_map_at_5_diff1 value: 45.29528861989316 - type: nauc_map_at_5_max value: 35.35741440869229 - type: nauc_map_at_5_std value: -6.028788612259288 - type: nauc_mrr_at_1000_diff1 value: 46.11808147912517 - type: nauc_mrr_at_1000_max value: 35.59241850411947 - type: nauc_mrr_at_1000_std value: -3.4072428526109317 - type: nauc_mrr_at_100_diff1 value: 46.121345545514046 - type: nauc_mrr_at_100_max value: 35.60147795073431 - type: nauc_mrr_at_100_std value: -3.3965322447588826 - type: nauc_mrr_at_10_diff1 value: 46.0920068210502 - type: nauc_mrr_at_10_max value: 35.79649987854354 - type: nauc_mrr_at_10_std value: -3.339624589368137 - type: nauc_mrr_at_1_diff1 value: 49.101364605656194 - type: nauc_mrr_at_1_max value: 31.500796071482146 - type: nauc_mrr_at_1_std value: -4.183818500718156 - type: nauc_mrr_at_20_diff1 value: 46.088076630465594 - type: nauc_mrr_at_20_max value: 35.682131663053205 - type: nauc_mrr_at_20_std value: -3.35939023178519 - type: nauc_mrr_at_3_diff1 value: 45.47570812708642 - type: nauc_mrr_at_3_max value: 35.741892517632984 - type: nauc_mrr_at_3_std value: -4.135335963822013 - type: nauc_mrr_at_5_diff1 value: 45.78903474184014 - type: nauc_mrr_at_5_max value: 35.91273593700205 - type: nauc_mrr_at_5_std value: -3.467873421286869 - type: nauc_ndcg_at_1000_diff1 value: 45.5056583000012 - type: nauc_ndcg_at_1000_max value: 36.34328379251593 - type: nauc_ndcg_at_1000_std value: -4.0759698229323345 - type: nauc_ndcg_at_100_diff1 value: 45.61918946477166 - type: nauc_ndcg_at_100_max value: 36.675460335836235 - type: nauc_ndcg_at_100_std value: -3.6795334726235986 - type: nauc_ndcg_at_10_diff1 value: 45.15343994274541 - type: nauc_ndcg_at_10_max value: 37.48139242964657 - type: nauc_ndcg_at_10_std value: -4.287039084554882 - type: nauc_ndcg_at_1_diff1 value: 49.101364605656194 - type: nauc_ndcg_at_1_max value: 31.500796071482146 - type: nauc_ndcg_at_1_std value: -4.183818500718156 - type: nauc_ndcg_at_20_diff1 value: 45.310026313402375 - type: nauc_ndcg_at_20_max value: 37.32177497902133 - type: nauc_ndcg_at_20_std value: -3.8214360391282587 - type: nauc_ndcg_at_3_diff1 value: 44.27064370528994 - type: nauc_ndcg_at_3_max value: 36.380294033571396 - type: nauc_ndcg_at_3_std value: -6.844263370898355 - type: nauc_ndcg_at_5_diff1 value: 44.29933499225583 - type: nauc_ndcg_at_5_max value: 37.46477041822136 - type: nauc_ndcg_at_5_std value: -4.866548530467956 - type: nauc_precision_at_1000_diff1 value: -14.666553359142306 - type: nauc_precision_at_1000_max value: -0.5599759853201481 - type: nauc_precision_at_1000_std value: 16.8370925526591 - type: nauc_precision_at_100_diff1 value: -11.816251306246278 - type: nauc_precision_at_100_max value: 2.969819268208207 - type: nauc_precision_at_100_std value: 18.59422946634747 - type: nauc_precision_at_10_diff1 value: 1.2050200086029401 - type: nauc_precision_at_10_max value: 17.59930352911209 - type: nauc_precision_at_10_std value: 13.714495717588985 - type: nauc_precision_at_1_diff1 value: 49.101364605656194 - type: nauc_precision_at_1_max value: 31.500796071482146 - type: nauc_precision_at_1_std value: -4.183818500718156 - type: nauc_precision_at_20_diff1 value: -5.263476664822757 - type: nauc_precision_at_20_max value: 11.42004823600046 - type: nauc_precision_at_20_std value: 16.510514518664994 - type: nauc_precision_at_3_diff1 value: 20.116460379305828 - type: nauc_precision_at_3_max value: 31.32235038301311 - type: nauc_precision_at_3_std value: 2.7486717133871923 - type: nauc_precision_at_5_diff1 value: 9.57451645335723 - type: nauc_precision_at_5_max value: 25.28449126580587 - type: nauc_precision_at_5_std value: 9.955736162466767 - type: nauc_recall_at_1000_diff1 value: -21.632253065978794 - type: nauc_recall_at_1000_max value: 70.14409090958776 - type: nauc_recall_at_1000_std value: 65.61658090892989 - type: nauc_recall_at_100_diff1 value: 51.83161124806711 - type: nauc_recall_at_100_max value: 77.49921361841523 - type: nauc_recall_at_100_std value: 48.352508746719444 - type: nauc_recall_at_10_diff1 value: 39.86695231362791 - type: nauc_recall_at_10_max value: 50.12029094799474 - type: nauc_recall_at_10_std value: 0.1650940628131058 - type: nauc_recall_at_1_diff1 value: 48.69187848570499 - type: nauc_recall_at_1_max value: 28.687996096473476 - type: nauc_recall_at_1_std value: -7.518605958272523 - type: nauc_recall_at_20_diff1 value: 39.14155398061627 - type: nauc_recall_at_20_max value: 56.78559423716229 - type: nauc_recall_at_20_std value: 7.9728224572344075 - type: nauc_recall_at_3_diff1 value: 38.69589523432158 - type: nauc_recall_at_3_max value: 39.53271258375579 - type: nauc_recall_at_3_std value: -8.646925065787512 - type: nauc_recall_at_5_diff1 value: 37.45922652959002 - type: nauc_recall_at_5_max value: 44.4911958995867 - type: nauc_recall_at_5_std value: -3.5659842556375594 - type: ndcg_at_1 value: 53.15800000000001 - type: ndcg_at_10 value: 71.8 - type: ndcg_at_100 value: 73.85199999999999 - type: ndcg_at_1000 value: 74.017 - type: ndcg_at_20 value: 72.933 - type: ndcg_at_3 value: 65.479 - type: ndcg_at_5 value: 69.182 - type: precision_at_1 value: 53.15800000000001 - type: precision_at_10 value: 10.805 - type: precision_at_100 value: 1.2 - type: precision_at_1000 value: 0.122 - type: precision_at_20 value: 5.694 - type: precision_at_3 value: 28.939999999999998 - type: precision_at_5 value: 19.641000000000002 - type: recall_at_1 value: 47.629 - type: recall_at_10 value: 90.204 - type: recall_at_100 value: 98.66 - type: recall_at_1000 value: 99.874 - type: recall_at_20 value: 94.24 - type: recall_at_3 value: 74.394 - type: recall_at_5 value: 82.711 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval type: mteb/quora config: default split: test revision: e4e08e0b7dbe3c8700f0daef558ff32256715259 metrics: - type: main_score value: 90.025 - type: map_at_1 value: 72.222 - type: map_at_10 value: 86.58500000000001 - type: map_at_100 value: 87.176 - type: map_at_1000 value: 87.188 - type: map_at_20 value: 86.97399999999999 - type: map_at_3 value: 83.736 - type: map_at_5 value: 85.554 - type: mrr_at_1 value: 83.04 - type: mrr_at_10 value: 89.05599603174585 - type: mrr_at_100 value: 89.12398891419457 - type: mrr_at_1000 value: 89.12434072241001 - type: mrr_at_20 value: 89.10416280692111 - type: mrr_at_3 value: 88.23833333333312 - type: mrr_at_5 value: 88.82233333333308 - type: nauc_map_at_1000_diff1 value: 78.29348113313218 - type: nauc_map_at_1000_max value: 32.31386754277228 - type: nauc_map_at_1000_std value: -50.47543661484052 - type: nauc_map_at_100_diff1 value: 78.29618548618575 - type: nauc_map_at_100_max value: 32.301475680947846 - type: nauc_map_at_100_std value: -50.50303428814228 - type: nauc_map_at_10_diff1 value: 78.47383776440803 - type: nauc_map_at_10_max value: 31.839339990133563 - type: nauc_map_at_10_std value: -52.832713555976 - type: nauc_map_at_1_diff1 value: 82.46330147467418 - type: nauc_map_at_1_max value: 23.497664918373538 - type: nauc_map_at_1_std value: -43.824657665520704 - type: nauc_map_at_20_diff1 value: 78.34772176474422 - type: nauc_map_at_20_max value: 32.16495182893947 - type: nauc_map_at_20_std value: -51.503292726558605 - type: nauc_map_at_3_diff1 value: 79.07823813069432 - type: nauc_map_at_3_max value: 29.395911687513976 - type: nauc_map_at_3_std value: -54.16377546873304 - type: nauc_map_at_5_diff1 value: 78.73076619520454 - type: nauc_map_at_5_max value: 30.700453118585237 - type: nauc_map_at_5_std value: -54.130514177664054 - type: nauc_mrr_at_1000_diff1 value: 79.04736184471865 - type: nauc_mrr_at_1000_max value: 34.43004593837643 - type: nauc_mrr_at_1000_std value: -46.137269068195316 - type: nauc_mrr_at_100_diff1 value: 79.04698704288086 - type: nauc_mrr_at_100_max value: 34.4305553741175 - type: nauc_mrr_at_100_std value: -46.13786687786434 - type: nauc_mrr_at_10_diff1 value: 79.04490677485934 - type: nauc_mrr_at_10_max value: 34.38170181522227 - type: nauc_mrr_at_10_std value: -46.38129875681807 - type: nauc_mrr_at_1_diff1 value: 79.87159215719124 - type: nauc_mrr_at_1_max value: 34.05882339253136 - type: nauc_mrr_at_1_std value: -43.56093395137571 - type: nauc_mrr_at_20_diff1 value: 79.04384174535653 - type: nauc_mrr_at_20_max value: 34.442136494675005 - type: nauc_mrr_at_20_std value: -46.205458519638654 - type: nauc_mrr_at_3_diff1 value: 78.78154519155487 - type: nauc_mrr_at_3_max value: 34.74995000500305 - type: nauc_mrr_at_3_std value: -46.36264203155416 - type: nauc_mrr_at_5_diff1 value: 79.02631187177 - type: nauc_mrr_at_5_max value: 34.538698249632205 - type: nauc_mrr_at_5_std value: -46.468881576157465 - type: nauc_ndcg_at_1000_diff1 value: 78.25260097014645 - type: nauc_ndcg_at_1000_max value: 33.68584498704271 - type: nauc_ndcg_at_1000_std value: -48.44716779494868 - type: nauc_ndcg_at_100_diff1 value: 78.25115412256716 - type: nauc_ndcg_at_100_max value: 33.63652663447088 - type: nauc_ndcg_at_100_std value: -48.489243909024715 - type: nauc_ndcg_at_10_diff1 value: 78.23875101557334 - type: nauc_ndcg_at_10_max value: 32.65217430043823 - type: nauc_ndcg_at_10_std value: -52.57770468845309 - type: nauc_ndcg_at_1_diff1 value: 79.87159215719124 - type: nauc_ndcg_at_1_max value: 34.05882339253136 - type: nauc_ndcg_at_1_std value: -43.56093395137571 - type: nauc_ndcg_at_20_diff1 value: 78.23478552311765 - type: nauc_ndcg_at_20_max value: 33.30691737901109 - type: nauc_ndcg_at_20_std value: -50.78412614854527 - type: nauc_ndcg_at_3_diff1 value: 77.66134485470224 - type: nauc_ndcg_at_3_max value: 32.19504710373125 - type: nauc_ndcg_at_3_std value: -52.01636728550155 - type: nauc_ndcg_at_5_diff1 value: 78.04734137324255 - type: nauc_ndcg_at_5_max value: 31.94593625591248 - type: nauc_ndcg_at_5_std value: -53.02169800690546 - type: nauc_precision_at_1000_diff1 value: -45.771948123542636 - type: nauc_precision_at_1000_max value: -5.182406190477681 - type: nauc_precision_at_1000_std value: 41.14460438707817 - type: nauc_precision_at_100_diff1 value: -45.64767154261461 - type: nauc_precision_at_100_max value: -5.046308286851713 - type: nauc_precision_at_100_std value: 41.07186716587844 - type: nauc_precision_at_10_diff1 value: -42.26779562305825 - type: nauc_precision_at_10_max value: -1.1264852893323076 - type: nauc_precision_at_10_std value: 27.62275729822392 - type: nauc_precision_at_1_diff1 value: 79.87159215719124 - type: nauc_precision_at_1_max value: 34.05882339253136 - type: nauc_precision_at_1_std value: -43.56093395137571 - type: nauc_precision_at_20_diff1 value: -44.24293221128388 - type: nauc_precision_at_20_max value: -3.1345628837361867 - type: nauc_precision_at_20_std value: 34.23625492740366 - type: nauc_precision_at_3_diff1 value: -24.925251389823348 - type: nauc_precision_at_3_max value: 6.622188833369412 - type: nauc_precision_at_3_std value: 6.424741786858512 - type: nauc_precision_at_5_diff1 value: -36.1407949990387 - type: nauc_precision_at_5_max value: 1.7533948968374462 - type: nauc_precision_at_5_std value: 17.914083278982634 - type: nauc_recall_at_1000_diff1 value: 52.26815466244496 - type: nauc_recall_at_1000_max value: 69.73611104239443 - type: nauc_recall_at_1000_std value: 73.18969965863008 - type: nauc_recall_at_100_diff1 value: 70.80557513785271 - type: nauc_recall_at_100_max value: 33.333440086544556 - type: nauc_recall_at_100_std value: -38.75992366905504 - type: nauc_recall_at_10_diff1 value: 74.45948457438163 - type: nauc_recall_at_10_max value: 26.64948512428989 - type: nauc_recall_at_10_std value: -82.90334292052363 - type: nauc_recall_at_1_diff1 value: 82.46330147467418 - type: nauc_recall_at_1_max value: 23.497664918373538 - type: nauc_recall_at_1_std value: -43.824657665520704 - type: nauc_recall_at_20_diff1 value: 73.80140280887753 - type: nauc_recall_at_20_max value: 30.361616426734965 - type: nauc_recall_at_20_std value: -81.1418804447414 - type: nauc_recall_at_3_diff1 value: 75.19854736087834 - type: nauc_recall_at_3_max value: 26.12298005045584 - type: nauc_recall_at_3_std value: -63.42583714745169 - type: nauc_recall_at_5_diff1 value: 74.16423451950358 - type: nauc_recall_at_5_max value: 25.552390331018987 - type: nauc_recall_at_5_std value: -71.15891947773912 - type: ndcg_at_1 value: 83.04 - type: ndcg_at_10 value: 90.025 - type: ndcg_at_100 value: 91.006 - type: ndcg_at_1000 value: 91.061 - type: ndcg_at_20 value: 90.556 - type: ndcg_at_3 value: 87.493 - type: ndcg_at_5 value: 88.955 - type: precision_at_1 value: 83.04 - type: precision_at_10 value: 13.667000000000002 - type: precision_at_100 value: 1.542 - type: precision_at_1000 value: 0.157 - type: precision_at_20 value: 7.221 - type: precision_at_3 value: 38.433 - type: precision_at_5 value: 25.228 - type: recall_at_1 value: 72.222 - type: recall_at_10 value: 96.604 - type: recall_at_100 value: 99.786 - type: recall_at_1000 value: 99.996 - type: recall_at_20 value: 98.253 - type: recall_at_3 value: 89.276 - type: recall_at_5 value: 93.46 - task: type: Clustering dataset: name: MTEB RedditClustering type: mteb/reddit-clustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: main_score value: 72.86492101891123 - type: v_measure value: 72.86492101891123 - type: v_measure_std value: 2.778711445144635 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P type: mteb/reddit-clustering-p2p config: default split: test revision: 385e3cb46b4cfa89021f56c4380204149d0efe33 metrics: - type: main_score value: 75.27316726548479 - type: v_measure value: 75.27316726548479 - type: v_measure_std value: 8.87871936725338 - task: type: Retrieval dataset: name: MTEB SCIDOCS type: mteb/scidocs config: default split: test revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88 metrics: - type: main_score value: 26.638 - type: map_at_1 value: 6.128 - type: map_at_10 value: 16.472 - type: map_at_100 value: 19.522000000000002 - type: map_at_1000 value: 19.898 - type: map_at_20 value: 18.098 - type: map_at_3 value: 11.283 - type: map_at_5 value: 13.771 - type: mrr_at_1 value: 30.2 - type: mrr_at_10 value: 42.621150793650735 - type: mrr_at_100 value: 43.740858712021954 - type: mrr_at_1000 value: 43.762699500220904 - type: mrr_at_20 value: 43.383639927753634 - type: mrr_at_3 value: 38.83333333333331 - type: mrr_at_5 value: 41.14833333333326 - type: nauc_map_at_1000_diff1 value: 13.13534664124808 - type: nauc_map_at_1000_max value: 29.346654566149795 - type: nauc_map_at_1000_std value: 18.08121186982413 - type: nauc_map_at_100_diff1 value: 13.098072728041538 - type: nauc_map_at_100_max value: 29.299084480697523 - type: nauc_map_at_100_std value: 17.961620202918464 - type: nauc_map_at_10_diff1 value: 14.001743720394682 - type: nauc_map_at_10_max value: 28.04128290996403 - type: nauc_map_at_10_std value: 13.744481555974716 - type: nauc_map_at_1_diff1 value: 22.1926640424872 - type: nauc_map_at_1_max value: 21.32609279586034 - type: nauc_map_at_1_std value: 6.566596302915438 - type: nauc_map_at_20_diff1 value: 13.57313142419664 - type: nauc_map_at_20_max value: 28.93840146319476 - type: nauc_map_at_20_std value: 16.50869367365676 - type: nauc_map_at_3_diff1 value: 17.707700541948462 - type: nauc_map_at_3_max value: 26.058174051376238 - type: nauc_map_at_3_std value: 9.943924560735267 - type: nauc_map_at_5_diff1 value: 17.11844492157723 - type: nauc_map_at_5_max value: 27.865247403049388 - type: nauc_map_at_5_std value: 11.372588172121546 - type: nauc_mrr_at_1000_diff1 value: 21.11248719936198 - type: nauc_mrr_at_1000_max value: 26.734172102201466 - type: nauc_mrr_at_1000_std value: 11.766121765437228 - type: nauc_mrr_at_100_diff1 value: 21.107109982277702 - type: nauc_mrr_at_100_max value: 26.741616065723267 - type: nauc_mrr_at_100_std value: 11.789802686224208 - type: nauc_mrr_at_10_diff1 value: 20.74108639793207 - type: nauc_mrr_at_10_max value: 26.920838463358333 - type: nauc_mrr_at_10_std value: 11.849217361926522 - type: nauc_mrr_at_1_diff1 value: 22.177437860573356 - type: nauc_mrr_at_1_max value: 21.88074521417754 - type: nauc_mrr_at_1_std value: 6.776011900101789 - type: nauc_mrr_at_20_diff1 value: 21.126633710175994 - type: nauc_mrr_at_20_max value: 26.860736480370974 - type: nauc_mrr_at_20_std value: 11.815411633726338 - type: nauc_mrr_at_3_diff1 value: 21.689245200066466 - type: nauc_mrr_at_3_max value: 26.187305092831625 - type: nauc_mrr_at_3_std value: 10.895380313134332 - type: nauc_mrr_at_5_diff1 value: 20.898811082479778 - type: nauc_mrr_at_5_max value: 26.939217247104036 - type: nauc_mrr_at_5_std value: 11.77832949822472 - type: nauc_ndcg_at_1000_diff1 value: 13.251184947898546 - type: nauc_ndcg_at_1000_max value: 30.879594164526146 - type: nauc_ndcg_at_1000_std value: 23.125206047366625 - type: nauc_ndcg_at_100_diff1 value: 12.549100649053676 - type: nauc_ndcg_at_100_max value: 30.634680845419123 - type: nauc_ndcg_at_100_std value: 23.296226055422984 - type: nauc_ndcg_at_10_diff1 value: 14.475144549294322 - type: nauc_ndcg_at_10_max value: 29.450349815417336 - type: nauc_ndcg_at_10_std value: 15.94068314781612 - type: nauc_ndcg_at_1_diff1 value: 22.177437860573356 - type: nauc_ndcg_at_1_max value: 21.88074521417754 - type: nauc_ndcg_at_1_std value: 6.776011900101789 - type: nauc_ndcg_at_20_diff1 value: 14.173669585802266 - type: nauc_ndcg_at_20_max value: 30.475890854725 - type: nauc_ndcg_at_20_std value: 19.863898148221704 - type: nauc_ndcg_at_3_diff1 value: 18.93971261196868 - type: nauc_ndcg_at_3_max value: 27.3707298720736 - type: nauc_ndcg_at_3_std value: 11.439810510051224 - type: nauc_ndcg_at_5_diff1 value: 17.89535958094687 - type: nauc_ndcg_at_5_max value: 29.272740466638425 - type: nauc_ndcg_at_5_std value: 13.402467626635909 - type: nauc_precision_at_1000_diff1 value: -3.811547048784123 - type: nauc_precision_at_1000_max value: 22.55165337197117 - type: nauc_precision_at_1000_std value: 35.98524999650108 - type: nauc_precision_at_100_diff1 value: 0.6474234774922896 - type: nauc_precision_at_100_max value: 25.06920726527032 - type: nauc_precision_at_100_std value: 32.31439698982313 - type: nauc_precision_at_10_diff1 value: 7.943127218139508 - type: nauc_precision_at_10_max value: 28.571937636787197 - type: nauc_precision_at_10_std value: 18.8472620918488 - type: nauc_precision_at_1_diff1 value: 22.177437860573356 - type: nauc_precision_at_1_max value: 21.88074521417754 - type: nauc_precision_at_1_std value: 6.776011900101789 - type: nauc_precision_at_20_diff1 value: 6.981574259607366 - type: nauc_precision_at_20_max value: 28.986094397038727 - type: nauc_precision_at_20_std value: 25.83129974001146 - type: nauc_precision_at_3_diff1 value: 17.197490724039355 - type: nauc_precision_at_3_max value: 29.17569320583099 - type: nauc_precision_at_3_std value: 13.430554945991846 - type: nauc_precision_at_5_diff1 value: 14.952364330739362 - type: nauc_precision_at_5_max value: 31.053243354846977 - type: nauc_precision_at_5_std value: 15.856312752807822 - type: nauc_recall_at_1000_diff1 value: -4.8224253128926975 - type: nauc_recall_at_1000_max value: 21.3989024429911 - type: nauc_recall_at_1000_std value: 39.152234275603604 - type: nauc_recall_at_100_diff1 value: 0.11936808422867201 - type: nauc_recall_at_100_max value: 24.261739241957823 - type: nauc_recall_at_100_std value: 32.62984573938928 - type: nauc_recall_at_10_diff1 value: 7.851256165018388 - type: nauc_recall_at_10_max value: 27.936406600938746 - type: nauc_recall_at_10_std value: 18.683634320636113 - type: nauc_recall_at_1_diff1 value: 22.1926640424872 - type: nauc_recall_at_1_max value: 21.32609279586034 - type: nauc_recall_at_1_std value: 6.566596302915438 - type: nauc_recall_at_20_diff1 value: 6.8107211705182165 - type: nauc_recall_at_20_max value: 28.286284094687787 - type: nauc_recall_at_20_std value: 25.932013268120862 - type: nauc_recall_at_3_diff1 value: 17.04156818427151 - type: nauc_recall_at_3_max value: 28.645439108719216 - type: nauc_recall_at_3_std value: 13.346047828494411 - type: nauc_recall_at_5_diff1 value: 14.906284329771822 - type: nauc_recall_at_5_max value: 30.58628602415921 - type: nauc_recall_at_5_std value: 15.755157478191755 - type: ndcg_at_1 value: 30.2 - type: ndcg_at_10 value: 26.638 - type: ndcg_at_100 value: 37.135 - type: ndcg_at_1000 value: 42.576 - type: ndcg_at_20 value: 30.75 - type: ndcg_at_3 value: 24.675 - type: ndcg_at_5 value: 21.836 - type: precision_at_1 value: 30.2 - type: precision_at_10 value: 14.06 - type: precision_at_100 value: 2.904 - type: precision_at_1000 value: 0.42 - type: precision_at_20 value: 9.4 - type: precision_at_3 value: 23.233 - type: precision_at_5 value: 19.439999999999998 - type: recall_at_1 value: 6.128 - type: recall_at_10 value: 28.471999999999998 - type: recall_at_100 value: 58.952000000000005 - type: recall_at_1000 value: 85.137 - type: recall_at_20 value: 38.17 - type: recall_at_3 value: 14.127999999999998 - type: recall_at_5 value: 19.673 - task: type: STS dataset: name: MTEB SICK-R type: mteb/sickr-sts config: default split: test revision: 20a6d6f312dd54037fe07a32d58e5e168867909d metrics: - type: cosine_pearson value: 86.86608529160739 - type: cosine_spearman value: 82.88625166203383 - type: euclidean_pearson value: 84.15494418856142 - type: euclidean_spearman value: 82.88449294676421 - type: main_score value: 82.88625166203383 - type: manhattan_pearson value: 84.39068623474428 - type: manhattan_spearman value: 82.88065412169463 - type: pearson value: 86.86608529160739 - type: spearman value: 82.88625166203383 - task: type: STS dataset: name: MTEB STS12 type: mteb/sts12-sts config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cosine_pearson value: 87.0445014940449 - type: cosine_spearman value: 80.0880365116599 - type: euclidean_pearson value: 83.80250772928852 - type: euclidean_spearman value: 80.0892465260778 - type: main_score value: 80.0880365116599 - type: manhattan_pearson value: 83.96793981929336 - type: manhattan_spearman value: 80.24881789268238 - type: pearson value: 87.0445014940449 - type: spearman value: 80.0880365116599 - task: type: STS dataset: name: MTEB STS13 type: mteb/sts13-sts config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cosine_pearson value: 89.33900828959968 - type: cosine_spearman value: 89.68256358526733 - type: euclidean_pearson value: 89.29188708262265 - type: euclidean_spearman value: 89.68204344658601 - type: main_score value: 89.68256358526733 - type: manhattan_pearson value: 89.13996588193149 - type: manhattan_spearman value: 89.61372804425623 - type: pearson value: 89.33900828959968 - type: spearman value: 89.68256358526733 - task: type: STS dataset: name: MTEB STS14 type: mteb/sts14-sts config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cosine_pearson value: 86.42029843639123 - type: cosine_spearman value: 85.0707889220723 - type: euclidean_pearson value: 85.75114239552562 - type: euclidean_spearman value: 85.06858160270725 - type: main_score value: 85.0707889220723 - type: manhattan_pearson value: 85.86461900459038 - type: manhattan_spearman value: 85.28671103475605 - type: pearson value: 86.42029843639123 - type: spearman value: 85.0707889220723 - task: type: STS dataset: name: MTEB STS15 type: mteb/sts15-sts config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cosine_pearson value: 88.3660081271444 - type: cosine_spearman value: 89.39375083609528 - type: euclidean_pearson value: 89.21818482894895 - type: euclidean_spearman value: 89.39361588875443 - type: main_score value: 89.39375083609528 - type: manhattan_pearson value: 89.53535068014057 - type: manhattan_spearman value: 89.81077130567752 - type: pearson value: 88.3660081271444 - type: spearman value: 89.39375083609528 - task: type: STS dataset: name: MTEB STS16 type: mteb/sts16-sts config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cosine_pearson value: 85.60708247171874 - type: cosine_spearman value: 87.15234952832193 - type: euclidean_pearson value: 86.21743555548137 - type: euclidean_spearman value: 87.14450217418016 - type: main_score value: 87.15234952832193 - type: manhattan_pearson value: 86.2467748746084 - type: manhattan_spearman value: 87.2197479717654 - type: pearson value: 85.60708247171874 - type: spearman value: 87.15234952832193 - task: type: STS dataset: name: MTEB STS17 (en-en) type: mteb/sts17-crosslingual-sts config: en-en split: test revision: faeb762787bd10488a50c8b5be4a3b82e411949c metrics: - type: cosine_pearson value: 91.25898556808458 - type: cosine_spearman value: 91.35372390581641 - type: euclidean_pearson value: 91.319520321348 - type: euclidean_spearman value: 91.30821135416925 - type: main_score value: 91.35372390581641 - type: manhattan_pearson value: 91.14800959939069 - type: manhattan_spearman value: 91.09775424245629 - type: pearson value: 91.25898556808458 - type: spearman value: 91.35372390581641 - task: type: STS dataset: name: MTEB STS22 (en) type: mteb/sts22-crosslingual-sts config: en split: test revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 metrics: - type: cosine_pearson value: 67.61637111515797 - type: cosine_spearman value: 68.10379096526697 - type: euclidean_pearson value: 69.2652309491375 - type: euclidean_spearman value: 68.18436357033228 - type: main_score value: 68.10379096526697 - type: manhattan_pearson value: 69.52531340510775 - type: manhattan_spearman value: 68.17874790391862 - type: pearson value: 67.61637111515797 - type: spearman value: 68.10379096526697 - task: type: STS dataset: name: MTEB STSBenchmark type: mteb/stsbenchmark-sts config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cosine_pearson value: 87.81592853782297 - type: cosine_spearman value: 88.2302550329183 - type: euclidean_pearson value: 88.01165144519526 - type: euclidean_spearman value: 88.23342148890097 - type: main_score value: 88.2302550329183 - type: manhattan_pearson value: 88.148592564938 - type: manhattan_spearman value: 88.49226317320988 - type: pearson value: 87.81592853782297 - type: spearman value: 88.2302550329183 - task: type: Reranking dataset: name: MTEB SciDocsRR type: mteb/scidocs-reranking config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: main_score value: 89.196009707431 - type: map value: 89.196009707431 - type: mrr value: 97.07198121413808 - type: nAUC_map_diff1 value: -14.066667940115352 - type: nAUC_map_max value: 49.73702475027407 - type: nAUC_map_std value: 64.0986775782592 - type: nAUC_mrr_diff1 value: 21.96846389417319 - type: nAUC_mrr_max value: 86.38341077184032 - type: nAUC_mrr_std value: 75.38945014727746 - task: type: Retrieval dataset: name: MTEB SciFact type: mteb/scifact config: default split: test revision: 0228b52cf27578f30900b9e5271d331663a030d7 metrics: - type: main_score value: 80.08999999999999 - type: map_at_1 value: 63.161 - type: map_at_10 value: 75.163 - type: map_at_100 value: 75.408 - type: map_at_1000 value: 75.409 - type: map_at_20 value: 75.332 - type: map_at_3 value: 71.839 - type: map_at_5 value: 74.32600000000001 - type: mrr_at_1 value: 66.33333333333333 - type: mrr_at_10 value: 75.95978835978836 - type: mrr_at_100 value: 76.15647881281473 - type: mrr_at_1000 value: 76.15736533763744 - type: mrr_at_20 value: 76.08557368557368 - type: mrr_at_3 value: 73.55555555555556 - type: mrr_at_5 value: 75.4888888888889 - type: nauc_map_at_1000_diff1 value: 77.31229383811176 - type: nauc_map_at_1000_max value: 58.848319058605156 - type: nauc_map_at_1000_std value: -14.290090263454985 - type: nauc_map_at_100_diff1 value: 77.31325400213969 - type: nauc_map_at_100_max value: 58.848885054155275 - type: nauc_map_at_100_std value: -14.285806618869273 - type: nauc_map_at_10_diff1 value: 77.1806705504232 - type: nauc_map_at_10_max value: 59.02905805134415 - type: nauc_map_at_10_std value: -14.132954900037467 - type: nauc_map_at_1_diff1 value: 81.03932970557837 - type: nauc_map_at_1_max value: 49.02073230264529 - type: nauc_map_at_1_std value: -22.977452975845512 - type: nauc_map_at_20_diff1 value: 77.22581364818562 - type: nauc_map_at_20_max value: 58.90740400399768 - type: nauc_map_at_20_std value: -14.245079150986745 - type: nauc_map_at_3_diff1 value: 76.99793243255563 - type: nauc_map_at_3_max value: 54.9930733886623 - type: nauc_map_at_3_std value: -19.297708446082407 - type: nauc_map_at_5_diff1 value: 77.1671608360295 - type: nauc_map_at_5_max value: 57.27757489519526 - type: nauc_map_at_5_std value: -15.446338357667708 - type: nauc_mrr_at_1000_diff1 value: 77.4806080821202 - type: nauc_mrr_at_1000_max value: 60.9213776129792 - type: nauc_mrr_at_1000_std value: -12.139599632228343 - type: nauc_mrr_at_100_diff1 value: 77.48158073865281 - type: nauc_mrr_at_100_max value: 60.9218657185361 - type: nauc_mrr_at_100_std value: -12.13532070453677 - type: nauc_mrr_at_10_diff1 value: 77.32428546014407 - type: nauc_mrr_at_10_max value: 61.018407010343466 - type: nauc_mrr_at_10_std value: -12.143193773309347 - type: nauc_mrr_at_1_diff1 value: 80.99806778887115 - type: nauc_mrr_at_1_max value: 59.17855969530095 - type: nauc_mrr_at_1_std value: -12.30545640831458 - type: nauc_mrr_at_20_diff1 value: 77.3811067653992 - type: nauc_mrr_at_20_max value: 60.9648880366335 - type: nauc_mrr_at_20_std value: -12.124066076541853 - type: nauc_mrr_at_3_diff1 value: 77.31304316321959 - type: nauc_mrr_at_3_max value: 60.75536766404163 - type: nauc_mrr_at_3_std value: -12.997876030849623 - type: nauc_mrr_at_5_diff1 value: 77.12952864141742 - type: nauc_mrr_at_5_max value: 60.995943754968685 - type: nauc_mrr_at_5_std value: -11.353447465605694 - type: nauc_ndcg_at_1000_diff1 value: 76.81788665683746 - type: nauc_ndcg_at_1000_max value: 60.35947755262391 - type: nauc_ndcg_at_1000_std value: -12.884942372460362 - type: nauc_ndcg_at_100_diff1 value: 76.87388230365198 - type: nauc_ndcg_at_100_max value: 60.38813162962434 - type: nauc_ndcg_at_100_std value: -12.64384717800478 - type: nauc_ndcg_at_10_diff1 value: 75.87713506026317 - type: nauc_ndcg_at_10_max value: 61.39356554675667 - type: nauc_ndcg_at_10_std value: -12.144227584144218 - type: nauc_ndcg_at_1_diff1 value: 80.99806778887115 - type: nauc_ndcg_at_1_max value: 59.17855969530095 - type: nauc_ndcg_at_1_std value: -12.30545640831458 - type: nauc_ndcg_at_20_diff1 value: 76.09913944506627 - type: nauc_ndcg_at_20_max value: 61.01644448834147 - type: nauc_ndcg_at_20_std value: -12.456209267623857 - type: nauc_ndcg_at_3_diff1 value: 75.52717946614608 - type: nauc_ndcg_at_3_max value: 58.96433090721983 - type: nauc_ndcg_at_3_std value: -15.849280494339556 - type: nauc_ndcg_at_5_diff1 value: 75.69026981016921 - type: nauc_ndcg_at_5_max value: 58.924044405851326 - type: nauc_ndcg_at_5_std value: -13.182728827923107 - type: nauc_precision_at_1000_diff1 value: -31.634022001609914 - type: nauc_precision_at_1000_max value: 31.46271490784504 - type: nauc_precision_at_1000_std value: 60.44801276891442 - type: nauc_precision_at_100_diff1 value: -29.722363469948103 - type: nauc_precision_at_100_max value: 32.05464592020074 - type: nauc_precision_at_100_std value: 60.832570595613554 - type: nauc_precision_at_10_diff1 value: -11.91731376599939 - type: nauc_precision_at_10_max value: 45.43646553157129 - type: nauc_precision_at_10_std value: 52.962408871791276 - type: nauc_precision_at_1_diff1 value: 80.99806778887115 - type: nauc_precision_at_1_max value: 59.17855969530095 - type: nauc_precision_at_1_std value: -12.30545640831458 - type: nauc_precision_at_20_diff1 value: -18.43293701721667 - type: nauc_precision_at_20_max value: 39.53434874203934 - type: nauc_precision_at_20_std value: 53.6291982468461 - type: nauc_precision_at_3_diff1 value: 30.84789043003892 - type: nauc_precision_at_3_max value: 55.660727758110376 - type: nauc_precision_at_3_std value: 17.87243920840355 - type: nauc_precision_at_5_diff1 value: 4.099395181445625 - type: nauc_precision_at_5_max value: 50.346770968709386 - type: nauc_precision_at_5_std value: 44.66722483255029 - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_100_diff1 value: 100.0 - type: nauc_recall_at_100_max value: 72.2222222222207 - type: nauc_recall_at_100_std value: 86.92810457516407 - type: nauc_recall_at_10_diff1 value: 62.18887555022005 - type: nauc_recall_at_10_max value: 75.14339068960916 - type: nauc_recall_at_10_std value: -1.4912631719357108 - type: nauc_recall_at_1_diff1 value: 81.03932970557837 - type: nauc_recall_at_1_max value: 49.02073230264529 - type: nauc_recall_at_1_std value: -22.977452975845512 - type: nauc_recall_at_20_diff1 value: 59.27414444038499 - type: nauc_recall_at_20_max value: 76.32241302318047 - type: nauc_recall_at_20_std value: -0.8322169447488666 - type: nauc_recall_at_3_diff1 value: 69.58783002593157 - type: nauc_recall_at_3_max value: 55.89660919896563 - type: nauc_recall_at_3_std value: -21.183005510917862 - type: nauc_recall_at_5_diff1 value: 65.53660499878802 - type: nauc_recall_at_5_max value: 58.218018535135805 - type: nauc_recall_at_5_std value: -8.328952210032455 - type: ndcg_at_1 value: 66.333 - type: ndcg_at_10 value: 80.08999999999999 - type: ndcg_at_100 value: 81.24900000000001 - type: ndcg_at_1000 value: 81.28800000000001 - type: ndcg_at_20 value: 80.625 - type: ndcg_at_3 value: 74.98700000000001 - type: ndcg_at_5 value: 78.553 - type: precision_at_1 value: 66.333 - type: precision_at_10 value: 10.667 - type: precision_at_100 value: 1.127 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_20 value: 5.45 - type: precision_at_3 value: 29.555999999999997 - type: precision_at_5 value: 20.133000000000003 - type: recall_at_1 value: 63.161 - type: recall_at_10 value: 94.167 - type: recall_at_100 value: 99.667 - type: recall_at_1000 value: 100.0 - type: recall_at_20 value: 96.167 - type: recall_at_3 value: 80.972 - type: recall_at_5 value: 89.90599999999999 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions type: mteb/sprintduplicatequestions-pairclassification config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cosine_accuracy value: 99.81881188118813 - type: cosine_accuracy_threshold value: 85.55081486701965 - type: cosine_ap value: 96.0359661816236 - type: cosine_f1 value: 90.6584992343032 - type: cosine_f1_threshold value: 84.82859134674072 - type: cosine_precision value: 92.59645464025026 - type: cosine_recall value: 88.8 - type: dot_accuracy value: 99.81881188118813 - type: dot_accuracy_threshold value: 84.91908311843872 - type: dot_ap value: 96.05740121094365 - type: dot_f1 value: 90.81885856079404 - type: dot_f1_threshold value: 83.84919166564941 - type: dot_precision value: 90.14778325123153 - type: dot_recall value: 91.5 - type: euclidean_accuracy value: 99.82079207920792 - type: euclidean_accuracy_threshold value: 54.49706315994263 - type: euclidean_ap value: 96.03223527068818 - type: euclidean_f1 value: 90.72270630445925 - type: euclidean_f1_threshold value: 54.49706315994263 - type: euclidean_precision value: 93.05993690851734 - type: euclidean_recall value: 88.5 - type: main_score value: 96.32671902439806 - type: manhattan_accuracy value: 99.83267326732673 - type: manhattan_accuracy_threshold value: 3818.192672729492 - type: manhattan_ap value: 96.32671902439806 - type: manhattan_f1 value: 91.52032112393378 - type: manhattan_f1_threshold value: 3818.192672729492 - type: manhattan_precision value: 91.8429003021148 - type: manhattan_recall value: 91.2 - type: max_ap value: 96.32671902439806 - type: max_f1 value: 91.52032112393378 - type: max_precision value: 93.05993690851734 - type: max_recall value: 91.5 - type: similarity_accuracy value: 99.81881188118813 - type: similarity_accuracy_threshold value: 85.55081486701965 - type: similarity_ap value: 96.0359661816236 - type: similarity_f1 value: 90.6584992343032 - type: similarity_f1_threshold value: 84.82859134674072 - type: similarity_precision value: 92.59645464025026 - type: similarity_recall value: 88.8 - task: type: Clustering dataset: name: MTEB StackExchangeClustering type: mteb/stackexchange-clustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: main_score value: 80.28558559137414 - type: v_measure value: 80.28558559137414 - type: v_measure_std value: 2.795276520287584 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P type: mteb/stackexchange-clustering-p2p config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: main_score value: 49.57135582416209 - type: v_measure value: 49.57135582416209 - type: v_measure_std value: 1.6414135468423754 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions type: mteb/stackoverflowdupquestions-reranking config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: main_score value: 55.253002583598644 - type: map value: 55.253002583598644 - type: mrr value: 56.24172396231219 - type: nAUC_map_diff1 value: 40.00053248203427 - type: nAUC_map_max value: 10.05441740585869 - type: nAUC_map_std value: 8.227169286387552 - type: nAUC_mrr_diff1 value: 40.250446264233744 - type: nAUC_mrr_max value: 10.586310195339053 - type: nAUC_mrr_std value: 8.47326494370076 - task: type: Summarization dataset: name: MTEB SummEval type: mteb/summeval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cosine_pearson value: 31.19874648747059 - type: cosine_spearman value: 31.493550648844863 - type: dot_pearson value: 31.157847680289407 - type: dot_spearman value: 31.575299712180538 - type: main_score value: 31.493550648844863 - type: pearson value: 31.19874648747059 - type: spearman value: 31.493550648844863 - task: type: Retrieval dataset: name: MTEB TRECCOVID type: mteb/trec-covid config: default split: test revision: bb9466bac8153a0349341eb1b22e06409e78ef4e metrics: - type: main_score value: 85.983 - type: map_at_1 value: 0.247 - type: map_at_10 value: 2.177 - type: map_at_100 value: 14.804 - type: map_at_1000 value: 37.045 - type: map_at_20 value: 4.12 - type: map_at_3 value: 0.7000000000000001 - type: map_at_5 value: 1.1320000000000001 - type: mrr_at_1 value: 96.0 - type: mrr_at_10 value: 98.0 - type: mrr_at_100 value: 98.0 - type: mrr_at_1000 value: 98.0 - type: mrr_at_20 value: 98.0 - type: mrr_at_3 value: 98.0 - type: mrr_at_5 value: 98.0 - type: nauc_map_at_1000_diff1 value: -0.9165125200337213 - type: nauc_map_at_1000_max value: 40.260117798042764 - type: nauc_map_at_1000_std value: 71.72789335831554 - type: nauc_map_at_100_diff1 value: 20.493827311583953 - type: nauc_map_at_100_max value: 21.005742079276462 - type: nauc_map_at_100_std value: 62.53815607831659 - type: nauc_map_at_10_diff1 value: 31.289297684528215 - type: nauc_map_at_10_max value: 7.86554294370268 - type: nauc_map_at_10_std value: 37.26191657133897 - type: nauc_map_at_1_diff1 value: 25.57568148849456 - type: nauc_map_at_1_max value: -5.9767435623941445 - type: nauc_map_at_1_std value: 30.849871717506755 - type: nauc_map_at_20_diff1 value: 30.896018204532087 - type: nauc_map_at_20_max value: 8.667077299744314 - type: nauc_map_at_20_std value: 41.512687168412924 - type: nauc_map_at_3_diff1 value: 29.44724521006598 - type: nauc_map_at_3_max value: 1.597496889532064 - type: nauc_map_at_3_std value: 32.25013773854697 - type: nauc_map_at_5_diff1 value: 27.387036605618825 - type: nauc_map_at_5_max value: 5.402983746211454 - type: nauc_map_at_5_std value: 33.940523962472184 - type: nauc_mrr_at_1000_diff1 value: -14.122315592903503 - type: nauc_mrr_at_1000_max value: 33.84687208216605 - type: nauc_mrr_at_1000_std value: 86.11111111111092 - type: nauc_mrr_at_100_diff1 value: -14.122315592903503 - type: nauc_mrr_at_100_max value: 33.84687208216605 - type: nauc_mrr_at_100_std value: 86.11111111111092 - type: nauc_mrr_at_10_diff1 value: -14.122315592903503 - type: nauc_mrr_at_10_max value: 33.84687208216605 - type: nauc_mrr_at_10_std value: 86.11111111111092 - type: nauc_mrr_at_1_diff1 value: -14.122315592903831 - type: nauc_mrr_at_1_max value: 33.84687208216637 - type: nauc_mrr_at_1_std value: 86.11111111111124 - type: nauc_mrr_at_20_diff1 value: -14.122315592903503 - type: nauc_mrr_at_20_max value: 33.84687208216605 - type: nauc_mrr_at_20_std value: 86.11111111111092 - type: nauc_mrr_at_3_diff1 value: -14.122315592903503 - type: nauc_mrr_at_3_max value: 33.84687208216605 - type: nauc_mrr_at_3_std value: 86.11111111111092 - type: nauc_mrr_at_5_diff1 value: -14.122315592903503 - type: nauc_mrr_at_5_max value: 33.84687208216605 - type: nauc_mrr_at_5_std value: 86.11111111111092 - type: nauc_ndcg_at_1000_diff1 value: 8.745907669561928 - type: nauc_ndcg_at_1000_max value: 45.43307237994533 - type: nauc_ndcg_at_1000_std value: 74.93357447176336 - type: nauc_ndcg_at_100_diff1 value: -3.9719350773353765 - type: nauc_ndcg_at_100_max value: 44.43705332397461 - type: nauc_ndcg_at_100_std value: 61.59493812371758 - type: nauc_ndcg_at_10_diff1 value: 15.230915878367348 - type: nauc_ndcg_at_10_max value: 48.332840970836635 - type: nauc_ndcg_at_10_std value: 46.888785065125774 - type: nauc_ndcg_at_1_diff1 value: 13.219732337379442 - type: nauc_ndcg_at_1_max value: 45.19919078742603 - type: nauc_ndcg_at_1_std value: 64.68253968253977 - type: nauc_ndcg_at_20_diff1 value: 12.479648691964865 - type: nauc_ndcg_at_20_max value: 48.76688248450331 - type: nauc_ndcg_at_20_std value: 51.450399755887545 - type: nauc_ndcg_at_3_diff1 value: 6.165414201871464 - type: nauc_ndcg_at_3_max value: 45.089689347691035 - type: nauc_ndcg_at_3_std value: 41.08249161845213 - type: nauc_ndcg_at_5_diff1 value: 7.411245806844721 - type: nauc_ndcg_at_5_max value: 47.818748093538076 - type: nauc_ndcg_at_5_std value: 45.907685763676575 - type: nauc_precision_at_1000_diff1 value: -30.574290219847345 - type: nauc_precision_at_1000_max value: 32.56926126118719 - type: nauc_precision_at_1000_std value: 14.584504392628874 - type: nauc_precision_at_100_diff1 value: -10.199740234718847 - type: nauc_precision_at_100_max value: 41.0213226769777 - type: nauc_precision_at_100_std value: 56.975760776771324 - type: nauc_precision_at_10_diff1 value: 7.865792689701161 - type: nauc_precision_at_10_max value: 52.00432275201737 - type: nauc_precision_at_10_std value: 43.89512276413724 - type: nauc_precision_at_1_diff1 value: -14.122315592903831 - type: nauc_precision_at_1_max value: 33.84687208216637 - type: nauc_precision_at_1_std value: 86.11111111111124 - type: nauc_precision_at_20_diff1 value: 5.481424191880084 - type: nauc_precision_at_20_max value: 46.86629331792725 - type: nauc_precision_at_20_std value: 49.245692667517496 - type: nauc_precision_at_3_diff1 value: -5.870408807869163 - type: nauc_precision_at_3_max value: 48.73657612128875 - type: nauc_precision_at_3_std value: 41.15152062088262 - type: nauc_precision_at_5_diff1 value: -4.550610529125413 - type: nauc_precision_at_5_max value: 60.390115878205386 - type: nauc_precision_at_5_std value: 44.16494295055696 - type: nauc_recall_at_1000_diff1 value: 8.047794367079034 - type: nauc_recall_at_1000_max value: 37.07551482870489 - type: nauc_recall_at_1000_std value: 66.20862163364201 - type: nauc_recall_at_100_diff1 value: 25.08104923597475 - type: nauc_recall_at_100_max value: 9.971294642165734 - type: nauc_recall_at_100_std value: 51.737814074891254 - type: nauc_recall_at_10_diff1 value: 32.33148478369628 - type: nauc_recall_at_10_max value: 1.3767192150014917 - type: nauc_recall_at_10_std value: 30.801926742876308 - type: nauc_recall_at_1_diff1 value: 25.57568148849456 - type: nauc_recall_at_1_max value: -5.9767435623941445 - type: nauc_recall_at_1_std value: 30.849871717506755 - type: nauc_recall_at_20_diff1 value: 31.716580022934654 - type: nauc_recall_at_20_max value: -0.1281270579464631 - type: nauc_recall_at_20_std value: 33.76185294993676 - type: nauc_recall_at_3_diff1 value: 29.758810004388348 - type: nauc_recall_at_3_max value: -1.9442985017191816 - type: nauc_recall_at_3_std value: 27.45550076962206 - type: nauc_recall_at_5_diff1 value: 27.047710181576672 - type: nauc_recall_at_5_max value: 1.5237000700880248 - type: nauc_recall_at_5_std value: 28.235297950159698 - type: ndcg_at_1 value: 94.0 - type: ndcg_at_10 value: 85.983 - type: ndcg_at_100 value: 69.195 - type: ndcg_at_1000 value: 62.541000000000004 - type: ndcg_at_20 value: 83.405 - type: ndcg_at_3 value: 89.98899999999999 - type: ndcg_at_5 value: 87.905 - type: precision_at_1 value: 96.0 - type: precision_at_10 value: 89.4 - type: precision_at_100 value: 71.54 - type: precision_at_1000 value: 27.594 - type: precision_at_20 value: 87.2 - type: precision_at_3 value: 92.667 - type: precision_at_5 value: 90.8 - type: recall_at_1 value: 0.247 - type: recall_at_10 value: 2.315 - type: recall_at_100 value: 17.574 - type: recall_at_1000 value: 59.336999999999996 - type: recall_at_20 value: 4.491 - type: recall_at_3 value: 0.7250000000000001 - type: recall_at_5 value: 1.1820000000000002 - task: type: Retrieval dataset: name: MTEB Touche2020 type: mteb/touche2020 config: default split: test revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f metrics: - type: main_score value: 29.944 - type: map_at_1 value: 3.064 - type: map_at_10 value: 11.501999999999999 - type: map_at_100 value: 18.736 - type: map_at_1000 value: 20.333000000000002 - type: map_at_20 value: 14.057 - type: map_at_3 value: 6.300999999999999 - type: map_at_5 value: 8.463 - type: mrr_at_1 value: 44.89795918367347 - type: mrr_at_10 value: 58.41188856494979 - type: mrr_at_100 value: 58.93964266413245 - type: mrr_at_1000 value: 58.93964266413245 - type: mrr_at_20 value: 58.767485349118 - type: mrr_at_3 value: 54.42176870748299 - type: mrr_at_5 value: 56.666666666666664 - type: nauc_map_at_1000_diff1 value: 11.478593385608479 - type: nauc_map_at_1000_max value: 10.309889845044324 - type: nauc_map_at_1000_std value: 21.16721939940238 - type: nauc_map_at_100_diff1 value: 11.570438543562418 - type: nauc_map_at_100_max value: 8.426183648064834 - type: nauc_map_at_100_std value: 18.56231985033613 - type: nauc_map_at_10_diff1 value: 22.37735506247481 - type: nauc_map_at_10_max value: 5.455946239060806 - type: nauc_map_at_10_std value: -4.2848826518388154 - type: nauc_map_at_1_diff1 value: 27.853645380676824 - type: nauc_map_at_1_max value: 7.30739948053113 - type: nauc_map_at_1_std value: -0.2773663157814586 - type: nauc_map_at_20_diff1 value: 14.724669779924648 - type: nauc_map_at_20_max value: 10.12882779173533 - type: nauc_map_at_20_std value: 4.4803777672120875 - type: nauc_map_at_3_diff1 value: 31.891173385921263 - type: nauc_map_at_3_max value: 4.889652271827218 - type: nauc_map_at_3_std value: -9.477460238651643 - type: nauc_map_at_5_diff1 value: 31.489012040465003 - type: nauc_map_at_5_max value: 1.7330092417337482 - type: nauc_map_at_5_std value: -8.137018608469637 - type: nauc_mrr_at_1000_diff1 value: 24.411522237082416 - type: nauc_mrr_at_1000_max value: 11.286971076556688 - type: nauc_mrr_at_1000_std value: 23.443174210894043 - type: nauc_mrr_at_100_diff1 value: 24.411522237082416 - type: nauc_mrr_at_100_max value: 11.286971076556688 - type: nauc_mrr_at_100_std value: 23.443174210894043 - type: nauc_mrr_at_10_diff1 value: 23.948152308265186 - type: nauc_mrr_at_10_max value: 12.22420979621155 - type: nauc_mrr_at_10_std value: 23.557939024705544 - type: nauc_mrr_at_1_diff1 value: 17.902334894536107 - type: nauc_mrr_at_1_max value: 17.36969662861018 - type: nauc_mrr_at_1_std value: 19.425714969048734 - type: nauc_mrr_at_20_diff1 value: 24.635893795899797 - type: nauc_mrr_at_20_max value: 11.330541067194913 - type: nauc_mrr_at_20_std value: 23.74518583400233 - type: nauc_mrr_at_3_diff1 value: 25.045536328282587 - type: nauc_mrr_at_3_max value: 7.497967004732733 - type: nauc_mrr_at_3_std value: 24.167153007320078 - type: nauc_mrr_at_5_diff1 value: 24.328479930592454 - type: nauc_mrr_at_5_max value: 10.037126854938336 - type: nauc_mrr_at_5_std value: 25.236208055346136 - type: nauc_ndcg_at_1000_diff1 value: 15.555347444667389 - type: nauc_ndcg_at_1000_max value: 13.356591700655718 - type: nauc_ndcg_at_1000_std value: 42.42395845935052 - type: nauc_ndcg_at_100_diff1 value: 13.110526060413708 - type: nauc_ndcg_at_100_max value: 3.140006440162515 - type: nauc_ndcg_at_100_std value: 39.02733288398033 - type: nauc_ndcg_at_10_diff1 value: 20.68853369009725 - type: nauc_ndcg_at_10_max value: 2.435389817058852 - type: nauc_ndcg_at_10_std value: 10.038202768784316 - type: nauc_ndcg_at_1_diff1 value: 20.17287594582385 - type: nauc_ndcg_at_1_max value: 12.487205168273196 - type: nauc_ndcg_at_1_std value: 20.639827614373075 - type: nauc_ndcg_at_20_diff1 value: 16.987577348502985 - type: nauc_ndcg_at_20_max value: 2.9978717644469266 - type: nauc_ndcg_at_20_std value: 13.015690866750354 - type: nauc_ndcg_at_3_diff1 value: 32.392223079245575 - type: nauc_ndcg_at_3_max value: 1.587587110582544 - type: nauc_ndcg_at_3_std value: 12.850592473446609 - type: nauc_ndcg_at_5_diff1 value: 32.80244517369626 - type: nauc_ndcg_at_5_max value: 5.8939933777508084 - type: nauc_ndcg_at_5_std value: 15.779687411463414 - type: nauc_precision_at_1000_diff1 value: -14.314031720452537 - type: nauc_precision_at_1000_max value: 32.87886666567266 - type: nauc_precision_at_1000_std value: 21.49347046886851 - type: nauc_precision_at_100_diff1 value: -9.4034008613839 - type: nauc_precision_at_100_max value: 16.784075123309645 - type: nauc_precision_at_100_std value: 73.14688535393604 - type: nauc_precision_at_10_diff1 value: 6.855101404043058 - type: nauc_precision_at_10_max value: 6.52491228645612 - type: nauc_precision_at_10_std value: 16.104602266016744 - type: nauc_precision_at_1_diff1 value: 17.902334894536107 - type: nauc_precision_at_1_max value: 17.36969662861018 - type: nauc_precision_at_1_std value: 19.425714969048734 - type: nauc_precision_at_20_diff1 value: -5.337534613602212 - type: nauc_precision_at_20_max value: 17.722925454767218 - type: nauc_precision_at_20_std value: 34.26680462132849 - type: nauc_precision_at_3_diff1 value: 31.054623397809255 - type: nauc_precision_at_3_max value: -0.92038600946826 - type: nauc_precision_at_3_std value: 8.326997076862916 - type: nauc_precision_at_5_diff1 value: 29.784942296920462 - type: nauc_precision_at_5_max value: 6.337469263434779 - type: nauc_precision_at_5_std value: 12.789597196020974 - type: nauc_recall_at_1000_diff1 value: -3.8177981862041364 - type: nauc_recall_at_1000_max value: 14.206064332229163 - type: nauc_recall_at_1000_std value: 74.18853420771269 - type: nauc_recall_at_100_diff1 value: 0.7677996771461106 - type: nauc_recall_at_100_max value: -4.139924106878441 - type: nauc_recall_at_100_std value: 48.319930706362896 - type: nauc_recall_at_10_diff1 value: 12.038835537494322 - type: nauc_recall_at_10_max value: -2.0498983557854418 - type: nauc_recall_at_10_std value: -2.0339180690854493 - type: nauc_recall_at_1_diff1 value: 27.853645380676824 - type: nauc_recall_at_1_max value: 7.30739948053113 - type: nauc_recall_at_1_std value: -0.2773663157814586 - type: nauc_recall_at_20_diff1 value: 0.7907893667756708 - type: nauc_recall_at_20_max value: 0.8795499810558195 - type: nauc_recall_at_20_std value: 11.512483291688282 - type: nauc_recall_at_3_diff1 value: 33.19440392639576 - type: nauc_recall_at_3_max value: -1.5494237697432613 - type: nauc_recall_at_3_std value: -8.560408808376984 - type: nauc_recall_at_5_diff1 value: 27.42193873870941 - type: nauc_recall_at_5_max value: -4.74350293281128 - type: nauc_recall_at_5_std value: -7.618060131179654 - type: ndcg_at_1 value: 42.857 - type: ndcg_at_10 value: 29.944 - type: ndcg_at_100 value: 42.624 - type: ndcg_at_1000 value: 53.384 - type: ndcg_at_20 value: 30.135 - type: ndcg_at_3 value: 34.847 - type: ndcg_at_5 value: 32.573 - type: precision_at_1 value: 44.897999999999996 - type: precision_at_10 value: 25.306 - type: precision_at_100 value: 8.694 - type: precision_at_1000 value: 1.616 - type: precision_at_20 value: 19.082 - type: precision_at_3 value: 34.014 - type: precision_at_5 value: 31.019999999999996 - type: recall_at_1 value: 3.064 - type: recall_at_10 value: 17.849999999999998 - type: recall_at_100 value: 53.217999999999996 - type: recall_at_1000 value: 87.095 - type: recall_at_20 value: 26.111 - type: recall_at_3 value: 7.383000000000001 - type: recall_at_5 value: 11.434 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification type: mteb/toxic_conversations_50k config: default split: test revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de metrics: - type: accuracy value: 88.759765625 - type: ap value: 36.49152357863017 - type: ap_weighted value: 36.49152357863017 - type: f1 value: 74.4692714448641 - type: f1_weighted value: 90.54372649306606 - type: main_score value: 88.759765625 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification type: mteb/tweet_sentiment_extraction config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 74.8443689869836 - type: f1 value: 75.1139662898148 - type: f1_weighted value: 74.7369003946243 - type: main_score value: 74.8443689869836 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering type: mteb/twentynewsgroups-clustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: main_score value: 61.42918790942448 - type: v_measure value: 61.42918790942448 - type: v_measure_std value: 1.0156550098843082 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 type: mteb/twittersemeval2015-pairclassification config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cosine_accuracy value: 88.22197055492639 - type: cosine_accuracy_threshold value: 83.30042362213135 - type: cosine_ap value: 80.57754959194938 - type: cosine_f1 value: 73.70579190158894 - type: cosine_f1_threshold value: 81.04978799819946 - type: cosine_precision value: 71.64922770303936 - type: cosine_recall value: 75.8839050131926 - type: dot_accuracy value: 88.23985217857782 - type: dot_accuracy_threshold value: 83.31039547920227 - type: dot_ap value: 80.57533213448181 - type: dot_f1 value: 73.61309601143302 - type: dot_f1_threshold value: 81.33968114852905 - type: dot_precision value: 72.51087791144101 - type: dot_recall value: 74.74934036939314 - type: euclidean_accuracy value: 88.22197055492639 - type: euclidean_accuracy_threshold value: 58.290231227874756 - type: euclidean_ap value: 80.57982723880139 - type: euclidean_f1 value: 73.63426519620417 - type: euclidean_f1_threshold value: 61.55576705932617 - type: euclidean_precision value: 71.63173652694611 - type: euclidean_recall value: 75.75197889182058 - type: main_score value: 80.57982723880139 - type: manhattan_accuracy value: 88.14448351910353 - type: manhattan_accuracy_threshold value: 3907.2471618652344 - type: manhattan_ap value: 80.3538079655539 - type: manhattan_f1 value: 73.40466675261054 - type: manhattan_f1_threshold value: 4103.794097900391 - type: manhattan_precision value: 71.76707839677337 - type: manhattan_recall value: 75.11873350923483 - type: max_ap value: 80.57982723880139 - type: max_f1 value: 73.70579190158894 - type: max_precision value: 72.51087791144101 - type: max_recall value: 75.8839050131926 - type: similarity_accuracy value: 88.22197055492639 - type: similarity_accuracy_threshold value: 83.30042362213135 - type: similarity_ap value: 80.57754959194938 - type: similarity_f1 value: 73.70579190158894 - type: similarity_f1_threshold value: 81.04978799819946 - type: similarity_precision value: 71.64922770303936 - type: similarity_recall value: 75.8839050131926 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus type: mteb/twitterurlcorpus-pairclassification config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cosine_accuracy value: 89.88628866379477 - type: cosine_accuracy_threshold value: 80.8050274848938 - type: cosine_ap value: 87.57594591596816 - type: cosine_f1 value: 80.0812257707218 - type: cosine_f1_threshold value: 77.990061044693 - type: cosine_precision value: 76.93126197063205 - type: cosine_recall value: 83.50015398829689 - type: dot_accuracy value: 89.87852679784221 - type: dot_accuracy_threshold value: 80.84419965744019 - type: dot_ap value: 87.56136742222151 - type: dot_f1 value: 80.05898617511521 - type: dot_f1_threshold value: 77.92385816574097 - type: dot_precision value: 76.80554573106035 - type: dot_recall value: 83.60024638127503 - type: euclidean_accuracy value: 89.86882446540149 - type: euclidean_accuracy_threshold value: 62.08193898200989 - type: euclidean_ap value: 87.57517549192228 - type: euclidean_f1 value: 80.05286925872892 - type: euclidean_f1_threshold value: 66.65036082267761 - type: euclidean_precision value: 76.51063232507545 - type: euclidean_recall value: 83.93902063443178 - type: main_score value: 87.64162614197194 - type: manhattan_accuracy value: 89.8959909962355 - type: manhattan_accuracy_threshold value: 4176.108169555664 - type: manhattan_ap value: 87.64162614197194 - type: manhattan_f1 value: 80.17116279069768 - type: manhattan_f1_threshold value: 4433.153533935547 - type: manhattan_precision value: 77.57615035644848 - type: manhattan_recall value: 82.94579611949491 - type: max_ap value: 87.64162614197194 - type: max_f1 value: 80.17116279069768 - type: max_precision value: 77.57615035644848 - type: max_recall value: 83.93902063443178 - type: similarity_accuracy value: 89.88628866379477 - type: similarity_accuracy_threshold value: 80.8050274848938 - type: similarity_ap value: 87.57594591596816 - type: similarity_f1 value: 80.0812257707218 - type: similarity_f1_threshold value: 77.990061044693 - type: similarity_precision value: 76.93126197063205 - type: similarity_recall value: 83.50015398829689 --- # Updates New open-source models and ToDoList will be listed on https://github.com/DunZhang/Stella/blob/main/news_and_todo.md. You can also find these models on my [homepage](https://huggingface.co/infgrad). # Introduction The models are trained based on `Alibaba-NLP/gte-large-en-v1.5` and `Alibaba-NLP/gte-Qwen2-1.5B-instruct`. Thanks for their contributions! **We simplify usage of prompts, providing two prompts for most general tasks, one is for s2p, another one is for s2s.** Prompt of s2p task(e.g. retrieve task): ```text Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: {query} ``` Prompt of s2s task(e.g. semantic textual similarity task): ```text Instruct: Retrieve semantically similar text.\nQuery: {query} ``` The models are finally trained by [MRL]((https://arxiv.org/abs/2205.13147)), so they have multiple dimensions: 512, 768, 1024, 2048, 4096, 6144 and 8192. The higher the dimension, the better the performance. **Generally speaking, 1024d is good enough.** The MTEB score of 1024d is only 0.001 lower than 8192d. # Model directory structure The model directory structure is very simple, it is a standard SentenceTransformer directory **with a series of `2_Dense_{dims}` folders**, where `dims` represents the final vector dimension. For example, the `2_Dense_256` folder stores Linear weights that convert vector dimensions to 256 dimensions. Please refer to the following chapters for specific instructions on how to use them. # Usage You can use `SentenceTransformers` or `transformers` library to encode text. ## Sentence Transformers ```python from sentence_transformers import SentenceTransformer # This model supports two prompts: "s2p_query" and "s2s_query" for sentence-to-passage and sentence-to-sentence tasks, respectively. # They are defined in `config_sentence_transformers.json` query_prompt_name = "s2p_query" queries = [ "What are some ways to reduce stress?", "What are the benefits of drinking green tea?", ] # docs do not need any prompts docs = [ "There are many effective ways to reduce stress. Some common techniques include deep breathing, meditation, and physical activity. Engaging in hobbies, spending time in nature, and connecting with loved ones can also help alleviate stress. Additionally, setting boundaries, practicing self-care, and learning to say no can prevent stress from building up.", "Green tea has been consumed for centuries and is known for its potential health benefits. It contains antioxidants that may help protect the body against damage caused by free radicals. Regular consumption of green tea has been associated with improved heart health, enhanced cognitive function, and a reduced risk of certain types of cancer. The polyphenols in green tea may also have anti-inflammatory and weight loss properties.", ] # !The default dimension is 1024, if you need other dimensions, please clone the model and modify `modules.json` to replace `2_Dense_1024` with another dimension, e.g. `2_Dense_256` or `2_Dense_8192` ! model = SentenceTransformer("dunzhang/stella_en_1.5B_v5", trust_remote_code=True).cuda() query_embeddings = model.encode(queries, prompt_name=query_prompt_name) doc_embeddings = model.encode(docs) print(query_embeddings.shape, doc_embeddings.shape) # (2, 1024) (2, 1024) similarities = model.similarity(query_embeddings, doc_embeddings) print(similarities) # tensor([[0.8179, 0.2958], # [0.3194, 0.7854]]) ``` ## Transformers ```python import os import torch from transformers import AutoModel, AutoTokenizer from sklearn.preprocessing import normalize query_prompt = "Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: " queries = [ "What are some ways to reduce stress?", "What are the benefits of drinking green tea?", ] queries = [query_prompt + query for query in queries] # docs do not need any prompts docs = [ "There are many effective ways to reduce stress. Some common techniques include deep breathing, meditation, and physical activity. Engaging in hobbies, spending time in nature, and connecting with loved ones can also help alleviate stress. Additionally, setting boundaries, practicing self-care, and learning to say no can prevent stress from building up.", "Green tea has been consumed for centuries and is known for its potential health benefits. It contains antioxidants that may help protect the body against damage caused by free radicals. Regular consumption of green tea has been associated with improved heart health, enhanced cognitive function, and a reduced risk of certain types of cancer. The polyphenols in green tea may also have anti-inflammatory and weight loss properties.", ] # The path of your model after cloning it model_dir = "{Your MODEL_PATH}" vector_dim = 1024 vector_linear_directory = f"2_Dense_{vector_dim}" model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).cuda().eval() tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True) vector_linear = torch.nn.Linear(in_features=model.config.hidden_size, out_features=vector_dim) vector_linear_dict = { k.replace("linear.", ""): v for k, v in torch.load(os.path.join(model_dir, f"{vector_linear_directory}/pytorch_model.bin")).items() } vector_linear.load_state_dict(vector_linear_dict) vector_linear.cuda() # Embed the queries with torch.no_grad(): input_data = tokenizer(queries, padding="longest", truncation=True, max_length=512, return_tensors="pt") input_data = {k: v.cuda() for k, v in input_data.items()} attention_mask = input_data["attention_mask"] last_hidden_state = model(**input_data)[0] last_hidden = last_hidden_state.masked_fill(~attention_mask[..., None].bool(), 0.0) query_vectors = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] query_vectors = normalize(vector_linear(query_vectors).cpu().numpy()) # Embed the documents with torch.no_grad(): input_data = tokenizer(docs, padding="longest", truncation=True, max_length=512, return_tensors="pt") input_data = {k: v.cuda() for k, v in input_data.items()} attention_mask = input_data["attention_mask"] last_hidden_state = model(**input_data)[0] last_hidden = last_hidden_state.masked_fill(~attention_mask[..., None].bool(), 0.0) docs_vectors = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] docs_vectors = normalize(vector_linear(docs_vectors).cpu().numpy()) print(query_vectors.shape, docs_vectors.shape) # (2, 1024) (2, 1024) similarities = query_vectors @ docs_vectors.T print(similarities) # [[0.8178789 0.2958377 ] # [0.31938642 0.7853526 ]] ``` # FAQ Q: The details of training? A: The training method and datasets will be released in the future. (specific time unknown, may be provided in a paper) Q: How to choose a suitable prompt for my own task? A: In most cases, please use the s2p and s2s prompts. These two prompts account for the vast majority of the training data. Q: How to reproduce MTEB results? A: Please use evaluation scripts in `Alibaba-NLP/gte-Qwen2-1.5B-instruct` or `intfloat/e5-mistral-7b-instruct` Q: Why each dimension has a linear weight? A: MRL has multiple training methods, we choose this method which has the best performance. Q: What is the sequence length of models? A: 512 is recommended, in our experiments, almost all models perform poorly on specialized long text retrieval datasets. Besides, the model is trained on datasets of 512 length. This may be an optimization term. If you have any questions, please start a discussion on community.
[ "SUMMARIZATION" ]
[ "BIOSSES", "SCIFACT" ]
Non_BioNLP
# Updates New open-source models and ToDoList will be listed on https://github.com/DunZhang/Stella/blob/main/news_and_todo.md. You can also find these models on my [homepage](https://huggingface.co/infgrad). # Introduction The models are trained based on `Alibaba-NLP/gte-large-en-v1.5` and `Alibaba-NLP/gte-Qwen2-1.5B-instruct`. Thanks for their contributions! **We simplify usage of prompts, providing two prompts for most general tasks, one is for s2p, another one is for s2s.** Prompt of s2p task(e.g. retrieve task): ```text Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: {query} ``` Prompt of s2s task(e.g. semantic textual similarity task): ```text Instruct: Retrieve semantically similar text.\nQuery: {query} ``` The models are finally trained by [MRL]((https://arxiv.org/abs/2205.13147)), so they have multiple dimensions: 512, 768, 1024, 2048, 4096, 6144 and 8192. The higher the dimension, the better the performance. **Generally speaking, 1024d is good enough.** The MTEB score of 1024d is only 0.001 lower than 8192d. # Model directory structure The model directory structure is very simple, it is a standard SentenceTransformer directory **with a series of `2_Dense_{dims}` folders**, where `dims` represents the final vector dimension. For example, the `2_Dense_256` folder stores Linear weights that convert vector dimensions to 256 dimensions. Please refer to the following chapters for specific instructions on how to use them. # Usage You can use `SentenceTransformers` or `transformers` library to encode text. ## Sentence Transformers ```python from sentence_transformers import SentenceTransformer # This model supports two prompts: "s2p_query" and "s2s_query" for sentence-to-passage and sentence-to-sentence tasks, respectively. # They are defined in `config_sentence_transformers.json` query_prompt_name = "s2p_query" queries = [ "What are some ways to reduce stress?", "What are the benefits of drinking green tea?", ] # docs do not need any prompts docs = [ "There are many effective ways to reduce stress. Some common techniques include deep breathing, meditation, and physical activity. Engaging in hobbies, spending time in nature, and connecting with loved ones can also help alleviate stress. Additionally, setting boundaries, practicing self-care, and learning to say no can prevent stress from building up.", "Green tea has been consumed for centuries and is known for its potential health benefits. It contains antioxidants that may help protect the body against damage caused by free radicals. Regular consumption of green tea has been associated with improved heart health, enhanced cognitive function, and a reduced risk of certain types of cancer. The polyphenols in green tea may also have anti-inflammatory and weight loss properties.", ] # !The default dimension is 1024, if you need other dimensions, please clone the model and modify `modules.json` to replace `2_Dense_1024` with another dimension, e.g. `2_Dense_256` or `2_Dense_8192` ! model = SentenceTransformer("dunzhang/stella_en_1.5B_v5", trust_remote_code=True).cuda() query_embeddings = model.encode(queries, prompt_name=query_prompt_name) doc_embeddings = model.encode(docs) print(query_embeddings.shape, doc_embeddings.shape) # (2, 1024) (2, 1024) similarities = model.similarity(query_embeddings, doc_embeddings) print(similarities) # tensor([[0.8179, 0.2958], # [0.3194, 0.7854]]) ``` ## Transformers ```python import os import torch from transformers import AutoModel, AutoTokenizer from sklearn.preprocessing import normalize query_prompt = "Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: " queries = [ "What are some ways to reduce stress?", "What are the benefits of drinking green tea?", ] queries = [query_prompt + query for query in queries] # docs do not need any prompts docs = [ "There are many effective ways to reduce stress. Some common techniques include deep breathing, meditation, and physical activity. Engaging in hobbies, spending time in nature, and connecting with loved ones can also help alleviate stress. Additionally, setting boundaries, practicing self-care, and learning to say no can prevent stress from building up.", "Green tea has been consumed for centuries and is known for its potential health benefits. It contains antioxidants that may help protect the body against damage caused by free radicals. Regular consumption of green tea has been associated with improved heart health, enhanced cognitive function, and a reduced risk of certain types of cancer. The polyphenols in green tea may also have anti-inflammatory and weight loss properties.", ] # The path of your model after cloning it model_dir = "{Your MODEL_PATH}" vector_dim = 1024 vector_linear_directory = f"2_Dense_{vector_dim}" model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).cuda().eval() tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True) vector_linear = torch.nn.Linear(in_features=model.config.hidden_size, out_features=vector_dim) vector_linear_dict = { k.replace("linear.", ""): v for k, v in torch.load(os.path.join(model_dir, f"{vector_linear_directory}/pytorch_model.bin")).items() } vector_linear.load_state_dict(vector_linear_dict) vector_linear.cuda() # Embed the queries with torch.no_grad(): input_data = tokenizer(queries, padding="longest", truncation=True, max_length=512, return_tensors="pt") input_data = {k: v.cuda() for k, v in input_data.items()} attention_mask = input_data["attention_mask"] last_hidden_state = model(**input_data)[0] last_hidden = last_hidden_state.masked_fill(~attention_mask[..., None].bool(), 0.0) query_vectors = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] query_vectors = normalize(vector_linear(query_vectors).cpu().numpy()) # Embed the documents with torch.no_grad(): input_data = tokenizer(docs, padding="longest", truncation=True, max_length=512, return_tensors="pt") input_data = {k: v.cuda() for k, v in input_data.items()} attention_mask = input_data["attention_mask"] last_hidden_state = model(**input_data)[0] last_hidden = last_hidden_state.masked_fill(~attention_mask[..., None].bool(), 0.0) docs_vectors = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] docs_vectors = normalize(vector_linear(docs_vectors).cpu().numpy()) print(query_vectors.shape, docs_vectors.shape) # (2, 1024) (2, 1024) similarities = query_vectors @ docs_vectors.T print(similarities) # [[0.8178789 0.2958377 ] # [0.31938642 0.7853526 ]] ``` # FAQ Q: The details of training? A: The training method and datasets will be released in the future. (specific time unknown, may be provided in a paper) Q: How to choose a suitable prompt for my own task? A: In most cases, please use the s2p and s2s prompts. These two prompts account for the vast majority of the training data. Q: How to reproduce MTEB results? A: Please use evaluation scripts in `Alibaba-NLP/gte-Qwen2-1.5B-instruct` or `intfloat/e5-mistral-7b-instruct` Q: Why each dimension has a linear weight? A: MRL has multiple training methods, we choose this method which has the best performance. Q: What is the sequence length of models? A: 512 is recommended, in our experiments, almost all models perform poorly on specialized long text retrieval datasets. Besides, the model is trained on datasets of 512 length. This may be an optimization term. If you have any questions, please start a discussion on community.
{"license": "mit", "tags": ["mteb", "sentence-transformers", "transformers", "sentence-similarity"], "model-index": [{"name": "stella_en_1.5B_v5", "results": [{"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonCounterfactualClassification (en)", "type": "mteb/amazon_counterfactual", "config": "en", "split": "test", "revision": "e8379541af4e31359cca9fbcf4b00f2671dba205"}, "metrics": [{"type": "accuracy", "value": 92.86567164179104}, {"type": "ap", "value": 72.13503907102613}, {"type": "ap_weighted", "value": 72.13503907102613}, {"type": "f1", "value": 89.5586886376355}, {"type": "f1_weighted", "value": 93.13621183004571}, {"type": "main_score", "value": 92.86567164179104}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonPolarityClassification", "type": "mteb/amazon_polarity", "config": "default", "split": "test", "revision": "e2d317d38cd51312af73b3d32a06d1a08b442046"}, "metrics": [{"type": "accuracy", "value": 97.16485}, {"type": "ap", "value": 96.05546315415225}, {"type": "ap_weighted", "value": 96.05546315415225}, {"type": "f1", "value": 97.16351087403213}, {"type": "f1_weighted", "value": 97.16351087403213}, {"type": "main_score", "value": 97.16485}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonReviewsClassification (en)", "type": "mteb/amazon_reviews_multi", "config": "en", "split": "test", "revision": "1399c76144fd37290681b995c656ef9b2e06e26d"}, "metrics": [{"type": "accuracy", "value": 59.358}, {"type": "f1", "value": 59.0264615883114}, {"type": "f1_weighted", "value": 59.0264615883114}, {"type": "main_score", "value": 59.358}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ArguAna", "type": "mteb/arguana", "config": "default", "split": "test", "revision": "c22ab2a51041ffd869aaddef7af8d8215647e41a"}, "metrics": [{"type": "main_score", "value": 65.269}, {"type": "map_at_1", "value": 41.607}, {"type": "map_at_10", "value": 57.104}, {"type": "map_at_100", "value": 57.621}, {"type": "map_at_1000", "value": 57.621}, {"type": "map_at_20", "value": 57.533}, {"type": "map_at_3", "value": 52.891999999999996}, {"type": "map_at_5", "value": 55.371}, {"type": "mrr_at_1", "value": 42.318634423897585}, {"type": "mrr_at_10", "value": 57.353970511865406}, {"type": "mrr_at_100", "value": 57.88398078476526}, {"type": "mrr_at_1000", "value": 57.88467807648422}, {"type": "mrr_at_20", "value": 57.796730533206166}, {"type": "mrr_at_3", "value": 53.200568990042775}, {"type": "mrr_at_5", "value": 55.6330014224753}, {"type": "nauc_map_at_1000_diff1", "value": 24.54414600428287}, {"type": "nauc_map_at_1000_max", "value": -8.389738078358459}, {"type": "nauc_map_at_1000_std", "value": -18.188787645801366}, {"type": "nauc_map_at_100_diff1", "value": 24.543138576462308}, {"type": "nauc_map_at_100_max", "value": -8.390896839752044}, {"type": "nauc_map_at_100_std", "value": -18.192549240185247}, {"type": "nauc_map_at_10_diff1", "value": 24.219607088995822}, {"type": "nauc_map_at_10_max", "value": -8.245734391254308}, {"type": "nauc_map_at_10_std", "value": -18.229706566466447}, {"type": "nauc_map_at_1_diff1", "value": 29.325201664812788}, {"type": "nauc_map_at_1_max", "value": -11.742800494823971}, {"type": "nauc_map_at_1_std", "value": -18.610215769702528}, {"type": "nauc_map_at_20_diff1", "value": 24.471097562798803}, {"type": "nauc_map_at_20_max", "value": -8.318035874000799}, {"type": "nauc_map_at_20_std", "value": -18.171541096773108}, {"type": "nauc_map_at_3_diff1", "value": 24.275846107642824}, {"type": "nauc_map_at_3_max", "value": -8.212242049581894}, {"type": "nauc_map_at_3_std", "value": -17.920379368937496}, {"type": "nauc_map_at_5_diff1", "value": 23.873692493209255}, {"type": "nauc_map_at_5_max", "value": -8.110347163828767}, {"type": "nauc_map_at_5_std", "value": -18.20863325596931}, {"type": "nauc_mrr_at_1000_diff1", "value": 22.656410956419975}, {"type": "nauc_mrr_at_1000_max", "value": -8.924888102233243}, {"type": "nauc_mrr_at_1000_std", "value": -18.103674384502526}, {"type": "nauc_mrr_at_100_diff1", "value": 22.655448817140968}, {"type": "nauc_mrr_at_100_max", "value": -8.926034318499038}, {"type": "nauc_mrr_at_100_std", "value": -18.10743930104164}, {"type": "nauc_mrr_at_10_diff1", "value": 22.297536272996872}, {"type": "nauc_mrr_at_10_max", "value": -8.836407556658274}, {"type": "nauc_mrr_at_10_std", "value": -18.1598393044477}, {"type": "nauc_mrr_at_1_diff1", "value": 27.419572424489708}, {"type": "nauc_mrr_at_1_max", "value": -11.42241314820691}, {"type": "nauc_mrr_at_1_std", "value": -18.54893865856313}, {"type": "nauc_mrr_at_20_diff1", "value": 22.590227214657418}, {"type": "nauc_mrr_at_20_max", "value": -8.849986456376993}, {"type": "nauc_mrr_at_20_std", "value": -18.0862391777352}, {"type": "nauc_mrr_at_3_diff1", "value": 22.415270167774988}, {"type": "nauc_mrr_at_3_max", "value": -8.692871854156435}, {"type": "nauc_mrr_at_3_std", "value": -17.6740102891955}, {"type": "nauc_mrr_at_5_diff1", "value": 21.96284578521464}, {"type": "nauc_mrr_at_5_max", "value": -8.757031535546025}, {"type": "nauc_mrr_at_5_std", "value": -18.210766964081294}, {"type": "nauc_ndcg_at_1000_diff1", "value": 23.939400161569115}, {"type": "nauc_ndcg_at_1000_max", "value": -7.866999120512983}, {"type": "nauc_ndcg_at_1000_std", "value": -17.981457019643617}, {"type": "nauc_ndcg_at_100_diff1", "value": 23.920033349619317}, {"type": "nauc_ndcg_at_100_max", "value": -7.889849409678031}, {"type": "nauc_ndcg_at_100_std", "value": -18.054931990360537}, {"type": "nauc_ndcg_at_10_diff1", "value": 22.543020461303534}, {"type": "nauc_ndcg_at_10_max", "value": -7.072111788010867}, {"type": "nauc_ndcg_at_10_std", "value": -18.26397604573537}, {"type": "nauc_ndcg_at_1_diff1", "value": 29.325201664812788}, {"type": "nauc_ndcg_at_1_max", "value": -11.742800494823971}, {"type": "nauc_ndcg_at_1_std", "value": -18.610215769702528}, {"type": "nauc_ndcg_at_20_diff1", "value": 23.551587021207972}, {"type": "nauc_ndcg_at_20_max", "value": -7.298056222649139}, {"type": "nauc_ndcg_at_20_std", "value": -18.056004880930608}, {"type": "nauc_ndcg_at_3_diff1", "value": 22.669089506345273}, {"type": "nauc_ndcg_at_3_max", "value": -7.278024373570137}, {"type": "nauc_ndcg_at_3_std", "value": -17.816657759914193}, {"type": "nauc_ndcg_at_5_diff1", "value": 21.72619728226575}, {"type": "nauc_ndcg_at_5_max", "value": -6.959741647471228}, {"type": "nauc_ndcg_at_5_std", "value": -18.35173705190235}, {"type": "nauc_precision_at_1000_diff1", "value": 5.0388241058076995}, {"type": "nauc_precision_at_1000_max", "value": 34.439879624882145}, {"type": "nauc_precision_at_1000_std", "value": 77.22610895194498}, {"type": "nauc_precision_at_100_diff1", "value": 1.340670767252794}, {"type": "nauc_precision_at_100_max", "value": 19.30870025961241}, {"type": "nauc_precision_at_100_std", "value": 35.37688289157788}, {"type": "nauc_precision_at_10_diff1", "value": 7.734227153124332}, {"type": "nauc_precision_at_10_max", "value": 4.202399088422237}, {"type": "nauc_precision_at_10_std", "value": -18.383890254046698}, {"type": "nauc_precision_at_1_diff1", "value": 29.325201664812788}, {"type": "nauc_precision_at_1_max", "value": -11.742800494823971}, {"type": "nauc_precision_at_1_std", "value": -18.610215769702528}, {"type": "nauc_precision_at_20_diff1", "value": 9.48070999361637}, {"type": "nauc_precision_at_20_max", "value": 19.056709637253025}, {"type": "nauc_precision_at_20_std", "value": -13.266821166159485}, {"type": "nauc_precision_at_3_diff1", "value": 17.245260303409747}, {"type": "nauc_precision_at_3_max", "value": -4.202455033452335}, {"type": "nauc_precision_at_3_std", "value": -17.514264039955332}, {"type": "nauc_precision_at_5_diff1", "value": 12.074628162049974}, {"type": "nauc_precision_at_5_max", "value": -1.9145501461107832}, {"type": "nauc_precision_at_5_std", "value": -19.162525528916344}, {"type": "nauc_recall_at_1000_diff1", "value": 5.038824105805915}, {"type": "nauc_recall_at_1000_max", "value": 34.43987962487738}, {"type": "nauc_recall_at_1000_std", "value": 77.22610895193765}, {"type": "nauc_recall_at_100_diff1", "value": 1.3406707672497025}, {"type": "nauc_recall_at_100_max", "value": 19.30870025960776}, {"type": "nauc_recall_at_100_std", "value": 35.37688289157515}, {"type": "nauc_recall_at_10_diff1", "value": 7.734227153124366}, {"type": "nauc_recall_at_10_max", "value": 4.202399088421976}, {"type": "nauc_recall_at_10_std", "value": -18.38389025404673}, {"type": "nauc_recall_at_1_diff1", "value": 29.325201664812788}, {"type": "nauc_recall_at_1_max", "value": -11.742800494823971}, {"type": "nauc_recall_at_1_std", "value": -18.610215769702528}, {"type": "nauc_recall_at_20_diff1", "value": 9.480709993616845}, {"type": "nauc_recall_at_20_max", "value": 19.05670963725301}, {"type": "nauc_recall_at_20_std", "value": -13.266821166158651}, {"type": "nauc_recall_at_3_diff1", "value": 17.24526030340978}, {"type": "nauc_recall_at_3_max", "value": -4.202455033452323}, {"type": "nauc_recall_at_3_std", "value": -17.51426403995538}, {"type": "nauc_recall_at_5_diff1", "value": 12.074628162049992}, {"type": "nauc_recall_at_5_max", "value": -1.914550146110865}, {"type": "nauc_recall_at_5_std", "value": -19.162525528916362}, {"type": "ndcg_at_1", "value": 41.607}, {"type": "ndcg_at_10", "value": 65.269}, {"type": "ndcg_at_100", "value": 67.289}, {"type": "ndcg_at_1000", "value": 67.29899999999999}, {"type": "ndcg_at_20", "value": 66.76299999999999}, {"type": "ndcg_at_3", "value": 56.604}, {"type": "ndcg_at_5", "value": 61.07900000000001}, {"type": "precision_at_1", "value": 41.607}, {"type": "precision_at_10", "value": 9.118}, {"type": "precision_at_100", "value": 0.996}, {"type": "precision_at_1000", "value": 0.1}, {"type": "precision_at_20", "value": 4.8469999999999995}, {"type": "precision_at_3", "value": 22.451}, {"type": "precision_at_5", "value": 15.647}, {"type": "recall_at_1", "value": 41.607}, {"type": "recall_at_10", "value": 91.181}, {"type": "recall_at_100", "value": 99.57300000000001}, {"type": "recall_at_1000", "value": 99.644}, {"type": "recall_at_20", "value": 96.942}, {"type": "recall_at_3", "value": 67.354}, {"type": "recall_at_5", "value": 78.236}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringP2P", "type": "mteb/arxiv-clustering-p2p", "config": "default", "split": "test", "revision": "a122ad7f3f0291bf49cc6f4d32aa80929df69d5d"}, "metrics": [{"type": "main_score", "value": 55.437138353189994}, {"type": "v_measure", "value": 55.437138353189994}, {"type": "v_measure_std", "value": 14.718556601335491}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringS2S", "type": "mteb/arxiv-clustering-s2s", "config": "default", "split": "test", "revision": "f910caf1a6075f7329cdf8c1a6135696f37dbd53"}, "metrics": [{"type": "main_score", "value": 50.65858459544658}, {"type": "v_measure", "value": 50.65858459544658}, {"type": "v_measure_std", "value": 14.887033747525146}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB AskUbuntuDupQuestions", "type": "mteb/askubuntudupquestions-reranking", "config": "default", "split": "test", "revision": "2000358ca161889fa9c082cb41daa8dcfb161a54"}, "metrics": [{"type": "main_score", "value": 67.32597152838535}, {"type": "map", "value": 67.32597152838535}, {"type": "mrr", "value": 78.98683111286988}, {"type": "nAUC_map_diff1", "value": 16.8624639710487}, {"type": "nAUC_map_max", "value": 24.91996491142433}, {"type": "nAUC_map_std", "value": 17.91865808793225}, {"type": "nAUC_mrr_diff1", "value": 25.03766425631947}, {"type": "nAUC_mrr_max", "value": 41.64561939958336}, {"type": "nAUC_mrr_std", "value": 23.179909345891968}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB BIOSSES", "type": "mteb/biosses-sts", "config": "default", "split": "test", "revision": "d3fb88f8f02e40887cd149695127462bbcf29b4a"}, "metrics": [{"type": "cosine_pearson", "value": 85.790820496042}, {"type": "cosine_spearman", "value": 83.10731534330517}, {"type": "euclidean_pearson", "value": 84.61741304343133}, {"type": "euclidean_spearman", "value": 83.17297949010973}, {"type": "main_score", "value": 83.10731534330517}, {"type": "manhattan_pearson", "value": 85.2137696526676}, {"type": "manhattan_spearman", "value": 84.39168195786738}, {"type": "pearson", "value": 85.790820496042}, {"type": "spearman", "value": 83.10731534330517}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB Banking77Classification", "type": "mteb/banking77", "config": "default", "split": "test", "revision": "0fd18e25b25c072e09e0d92ab615fda904d66300"}, "metrics": [{"type": "accuracy", "value": 89.78896103896105}, {"type": "f1", "value": 89.76107366333488}, {"type": "f1_weighted", "value": 89.76107366333488}, {"type": "main_score", "value": 89.78896103896105}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringP2P", "type": "mteb/biorxiv-clustering-p2p", "config": "default", "split": "test", "revision": "65b79d1d13f80053f67aca9498d9402c2d9f1f40"}, "metrics": [{"type": "main_score", "value": 50.68092296236376}, {"type": "v_measure", "value": 50.68092296236376}, {"type": "v_measure_std", "value": 0.7832640983085436}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringS2S", "type": "mteb/biorxiv-clustering-s2s", "config": "default", "split": "test", "revision": "258694dd0231531bc1fd9de6ceb52a0853c6d908"}, "metrics": [{"type": "main_score", "value": 46.86629236732983}, {"type": "v_measure", "value": 46.86629236732983}, {"type": "v_measure_std", "value": 0.8784322236350974}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackRetrieval", "type": "mteb/cqadupstack", "config": "default", "split": "test", "revision": "4ffe81d471b1924886b33c7567bfb200e9eec5c4"}, "metrics": [{"type": "main_score", "value": 47.74883333333334}, {"type": "map_at_1", "value": 30.179249999999996}, {"type": "map_at_10", "value": 41.60824999999999}, {"type": "map_at_100", "value": 42.94008333333332}, {"type": "map_at_1000", "value": 43.04666666666667}, {"type": "map_at_20", "value": 42.36833333333334}, {"type": "map_at_3", "value": 38.23491666666666}, {"type": "map_at_5", "value": 40.10183333333333}, {"type": "mrr_at_1", "value": 36.47676085808166}, {"type": "mrr_at_10", "value": 46.300991916437155}, {"type": "mrr_at_100", "value": 47.12155753713262}, {"type": "mrr_at_1000", "value": 47.168033610799945}, {"type": "mrr_at_20", "value": 46.80405724560391}, {"type": "mrr_at_3", "value": 43.77000352801797}, {"type": "mrr_at_5", "value": 45.22295361704542}, {"type": "nauc_map_at_1000_diff1", "value": 46.953671666941524}, {"type": "nauc_map_at_1000_max", "value": 32.260396316089675}, {"type": "nauc_map_at_1000_std", "value": 0.6657766120094878}, {"type": "nauc_map_at_100_diff1", "value": 46.94717463394555}, {"type": "nauc_map_at_100_max", "value": 32.25088350678177}, {"type": "nauc_map_at_100_std", "value": 0.6257017014549283}, {"type": "nauc_map_at_10_diff1", "value": 46.974678429336464}, {"type": "nauc_map_at_10_max", "value": 31.862230807295504}, {"type": "nauc_map_at_10_std", "value": -0.14758828549579284}, {"type": "nauc_map_at_1_diff1", "value": 52.48913346466124}, {"type": "nauc_map_at_1_max", "value": 29.874374024967725}, {"type": "nauc_map_at_1_std", "value": -2.433547569836134}, {"type": "nauc_map_at_20_diff1", "value": 46.96088684217651}, {"type": "nauc_map_at_20_max", "value": 32.08954208613205}, {"type": "nauc_map_at_20_std", "value": 0.25946321113436527}, {"type": "nauc_map_at_3_diff1", "value": 47.703230121518345}, {"type": "nauc_map_at_3_max", "value": 30.977880095983107}, {"type": "nauc_map_at_3_std", "value": -1.342777563991804}, {"type": "nauc_map_at_5_diff1", "value": 47.1615010199957}, {"type": "nauc_map_at_5_max", "value": 31.420885812683284}, {"type": "nauc_map_at_5_std", "value": -0.8789297099444306}, {"type": "nauc_mrr_at_1000_diff1", "value": 46.69178645962615}, {"type": "nauc_mrr_at_1000_max", "value": 34.392807413340655}, {"type": "nauc_mrr_at_1000_std", "value": 1.6155464863667934}, {"type": "nauc_mrr_at_100_diff1", "value": 46.67417236349189}, {"type": "nauc_mrr_at_100_max", "value": 34.384607045512624}, {"type": "nauc_mrr_at_100_std", "value": 1.6259917384109652}, {"type": "nauc_mrr_at_10_diff1", "value": 46.60497560446239}, {"type": "nauc_mrr_at_10_max", "value": 34.32918897817958}, {"type": "nauc_mrr_at_10_std", "value": 1.39387793769014}, {"type": "nauc_mrr_at_1_diff1", "value": 51.61608573254137}, {"type": "nauc_mrr_at_1_max", "value": 35.18105023234596}, {"type": "nauc_mrr_at_1_std", "value": 0.17943702145478177}, {"type": "nauc_mrr_at_20_diff1", "value": 46.635943069860254}, {"type": "nauc_mrr_at_20_max", "value": 34.37050973118794}, {"type": "nauc_mrr_at_20_std", "value": 1.5346464678860607}, {"type": "nauc_mrr_at_3_diff1", "value": 47.154389369038334}, {"type": "nauc_mrr_at_3_max", "value": 34.41036411855465}, {"type": "nauc_mrr_at_3_std", "value": 0.924551812357872}, {"type": "nauc_mrr_at_5_diff1", "value": 46.6690101691763}, {"type": "nauc_mrr_at_5_max", "value": 34.29740388138466}, {"type": "nauc_mrr_at_5_std", "value": 1.0567184149139792}, {"type": "nauc_ndcg_at_1000_diff1", "value": 45.375448289173264}, {"type": "nauc_ndcg_at_1000_max", "value": 33.47957083714482}, {"type": "nauc_ndcg_at_1000_std", "value": 3.192251100225568}, {"type": "nauc_ndcg_at_100_diff1", "value": 44.93601014699499}, {"type": "nauc_ndcg_at_100_max", "value": 33.21249888295249}, {"type": "nauc_ndcg_at_100_std", "value": 3.609842852934217}, {"type": "nauc_ndcg_at_10_diff1", "value": 44.87893284011915}, {"type": "nauc_ndcg_at_10_max", "value": 32.384885249478515}, {"type": "nauc_ndcg_at_10_std", "value": 1.454493065035396}, {"type": "nauc_ndcg_at_1_diff1", "value": 51.61608573254137}, {"type": "nauc_ndcg_at_1_max", "value": 35.18105023234596}, {"type": "nauc_ndcg_at_1_std", "value": 0.17943702145478177}, {"type": "nauc_ndcg_at_20_diff1", "value": 44.867752179050605}, {"type": "nauc_ndcg_at_20_max", "value": 32.689535921840196}, {"type": "nauc_ndcg_at_20_std", "value": 2.337765158573901}, {"type": "nauc_ndcg_at_3_diff1", "value": 45.87485821381341}, {"type": "nauc_ndcg_at_3_max", "value": 32.33282450558947}, {"type": "nauc_ndcg_at_3_std", "value": 0.0681643829273283}, {"type": "nauc_ndcg_at_5_diff1", "value": 45.202902131892394}, {"type": "nauc_ndcg_at_5_max", "value": 32.1026971523917}, {"type": "nauc_ndcg_at_5_std", "value": 0.3565572833774486}, {"type": "nauc_precision_at_1000_diff1", "value": -8.935267931198956}, {"type": "nauc_precision_at_1000_max", "value": 6.464981960169269}, {"type": "nauc_precision_at_1000_std", "value": 10.662786182234633}, {"type": "nauc_precision_at_100_diff1", "value": -1.64091517847155}, {"type": "nauc_precision_at_100_max", "value": 15.175617871025024}, {"type": "nauc_precision_at_100_std", "value": 16.924256989248075}, {"type": "nauc_precision_at_10_diff1", "value": 15.676651966277047}, {"type": "nauc_precision_at_10_max", "value": 26.243734188847117}, {"type": "nauc_precision_at_10_std", "value": 10.601741034956333}, {"type": "nauc_precision_at_1_diff1", "value": 51.61608573254137}, {"type": "nauc_precision_at_1_max", "value": 35.18105023234596}, {"type": "nauc_precision_at_1_std", "value": 0.17943702145478177}, {"type": "nauc_precision_at_20_diff1", "value": 9.447267260198654}, {"type": "nauc_precision_at_20_max", "value": 23.024130858142723}, {"type": "nauc_precision_at_20_std", "value": 13.739145648899603}, {"type": "nauc_precision_at_3_diff1", "value": 30.11583572134629}, {"type": "nauc_precision_at_3_max", "value": 31.37321080069495}, {"type": "nauc_precision_at_3_std", "value": 4.705512374126024}, {"type": "nauc_precision_at_5_diff1", "value": 23.192015335996093}, {"type": "nauc_precision_at_5_max", "value": 29.415746835998764}, {"type": "nauc_precision_at_5_std", "value": 6.843498772798558}, {"type": "nauc_recall_at_1000_diff1", "value": 25.36573313426033}, {"type": "nauc_recall_at_1000_max", "value": 43.06672256524168}, {"type": "nauc_recall_at_1000_std", "value": 47.93664853815292}, {"type": "nauc_recall_at_100_diff1", "value": 31.222880916617406}, {"type": "nauc_recall_at_100_max", "value": 31.761159904172658}, {"type": "nauc_recall_at_100_std", "value": 23.034218976635877}, {"type": "nauc_recall_at_10_diff1", "value": 36.23439028915225}, {"type": "nauc_recall_at_10_max", "value": 28.473458977606438}, {"type": "nauc_recall_at_10_std", "value": 3.7797969934159}, {"type": "nauc_recall_at_1_diff1", "value": 52.48913346466124}, {"type": "nauc_recall_at_1_max", "value": 29.874374024967725}, {"type": "nauc_recall_at_1_std", "value": -2.433547569836134}, {"type": "nauc_recall_at_20_diff1", "value": 34.678676952584766}, {"type": "nauc_recall_at_20_max", "value": 29.04638392522168}, {"type": "nauc_recall_at_20_std", "value": 8.148894982082549}, {"type": "nauc_recall_at_3_diff1", "value": 41.31029996231311}, {"type": "nauc_recall_at_3_max", "value": 28.44199443414157}, {"type": "nauc_recall_at_3_std", "value": -0.747324057600377}, {"type": "nauc_recall_at_5_diff1", "value": 38.535873899920674}, {"type": "nauc_recall_at_5_max", "value": 27.942667805948375}, {"type": "nauc_recall_at_5_std", "value": 0.30652206930973686}, {"type": "ndcg_at_1", "value": 36.47675}, {"type": "ndcg_at_10", "value": 47.74883333333334}, {"type": "ndcg_at_100", "value": 52.902416666666674}, {"type": "ndcg_at_1000", "value": 54.69116666666667}, {"type": "ndcg_at_20", "value": 49.89758333333333}, {"type": "ndcg_at_3", "value": 42.462250000000004}, {"type": "ndcg_at_5", "value": 44.91841666666667}, {"type": "precision_at_1", "value": 36.47675}, {"type": "precision_at_10", "value": 8.582416666666665}, {"type": "precision_at_100", "value": 1.31475}, {"type": "precision_at_1000", "value": 0.16458333333333333}, {"type": "precision_at_20", "value": 5.021833333333333}, {"type": "precision_at_3", "value": 20.004499999999997}, {"type": "precision_at_5", "value": 14.178666666666665}, {"type": "recall_at_1", "value": 30.179249999999996}, {"type": "recall_at_10", "value": 60.950166666666675}, {"type": "recall_at_100", "value": 83.19025}, {"type": "recall_at_1000", "value": 95.27774999999998}, {"type": "recall_at_20", "value": 68.80175}, {"type": "recall_at_3", "value": 46.01841666666666}, {"type": "recall_at_5", "value": 52.482416666666666}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ClimateFEVER", "type": "mteb/climate-fever", "config": "default", "split": "test", "revision": "47f2ac6acb640fc46020b02a5b59fdda04d39380"}, "metrics": [{"type": "main_score", "value": 46.113}, {"type": "map_at_1", "value": 20.122999999999998}, {"type": "map_at_10", "value": 35.474}, {"type": "map_at_100", "value": 37.592}, {"type": "map_at_1000", "value": 37.773}, {"type": "map_at_20", "value": 36.637}, {"type": "map_at_3", "value": 29.731}, {"type": "map_at_5", "value": 32.964}, {"type": "mrr_at_1", "value": 46.71009771986971}, {"type": "mrr_at_10", "value": 58.855669303552105}, {"type": "mrr_at_100", "value": 59.389249674038425}, {"type": "mrr_at_1000", "value": 59.408448104362364}, {"type": "mrr_at_20", "value": 59.23881203149016}, {"type": "mrr_at_3", "value": 56.18892508143328}, {"type": "mrr_at_5", "value": 57.85342019543985}, {"type": "nauc_map_at_1000_diff1", "value": 27.047031037721958}, {"type": "nauc_map_at_1000_max", "value": 43.25240279148033}, {"type": "nauc_map_at_1000_std", "value": 20.795849418696037}, {"type": "nauc_map_at_100_diff1", "value": 27.044739015116452}, {"type": "nauc_map_at_100_max", "value": 43.24042159787812}, {"type": "nauc_map_at_100_std", "value": 20.799952124137683}, {"type": "nauc_map_at_10_diff1", "value": 27.372696854670338}, {"type": "nauc_map_at_10_max", "value": 43.054456574721684}, {"type": "nauc_map_at_10_std", "value": 19.537162110136645}, {"type": "nauc_map_at_1_diff1", "value": 43.65424623953092}, {"type": "nauc_map_at_1_max", "value": 45.17986509998762}, {"type": "nauc_map_at_1_std", "value": 8.497107052335414}, {"type": "nauc_map_at_20_diff1", "value": 27.224535846566074}, {"type": "nauc_map_at_20_max", "value": 43.12222854561229}, {"type": "nauc_map_at_20_std", "value": 20.29982972202669}, {"type": "nauc_map_at_3_diff1", "value": 30.87847002319001}, {"type": "nauc_map_at_3_max", "value": 42.890027891707575}, {"type": "nauc_map_at_3_std", "value": 13.857451947580929}, {"type": "nauc_map_at_5_diff1", "value": 27.966867093591542}, {"type": "nauc_map_at_5_max", "value": 42.35826637592201}, {"type": "nauc_map_at_5_std", "value": 16.993102524058624}, {"type": "nauc_mrr_at_1000_diff1", "value": 30.191544077608164}, {"type": "nauc_mrr_at_1000_max", "value": 44.959438920351644}, {"type": "nauc_mrr_at_1000_std", "value": 24.065801376465114}, {"type": "nauc_mrr_at_100_diff1", "value": 30.170368115494}, {"type": "nauc_mrr_at_100_max", "value": 44.955868115761156}, {"type": "nauc_mrr_at_100_std", "value": 24.093510767847707}, {"type": "nauc_mrr_at_10_diff1", "value": 30.128430637520175}, {"type": "nauc_mrr_at_10_max", "value": 44.97689261350708}, {"type": "nauc_mrr_at_10_std", "value": 24.037049561818897}, {"type": "nauc_mrr_at_1_diff1", "value": 35.323351939108214}, {"type": "nauc_mrr_at_1_max", "value": 43.85026244855636}, {"type": "nauc_mrr_at_1_std", "value": 17.040662141218974}, {"type": "nauc_mrr_at_20_diff1", "value": 30.192006556160443}, {"type": "nauc_mrr_at_20_max", "value": 45.02814530774032}, {"type": "nauc_mrr_at_20_std", "value": 24.20885865448696}, {"type": "nauc_mrr_at_3_diff1", "value": 29.88250163424518}, {"type": "nauc_mrr_at_3_max", "value": 44.25768944883186}, {"type": "nauc_mrr_at_3_std", "value": 22.804183393364198}, {"type": "nauc_mrr_at_5_diff1", "value": 30.269824490420767}, {"type": "nauc_mrr_at_5_max", "value": 44.97443265796657}, {"type": "nauc_mrr_at_5_std", "value": 23.894159916141177}, {"type": "nauc_ndcg_at_1000_diff1", "value": 24.533764005407356}, {"type": "nauc_ndcg_at_1000_max", "value": 44.50902713386608}, {"type": "nauc_ndcg_at_1000_std", "value": 27.589506980238404}, {"type": "nauc_ndcg_at_100_diff1", "value": 24.209785073940353}, {"type": "nauc_ndcg_at_100_max", "value": 44.18257063893669}, {"type": "nauc_ndcg_at_100_std", "value": 27.963150866401943}, {"type": "nauc_ndcg_at_10_diff1", "value": 25.168069201989486}, {"type": "nauc_ndcg_at_10_max", "value": 43.84940910683214}, {"type": "nauc_ndcg_at_10_std", "value": 24.810707270956435}, {"type": "nauc_ndcg_at_1_diff1", "value": 35.323351939108214}, {"type": "nauc_ndcg_at_1_max", "value": 43.85026244855636}, {"type": "nauc_ndcg_at_1_std", "value": 17.040662141218974}, {"type": "nauc_ndcg_at_20_diff1", "value": 24.829924800466834}, {"type": "nauc_ndcg_at_20_max", "value": 43.738574327059716}, {"type": "nauc_ndcg_at_20_std", "value": 26.252370278684072}, {"type": "nauc_ndcg_at_3_diff1", "value": 27.321943393906274}, {"type": "nauc_ndcg_at_3_max", "value": 42.16584786993447}, {"type": "nauc_ndcg_at_3_std", "value": 18.24775079455969}, {"type": "nauc_ndcg_at_5_diff1", "value": 26.043785418347998}, {"type": "nauc_ndcg_at_5_max", "value": 42.874593895388344}, {"type": "nauc_ndcg_at_5_std", "value": 21.294004555506117}, {"type": "nauc_precision_at_1000_diff1", "value": -22.073027615308582}, {"type": "nauc_precision_at_1000_max", "value": -6.549723766317357}, {"type": "nauc_precision_at_1000_std", "value": 18.301749191241306}, {"type": "nauc_precision_at_100_diff1", "value": -15.654286887593619}, {"type": "nauc_precision_at_100_max", "value": 6.401516251421999}, {"type": "nauc_precision_at_100_std", "value": 29.170680324929805}, {"type": "nauc_precision_at_10_diff1", "value": -4.362381972892247}, {"type": "nauc_precision_at_10_max", "value": 22.10943515872447}, {"type": "nauc_precision_at_10_std", "value": 31.869699459530022}, {"type": "nauc_precision_at_1_diff1", "value": 35.323351939108214}, {"type": "nauc_precision_at_1_max", "value": 43.85026244855636}, {"type": "nauc_precision_at_1_std", "value": 17.040662141218974}, {"type": "nauc_precision_at_20_diff1", "value": -7.50749661117875}, {"type": "nauc_precision_at_20_max", "value": 16.80584016023257}, {"type": "nauc_precision_at_20_std", "value": 31.976755897112437}, {"type": "nauc_precision_at_3_diff1", "value": 7.402667538773083}, {"type": "nauc_precision_at_3_max", "value": 31.2088401330676}, {"type": "nauc_precision_at_3_std", "value": 24.287905698405662}, {"type": "nauc_precision_at_5_diff1", "value": 0.7479172565343901}, {"type": "nauc_precision_at_5_max", "value": 26.28427734237825}, {"type": "nauc_precision_at_5_std", "value": 28.246947120310317}, {"type": "nauc_recall_at_1000_diff1", "value": 2.4778431086370496}, {"type": "nauc_recall_at_1000_max", "value": 40.2231995797509}, {"type": "nauc_recall_at_1000_std", "value": 52.62124052183862}, {"type": "nauc_recall_at_100_diff1", "value": 8.960962419741463}, {"type": "nauc_recall_at_100_max", "value": 35.81132850291491}, {"type": "nauc_recall_at_100_std", "value": 40.020903251786166}, {"type": "nauc_recall_at_10_diff1", "value": 15.603400751376636}, {"type": "nauc_recall_at_10_max", "value": 37.570127529136485}, {"type": "nauc_recall_at_10_std", "value": 28.07128410238545}, {"type": "nauc_recall_at_1_diff1", "value": 43.65424623953092}, {"type": "nauc_recall_at_1_max", "value": 45.17986509998762}, {"type": "nauc_recall_at_1_std", "value": 8.497107052335414}, {"type": "nauc_recall_at_20_diff1", "value": 13.844820282832346}, {"type": "nauc_recall_at_20_max", "value": 36.0106148516309}, {"type": "nauc_recall_at_20_std", "value": 31.453103910565254}, {"type": "nauc_recall_at_3_diff1", "value": 24.359328154117748}, {"type": "nauc_recall_at_3_max", "value": 39.93774251377568}, {"type": "nauc_recall_at_3_std", "value": 16.214921517509648}, {"type": "nauc_recall_at_5_diff1", "value": 18.75788451360292}, {"type": "nauc_recall_at_5_max", "value": 38.177646107055516}, {"type": "nauc_recall_at_5_std", "value": 22.17196825834675}, {"type": "ndcg_at_1", "value": 46.71}, {"type": "ndcg_at_10", "value": 46.113}, {"type": "ndcg_at_100", "value": 53.035}, {"type": "ndcg_at_1000", "value": 55.724}, {"type": "ndcg_at_20", "value": 48.929}, {"type": "ndcg_at_3", "value": 39.501999999999995}, {"type": "ndcg_at_5", "value": 41.792}, {"type": "precision_at_1", "value": 46.71}, {"type": "precision_at_10", "value": 14.274000000000001}, {"type": "precision_at_100", "value": 2.1870000000000003}, {"type": "precision_at_1000", "value": 0.269}, {"type": "precision_at_20", "value": 8.375}, {"type": "precision_at_3", "value": 29.881}, {"type": "precision_at_5", "value": 22.697}, {"type": "recall_at_1", "value": 20.122999999999998}, {"type": "recall_at_10", "value": 52.22}, {"type": "recall_at_100", "value": 75.388}, {"type": "recall_at_1000", "value": 89.938}, {"type": "recall_at_20", "value": 60.077000000000005}, {"type": "recall_at_3", "value": 35.150999999999996}, {"type": "recall_at_5", "value": 42.748000000000005}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB DBPedia", "type": "mteb/dbpedia", "config": "default", "split": "test", "revision": "c0f706b76e590d620bd6618b3ca8efdd34e2d659"}, "metrics": [{"type": "main_score", "value": 52.276999999999994}, {"type": "map_at_1", "value": 9.949}, {"type": "map_at_10", "value": 24.891}, {"type": "map_at_100", "value": 37.111}, {"type": "map_at_1000", "value": 39.266}, {"type": "map_at_20", "value": 29.685}, {"type": "map_at_3", "value": 16.586000000000002}, {"type": "map_at_5", "value": 19.982}, {"type": "mrr_at_1", "value": 76.25}, {"type": "mrr_at_10", "value": 82.4518849206349}, {"type": "mrr_at_100", "value": 82.70302194564499}, {"type": "mrr_at_1000", "value": 82.70909729942254}, {"type": "mrr_at_20", "value": 82.60492765962964}, {"type": "mrr_at_3", "value": 81.33333333333331}, {"type": "mrr_at_5", "value": 82.14583333333331}, {"type": "nauc_map_at_1000_diff1", "value": 21.427201262456556}, {"type": "nauc_map_at_1000_max", "value": 35.357361590816076}, {"type": "nauc_map_at_1000_std", "value": 24.785419223353717}, {"type": "nauc_map_at_100_diff1", "value": 22.82358692021537}, {"type": "nauc_map_at_100_max", "value": 35.07399692072945}, {"type": "nauc_map_at_100_std", "value": 22.679878828987025}, {"type": "nauc_map_at_10_diff1", "value": 26.491769223479643}, {"type": "nauc_map_at_10_max", "value": 20.78079385443902}, {"type": "nauc_map_at_10_std", "value": -4.910406292079661}, {"type": "nauc_map_at_1_diff1", "value": 35.20851030208876}, {"type": "nauc_map_at_1_max", "value": 5.783003346365858}, {"type": "nauc_map_at_1_std", "value": -21.11679133835354}, {"type": "nauc_map_at_20_diff1", "value": 24.80097499300491}, {"type": "nauc_map_at_20_max", "value": 26.807021360774975}, {"type": "nauc_map_at_20_std", "value": 4.793103995429955}, {"type": "nauc_map_at_3_diff1", "value": 29.238193458890173}, {"type": "nauc_map_at_3_max", "value": 10.300839972189456}, {"type": "nauc_map_at_3_std", "value": -17.889666731981592}, {"type": "nauc_map_at_5_diff1", "value": 28.773624870573926}, {"type": "nauc_map_at_5_max", "value": 14.951435645422887}, {"type": "nauc_map_at_5_std", "value": -13.319697827173565}, {"type": "nauc_mrr_at_1000_diff1", "value": 55.232544856708785}, {"type": "nauc_mrr_at_1000_max", "value": 64.73225637682637}, {"type": "nauc_mrr_at_1000_std", "value": 37.57480399594188}, {"type": "nauc_mrr_at_100_diff1", "value": 55.219251601773735}, {"type": "nauc_mrr_at_100_max", "value": 64.73305063663611}, {"type": "nauc_mrr_at_100_std", "value": 37.56458562909293}, {"type": "nauc_mrr_at_10_diff1", "value": 55.123463838253464}, {"type": "nauc_mrr_at_10_max", "value": 64.91914041040233}, {"type": "nauc_mrr_at_10_std", "value": 37.76482503851598}, {"type": "nauc_mrr_at_1_diff1", "value": 56.45461238513347}, {"type": "nauc_mrr_at_1_max", "value": 63.11782510293676}, {"type": "nauc_mrr_at_1_std", "value": 33.592561284868985}, {"type": "nauc_mrr_at_20_diff1", "value": 55.15401961460458}, {"type": "nauc_mrr_at_20_max", "value": 64.77145835613156}, {"type": "nauc_mrr_at_20_std", "value": 37.471561418305804}, {"type": "nauc_mrr_at_3_diff1", "value": 54.64387438697658}, {"type": "nauc_mrr_at_3_max", "value": 64.27618995019164}, {"type": "nauc_mrr_at_3_std", "value": 39.391637295269014}, {"type": "nauc_mrr_at_5_diff1", "value": 55.08702591239485}, {"type": "nauc_mrr_at_5_max", "value": 64.6071475650635}, {"type": "nauc_mrr_at_5_std", "value": 37.97185134269896}, {"type": "nauc_ndcg_at_1000_diff1", "value": 31.696698876400387}, {"type": "nauc_ndcg_at_1000_max", "value": 52.12183760001191}, {"type": "nauc_ndcg_at_1000_std", "value": 40.197596211778716}, {"type": "nauc_ndcg_at_100_diff1", "value": 33.253120193433666}, {"type": "nauc_ndcg_at_100_max", "value": 49.47167758554746}, {"type": "nauc_ndcg_at_100_std", "value": 32.643833139756204}, {"type": "nauc_ndcg_at_10_diff1", "value": 27.065541392580013}, {"type": "nauc_ndcg_at_10_max", "value": 45.83504281289289}, {"type": "nauc_ndcg_at_10_std", "value": 27.11739500732328}, {"type": "nauc_ndcg_at_1_diff1", "value": 49.42808250022517}, {"type": "nauc_ndcg_at_1_max", "value": 53.502615048520354}, {"type": "nauc_ndcg_at_1_std", "value": 27.17555908836708}, {"type": "nauc_ndcg_at_20_diff1", "value": 29.374791382330308}, {"type": "nauc_ndcg_at_20_max", "value": 43.91246842479055}, {"type": "nauc_ndcg_at_20_std", "value": 23.419410620550316}, {"type": "nauc_ndcg_at_3_diff1", "value": 26.71550354496204}, {"type": "nauc_ndcg_at_3_max", "value": 43.9641457892003}, {"type": "nauc_ndcg_at_3_std", "value": 27.320024167947686}, {"type": "nauc_ndcg_at_5_diff1", "value": 27.020654974589487}, {"type": "nauc_ndcg_at_5_max", "value": 46.130417266030584}, {"type": "nauc_ndcg_at_5_std", "value": 28.392009019010068}, {"type": "nauc_precision_at_1000_diff1", "value": -21.47455482181002}, {"type": "nauc_precision_at_1000_max", "value": -9.721907229236024}, {"type": "nauc_precision_at_1000_std", "value": -1.061132062651487}, {"type": "nauc_precision_at_100_diff1", "value": -12.35759246101943}, {"type": "nauc_precision_at_100_max", "value": 15.509512444892168}, {"type": "nauc_precision_at_100_std", "value": 36.21183578592014}, {"type": "nauc_precision_at_10_diff1", "value": -6.136998947343125}, {"type": "nauc_precision_at_10_max", "value": 32.30037906748288}, {"type": "nauc_precision_at_10_std", "value": 41.4500302476981}, {"type": "nauc_precision_at_1_diff1", "value": 56.45461238513347}, {"type": "nauc_precision_at_1_max", "value": 63.11782510293676}, {"type": "nauc_precision_at_1_std", "value": 33.592561284868985}, {"type": "nauc_precision_at_20_diff1", "value": -7.335890123683174}, {"type": "nauc_precision_at_20_max", "value": 28.31417075291312}, {"type": "nauc_precision_at_20_std", "value": 41.405935715061815}, {"type": "nauc_precision_at_3_diff1", "value": 7.117255890225942}, {"type": "nauc_precision_at_3_max", "value": 39.19894132683829}, {"type": "nauc_precision_at_3_std", "value": 38.48255841994843}, {"type": "nauc_precision_at_5_diff1", "value": 1.861523090114206}, {"type": "nauc_precision_at_5_max", "value": 38.11649223007208}, {"type": "nauc_precision_at_5_std", "value": 40.52993530374645}, {"type": "nauc_recall_at_1000_diff1", "value": 26.497648584314636}, {"type": "nauc_recall_at_1000_max", "value": 44.48069746734414}, {"type": "nauc_recall_at_1000_std", "value": 53.16438130228715}, {"type": "nauc_recall_at_100_diff1", "value": 26.353456899511446}, {"type": "nauc_recall_at_100_max", "value": 37.57379787884197}, {"type": "nauc_recall_at_100_std", "value": 29.197468295989548}, {"type": "nauc_recall_at_10_diff1", "value": 22.80445738351114}, {"type": "nauc_recall_at_10_max", "value": 15.895630778449046}, {"type": "nauc_recall_at_10_std", "value": -8.746224797644501}, {"type": "nauc_recall_at_1_diff1", "value": 35.20851030208876}, {"type": "nauc_recall_at_1_max", "value": 5.783003346365858}, {"type": "nauc_recall_at_1_std", "value": -21.11679133835354}, {"type": "nauc_recall_at_20_diff1", "value": 22.34028867678706}, {"type": "nauc_recall_at_20_max", "value": 21.42373427646772}, {"type": "nauc_recall_at_20_std", "value": 0.4533036151015875}, {"type": "nauc_recall_at_3_diff1", "value": 24.96853445599229}, {"type": "nauc_recall_at_3_max", "value": 6.245185375804208}, {"type": "nauc_recall_at_3_std", "value": -20.200240127099622}, {"type": "nauc_recall_at_5_diff1", "value": 24.749259476710623}, {"type": "nauc_recall_at_5_max", "value": 11.024592845995942}, {"type": "nauc_recall_at_5_std", "value": -16.15683085641543}, {"type": "ndcg_at_1", "value": 64.125}, {"type": "ndcg_at_10", "value": 52.276999999999994}, {"type": "ndcg_at_100", "value": 57.440000000000005}, {"type": "ndcg_at_1000", "value": 64.082}, {"type": "ndcg_at_20", "value": 51.383}, {"type": "ndcg_at_3", "value": 55.769000000000005}, {"type": "ndcg_at_5", "value": 53.978}, {"type": "precision_at_1", "value": 76.25}, {"type": "precision_at_10", "value": 43.05}, {"type": "precision_at_100", "value": 14.09}, {"type": "precision_at_1000", "value": 2.662}, {"type": "precision_at_20", "value": 33.112}, {"type": "precision_at_3", "value": 59.833000000000006}, {"type": "precision_at_5", "value": 53.05}, {"type": "recall_at_1", "value": 9.949}, {"type": "recall_at_10", "value": 30.424}, {"type": "recall_at_100", "value": 64.062}, {"type": "recall_at_1000", "value": 85.916}, {"type": "recall_at_20", "value": 39.895}, {"type": "recall_at_3", "value": 17.876}, {"type": "recall_at_5", "value": 22.536}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB EmotionClassification", "type": "mteb/emotion", "config": "default", "split": "test", "revision": "4f58c6b202a23cf9a4da393831edf4f9183cad37"}, "metrics": [{"type": "accuracy", "value": 84.29499999999999}, {"type": "f1", "value": 79.76188258172078}, {"type": "f1_weighted", "value": 84.96026012933847}, {"type": "main_score", "value": 84.29499999999999}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB FEVER", "type": "mteb/fever", "config": "default", "split": "test", "revision": "bea83ef9e8fb933d90a2f1d5515737465d613e12"}, "metrics": [{"type": "main_score", "value": 94.83200000000001}, {"type": "map_at_1", "value": 87.339}, {"type": "map_at_10", "value": 92.92099999999999}, {"type": "map_at_100", "value": 93.108}, {"type": "map_at_1000", "value": 93.116}, {"type": "map_at_20", "value": 93.041}, {"type": "map_at_3", "value": 92.219}, {"type": "map_at_5", "value": 92.664}, {"type": "mrr_at_1", "value": 93.99939993999399}, {"type": "mrr_at_10", "value": 96.55188137861403}, {"type": "mrr_at_100", "value": 96.5652366009286}, {"type": "mrr_at_1000", "value": 96.5652625550811}, {"type": "mrr_at_20", "value": 96.5601781754844}, {"type": "mrr_at_3", "value": 96.45714571457142}, {"type": "mrr_at_5", "value": 96.544904490449}, {"type": "nauc_map_at_1000_diff1", "value": 51.81676454961933}, {"type": "nauc_map_at_1000_max", "value": 24.904822914926118}, {"type": "nauc_map_at_1000_std", "value": -3.8110347821630404}, {"type": "nauc_map_at_100_diff1", "value": 51.77514975011158}, {"type": "nauc_map_at_100_max", "value": 24.912497341800094}, {"type": "nauc_map_at_100_std", "value": -3.76229517662447}, {"type": "nauc_map_at_10_diff1", "value": 51.29608296382479}, {"type": "nauc_map_at_10_max", "value": 24.78704970246707}, {"type": "nauc_map_at_10_std", "value": -3.723130815783328}, {"type": "nauc_map_at_1_diff1", "value": 59.90813138005125}, {"type": "nauc_map_at_1_max", "value": 24.58479295693794}, {"type": "nauc_map_at_1_std", "value": -8.056152492777027}, {"type": "nauc_map_at_20_diff1", "value": 51.428639331678326}, {"type": "nauc_map_at_20_max", "value": 24.849214517705086}, {"type": "nauc_map_at_20_std", "value": -3.685550123874596}, {"type": "nauc_map_at_3_diff1", "value": 50.94399923719279}, {"type": "nauc_map_at_3_max", "value": 24.359700180006207}, {"type": "nauc_map_at_3_std", "value": -5.407767408816422}, {"type": "nauc_map_at_5_diff1", "value": 50.767302682959546}, {"type": "nauc_map_at_5_max", "value": 24.491113461892215}, {"type": "nauc_map_at_5_std", "value": -4.058336127339082}, {"type": "nauc_mrr_at_1000_diff1", "value": 79.86042313551833}, {"type": "nauc_mrr_at_1000_max", "value": 23.20960445633933}, {"type": "nauc_mrr_at_1000_std", "value": -23.54334295120471}, {"type": "nauc_mrr_at_100_diff1", "value": 79.85991247027636}, {"type": "nauc_mrr_at_100_max", "value": 23.210085926780106}, {"type": "nauc_mrr_at_100_std", "value": -23.542508200789197}, {"type": "nauc_mrr_at_10_diff1", "value": 79.71095155563415}, {"type": "nauc_mrr_at_10_max", "value": 23.24128650883908}, {"type": "nauc_mrr_at_10_std", "value": -23.408502781834102}, {"type": "nauc_mrr_at_1_diff1", "value": 82.6349900233902}, {"type": "nauc_mrr_at_1_max", "value": 21.994548214014227}, {"type": "nauc_mrr_at_1_std", "value": -22.549769792179262}, {"type": "nauc_mrr_at_20_diff1", "value": 79.76465012873038}, {"type": "nauc_mrr_at_20_max", "value": 23.17575026523213}, {"type": "nauc_mrr_at_20_std", "value": -23.492660166315048}, {"type": "nauc_mrr_at_3_diff1", "value": 79.91074933379953}, {"type": "nauc_mrr_at_3_max", "value": 24.14246499097892}, {"type": "nauc_mrr_at_3_std", "value": -25.22601708389664}, {"type": "nauc_mrr_at_5_diff1", "value": 79.62092651565847}, {"type": "nauc_mrr_at_5_max", "value": 23.315937737034425}, {"type": "nauc_mrr_at_5_std", "value": -23.317659360058403}, {"type": "nauc_ndcg_at_1000_diff1", "value": 54.404537986779225}, {"type": "nauc_ndcg_at_1000_max", "value": 25.38408304128995}, {"type": "nauc_ndcg_at_1000_std", "value": -4.916709117696968}, {"type": "nauc_ndcg_at_100_diff1", "value": 53.2448598868241}, {"type": "nauc_ndcg_at_100_max", "value": 25.75325255295546}, {"type": "nauc_ndcg_at_100_std", "value": -3.680507005630751}, {"type": "nauc_ndcg_at_10_diff1", "value": 50.81057355170232}, {"type": "nauc_ndcg_at_10_max", "value": 25.006448273343807}, {"type": "nauc_ndcg_at_10_std", "value": -2.8979899112515577}, {"type": "nauc_ndcg_at_1_diff1", "value": 82.6349900233902}, {"type": "nauc_ndcg_at_1_max", "value": 21.994548214014227}, {"type": "nauc_ndcg_at_1_std", "value": -22.549769792179262}, {"type": "nauc_ndcg_at_20_diff1", "value": 51.205023097166304}, {"type": "nauc_ndcg_at_20_max", "value": 25.22133626556826}, {"type": "nauc_ndcg_at_20_std", "value": -2.9506328244150155}, {"type": "nauc_ndcg_at_3_diff1", "value": 51.79780256736321}, {"type": "nauc_ndcg_at_3_max", "value": 24.81137324438439}, {"type": "nauc_ndcg_at_3_std", "value": -6.881223858227807}, {"type": "nauc_ndcg_at_5_diff1", "value": 50.290038260564565}, {"type": "nauc_ndcg_at_5_max", "value": 24.57250792165796}, {"type": "nauc_ndcg_at_5_std", "value": -3.5124628344654596}, {"type": "nauc_precision_at_1000_diff1", "value": -20.215211396894333}, {"type": "nauc_precision_at_1000_max", "value": -14.165452298769171}, {"type": "nauc_precision_at_1000_std", "value": -2.0952871214470816}, {"type": "nauc_precision_at_100_diff1", "value": -22.340257474494607}, {"type": "nauc_precision_at_100_max", "value": -12.697885641360282}, {"type": "nauc_precision_at_100_std", "value": 1.0688624940286244}, {"type": "nauc_precision_at_10_diff1", "value": -24.78271817420798}, {"type": "nauc_precision_at_10_max", "value": -12.625257500222656}, {"type": "nauc_precision_at_10_std", "value": 3.223250450607087}, {"type": "nauc_precision_at_1_diff1", "value": 82.6349900233902}, {"type": "nauc_precision_at_1_max", "value": 21.994548214014227}, {"type": "nauc_precision_at_1_std", "value": -22.549769792179262}, {"type": "nauc_precision_at_20_diff1", "value": -24.375756227194177}, {"type": "nauc_precision_at_20_max", "value": -12.341015011563536}, {"type": "nauc_precision_at_20_std", "value": 2.7475274619387955}, {"type": "nauc_precision_at_3_diff1", "value": -24.8251306777365}, {"type": "nauc_precision_at_3_max", "value": -13.109579709589042}, {"type": "nauc_precision_at_3_std", "value": -1.2233442335420748}, {"type": "nauc_precision_at_5_diff1", "value": -26.955418583344894}, {"type": "nauc_precision_at_5_max", "value": -13.598630838071015}, {"type": "nauc_precision_at_5_std", "value": 2.545780631940738}, {"type": "nauc_recall_at_1000_diff1", "value": 0.2542680835344437}, {"type": "nauc_recall_at_1000_max", "value": 49.38194243035277}, {"type": "nauc_recall_at_1000_std", "value": 57.021502715846026}, {"type": "nauc_recall_at_100_diff1", "value": 5.062154815367015}, {"type": "nauc_recall_at_100_max", "value": 45.41178380188437}, {"type": "nauc_recall_at_100_std", "value": 50.78382225901813}, {"type": "nauc_recall_at_10_diff1", "value": 20.429153629007818}, {"type": "nauc_recall_at_10_max", "value": 27.516855026155508}, {"type": "nauc_recall_at_10_std", "value": 21.367491371755467}, {"type": "nauc_recall_at_1_diff1", "value": 59.90813138005125}, {"type": "nauc_recall_at_1_max", "value": 24.58479295693794}, {"type": "nauc_recall_at_1_std", "value": -8.056152492777027}, {"type": "nauc_recall_at_20_diff1", "value": 13.072430858896942}, {"type": "nauc_recall_at_20_max", "value": 29.5522659183247}, {"type": "nauc_recall_at_20_std", "value": 28.70569974090291}, {"type": "nauc_recall_at_3_diff1", "value": 30.419084482663617}, {"type": "nauc_recall_at_3_max", "value": 25.627389580252835}, {"type": "nauc_recall_at_3_std", "value": 2.5557690877637054}, {"type": "nauc_recall_at_5_diff1", "value": 22.92561435069869}, {"type": "nauc_recall_at_5_max", "value": 25.545265063475455}, {"type": "nauc_recall_at_5_std", "value": 14.736172663072786}, {"type": "ndcg_at_1", "value": 93.999}, {"type": "ndcg_at_10", "value": 94.83200000000001}, {"type": "ndcg_at_100", "value": 95.363}, {"type": "ndcg_at_1000", "value": 95.478}, {"type": "ndcg_at_20", "value": 95.077}, {"type": "ndcg_at_3", "value": 94.143}, {"type": "ndcg_at_5", "value": 94.525}, {"type": "precision_at_1", "value": 93.999}, {"type": "precision_at_10", "value": 11.029}, {"type": "precision_at_100", "value": 1.1560000000000001}, {"type": "precision_at_1000", "value": 0.11800000000000001}, {"type": "precision_at_20", "value": 5.62}, {"type": "precision_at_3", "value": 35.219}, {"type": "precision_at_5", "value": 21.584}, {"type": "recall_at_1", "value": 87.339}, {"type": "recall_at_10", "value": 97.026}, {"type": "recall_at_100", "value": 98.936}, {"type": "recall_at_1000", "value": 99.599}, {"type": "recall_at_20", "value": 97.744}, {"type": "recall_at_3", "value": 95.069}, {"type": "recall_at_5", "value": 96.177}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB FiQA2018", "type": "mteb/fiqa", "config": "default", "split": "test", "revision": "27a168819829fe9bcd655c2df245fb19452e8e06"}, "metrics": [{"type": "main_score", "value": 60.480000000000004}, {"type": "map_at_1", "value": 31.529}, {"type": "map_at_10", "value": 52.081}, {"type": "map_at_100", "value": 54.342}, {"type": "map_at_1000", "value": 54.449000000000005}, {"type": "map_at_20", "value": 53.479}, {"type": "map_at_3", "value": 45.471000000000004}, {"type": "map_at_5", "value": 49.164}, {"type": "mrr_at_1", "value": 60.03086419753087}, {"type": "mrr_at_10", "value": 67.73754409171075}, {"type": "mrr_at_100", "value": 68.332432152368}, {"type": "mrr_at_1000", "value": 68.34150941774908}, {"type": "mrr_at_20", "value": 68.14780993838725}, {"type": "mrr_at_3", "value": 65.6378600823045}, {"type": "mrr_at_5", "value": 66.88014403292176}, {"type": "nauc_map_at_1000_diff1", "value": 45.36598134579052}, {"type": "nauc_map_at_1000_max", "value": 31.891451119906943}, {"type": "nauc_map_at_1000_std", "value": -15.41454384137943}, {"type": "nauc_map_at_100_diff1", "value": 45.31268291874018}, {"type": "nauc_map_at_100_max", "value": 31.811055683002092}, {"type": "nauc_map_at_100_std", "value": -15.348503855591417}, {"type": "nauc_map_at_10_diff1", "value": 45.22606983565892}, {"type": "nauc_map_at_10_max", "value": 30.46108534749699}, {"type": "nauc_map_at_10_std", "value": -16.618086029682555}, {"type": "nauc_map_at_1_diff1", "value": 49.94952823753276}, {"type": "nauc_map_at_1_max", "value": 13.770377574254548}, {"type": "nauc_map_at_1_std", "value": -14.946357968858653}, {"type": "nauc_map_at_20_diff1", "value": 45.29274207897926}, {"type": "nauc_map_at_20_max", "value": 31.27332015148257}, {"type": "nauc_map_at_20_std", "value": -15.782946115613129}, {"type": "nauc_map_at_3_diff1", "value": 47.94248233566038}, {"type": "nauc_map_at_3_max", "value": 24.022838776825456}, {"type": "nauc_map_at_3_std", "value": -17.103518542262208}, {"type": "nauc_map_at_5_diff1", "value": 45.85345590031722}, {"type": "nauc_map_at_5_max", "value": 27.78341379004547}, {"type": "nauc_map_at_5_std", "value": -17.490850791756326}, {"type": "nauc_mrr_at_1000_diff1", "value": 58.225141047822824}, {"type": "nauc_mrr_at_1000_max", "value": 43.39606904140525}, {"type": "nauc_mrr_at_1000_std", "value": -14.64093518199122}, {"type": "nauc_mrr_at_100_diff1", "value": 58.22137274179545}, {"type": "nauc_mrr_at_100_max", "value": 43.39567568136935}, {"type": "nauc_mrr_at_100_std", "value": -14.62512313985582}, {"type": "nauc_mrr_at_10_diff1", "value": 58.03217329957151}, {"type": "nauc_mrr_at_10_max", "value": 43.633561683075186}, {"type": "nauc_mrr_at_10_std", "value": -14.563703576023808}, {"type": "nauc_mrr_at_1_diff1", "value": 61.48979902647692}, {"type": "nauc_mrr_at_1_max", "value": 43.1938079066948}, {"type": "nauc_mrr_at_1_std", "value": -15.808138277440465}, {"type": "nauc_mrr_at_20_diff1", "value": 58.13185370150794}, {"type": "nauc_mrr_at_20_max", "value": 43.35607721183147}, {"type": "nauc_mrr_at_20_std", "value": -14.635812702971263}, {"type": "nauc_mrr_at_3_diff1", "value": 58.698963168321264}, {"type": "nauc_mrr_at_3_max", "value": 43.633129249785405}, {"type": "nauc_mrr_at_3_std", "value": -15.733246346983854}, {"type": "nauc_mrr_at_5_diff1", "value": 57.94156745229547}, {"type": "nauc_mrr_at_5_max", "value": 43.14152462640525}, {"type": "nauc_mrr_at_5_std", "value": -15.318685307750895}, {"type": "nauc_ndcg_at_1000_diff1", "value": 47.871896043731496}, {"type": "nauc_ndcg_at_1000_max", "value": 37.159845167533426}, {"type": "nauc_ndcg_at_1000_std", "value": -13.067288160833485}, {"type": "nauc_ndcg_at_100_diff1", "value": 47.046171407204426}, {"type": "nauc_ndcg_at_100_max", "value": 36.422514360855835}, {"type": "nauc_ndcg_at_100_std", "value": -11.636859259571441}, {"type": "nauc_ndcg_at_10_diff1", "value": 46.232628149078096}, {"type": "nauc_ndcg_at_10_max", "value": 34.82402625088358}, {"type": "nauc_ndcg_at_10_std", "value": -14.768545542980114}, {"type": "nauc_ndcg_at_1_diff1", "value": 61.48979902647692}, {"type": "nauc_ndcg_at_1_max", "value": 43.1938079066948}, {"type": "nauc_ndcg_at_1_std", "value": -15.808138277440465}, {"type": "nauc_ndcg_at_20_diff1", "value": 46.51116172390955}, {"type": "nauc_ndcg_at_20_max", "value": 35.36362650568298}, {"type": "nauc_ndcg_at_20_std", "value": -12.849406209182826}, {"type": "nauc_ndcg_at_3_diff1", "value": 47.39832263785871}, {"type": "nauc_ndcg_at_3_max", "value": 35.67466264628456}, {"type": "nauc_ndcg_at_3_std", "value": -17.257717349296943}, {"type": "nauc_ndcg_at_5_diff1", "value": 45.91049493804232}, {"type": "nauc_ndcg_at_5_max", "value": 33.8405091138445}, {"type": "nauc_ndcg_at_5_std", "value": -17.477069902735895}, {"type": "nauc_precision_at_1000_diff1", "value": -12.037873000917767}, {"type": "nauc_precision_at_1000_max", "value": 26.043220150002295}, {"type": "nauc_precision_at_1000_std", "value": 6.84910668321572}, {"type": "nauc_precision_at_100_diff1", "value": -9.383403459051864}, {"type": "nauc_precision_at_100_max", "value": 29.68713170610003}, {"type": "nauc_precision_at_100_std", "value": 10.079531587056152}, {"type": "nauc_precision_at_10_diff1", "value": 3.3433323353925135}, {"type": "nauc_precision_at_10_max", "value": 38.31790111725993}, {"type": "nauc_precision_at_10_std", "value": 0.7888123304710856}, {"type": "nauc_precision_at_1_diff1", "value": 61.48979902647692}, {"type": "nauc_precision_at_1_max", "value": 43.1938079066948}, {"type": "nauc_precision_at_1_std", "value": -15.808138277440465}, {"type": "nauc_precision_at_20_diff1", "value": -2.083500986294448}, {"type": "nauc_precision_at_20_max", "value": 35.77143835726343}, {"type": "nauc_precision_at_20_std", "value": 5.318547021874003}, {"type": "nauc_precision_at_3_diff1", "value": 23.335617788912586}, {"type": "nauc_precision_at_3_max", "value": 39.81973275320871}, {"type": "nauc_precision_at_3_std", "value": -8.442769390555561}, {"type": "nauc_precision_at_5_diff1", "value": 11.521087842589482}, {"type": "nauc_precision_at_5_max", "value": 39.527792539828255}, {"type": "nauc_precision_at_5_std", "value": -5.412729503701626}, {"type": "nauc_recall_at_1000_diff1", "value": 10.6830893047453}, {"type": "nauc_recall_at_1000_max", "value": 8.834504311238423}, {"type": "nauc_recall_at_1000_std", "value": 24.670754304859692}, {"type": "nauc_recall_at_100_diff1", "value": 20.646020385527358}, {"type": "nauc_recall_at_100_max", "value": 20.121595011523294}, {"type": "nauc_recall_at_100_std", "value": 19.42307459311791}, {"type": "nauc_recall_at_10_diff1", "value": 33.01029313733417}, {"type": "nauc_recall_at_10_max", "value": 27.948634980368702}, {"type": "nauc_recall_at_10_std", "value": -10.239767371462975}, {"type": "nauc_recall_at_1_diff1", "value": 49.94952823753276}, {"type": "nauc_recall_at_1_max", "value": 13.770377574254548}, {"type": "nauc_recall_at_1_std", "value": -14.946357968858653}, {"type": "nauc_recall_at_20_diff1", "value": 30.040111045267963}, {"type": "nauc_recall_at_20_max", "value": 25.984919302418184}, {"type": "nauc_recall_at_20_std", "value": -1.4998001817460804}, {"type": "nauc_recall_at_3_diff1", "value": 42.24410559113653}, {"type": "nauc_recall_at_3_max", "value": 20.269503583626914}, {"type": "nauc_recall_at_3_std", "value": -17.09578532600584}, {"type": "nauc_recall_at_5_diff1", "value": 36.124149735848945}, {"type": "nauc_recall_at_5_max", "value": 22.708022306002622}, {"type": "nauc_recall_at_5_std", "value": -16.966976847236193}, {"type": "ndcg_at_1", "value": 60.031}, {"type": "ndcg_at_10", "value": 60.480000000000004}, {"type": "ndcg_at_100", "value": 66.94099999999999}, {"type": "ndcg_at_1000", "value": 68.303}, {"type": "ndcg_at_20", "value": 63.536}, {"type": "ndcg_at_3", "value": 55.903999999999996}, {"type": "ndcg_at_5", "value": 57.387}, {"type": "precision_at_1", "value": 60.031}, {"type": "precision_at_10", "value": 16.682}, {"type": "precision_at_100", "value": 2.336}, {"type": "precision_at_1000", "value": 0.259}, {"type": "precision_at_20", "value": 9.66}, {"type": "precision_at_3", "value": 37.191}, {"type": "precision_at_5", "value": 27.253}, {"type": "recall_at_1", "value": 31.529}, {"type": "recall_at_10", "value": 68.035}, {"type": "recall_at_100", "value": 90.925}, {"type": "recall_at_1000", "value": 98.688}, {"type": "recall_at_20", "value": 77.453}, {"type": "recall_at_3", "value": 50.221000000000004}, {"type": "recall_at_5", "value": 58.209999999999994}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB HotpotQA", "type": "mteb/hotpotqa", "config": "default", "split": "test", "revision": "ab518f4d6fcca38d87c25209f94beba119d02014"}, "metrics": [{"type": "main_score", "value": 76.67399999999999}, {"type": "map_at_1", "value": 43.822}, {"type": "map_at_10", "value": 68.82000000000001}, {"type": "map_at_100", "value": 69.659}, {"type": "map_at_1000", "value": 69.714}, {"type": "map_at_20", "value": 69.305}, {"type": "map_at_3", "value": 65.517}, {"type": "map_at_5", "value": 67.633}, {"type": "mrr_at_1", "value": 87.643484132343}, {"type": "mrr_at_10", "value": 91.28134679485098}, {"type": "mrr_at_100", "value": 91.37985230614755}, {"type": "mrr_at_1000", "value": 91.38202467630681}, {"type": "mrr_at_20", "value": 91.34718855278429}, {"type": "mrr_at_3", "value": 90.75849651136599}, {"type": "mrr_at_5", "value": 91.10961062345235}, {"type": "nauc_map_at_1000_diff1", "value": 3.7670405082837477}, {"type": "nauc_map_at_1000_max", "value": 14.410594409695182}, {"type": "nauc_map_at_1000_std", "value": 7.94738583292685}, {"type": "nauc_map_at_100_diff1", "value": 3.738796209193936}, {"type": "nauc_map_at_100_max", "value": 14.408029101534694}, {"type": "nauc_map_at_100_std", "value": 7.979641077687816}, {"type": "nauc_map_at_10_diff1", "value": 3.334917978089454}, {"type": "nauc_map_at_10_max", "value": 13.975255289147748}, {"type": "nauc_map_at_10_std", "value": 7.491959628012161}, {"type": "nauc_map_at_1_diff1", "value": 75.35066482050009}, {"type": "nauc_map_at_1_max", "value": 53.573503488571475}, {"type": "nauc_map_at_1_std", "value": -6.542030594426993}, {"type": "nauc_map_at_20_diff1", "value": 3.5197129341582083}, {"type": "nauc_map_at_20_max", "value": 14.159880698006816}, {"type": "nauc_map_at_20_std", "value": 7.856574384998483}, {"type": "nauc_map_at_3_diff1", "value": 3.0992333232864064}, {"type": "nauc_map_at_3_max", "value": 12.513959281222112}, {"type": "nauc_map_at_3_std", "value": 4.352912866014865}, {"type": "nauc_map_at_5_diff1", "value": 3.0351688998572537}, {"type": "nauc_map_at_5_max", "value": 13.21599457624529}, {"type": "nauc_map_at_5_std", "value": 6.246882983214777}, {"type": "nauc_mrr_at_1000_diff1", "value": 75.23953736361132}, {"type": "nauc_mrr_at_1000_max", "value": 56.64260717262164}, {"type": "nauc_mrr_at_1000_std", "value": -4.865932053762276}, {"type": "nauc_mrr_at_100_diff1", "value": 75.24091372816497}, {"type": "nauc_mrr_at_100_max", "value": 56.64831104504846}, {"type": "nauc_mrr_at_100_std", "value": -4.850966297943324}, {"type": "nauc_mrr_at_10_diff1", "value": 75.26540178053416}, {"type": "nauc_mrr_at_10_max", "value": 56.828755673428965}, {"type": "nauc_mrr_at_10_std", "value": -4.8401126970944635}, {"type": "nauc_mrr_at_1_diff1", "value": 75.35066482050009}, {"type": "nauc_mrr_at_1_max", "value": 53.573503488571475}, {"type": "nauc_mrr_at_1_std", "value": -6.542030594426993}, {"type": "nauc_mrr_at_20_diff1", "value": 75.24453050729845}, {"type": "nauc_mrr_at_20_max", "value": 56.69220588401435}, {"type": "nauc_mrr_at_20_std", "value": -4.843700730832108}, {"type": "nauc_mrr_at_3_diff1", "value": 74.98411648336175}, {"type": "nauc_mrr_at_3_max", "value": 56.766537573537114}, {"type": "nauc_mrr_at_3_std", "value": -4.909712671649337}, {"type": "nauc_mrr_at_5_diff1", "value": 75.20599020991028}, {"type": "nauc_mrr_at_5_max", "value": 56.64236207782237}, {"type": "nauc_mrr_at_5_std", "value": -5.208907367513977}, {"type": "nauc_ndcg_at_1000_diff1", "value": 11.48307079099774}, {"type": "nauc_ndcg_at_1000_max", "value": 20.893326881675176}, {"type": "nauc_ndcg_at_1000_std", "value": 10.43489838692119}, {"type": "nauc_ndcg_at_100_diff1", "value": 10.395588735754927}, {"type": "nauc_ndcg_at_100_max", "value": 20.529573302516912}, {"type": "nauc_ndcg_at_100_std", "value": 11.252973083654268}, {"type": "nauc_ndcg_at_10_diff1", "value": 8.596739352741972}, {"type": "nauc_ndcg_at_10_max", "value": 18.475863682540673}, {"type": "nauc_ndcg_at_10_std", "value": 9.175831033463352}, {"type": "nauc_ndcg_at_1_diff1", "value": 75.35066482050009}, {"type": "nauc_ndcg_at_1_max", "value": 53.573503488571475}, {"type": "nauc_ndcg_at_1_std", "value": -6.542030594426993}, {"type": "nauc_ndcg_at_20_diff1", "value": 8.998033972471749}, {"type": "nauc_ndcg_at_20_max", "value": 18.892085875404522}, {"type": "nauc_ndcg_at_20_std", "value": 10.3241608901084}, {"type": "nauc_ndcg_at_3_diff1", "value": 8.796384949533579}, {"type": "nauc_ndcg_at_3_max", "value": 16.515261419885274}, {"type": "nauc_ndcg_at_3_std", "value": 4.081902976576701}, {"type": "nauc_ndcg_at_5_diff1", "value": 8.277259464605025}, {"type": "nauc_ndcg_at_5_max", "value": 17.163053202909527}, {"type": "nauc_ndcg_at_5_std", "value": 6.652669449704474}, {"type": "nauc_precision_at_1000_diff1", "value": -3.490556596304827}, {"type": "nauc_precision_at_1000_max", "value": 31.0473259001597}, {"type": "nauc_precision_at_1000_std", "value": 52.36921397692622}, {"type": "nauc_precision_at_100_diff1", "value": -6.420747959222489}, {"type": "nauc_precision_at_100_max", "value": 20.555887056005936}, {"type": "nauc_precision_at_100_std", "value": 36.119132870798495}, {"type": "nauc_precision_at_10_diff1", "value": -6.461726057290426}, {"type": "nauc_precision_at_10_max", "value": 12.161081825341915}, {"type": "nauc_precision_at_10_std", "value": 17.961318451839993}, {"type": "nauc_precision_at_1_diff1", "value": 75.35066482050009}, {"type": "nauc_precision_at_1_max", "value": 53.573503488571475}, {"type": "nauc_precision_at_1_std", "value": -6.542030594426993}, {"type": "nauc_precision_at_20_diff1", "value": -7.361461296416161}, {"type": "nauc_precision_at_20_max", "value": 12.663621261696733}, {"type": "nauc_precision_at_20_std", "value": 23.312476851670286}, {"type": "nauc_precision_at_3_diff1", "value": -3.299056912774522}, {"type": "nauc_precision_at_3_max", "value": 9.85602375812038}, {"type": "nauc_precision_at_3_std", "value": 6.4962782003155475}, {"type": "nauc_precision_at_5_diff1", "value": -5.3155827772027795}, {"type": "nauc_precision_at_5_max", "value": 10.32907751171833}, {"type": "nauc_precision_at_5_std", "value": 11.384098087196932}, {"type": "nauc_recall_at_1000_diff1", "value": -3.4905565963043332}, {"type": "nauc_recall_at_1000_max", "value": 31.04732590016041}, {"type": "nauc_recall_at_1000_std", "value": 52.36921397692641}, {"type": "nauc_recall_at_100_diff1", "value": -6.420747959222586}, {"type": "nauc_recall_at_100_max", "value": 20.55588705600596}, {"type": "nauc_recall_at_100_std", "value": 36.11913287079825}, {"type": "nauc_recall_at_10_diff1", "value": -6.461726057290347}, {"type": "nauc_recall_at_10_max", "value": 12.161081825342022}, {"type": "nauc_recall_at_10_std", "value": 17.96131845184002}, {"type": "nauc_recall_at_1_diff1", "value": 75.35066482050009}, {"type": "nauc_recall_at_1_max", "value": 53.573503488571475}, {"type": "nauc_recall_at_1_std", "value": -6.542030594426993}, {"type": "nauc_recall_at_20_diff1", "value": -7.361461296416054}, {"type": "nauc_recall_at_20_max", "value": 12.66362126169679}, {"type": "nauc_recall_at_20_std", "value": 23.312476851670382}, {"type": "nauc_recall_at_3_diff1", "value": -3.2990569127745886}, {"type": "nauc_recall_at_3_max", "value": 9.856023758120296}, {"type": "nauc_recall_at_3_std", "value": 6.496278200315444}, {"type": "nauc_recall_at_5_diff1", "value": -5.315582777202729}, {"type": "nauc_recall_at_5_max", "value": 10.329077511718229}, {"type": "nauc_recall_at_5_std", "value": 11.384098087196932}, {"type": "ndcg_at_1", "value": 87.643}, {"type": "ndcg_at_10", "value": 76.67399999999999}, {"type": "ndcg_at_100", "value": 79.462}, {"type": "ndcg_at_1000", "value": 80.43599999999999}, {"type": "ndcg_at_20", "value": 77.83}, {"type": "ndcg_at_3", "value": 72.256}, {"type": "ndcg_at_5", "value": 74.789}, {"type": "precision_at_1", "value": 87.643}, {"type": "precision_at_10", "value": 15.726999999999999}, {"type": "precision_at_100", "value": 1.791}, {"type": "precision_at_1000", "value": 0.192}, {"type": "precision_at_20", "value": 8.236}, {"type": "precision_at_3", "value": 45.919}, {"type": "precision_at_5", "value": 29.558}, {"type": "recall_at_1", "value": 43.822}, {"type": "recall_at_10", "value": 78.636}, {"type": "recall_at_100", "value": 89.527}, {"type": "recall_at_1000", "value": 95.868}, {"type": "recall_at_20", "value": 82.363}, {"type": "recall_at_3", "value": 68.879}, {"type": "recall_at_5", "value": 73.896}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ImdbClassification", "type": "mteb/imdb", "config": "default", "split": "test", "revision": "3d86128a09e091d6018b6d26cad27f2739fc2db7"}, "metrics": [{"type": "accuracy", "value": 96.6608}, {"type": "ap", "value": 95.14657820401189}, {"type": "ap_weighted", "value": 95.14657820401189}, {"type": "f1", "value": 96.66029695623422}, {"type": "f1_weighted", "value": 96.66029695623423}, {"type": "main_score", "value": 96.6608}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB MSMARCO", "type": "mteb/msmarco", "config": "default", "split": "dev", "revision": "c5a29a104738b98a9e76336939199e264163d4a0"}, "metrics": [{"type": "main_score", "value": 45.217}, {"type": "map_at_1", "value": 24.728}, {"type": "map_at_10", "value": 37.933}, {"type": "map_at_100", "value": 39.074999999999996}, {"type": "map_at_1000", "value": 39.115}, {"type": "map_at_20", "value": 38.663}, {"type": "map_at_3", "value": 33.904}, {"type": "map_at_5", "value": 36.217}, {"type": "mrr_at_1", "value": 25.44412607449857}, {"type": "mrr_at_10", "value": 38.52640196479737}, {"type": "mrr_at_100", "value": 39.60462889736067}, {"type": "mrr_at_1000", "value": 39.638904296248526}, {"type": "mrr_at_20", "value": 39.2234365827559}, {"type": "mrr_at_3", "value": 34.59646609360076}, {"type": "mrr_at_5", "value": 36.8801337153773}, {"type": "nauc_map_at_1000_diff1", "value": 37.645652178132174}, {"type": "nauc_map_at_1000_max", "value": 9.953357023361367}, {"type": "nauc_map_at_1000_std", "value": -20.800238036721503}, {"type": "nauc_map_at_100_diff1", "value": 37.643073495974555}, {"type": "nauc_map_at_100_max", "value": 9.95921239641703}, {"type": "nauc_map_at_100_std", "value": -20.76517765535793}, {"type": "nauc_map_at_10_diff1", "value": 37.44380763335014}, {"type": "nauc_map_at_10_max", "value": 9.917273043055342}, {"type": "nauc_map_at_10_std", "value": -21.467951225710898}, {"type": "nauc_map_at_1_diff1", "value": 41.02118887981969}, {"type": "nauc_map_at_1_max", "value": 8.301113449711778}, {"type": "nauc_map_at_1_std", "value": -19.436814224415027}, {"type": "nauc_map_at_20_diff1", "value": 37.58156586490493}, {"type": "nauc_map_at_20_max", "value": 9.972927967610659}, {"type": "nauc_map_at_20_std", "value": -20.951374218839387}, {"type": "nauc_map_at_3_diff1", "value": 37.67246795684178}, {"type": "nauc_map_at_3_max", "value": 9.307031378909478}, {"type": "nauc_map_at_3_std", "value": -21.77026217965021}, {"type": "nauc_map_at_5_diff1", "value": 37.39086482095963}, {"type": "nauc_map_at_5_max", "value": 9.732739107368566}, {"type": "nauc_map_at_5_std", "value": -21.8424296893692}, {"type": "nauc_mrr_at_1000_diff1", "value": 37.36666719603192}, {"type": "nauc_mrr_at_1000_max", "value": 9.79040465289953}, {"type": "nauc_mrr_at_1000_std", "value": -20.590147245965568}, {"type": "nauc_mrr_at_100_diff1", "value": 37.36560296629318}, {"type": "nauc_mrr_at_100_max", "value": 9.798113710672162}, {"type": "nauc_mrr_at_100_std", "value": -20.556791838504292}, {"type": "nauc_mrr_at_10_diff1", "value": 37.19257605840734}, {"type": "nauc_mrr_at_10_max", "value": 9.749429811638063}, {"type": "nauc_mrr_at_10_std", "value": -21.206407664327276}, {"type": "nauc_mrr_at_1_diff1", "value": 40.98478651095172}, {"type": "nauc_mrr_at_1_max", "value": 8.173841799119707}, {"type": "nauc_mrr_at_1_std", "value": -19.530027987868017}, {"type": "nauc_mrr_at_20_diff1", "value": 37.29973172861245}, {"type": "nauc_mrr_at_20_max", "value": 9.815127660001345}, {"type": "nauc_mrr_at_20_std", "value": -20.700860112175928}, {"type": "nauc_mrr_at_3_diff1", "value": 37.282848009425734}, {"type": "nauc_mrr_at_3_max", "value": 9.172741713108193}, {"type": "nauc_mrr_at_3_std", "value": -21.563630513502996}, {"type": "nauc_mrr_at_5_diff1", "value": 37.08609827303586}, {"type": "nauc_mrr_at_5_max", "value": 9.604643424273284}, {"type": "nauc_mrr_at_5_std", "value": -21.580110806494094}, {"type": "nauc_ndcg_at_1000_diff1", "value": 37.086587020218545}, {"type": "nauc_ndcg_at_1000_max", "value": 10.696860688467472}, {"type": "nauc_ndcg_at_1000_std", "value": -19.50989939916873}, {"type": "nauc_ndcg_at_100_diff1", "value": 37.03794531268128}, {"type": "nauc_ndcg_at_100_max", "value": 10.940820719182339}, {"type": "nauc_ndcg_at_100_std", "value": -18.28651832370893}, {"type": "nauc_ndcg_at_10_diff1", "value": 36.21062857920633}, {"type": "nauc_ndcg_at_10_max", "value": 10.845172882571733}, {"type": "nauc_ndcg_at_10_std", "value": -21.454301679510106}, {"type": "nauc_ndcg_at_1_diff1", "value": 40.98478651095172}, {"type": "nauc_ndcg_at_1_max", "value": 8.173841799119707}, {"type": "nauc_ndcg_at_1_std", "value": -19.530027987868017}, {"type": "nauc_ndcg_at_20_diff1", "value": 36.583262733100526}, {"type": "nauc_ndcg_at_20_max", "value": 11.10492720898974}, {"type": "nauc_ndcg_at_20_std", "value": -19.41753284137609}, {"type": "nauc_ndcg_at_3_diff1", "value": 36.57271365035382}, {"type": "nauc_ndcg_at_3_max", "value": 9.56073433062999}, {"type": "nauc_ndcg_at_3_std", "value": -22.324263670932915}, {"type": "nauc_ndcg_at_5_diff1", "value": 36.09419372820154}, {"type": "nauc_ndcg_at_5_max", "value": 10.357384992631271}, {"type": "nauc_ndcg_at_5_std", "value": -22.389578276324894}, {"type": "nauc_precision_at_1000_diff1", "value": -2.7435338714030597}, {"type": "nauc_precision_at_1000_max", "value": 4.302274933383809}, {"type": "nauc_precision_at_1000_std", "value": 8.456846348638948}, {"type": "nauc_precision_at_100_diff1", "value": 15.149466332615983}, {"type": "nauc_precision_at_100_max", "value": 12.501013731673163}, {"type": "nauc_precision_at_100_std", "value": 15.909667509021785}, {"type": "nauc_precision_at_10_diff1", "value": 28.699788688314214}, {"type": "nauc_precision_at_10_max", "value": 13.024586051842347}, {"type": "nauc_precision_at_10_std", "value": -19.197658937078703}, {"type": "nauc_precision_at_1_diff1", "value": 40.98478651095172}, {"type": "nauc_precision_at_1_max", "value": 8.173841799119707}, {"type": "nauc_precision_at_1_std", "value": -19.530027987868017}, {"type": "nauc_precision_at_20_diff1", "value": 26.519292942353395}, {"type": "nauc_precision_at_20_max", "value": 14.389979272056438}, {"type": "nauc_precision_at_20_std", "value": -7.030956994938155}, {"type": "nauc_precision_at_3_diff1", "value": 32.87913492278213}, {"type": "nauc_precision_at_3_max", "value": 9.673660161387776}, {"type": "nauc_precision_at_3_std", "value": -23.905612656592172}, {"type": "nauc_precision_at_5_diff1", "value": 30.903850113238597}, {"type": "nauc_precision_at_5_max", "value": 11.482375434154898}, {"type": "nauc_precision_at_5_std", "value": -23.828657095254247}, {"type": "nauc_recall_at_1000_diff1", "value": 35.80765639589219}, {"type": "nauc_recall_at_1000_max", "value": 50.94532805969448}, {"type": "nauc_recall_at_1000_std", "value": 66.79910877083275}, {"type": "nauc_recall_at_100_diff1", "value": 34.96182828311028}, {"type": "nauc_recall_at_100_max", "value": 21.729699631790556}, {"type": "nauc_recall_at_100_std", "value": 23.509439011686474}, {"type": "nauc_recall_at_10_diff1", "value": 31.88371369567137}, {"type": "nauc_recall_at_10_max", "value": 14.425389702697073}, {"type": "nauc_recall_at_10_std", "value": -20.95578001880924}, {"type": "nauc_recall_at_1_diff1", "value": 41.02118887981969}, {"type": "nauc_recall_at_1_max", "value": 8.301113449711778}, {"type": "nauc_recall_at_1_std", "value": -19.436814224415027}, {"type": "nauc_recall_at_20_diff1", "value": 32.42718780622455}, {"type": "nauc_recall_at_20_max", "value": 16.90686126329399}, {"type": "nauc_recall_at_20_std", "value": -9.38158227016737}, {"type": "nauc_recall_at_3_diff1", "value": 33.68966646043966}, {"type": "nauc_recall_at_3_max", "value": 10.336277419708532}, {"type": "nauc_recall_at_3_std", "value": -23.80165869168538}, {"type": "nauc_recall_at_5_diff1", "value": 32.26258807452426}, {"type": "nauc_recall_at_5_max", "value": 12.303713005399935}, {"type": "nauc_recall_at_5_std", "value": -23.87721891164968}, {"type": "ndcg_at_1", "value": 25.444}, {"type": "ndcg_at_10", "value": 45.217}, {"type": "ndcg_at_100", "value": 50.575}, {"type": "ndcg_at_1000", "value": 51.519999999999996}, {"type": "ndcg_at_20", "value": 47.786}, {"type": "ndcg_at_3", "value": 37.067}, {"type": "ndcg_at_5", "value": 41.184}, {"type": "precision_at_1", "value": 25.444}, {"type": "precision_at_10", "value": 7.07}, {"type": "precision_at_100", "value": 0.9730000000000001}, {"type": "precision_at_1000", "value": 0.106}, {"type": "precision_at_20", "value": 4.072}, {"type": "precision_at_3", "value": 15.754999999999999}, {"type": "precision_at_5", "value": 11.544}, {"type": "recall_at_1", "value": 24.728}, {"type": "recall_at_10", "value": 67.607}, {"type": "recall_at_100", "value": 92.094}, {"type": "recall_at_1000", "value": 99.165}, {"type": "recall_at_20", "value": 77.529}, {"type": "recall_at_3", "value": 45.535}, {"type": "recall_at_5", "value": 55.394}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPDomainClassification (en)", "type": "mteb/mtop_domain", "config": "en", "split": "test", "revision": "d80d48c1eb48d3562165c59d59d0034df9fff0bf"}, "metrics": [{"type": "accuracy", "value": 99.01276789785682}, {"type": "f1", "value": 98.9288649250924}, {"type": "f1_weighted", "value": 99.01406884928141}, {"type": "main_score", "value": 99.01276789785682}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPIntentClassification (en)", "type": "mteb/mtop_intent", "config": "en", "split": "test", "revision": "ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba"}, "metrics": [{"type": "accuracy", "value": 92.78385772913816}, {"type": "f1", "value": 79.78115704297824}, {"type": "f1_weighted", "value": 93.90424147486428}, {"type": "main_score", "value": 92.78385772913816}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (en)", "type": "mteb/amazon_massive_intent", "config": "en", "split": "test", "revision": "4672e20407010da34463acc759c162ca9734bca6"}, "metrics": [{"type": "accuracy", "value": 85.83053127101546}, {"type": "f1", "value": 82.72036139888232}, {"type": "f1_weighted", "value": 85.81759723866098}, {"type": "main_score", "value": 85.83053127101546}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (en)", "type": "mteb/amazon_massive_scenario", "config": "en", "split": "test", "revision": "fad2c6e8459f9e1c45d9315f4953d921437d70f8"}, "metrics": [{"type": "accuracy", "value": 90.19838601210489}, {"type": "f1", "value": 89.55260197964978}, {"type": "f1_weighted", "value": 90.11422965504119}, {"type": "main_score", "value": 90.19838601210489}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringP2P", "type": "mteb/medrxiv-clustering-p2p", "config": "default", "split": "test", "revision": "e7a26af6f3ae46b30dde8737f02c07b1505bcc73"}, "metrics": [{"type": "main_score", "value": 46.866746897607094}, {"type": "v_measure", "value": 46.866746897607094}, {"type": "v_measure_std", "value": 1.0966477896919726}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringS2S", "type": "mteb/medrxiv-clustering-s2s", "config": "default", "split": "test", "revision": "35191c8c0dca72d8ff3efcd72aa802307d469663"}, "metrics": [{"type": "main_score", "value": 44.6538827415503}, {"type": "v_measure", "value": 44.6538827415503}, {"type": "v_measure_std", "value": 1.1649569936599116}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB MindSmallReranking", "type": "mteb/mind_small", "config": "default", "split": "test", "revision": "59042f120c80e8afa9cdbb224f67076cec0fc9a7"}, "metrics": [{"type": "main_score", "value": 33.05449204940555}, {"type": "map", "value": 33.05449204940555}, {"type": "mrr", "value": 34.32562058439585}, {"type": "nAUC_map_diff1", "value": 11.465656013162807}, {"type": "nAUC_map_max", "value": -20.400088169502308}, {"type": "nAUC_map_std", "value": -2.638964886362445}, {"type": "nAUC_mrr_diff1", "value": 10.644290702481207}, {"type": "nAUC_mrr_max", "value": -15.304687384645769}, {"type": "nAUC_mrr_std", "value": -0.519919931348978}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB NFCorpus", "type": "mteb/nfcorpus", "config": "default", "split": "test", "revision": "ec0fa4fe99da2ff19ca1214b7966684033a58814"}, "metrics": [{"type": "main_score", "value": 41.998000000000005}, {"type": "map_at_1", "value": 6.907000000000001}, {"type": "map_at_10", "value": 16.397000000000002}, {"type": "map_at_100", "value": 21.69}, {"type": "map_at_1000", "value": 23.652}, {"type": "map_at_20", "value": 18.629}, {"type": "map_at_3", "value": 11.969000000000001}, {"type": "map_at_5", "value": 13.894}, {"type": "mrr_at_1", "value": 53.25077399380805}, {"type": "mrr_at_10", "value": 61.8561108653988}, {"type": "mrr_at_100", "value": 62.42447851935404}, {"type": "mrr_at_1000", "value": 62.459626424428095}, {"type": "mrr_at_20", "value": 62.287236389990696}, {"type": "mrr_at_3", "value": 60.42311661506711}, {"type": "mrr_at_5", "value": 61.36738906088753}, {"type": "nauc_map_at_1000_diff1", "value": 17.159461939643844}, {"type": "nauc_map_at_1000_max", "value": 32.42764938789903}, {"type": "nauc_map_at_1000_std", "value": 11.039427848422093}, {"type": "nauc_map_at_100_diff1", "value": 19.089532984187503}, {"type": "nauc_map_at_100_max", "value": 31.96721085058713}, {"type": "nauc_map_at_100_std", "value": 6.947468655726444}, {"type": "nauc_map_at_10_diff1", "value": 25.77255342629802}, {"type": "nauc_map_at_10_max", "value": 26.163590320961543}, {"type": "nauc_map_at_10_std", "value": -5.2588093720998375}, {"type": "nauc_map_at_1_diff1", "value": 46.31602607957798}, {"type": "nauc_map_at_1_max", "value": 11.807757660801942}, {"type": "nauc_map_at_1_std", "value": -13.984889089354317}, {"type": "nauc_map_at_20_diff1", "value": 22.308161130465365}, {"type": "nauc_map_at_20_max", "value": 29.070587307827722}, {"type": "nauc_map_at_20_std", "value": -1.0103056620851558}, {"type": "nauc_map_at_3_diff1", "value": 33.580827849617506}, {"type": "nauc_map_at_3_max", "value": 17.661630885799042}, {"type": "nauc_map_at_3_std", "value": -11.463282544041888}, {"type": "nauc_map_at_5_diff1", "value": 30.32603342696912}, {"type": "nauc_map_at_5_max", "value": 20.938905485667245}, {"type": "nauc_map_at_5_std", "value": -10.537086968155755}, {"type": "nauc_mrr_at_1000_diff1", "value": 24.45065397805829}, {"type": "nauc_mrr_at_1000_max", "value": 48.17519860927417}, {"type": "nauc_mrr_at_1000_std", "value": 30.350767549118903}, {"type": "nauc_mrr_at_100_diff1", "value": 24.444061606534486}, {"type": "nauc_mrr_at_100_max", "value": 48.1922894212229}, {"type": "nauc_mrr_at_100_std", "value": 30.379257816584094}, {"type": "nauc_mrr_at_10_diff1", "value": 24.25598717198779}, {"type": "nauc_mrr_at_10_max", "value": 48.10437607774264}, {"type": "nauc_mrr_at_10_std", "value": 30.090202482685996}, {"type": "nauc_mrr_at_1_diff1", "value": 26.907595285201264}, {"type": "nauc_mrr_at_1_max", "value": 44.006974050369955}, {"type": "nauc_mrr_at_1_std", "value": 26.921001962861062}, {"type": "nauc_mrr_at_20_diff1", "value": 24.462771570553738}, {"type": "nauc_mrr_at_20_max", "value": 48.264688196799746}, {"type": "nauc_mrr_at_20_std", "value": 30.498095141265914}, {"type": "nauc_mrr_at_3_diff1", "value": 24.76829388237229}, {"type": "nauc_mrr_at_3_max", "value": 48.213758704739924}, {"type": "nauc_mrr_at_3_std", "value": 30.1502853918892}, {"type": "nauc_mrr_at_5_diff1", "value": 24.476494932330247}, {"type": "nauc_mrr_at_5_max", "value": 47.977250552198804}, {"type": "nauc_mrr_at_5_std", "value": 29.65248143104835}, {"type": "nauc_ndcg_at_1000_diff1", "value": 13.055818920426246}, {"type": "nauc_ndcg_at_1000_max", "value": 46.00986444256306}, {"type": "nauc_ndcg_at_1000_std", "value": 29.622662054922085}, {"type": "nauc_ndcg_at_100_diff1", "value": 12.260551238228816}, {"type": "nauc_ndcg_at_100_max", "value": 39.89783048267698}, {"type": "nauc_ndcg_at_100_std", "value": 23.806961617956613}, {"type": "nauc_ndcg_at_10_diff1", "value": 11.002915931619567}, {"type": "nauc_ndcg_at_10_max", "value": 39.79323759244374}, {"type": "nauc_ndcg_at_10_std", "value": 23.053072152911046}, {"type": "nauc_ndcg_at_1_diff1", "value": 27.560910719974434}, {"type": "nauc_ndcg_at_1_max", "value": 41.21084046258119}, {"type": "nauc_ndcg_at_1_std", "value": 26.112891742912893}, {"type": "nauc_ndcg_at_20_diff1", "value": 10.085854089024496}, {"type": "nauc_ndcg_at_20_max", "value": 37.88629173784684}, {"type": "nauc_ndcg_at_20_std", "value": 23.17664322248358}, {"type": "nauc_ndcg_at_3_diff1", "value": 16.58969583405987}, {"type": "nauc_ndcg_at_3_max", "value": 41.282222954101435}, {"type": "nauc_ndcg_at_3_std", "value": 21.080670648392747}, {"type": "nauc_ndcg_at_5_diff1", "value": 13.893127947909885}, {"type": "nauc_ndcg_at_5_max", "value": 40.21188015992804}, {"type": "nauc_ndcg_at_5_std", "value": 21.417443978842652}, {"type": "nauc_precision_at_1000_diff1", "value": -17.227504530334564}, {"type": "nauc_precision_at_1000_max", "value": 3.798554468439066}, {"type": "nauc_precision_at_1000_std", "value": 35.73617809452683}, {"type": "nauc_precision_at_100_diff1", "value": -17.63388230218776}, {"type": "nauc_precision_at_100_max", "value": 15.079399882407094}, {"type": "nauc_precision_at_100_std", "value": 41.83698491321226}, {"type": "nauc_precision_at_10_diff1", "value": -11.850925959645156}, {"type": "nauc_precision_at_10_max", "value": 35.93283968364352}, {"type": "nauc_precision_at_10_std", "value": 34.391271855921296}, {"type": "nauc_precision_at_1_diff1", "value": 27.730860778824823}, {"type": "nauc_precision_at_1_max", "value": 43.97462471516834}, {"type": "nauc_precision_at_1_std", "value": 27.491068270978896}, {"type": "nauc_precision_at_20_diff1", "value": -14.281328840943347}, {"type": "nauc_precision_at_20_max", "value": 29.469099781759006}, {"type": "nauc_precision_at_20_std", "value": 38.54703022340941}, {"type": "nauc_precision_at_3_diff1", "value": 3.486986910413196}, {"type": "nauc_precision_at_3_max", "value": 41.21107780473768}, {"type": "nauc_precision_at_3_std", "value": 24.057479124531216}, {"type": "nauc_precision_at_5_diff1", "value": -3.0623787872866233}, {"type": "nauc_precision_at_5_max", "value": 37.49266386466702}, {"type": "nauc_precision_at_5_std", "value": 26.894454268004935}, {"type": "nauc_recall_at_1000_diff1", "value": -2.446891864334283}, {"type": "nauc_recall_at_1000_max", "value": 23.867293584643377}, {"type": "nauc_recall_at_1000_std", "value": 16.34707128224595}, {"type": "nauc_recall_at_100_diff1", "value": 4.891133690841179}, {"type": "nauc_recall_at_100_max", "value": 24.56727964996522}, {"type": "nauc_recall_at_100_std", "value": 9.847212953200797}, {"type": "nauc_recall_at_10_diff1", "value": 19.211912363585288}, {"type": "nauc_recall_at_10_max", "value": 24.825344777920737}, {"type": "nauc_recall_at_10_std", "value": -5.447989195041898}, {"type": "nauc_recall_at_1_diff1", "value": 46.31602607957798}, {"type": "nauc_recall_at_1_max", "value": 11.807757660801942}, {"type": "nauc_recall_at_1_std", "value": -13.984889089354317}, {"type": "nauc_recall_at_20_diff1", "value": 12.233372054304805}, {"type": "nauc_recall_at_20_max", "value": 22.284108685207148}, {"type": "nauc_recall_at_20_std", "value": -4.317138366746209}, {"type": "nauc_recall_at_3_diff1", "value": 28.394631527225815}, {"type": "nauc_recall_at_3_max", "value": 15.593864852625462}, {"type": "nauc_recall_at_3_std", "value": -12.383531804314593}, {"type": "nauc_recall_at_5_diff1", "value": 24.457441304950343}, {"type": "nauc_recall_at_5_max", "value": 19.080049396281623}, {"type": "nauc_recall_at_5_std", "value": -11.879747703626627}, {"type": "ndcg_at_1", "value": 51.548}, {"type": "ndcg_at_10", "value": 41.998000000000005}, {"type": "ndcg_at_100", "value": 39.626}, {"type": "ndcg_at_1000", "value": 48.707}, {"type": "ndcg_at_20", "value": 40.181}, {"type": "ndcg_at_3", "value": 48.06}, {"type": "ndcg_at_5", "value": 45.829}, {"type": "precision_at_1", "value": 52.941}, {"type": "precision_at_10", "value": 31.330999999999996}, {"type": "precision_at_100", "value": 10.421}, {"type": "precision_at_1000", "value": 2.428}, {"type": "precision_at_20", "value": 24.118000000000002}, {"type": "precision_at_3", "value": 45.408}, {"type": "precision_at_5", "value": 39.938}, {"type": "recall_at_1", "value": 6.907000000000001}, {"type": "recall_at_10", "value": 20.51}, {"type": "recall_at_100", "value": 40.857}, {"type": "recall_at_1000", "value": 73.616}, {"type": "recall_at_20", "value": 26.52}, {"type": "recall_at_3", "value": 13.267999999999999}, {"type": "recall_at_5", "value": 16.141}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB NQ", "type": "mteb/nq", "config": "default", "split": "test", "revision": "b774495ed302d8c44a3a7ea25c90dbce03968f31"}, "metrics": [{"type": "main_score", "value": 71.8}, {"type": "map_at_1", "value": 47.629}, {"type": "map_at_10", "value": 64.846}, {"type": "map_at_100", "value": 65.40899999999999}, {"type": "map_at_1000", "value": 65.416}, {"type": "map_at_20", "value": 65.239}, {"type": "map_at_3", "value": 61.185}, {"type": "map_at_5", "value": 63.583}, {"type": "mrr_at_1", "value": 53.15758980301275}, {"type": "mrr_at_10", "value": 67.12880961577366}, {"type": "mrr_at_100", "value": 67.44006405426018}, {"type": "mrr_at_1000", "value": 67.44519150402294}, {"type": "mrr_at_20", "value": 67.34317135515428}, {"type": "mrr_at_3", "value": 64.5905755117805}, {"type": "mrr_at_5", "value": 66.24613750482806}, {"type": "nauc_map_at_1000_diff1", "value": 45.73812106517133}, {"type": "nauc_map_at_1000_max", "value": 35.21262031755756}, {"type": "nauc_map_at_1000_std", "value": -5.549443574026027}, {"type": "nauc_map_at_100_diff1", "value": 45.74254652176879}, {"type": "nauc_map_at_100_max", "value": 35.22349167515518}, {"type": "nauc_map_at_100_std", "value": -5.53697496044773}, {"type": "nauc_map_at_10_diff1", "value": 45.62837128377087}, {"type": "nauc_map_at_10_max", "value": 35.3261562342222}, {"type": "nauc_map_at_10_std", "value": -5.761924414031163}, {"type": "nauc_map_at_1_diff1", "value": 48.69187848570499}, {"type": "nauc_map_at_1_max", "value": 28.687996096473476}, {"type": "nauc_map_at_1_std", "value": -7.518605958272523}, {"type": "nauc_map_at_20_diff1", "value": 45.702303442220035}, {"type": "nauc_map_at_20_max", "value": 35.30719944705456}, {"type": "nauc_map_at_20_std", "value": -5.59505654742681}, {"type": "nauc_map_at_3_diff1", "value": 45.376813726832474}, {"type": "nauc_map_at_3_max", "value": 34.68452149643597}, {"type": "nauc_map_at_3_std", "value": -7.329014950379634}, {"type": "nauc_map_at_5_diff1", "value": 45.29528861989316}, {"type": "nauc_map_at_5_max", "value": 35.35741440869229}, {"type": "nauc_map_at_5_std", "value": -6.028788612259288}, {"type": "nauc_mrr_at_1000_diff1", "value": 46.11808147912517}, {"type": "nauc_mrr_at_1000_max", "value": 35.59241850411947}, {"type": "nauc_mrr_at_1000_std", "value": -3.4072428526109317}, {"type": "nauc_mrr_at_100_diff1", "value": 46.121345545514046}, {"type": "nauc_mrr_at_100_max", "value": 35.60147795073431}, {"type": "nauc_mrr_at_100_std", "value": -3.3965322447588826}, {"type": "nauc_mrr_at_10_diff1", "value": 46.0920068210502}, {"type": "nauc_mrr_at_10_max", "value": 35.79649987854354}, {"type": "nauc_mrr_at_10_std", "value": -3.339624589368137}, {"type": "nauc_mrr_at_1_diff1", "value": 49.101364605656194}, {"type": "nauc_mrr_at_1_max", "value": 31.500796071482146}, {"type": "nauc_mrr_at_1_std", "value": -4.183818500718156}, {"type": "nauc_mrr_at_20_diff1", "value": 46.088076630465594}, {"type": "nauc_mrr_at_20_max", "value": 35.682131663053205}, {"type": "nauc_mrr_at_20_std", "value": -3.35939023178519}, {"type": "nauc_mrr_at_3_diff1", "value": 45.47570812708642}, {"type": "nauc_mrr_at_3_max", "value": 35.741892517632984}, {"type": "nauc_mrr_at_3_std", "value": -4.135335963822013}, {"type": "nauc_mrr_at_5_diff1", "value": 45.78903474184014}, {"type": "nauc_mrr_at_5_max", "value": 35.91273593700205}, {"type": "nauc_mrr_at_5_std", "value": -3.467873421286869}, {"type": "nauc_ndcg_at_1000_diff1", "value": 45.5056583000012}, {"type": "nauc_ndcg_at_1000_max", "value": 36.34328379251593}, {"type": "nauc_ndcg_at_1000_std", "value": -4.0759698229323345}, {"type": "nauc_ndcg_at_100_diff1", "value": 45.61918946477166}, {"type": "nauc_ndcg_at_100_max", "value": 36.675460335836235}, {"type": "nauc_ndcg_at_100_std", "value": -3.6795334726235986}, {"type": "nauc_ndcg_at_10_diff1", "value": 45.15343994274541}, {"type": "nauc_ndcg_at_10_max", "value": 37.48139242964657}, {"type": "nauc_ndcg_at_10_std", "value": -4.287039084554882}, {"type": "nauc_ndcg_at_1_diff1", "value": 49.101364605656194}, {"type": "nauc_ndcg_at_1_max", "value": 31.500796071482146}, {"type": "nauc_ndcg_at_1_std", "value": -4.183818500718156}, {"type": "nauc_ndcg_at_20_diff1", "value": 45.310026313402375}, {"type": "nauc_ndcg_at_20_max", "value": 37.32177497902133}, {"type": "nauc_ndcg_at_20_std", "value": -3.8214360391282587}, {"type": "nauc_ndcg_at_3_diff1", "value": 44.27064370528994}, {"type": "nauc_ndcg_at_3_max", "value": 36.380294033571396}, {"type": "nauc_ndcg_at_3_std", "value": -6.844263370898355}, {"type": "nauc_ndcg_at_5_diff1", "value": 44.29933499225583}, {"type": "nauc_ndcg_at_5_max", "value": 37.46477041822136}, {"type": "nauc_ndcg_at_5_std", "value": -4.866548530467956}, {"type": "nauc_precision_at_1000_diff1", "value": -14.666553359142306}, {"type": "nauc_precision_at_1000_max", "value": -0.5599759853201481}, {"type": "nauc_precision_at_1000_std", "value": 16.8370925526591}, {"type": "nauc_precision_at_100_diff1", "value": -11.816251306246278}, {"type": "nauc_precision_at_100_max", "value": 2.969819268208207}, {"type": "nauc_precision_at_100_std", "value": 18.59422946634747}, {"type": "nauc_precision_at_10_diff1", "value": 1.2050200086029401}, {"type": "nauc_precision_at_10_max", "value": 17.59930352911209}, {"type": "nauc_precision_at_10_std", "value": 13.714495717588985}, {"type": "nauc_precision_at_1_diff1", "value": 49.101364605656194}, {"type": "nauc_precision_at_1_max", "value": 31.500796071482146}, {"type": "nauc_precision_at_1_std", "value": -4.183818500718156}, {"type": "nauc_precision_at_20_diff1", "value": -5.263476664822757}, {"type": "nauc_precision_at_20_max", "value": 11.42004823600046}, {"type": "nauc_precision_at_20_std", "value": 16.510514518664994}, {"type": "nauc_precision_at_3_diff1", "value": 20.116460379305828}, {"type": "nauc_precision_at_3_max", "value": 31.32235038301311}, {"type": "nauc_precision_at_3_std", "value": 2.7486717133871923}, {"type": "nauc_precision_at_5_diff1", "value": 9.57451645335723}, {"type": "nauc_precision_at_5_max", "value": 25.28449126580587}, {"type": "nauc_precision_at_5_std", "value": 9.955736162466767}, {"type": "nauc_recall_at_1000_diff1", "value": -21.632253065978794}, {"type": "nauc_recall_at_1000_max", "value": 70.14409090958776}, {"type": "nauc_recall_at_1000_std", "value": 65.61658090892989}, {"type": "nauc_recall_at_100_diff1", "value": 51.83161124806711}, {"type": "nauc_recall_at_100_max", "value": 77.49921361841523}, {"type": "nauc_recall_at_100_std", "value": 48.352508746719444}, {"type": "nauc_recall_at_10_diff1", "value": 39.86695231362791}, {"type": "nauc_recall_at_10_max", "value": 50.12029094799474}, {"type": "nauc_recall_at_10_std", "value": 0.1650940628131058}, {"type": "nauc_recall_at_1_diff1", "value": 48.69187848570499}, {"type": "nauc_recall_at_1_max", "value": 28.687996096473476}, {"type": "nauc_recall_at_1_std", "value": -7.518605958272523}, {"type": "nauc_recall_at_20_diff1", "value": 39.14155398061627}, {"type": "nauc_recall_at_20_max", "value": 56.78559423716229}, {"type": "nauc_recall_at_20_std", "value": 7.9728224572344075}, {"type": "nauc_recall_at_3_diff1", "value": 38.69589523432158}, {"type": "nauc_recall_at_3_max", "value": 39.53271258375579}, {"type": "nauc_recall_at_3_std", "value": -8.646925065787512}, {"type": "nauc_recall_at_5_diff1", "value": 37.45922652959002}, {"type": "nauc_recall_at_5_max", "value": 44.4911958995867}, {"type": "nauc_recall_at_5_std", "value": -3.5659842556375594}, {"type": "ndcg_at_1", "value": 53.15800000000001}, {"type": "ndcg_at_10", "value": 71.8}, {"type": "ndcg_at_100", "value": 73.85199999999999}, {"type": "ndcg_at_1000", "value": 74.017}, {"type": "ndcg_at_20", "value": 72.933}, {"type": "ndcg_at_3", "value": 65.479}, {"type": "ndcg_at_5", "value": 69.182}, {"type": "precision_at_1", "value": 53.15800000000001}, {"type": "precision_at_10", "value": 10.805}, {"type": "precision_at_100", "value": 1.2}, {"type": "precision_at_1000", "value": 0.122}, {"type": "precision_at_20", "value": 5.694}, {"type": "precision_at_3", "value": 28.939999999999998}, {"type": "precision_at_5", "value": 19.641000000000002}, {"type": "recall_at_1", "value": 47.629}, {"type": "recall_at_10", "value": 90.204}, {"type": "recall_at_100", "value": 98.66}, {"type": "recall_at_1000", "value": 99.874}, {"type": "recall_at_20", "value": 94.24}, {"type": "recall_at_3", "value": 74.394}, {"type": "recall_at_5", "value": 82.711}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB QuoraRetrieval", "type": "mteb/quora", "config": "default", "split": "test", "revision": "e4e08e0b7dbe3c8700f0daef558ff32256715259"}, "metrics": [{"type": "main_score", "value": 90.025}, {"type": "map_at_1", "value": 72.222}, {"type": "map_at_10", "value": 86.58500000000001}, {"type": "map_at_100", "value": 87.176}, {"type": "map_at_1000", "value": 87.188}, {"type": "map_at_20", "value": 86.97399999999999}, {"type": "map_at_3", "value": 83.736}, {"type": "map_at_5", "value": 85.554}, {"type": "mrr_at_1", "value": 83.04}, {"type": "mrr_at_10", "value": 89.05599603174585}, {"type": "mrr_at_100", "value": 89.12398891419457}, {"type": "mrr_at_1000", "value": 89.12434072241001}, {"type": "mrr_at_20", "value": 89.10416280692111}, {"type": "mrr_at_3", "value": 88.23833333333312}, {"type": "mrr_at_5", "value": 88.82233333333308}, {"type": "nauc_map_at_1000_diff1", "value": 78.29348113313218}, {"type": "nauc_map_at_1000_max", "value": 32.31386754277228}, {"type": "nauc_map_at_1000_std", "value": -50.47543661484052}, {"type": "nauc_map_at_100_diff1", "value": 78.29618548618575}, {"type": "nauc_map_at_100_max", "value": 32.301475680947846}, {"type": "nauc_map_at_100_std", "value": -50.50303428814228}, {"type": "nauc_map_at_10_diff1", "value": 78.47383776440803}, {"type": "nauc_map_at_10_max", "value": 31.839339990133563}, {"type": "nauc_map_at_10_std", "value": -52.832713555976}, {"type": "nauc_map_at_1_diff1", "value": 82.46330147467418}, {"type": "nauc_map_at_1_max", "value": 23.497664918373538}, {"type": "nauc_map_at_1_std", "value": -43.824657665520704}, {"type": "nauc_map_at_20_diff1", "value": 78.34772176474422}, {"type": "nauc_map_at_20_max", "value": 32.16495182893947}, {"type": "nauc_map_at_20_std", "value": -51.503292726558605}, {"type": "nauc_map_at_3_diff1", "value": 79.07823813069432}, {"type": "nauc_map_at_3_max", "value": 29.395911687513976}, {"type": "nauc_map_at_3_std", "value": -54.16377546873304}, {"type": "nauc_map_at_5_diff1", "value": 78.73076619520454}, {"type": "nauc_map_at_5_max", "value": 30.700453118585237}, {"type": "nauc_map_at_5_std", "value": -54.130514177664054}, {"type": "nauc_mrr_at_1000_diff1", "value": 79.04736184471865}, {"type": "nauc_mrr_at_1000_max", "value": 34.43004593837643}, {"type": "nauc_mrr_at_1000_std", "value": -46.137269068195316}, {"type": "nauc_mrr_at_100_diff1", "value": 79.04698704288086}, {"type": "nauc_mrr_at_100_max", "value": 34.4305553741175}, {"type": "nauc_mrr_at_100_std", "value": -46.13786687786434}, {"type": "nauc_mrr_at_10_diff1", "value": 79.04490677485934}, {"type": "nauc_mrr_at_10_max", "value": 34.38170181522227}, {"type": "nauc_mrr_at_10_std", "value": -46.38129875681807}, {"type": "nauc_mrr_at_1_diff1", "value": 79.87159215719124}, {"type": "nauc_mrr_at_1_max", "value": 34.05882339253136}, {"type": "nauc_mrr_at_1_std", "value": -43.56093395137571}, {"type": "nauc_mrr_at_20_diff1", "value": 79.04384174535653}, {"type": "nauc_mrr_at_20_max", "value": 34.442136494675005}, {"type": "nauc_mrr_at_20_std", "value": -46.205458519638654}, {"type": "nauc_mrr_at_3_diff1", "value": 78.78154519155487}, {"type": "nauc_mrr_at_3_max", "value": 34.74995000500305}, {"type": "nauc_mrr_at_3_std", "value": -46.36264203155416}, {"type": "nauc_mrr_at_5_diff1", "value": 79.02631187177}, {"type": "nauc_mrr_at_5_max", "value": 34.538698249632205}, {"type": "nauc_mrr_at_5_std", "value": -46.468881576157465}, {"type": "nauc_ndcg_at_1000_diff1", "value": 78.25260097014645}, {"type": "nauc_ndcg_at_1000_max", "value": 33.68584498704271}, {"type": "nauc_ndcg_at_1000_std", "value": -48.44716779494868}, {"type": "nauc_ndcg_at_100_diff1", "value": 78.25115412256716}, {"type": "nauc_ndcg_at_100_max", "value": 33.63652663447088}, {"type": "nauc_ndcg_at_100_std", "value": -48.489243909024715}, {"type": "nauc_ndcg_at_10_diff1", "value": 78.23875101557334}, {"type": "nauc_ndcg_at_10_max", "value": 32.65217430043823}, {"type": "nauc_ndcg_at_10_std", "value": -52.57770468845309}, {"type": "nauc_ndcg_at_1_diff1", "value": 79.87159215719124}, {"type": "nauc_ndcg_at_1_max", "value": 34.05882339253136}, {"type": "nauc_ndcg_at_1_std", "value": -43.56093395137571}, {"type": "nauc_ndcg_at_20_diff1", "value": 78.23478552311765}, {"type": "nauc_ndcg_at_20_max", "value": 33.30691737901109}, {"type": "nauc_ndcg_at_20_std", "value": -50.78412614854527}, {"type": "nauc_ndcg_at_3_diff1", "value": 77.66134485470224}, {"type": "nauc_ndcg_at_3_max", "value": 32.19504710373125}, {"type": "nauc_ndcg_at_3_std", "value": -52.01636728550155}, {"type": "nauc_ndcg_at_5_diff1", "value": 78.04734137324255}, {"type": "nauc_ndcg_at_5_max", "value": 31.94593625591248}, {"type": "nauc_ndcg_at_5_std", "value": -53.02169800690546}, {"type": "nauc_precision_at_1000_diff1", "value": -45.771948123542636}, {"type": "nauc_precision_at_1000_max", "value": -5.182406190477681}, {"type": "nauc_precision_at_1000_std", "value": 41.14460438707817}, {"type": "nauc_precision_at_100_diff1", "value": -45.64767154261461}, {"type": "nauc_precision_at_100_max", "value": -5.046308286851713}, {"type": "nauc_precision_at_100_std", "value": 41.07186716587844}, {"type": "nauc_precision_at_10_diff1", "value": -42.26779562305825}, {"type": "nauc_precision_at_10_max", "value": -1.1264852893323076}, {"type": "nauc_precision_at_10_std", "value": 27.62275729822392}, {"type": "nauc_precision_at_1_diff1", "value": 79.87159215719124}, {"type": "nauc_precision_at_1_max", "value": 34.05882339253136}, {"type": "nauc_precision_at_1_std", "value": -43.56093395137571}, {"type": "nauc_precision_at_20_diff1", "value": -44.24293221128388}, {"type": "nauc_precision_at_20_max", "value": -3.1345628837361867}, {"type": "nauc_precision_at_20_std", "value": 34.23625492740366}, {"type": "nauc_precision_at_3_diff1", "value": -24.925251389823348}, {"type": "nauc_precision_at_3_max", "value": 6.622188833369412}, {"type": "nauc_precision_at_3_std", "value": 6.424741786858512}, {"type": "nauc_precision_at_5_diff1", "value": -36.1407949990387}, {"type": "nauc_precision_at_5_max", "value": 1.7533948968374462}, {"type": "nauc_precision_at_5_std", "value": 17.914083278982634}, {"type": "nauc_recall_at_1000_diff1", "value": 52.26815466244496}, {"type": "nauc_recall_at_1000_max", "value": 69.73611104239443}, {"type": "nauc_recall_at_1000_std", "value": 73.18969965863008}, {"type": "nauc_recall_at_100_diff1", "value": 70.80557513785271}, {"type": "nauc_recall_at_100_max", "value": 33.333440086544556}, {"type": "nauc_recall_at_100_std", "value": -38.75992366905504}, {"type": "nauc_recall_at_10_diff1", "value": 74.45948457438163}, {"type": "nauc_recall_at_10_max", "value": 26.64948512428989}, {"type": "nauc_recall_at_10_std", "value": -82.90334292052363}, {"type": "nauc_recall_at_1_diff1", "value": 82.46330147467418}, {"type": "nauc_recall_at_1_max", "value": 23.497664918373538}, {"type": "nauc_recall_at_1_std", "value": -43.824657665520704}, {"type": "nauc_recall_at_20_diff1", "value": 73.80140280887753}, {"type": "nauc_recall_at_20_max", "value": 30.361616426734965}, {"type": "nauc_recall_at_20_std", "value": -81.1418804447414}, {"type": "nauc_recall_at_3_diff1", "value": 75.19854736087834}, {"type": "nauc_recall_at_3_max", "value": 26.12298005045584}, {"type": "nauc_recall_at_3_std", "value": -63.42583714745169}, {"type": "nauc_recall_at_5_diff1", "value": 74.16423451950358}, {"type": "nauc_recall_at_5_max", "value": 25.552390331018987}, {"type": "nauc_recall_at_5_std", "value": -71.15891947773912}, {"type": "ndcg_at_1", "value": 83.04}, {"type": "ndcg_at_10", "value": 90.025}, {"type": "ndcg_at_100", "value": 91.006}, {"type": "ndcg_at_1000", "value": 91.061}, {"type": "ndcg_at_20", "value": 90.556}, {"type": "ndcg_at_3", "value": 87.493}, {"type": "ndcg_at_5", "value": 88.955}, {"type": "precision_at_1", "value": 83.04}, {"type": "precision_at_10", "value": 13.667000000000002}, {"type": "precision_at_100", "value": 1.542}, {"type": "precision_at_1000", "value": 0.157}, {"type": "precision_at_20", "value": 7.221}, {"type": "precision_at_3", "value": 38.433}, {"type": "precision_at_5", "value": 25.228}, {"type": "recall_at_1", "value": 72.222}, {"type": "recall_at_10", "value": 96.604}, {"type": "recall_at_100", "value": 99.786}, {"type": "recall_at_1000", "value": 99.996}, {"type": "recall_at_20", "value": 98.253}, {"type": "recall_at_3", "value": 89.276}, {"type": "recall_at_5", "value": 93.46}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClustering", "type": "mteb/reddit-clustering", "config": "default", "split": "test", "revision": "24640382cdbf8abc73003fb0fa6d111a705499eb"}, "metrics": [{"type": "main_score", "value": 72.86492101891123}, {"type": "v_measure", "value": 72.86492101891123}, {"type": "v_measure_std", "value": 2.778711445144635}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClusteringP2P", "type": "mteb/reddit-clustering-p2p", "config": "default", "split": "test", "revision": "385e3cb46b4cfa89021f56c4380204149d0efe33"}, "metrics": [{"type": "main_score", "value": 75.27316726548479}, {"type": "v_measure", "value": 75.27316726548479}, {"type": "v_measure_std", "value": 8.87871936725338}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB SCIDOCS", "type": "mteb/scidocs", "config": "default", "split": "test", "revision": "f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88"}, "metrics": [{"type": "main_score", "value": 26.638}, {"type": "map_at_1", "value": 6.128}, {"type": "map_at_10", "value": 16.472}, {"type": "map_at_100", "value": 19.522000000000002}, {"type": "map_at_1000", "value": 19.898}, {"type": "map_at_20", "value": 18.098}, {"type": "map_at_3", "value": 11.283}, {"type": "map_at_5", "value": 13.771}, {"type": "mrr_at_1", "value": 30.2}, {"type": "mrr_at_10", "value": 42.621150793650735}, {"type": "mrr_at_100", "value": 43.740858712021954}, {"type": "mrr_at_1000", "value": 43.762699500220904}, {"type": "mrr_at_20", "value": 43.383639927753634}, {"type": "mrr_at_3", "value": 38.83333333333331}, {"type": "mrr_at_5", "value": 41.14833333333326}, {"type": "nauc_map_at_1000_diff1", "value": 13.13534664124808}, {"type": "nauc_map_at_1000_max", "value": 29.346654566149795}, {"type": "nauc_map_at_1000_std", "value": 18.08121186982413}, {"type": "nauc_map_at_100_diff1", "value": 13.098072728041538}, {"type": "nauc_map_at_100_max", "value": 29.299084480697523}, {"type": "nauc_map_at_100_std", "value": 17.961620202918464}, {"type": "nauc_map_at_10_diff1", "value": 14.001743720394682}, {"type": "nauc_map_at_10_max", "value": 28.04128290996403}, {"type": "nauc_map_at_10_std", "value": 13.744481555974716}, {"type": "nauc_map_at_1_diff1", "value": 22.1926640424872}, {"type": "nauc_map_at_1_max", "value": 21.32609279586034}, {"type": "nauc_map_at_1_std", "value": 6.566596302915438}, {"type": "nauc_map_at_20_diff1", "value": 13.57313142419664}, {"type": "nauc_map_at_20_max", "value": 28.93840146319476}, {"type": "nauc_map_at_20_std", "value": 16.50869367365676}, {"type": "nauc_map_at_3_diff1", "value": 17.707700541948462}, {"type": "nauc_map_at_3_max", "value": 26.058174051376238}, {"type": "nauc_map_at_3_std", "value": 9.943924560735267}, {"type": "nauc_map_at_5_diff1", "value": 17.11844492157723}, {"type": "nauc_map_at_5_max", "value": 27.865247403049388}, {"type": "nauc_map_at_5_std", "value": 11.372588172121546}, {"type": "nauc_mrr_at_1000_diff1", "value": 21.11248719936198}, {"type": "nauc_mrr_at_1000_max", "value": 26.734172102201466}, {"type": "nauc_mrr_at_1000_std", "value": 11.766121765437228}, {"type": "nauc_mrr_at_100_diff1", "value": 21.107109982277702}, {"type": "nauc_mrr_at_100_max", "value": 26.741616065723267}, {"type": "nauc_mrr_at_100_std", "value": 11.789802686224208}, {"type": "nauc_mrr_at_10_diff1", "value": 20.74108639793207}, {"type": "nauc_mrr_at_10_max", "value": 26.920838463358333}, {"type": "nauc_mrr_at_10_std", "value": 11.849217361926522}, {"type": "nauc_mrr_at_1_diff1", "value": 22.177437860573356}, {"type": "nauc_mrr_at_1_max", "value": 21.88074521417754}, {"type": "nauc_mrr_at_1_std", "value": 6.776011900101789}, {"type": "nauc_mrr_at_20_diff1", "value": 21.126633710175994}, {"type": "nauc_mrr_at_20_max", "value": 26.860736480370974}, {"type": "nauc_mrr_at_20_std", "value": 11.815411633726338}, {"type": "nauc_mrr_at_3_diff1", "value": 21.689245200066466}, {"type": "nauc_mrr_at_3_max", "value": 26.187305092831625}, {"type": "nauc_mrr_at_3_std", "value": 10.895380313134332}, {"type": "nauc_mrr_at_5_diff1", "value": 20.898811082479778}, {"type": "nauc_mrr_at_5_max", "value": 26.939217247104036}, {"type": "nauc_mrr_at_5_std", "value": 11.77832949822472}, {"type": "nauc_ndcg_at_1000_diff1", "value": 13.251184947898546}, {"type": "nauc_ndcg_at_1000_max", "value": 30.879594164526146}, {"type": "nauc_ndcg_at_1000_std", "value": 23.125206047366625}, {"type": "nauc_ndcg_at_100_diff1", "value": 12.549100649053676}, {"type": "nauc_ndcg_at_100_max", "value": 30.634680845419123}, {"type": "nauc_ndcg_at_100_std", "value": 23.296226055422984}, {"type": "nauc_ndcg_at_10_diff1", "value": 14.475144549294322}, {"type": "nauc_ndcg_at_10_max", "value": 29.450349815417336}, {"type": "nauc_ndcg_at_10_std", "value": 15.94068314781612}, {"type": "nauc_ndcg_at_1_diff1", "value": 22.177437860573356}, {"type": "nauc_ndcg_at_1_max", "value": 21.88074521417754}, {"type": "nauc_ndcg_at_1_std", "value": 6.776011900101789}, {"type": "nauc_ndcg_at_20_diff1", "value": 14.173669585802266}, {"type": "nauc_ndcg_at_20_max", "value": 30.475890854725}, {"type": "nauc_ndcg_at_20_std", "value": 19.863898148221704}, {"type": "nauc_ndcg_at_3_diff1", "value": 18.93971261196868}, {"type": "nauc_ndcg_at_3_max", "value": 27.3707298720736}, {"type": "nauc_ndcg_at_3_std", "value": 11.439810510051224}, {"type": "nauc_ndcg_at_5_diff1", "value": 17.89535958094687}, {"type": "nauc_ndcg_at_5_max", "value": 29.272740466638425}, {"type": "nauc_ndcg_at_5_std", "value": 13.402467626635909}, {"type": "nauc_precision_at_1000_diff1", "value": -3.811547048784123}, {"type": "nauc_precision_at_1000_max", "value": 22.55165337197117}, {"type": "nauc_precision_at_1000_std", "value": 35.98524999650108}, {"type": "nauc_precision_at_100_diff1", "value": 0.6474234774922896}, {"type": "nauc_precision_at_100_max", "value": 25.06920726527032}, {"type": "nauc_precision_at_100_std", "value": 32.31439698982313}, {"type": "nauc_precision_at_10_diff1", "value": 7.943127218139508}, {"type": "nauc_precision_at_10_max", "value": 28.571937636787197}, {"type": "nauc_precision_at_10_std", "value": 18.8472620918488}, {"type": "nauc_precision_at_1_diff1", "value": 22.177437860573356}, {"type": "nauc_precision_at_1_max", "value": 21.88074521417754}, {"type": "nauc_precision_at_1_std", "value": 6.776011900101789}, {"type": "nauc_precision_at_20_diff1", "value": 6.981574259607366}, {"type": "nauc_precision_at_20_max", "value": 28.986094397038727}, {"type": "nauc_precision_at_20_std", "value": 25.83129974001146}, {"type": "nauc_precision_at_3_diff1", "value": 17.197490724039355}, {"type": "nauc_precision_at_3_max", "value": 29.17569320583099}, {"type": "nauc_precision_at_3_std", "value": 13.430554945991846}, {"type": "nauc_precision_at_5_diff1", "value": 14.952364330739362}, {"type": "nauc_precision_at_5_max", "value": 31.053243354846977}, {"type": "nauc_precision_at_5_std", "value": 15.856312752807822}, {"type": "nauc_recall_at_1000_diff1", "value": -4.8224253128926975}, {"type": "nauc_recall_at_1000_max", "value": 21.3989024429911}, {"type": "nauc_recall_at_1000_std", "value": 39.152234275603604}, {"type": "nauc_recall_at_100_diff1", "value": 0.11936808422867201}, {"type": "nauc_recall_at_100_max", "value": 24.261739241957823}, {"type": "nauc_recall_at_100_std", "value": 32.62984573938928}, {"type": "nauc_recall_at_10_diff1", "value": 7.851256165018388}, {"type": "nauc_recall_at_10_max", "value": 27.936406600938746}, {"type": "nauc_recall_at_10_std", "value": 18.683634320636113}, {"type": "nauc_recall_at_1_diff1", "value": 22.1926640424872}, {"type": "nauc_recall_at_1_max", "value": 21.32609279586034}, {"type": "nauc_recall_at_1_std", "value": 6.566596302915438}, {"type": "nauc_recall_at_20_diff1", "value": 6.8107211705182165}, {"type": "nauc_recall_at_20_max", "value": 28.286284094687787}, {"type": "nauc_recall_at_20_std", "value": 25.932013268120862}, {"type": "nauc_recall_at_3_diff1", "value": 17.04156818427151}, {"type": "nauc_recall_at_3_max", "value": 28.645439108719216}, {"type": "nauc_recall_at_3_std", "value": 13.346047828494411}, {"type": "nauc_recall_at_5_diff1", "value": 14.906284329771822}, {"type": "nauc_recall_at_5_max", "value": 30.58628602415921}, {"type": "nauc_recall_at_5_std", "value": 15.755157478191755}, {"type": "ndcg_at_1", "value": 30.2}, {"type": "ndcg_at_10", "value": 26.638}, {"type": "ndcg_at_100", "value": 37.135}, {"type": "ndcg_at_1000", "value": 42.576}, {"type": "ndcg_at_20", "value": 30.75}, {"type": "ndcg_at_3", "value": 24.675}, {"type": "ndcg_at_5", "value": 21.836}, {"type": "precision_at_1", "value": 30.2}, {"type": "precision_at_10", "value": 14.06}, {"type": "precision_at_100", "value": 2.904}, {"type": "precision_at_1000", "value": 0.42}, {"type": "precision_at_20", "value": 9.4}, {"type": "precision_at_3", "value": 23.233}, {"type": "precision_at_5", "value": 19.439999999999998}, {"type": "recall_at_1", "value": 6.128}, {"type": "recall_at_10", "value": 28.471999999999998}, {"type": "recall_at_100", "value": 58.952000000000005}, {"type": "recall_at_1000", "value": 85.137}, {"type": "recall_at_20", "value": 38.17}, {"type": "recall_at_3", "value": 14.127999999999998}, {"type": "recall_at_5", "value": 19.673}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB SICK-R", "type": "mteb/sickr-sts", "config": "default", "split": "test", "revision": "20a6d6f312dd54037fe07a32d58e5e168867909d"}, "metrics": [{"type": "cosine_pearson", "value": 86.86608529160739}, {"type": "cosine_spearman", "value": 82.88625166203383}, {"type": "euclidean_pearson", "value": 84.15494418856142}, {"type": "euclidean_spearman", "value": 82.88449294676421}, {"type": "main_score", "value": 82.88625166203383}, {"type": "manhattan_pearson", "value": 84.39068623474428}, {"type": "manhattan_spearman", "value": 82.88065412169463}, {"type": "pearson", "value": 86.86608529160739}, {"type": "spearman", "value": 82.88625166203383}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS12", "type": "mteb/sts12-sts", "config": "default", "split": "test", "revision": "a0d554a64d88156834ff5ae9920b964011b16384"}, "metrics": [{"type": "cosine_pearson", "value": 87.0445014940449}, {"type": "cosine_spearman", "value": 80.0880365116599}, {"type": "euclidean_pearson", "value": 83.80250772928852}, {"type": "euclidean_spearman", "value": 80.0892465260778}, {"type": "main_score", "value": 80.0880365116599}, {"type": "manhattan_pearson", "value": 83.96793981929336}, {"type": "manhattan_spearman", "value": 80.24881789268238}, {"type": "pearson", "value": 87.0445014940449}, {"type": "spearman", "value": 80.0880365116599}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS13", "type": "mteb/sts13-sts", "config": "default", "split": "test", "revision": "7e90230a92c190f1bf69ae9002b8cea547a64cca"}, "metrics": [{"type": "cosine_pearson", "value": 89.33900828959968}, {"type": "cosine_spearman", "value": 89.68256358526733}, {"type": "euclidean_pearson", "value": 89.29188708262265}, {"type": "euclidean_spearman", "value": 89.68204344658601}, {"type": "main_score", "value": 89.68256358526733}, {"type": "manhattan_pearson", "value": 89.13996588193149}, {"type": "manhattan_spearman", "value": 89.61372804425623}, {"type": "pearson", "value": 89.33900828959968}, {"type": "spearman", "value": 89.68256358526733}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS14", "type": "mteb/sts14-sts", "config": "default", "split": "test", "revision": "6031580fec1f6af667f0bd2da0a551cf4f0b2375"}, "metrics": [{"type": "cosine_pearson", "value": 86.42029843639123}, {"type": "cosine_spearman", "value": 85.0707889220723}, {"type": "euclidean_pearson", "value": 85.75114239552562}, {"type": "euclidean_spearman", "value": 85.06858160270725}, {"type": "main_score", "value": 85.0707889220723}, {"type": "manhattan_pearson", "value": 85.86461900459038}, {"type": "manhattan_spearman", "value": 85.28671103475605}, {"type": "pearson", "value": 86.42029843639123}, {"type": "spearman", "value": 85.0707889220723}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS15", "type": "mteb/sts15-sts", "config": "default", "split": "test", "revision": "ae752c7c21bf194d8b67fd573edf7ae58183cbe3"}, "metrics": [{"type": "cosine_pearson", "value": 88.3660081271444}, {"type": "cosine_spearman", "value": 89.39375083609528}, {"type": "euclidean_pearson", "value": 89.21818482894895}, {"type": "euclidean_spearman", "value": 89.39361588875443}, {"type": "main_score", "value": 89.39375083609528}, {"type": "manhattan_pearson", "value": 89.53535068014057}, {"type": "manhattan_spearman", "value": 89.81077130567752}, {"type": "pearson", "value": 88.3660081271444}, {"type": "spearman", "value": 89.39375083609528}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS16", "type": "mteb/sts16-sts", "config": "default", "split": "test", "revision": "4d8694f8f0e0100860b497b999b3dbed754a0513"}, "metrics": [{"type": "cosine_pearson", "value": 85.60708247171874}, {"type": "cosine_spearman", "value": 87.15234952832193}, {"type": "euclidean_pearson", "value": 86.21743555548137}, {"type": "euclidean_spearman", "value": 87.14450217418016}, {"type": "main_score", "value": 87.15234952832193}, {"type": "manhattan_pearson", "value": 86.2467748746084}, {"type": "manhattan_spearman", "value": 87.2197479717654}, {"type": "pearson", "value": 85.60708247171874}, {"type": "spearman", "value": 87.15234952832193}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS17 (en-en)", "type": "mteb/sts17-crosslingual-sts", "config": "en-en", "split": "test", "revision": "faeb762787bd10488a50c8b5be4a3b82e411949c"}, "metrics": [{"type": "cosine_pearson", "value": 91.25898556808458}, {"type": "cosine_spearman", "value": 91.35372390581641}, {"type": "euclidean_pearson", "value": 91.319520321348}, {"type": "euclidean_spearman", "value": 91.30821135416925}, {"type": "main_score", "value": 91.35372390581641}, {"type": "manhattan_pearson", "value": 91.14800959939069}, {"type": "manhattan_spearman", "value": 91.09775424245629}, {"type": "pearson", "value": 91.25898556808458}, {"type": "spearman", "value": 91.35372390581641}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (en)", "type": "mteb/sts22-crosslingual-sts", "config": "en", "split": "test", "revision": "de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3"}, "metrics": [{"type": "cosine_pearson", "value": 67.61637111515797}, {"type": "cosine_spearman", "value": 68.10379096526697}, {"type": "euclidean_pearson", "value": 69.2652309491375}, {"type": "euclidean_spearman", "value": 68.18436357033228}, {"type": "main_score", "value": 68.10379096526697}, {"type": "manhattan_pearson", "value": 69.52531340510775}, {"type": "manhattan_spearman", "value": 68.17874790391862}, {"type": "pearson", "value": 67.61637111515797}, {"type": "spearman", "value": 68.10379096526697}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STSBenchmark", "type": "mteb/stsbenchmark-sts", "config": "default", "split": "test", "revision": "b0fddb56ed78048fa8b90373c8a3cfc37b684831"}, "metrics": [{"type": "cosine_pearson", "value": 87.81592853782297}, {"type": "cosine_spearman", "value": 88.2302550329183}, {"type": "euclidean_pearson", "value": 88.01165144519526}, {"type": "euclidean_spearman", "value": 88.23342148890097}, {"type": "main_score", "value": 88.2302550329183}, {"type": "manhattan_pearson", "value": 88.148592564938}, {"type": "manhattan_spearman", "value": 88.49226317320988}, {"type": "pearson", "value": 87.81592853782297}, {"type": "spearman", "value": 88.2302550329183}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB SciDocsRR", "type": "mteb/scidocs-reranking", "config": "default", "split": "test", "revision": "d3c5e1fc0b855ab6097bf1cda04dd73947d7caab"}, "metrics": [{"type": "main_score", "value": 89.196009707431}, {"type": "map", "value": 89.196009707431}, {"type": "mrr", "value": 97.07198121413808}, {"type": "nAUC_map_diff1", "value": -14.066667940115352}, {"type": "nAUC_map_max", "value": 49.73702475027407}, {"type": "nAUC_map_std", "value": 64.0986775782592}, {"type": "nAUC_mrr_diff1", "value": 21.96846389417319}, {"type": "nAUC_mrr_max", "value": 86.38341077184032}, {"type": "nAUC_mrr_std", "value": 75.38945014727746}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB SciFact", "type": "mteb/scifact", "config": "default", "split": "test", "revision": "0228b52cf27578f30900b9e5271d331663a030d7"}, "metrics": [{"type": "main_score", "value": 80.08999999999999}, {"type": "map_at_1", "value": 63.161}, {"type": "map_at_10", "value": 75.163}, {"type": "map_at_100", "value": 75.408}, {"type": "map_at_1000", "value": 75.409}, {"type": "map_at_20", "value": 75.332}, {"type": "map_at_3", "value": 71.839}, {"type": "map_at_5", "value": 74.32600000000001}, {"type": "mrr_at_1", "value": 66.33333333333333}, {"type": "mrr_at_10", "value": 75.95978835978836}, {"type": "mrr_at_100", "value": 76.15647881281473}, {"type": "mrr_at_1000", "value": 76.15736533763744}, {"type": "mrr_at_20", "value": 76.08557368557368}, {"type": "mrr_at_3", "value": 73.55555555555556}, {"type": "mrr_at_5", "value": 75.4888888888889}, {"type": "nauc_map_at_1000_diff1", "value": 77.31229383811176}, {"type": "nauc_map_at_1000_max", "value": 58.848319058605156}, {"type": "nauc_map_at_1000_std", "value": -14.290090263454985}, {"type": "nauc_map_at_100_diff1", "value": 77.31325400213969}, {"type": "nauc_map_at_100_max", "value": 58.848885054155275}, {"type": "nauc_map_at_100_std", "value": -14.285806618869273}, {"type": "nauc_map_at_10_diff1", "value": 77.1806705504232}, {"type": "nauc_map_at_10_max", "value": 59.02905805134415}, {"type": "nauc_map_at_10_std", "value": -14.132954900037467}, {"type": "nauc_map_at_1_diff1", "value": 81.03932970557837}, {"type": "nauc_map_at_1_max", "value": 49.02073230264529}, {"type": "nauc_map_at_1_std", "value": -22.977452975845512}, {"type": "nauc_map_at_20_diff1", "value": 77.22581364818562}, {"type": "nauc_map_at_20_max", "value": 58.90740400399768}, {"type": "nauc_map_at_20_std", "value": -14.245079150986745}, {"type": "nauc_map_at_3_diff1", "value": 76.99793243255563}, {"type": "nauc_map_at_3_max", "value": 54.9930733886623}, {"type": "nauc_map_at_3_std", "value": -19.297708446082407}, {"type": "nauc_map_at_5_diff1", "value": 77.1671608360295}, {"type": "nauc_map_at_5_max", "value": 57.27757489519526}, {"type": "nauc_map_at_5_std", "value": -15.446338357667708}, {"type": "nauc_mrr_at_1000_diff1", "value": 77.4806080821202}, {"type": "nauc_mrr_at_1000_max", "value": 60.9213776129792}, {"type": "nauc_mrr_at_1000_std", "value": -12.139599632228343}, {"type": "nauc_mrr_at_100_diff1", "value": 77.48158073865281}, {"type": "nauc_mrr_at_100_max", "value": 60.9218657185361}, {"type": "nauc_mrr_at_100_std", "value": -12.13532070453677}, {"type": "nauc_mrr_at_10_diff1", "value": 77.32428546014407}, {"type": "nauc_mrr_at_10_max", "value": 61.018407010343466}, {"type": "nauc_mrr_at_10_std", "value": -12.143193773309347}, {"type": "nauc_mrr_at_1_diff1", "value": 80.99806778887115}, {"type": "nauc_mrr_at_1_max", "value": 59.17855969530095}, {"type": "nauc_mrr_at_1_std", "value": -12.30545640831458}, {"type": "nauc_mrr_at_20_diff1", "value": 77.3811067653992}, {"type": "nauc_mrr_at_20_max", "value": 60.9648880366335}, {"type": "nauc_mrr_at_20_std", "value": -12.124066076541853}, {"type": "nauc_mrr_at_3_diff1", "value": 77.31304316321959}, {"type": "nauc_mrr_at_3_max", "value": 60.75536766404163}, {"type": "nauc_mrr_at_3_std", "value": -12.997876030849623}, {"type": "nauc_mrr_at_5_diff1", "value": 77.12952864141742}, {"type": "nauc_mrr_at_5_max", "value": 60.995943754968685}, {"type": "nauc_mrr_at_5_std", "value": -11.353447465605694}, {"type": "nauc_ndcg_at_1000_diff1", "value": 76.81788665683746}, {"type": "nauc_ndcg_at_1000_max", "value": 60.35947755262391}, {"type": "nauc_ndcg_at_1000_std", "value": -12.884942372460362}, {"type": "nauc_ndcg_at_100_diff1", "value": 76.87388230365198}, {"type": "nauc_ndcg_at_100_max", "value": 60.38813162962434}, {"type": "nauc_ndcg_at_100_std", "value": -12.64384717800478}, {"type": "nauc_ndcg_at_10_diff1", "value": 75.87713506026317}, {"type": "nauc_ndcg_at_10_max", "value": 61.39356554675667}, {"type": "nauc_ndcg_at_10_std", "value": -12.144227584144218}, {"type": "nauc_ndcg_at_1_diff1", "value": 80.99806778887115}, {"type": "nauc_ndcg_at_1_max", "value": 59.17855969530095}, {"type": "nauc_ndcg_at_1_std", "value": -12.30545640831458}, {"type": "nauc_ndcg_at_20_diff1", "value": 76.09913944506627}, {"type": "nauc_ndcg_at_20_max", "value": 61.01644448834147}, {"type": "nauc_ndcg_at_20_std", "value": -12.456209267623857}, {"type": "nauc_ndcg_at_3_diff1", "value": 75.52717946614608}, {"type": "nauc_ndcg_at_3_max", "value": 58.96433090721983}, {"type": "nauc_ndcg_at_3_std", "value": -15.849280494339556}, {"type": "nauc_ndcg_at_5_diff1", "value": 75.69026981016921}, {"type": "nauc_ndcg_at_5_max", "value": 58.924044405851326}, {"type": "nauc_ndcg_at_5_std", "value": -13.182728827923107}, {"type": "nauc_precision_at_1000_diff1", "value": -31.634022001609914}, {"type": "nauc_precision_at_1000_max", "value": 31.46271490784504}, {"type": "nauc_precision_at_1000_std", "value": 60.44801276891442}, {"type": "nauc_precision_at_100_diff1", "value": -29.722363469948103}, {"type": "nauc_precision_at_100_max", "value": 32.05464592020074}, {"type": "nauc_precision_at_100_std", "value": 60.832570595613554}, {"type": "nauc_precision_at_10_diff1", "value": -11.91731376599939}, {"type": "nauc_precision_at_10_max", "value": 45.43646553157129}, {"type": "nauc_precision_at_10_std", "value": 52.962408871791276}, {"type": "nauc_precision_at_1_diff1", "value": 80.99806778887115}, {"type": "nauc_precision_at_1_max", "value": 59.17855969530095}, {"type": "nauc_precision_at_1_std", "value": -12.30545640831458}, {"type": "nauc_precision_at_20_diff1", "value": -18.43293701721667}, {"type": "nauc_precision_at_20_max", "value": 39.53434874203934}, {"type": "nauc_precision_at_20_std", "value": 53.6291982468461}, {"type": "nauc_precision_at_3_diff1", "value": 30.84789043003892}, {"type": "nauc_precision_at_3_max", "value": 55.660727758110376}, {"type": "nauc_precision_at_3_std", "value": 17.87243920840355}, {"type": "nauc_precision_at_5_diff1", "value": 4.099395181445625}, {"type": "nauc_precision_at_5_max", "value": 50.346770968709386}, {"type": "nauc_precision_at_5_std", "value": 44.66722483255029}, {"type": "nauc_recall_at_1000_diff1", "value": NaN}, {"type": "nauc_recall_at_1000_max", "value": NaN}, {"type": "nauc_recall_at_1000_std", "value": NaN}, {"type": "nauc_recall_at_100_diff1", "value": 100.0}, {"type": "nauc_recall_at_100_max", "value": 72.2222222222207}, {"type": "nauc_recall_at_100_std", "value": 86.92810457516407}, {"type": "nauc_recall_at_10_diff1", "value": 62.18887555022005}, {"type": "nauc_recall_at_10_max", "value": 75.14339068960916}, {"type": "nauc_recall_at_10_std", "value": -1.4912631719357108}, {"type": "nauc_recall_at_1_diff1", "value": 81.03932970557837}, {"type": "nauc_recall_at_1_max", "value": 49.02073230264529}, {"type": "nauc_recall_at_1_std", "value": -22.977452975845512}, {"type": "nauc_recall_at_20_diff1", "value": 59.27414444038499}, {"type": "nauc_recall_at_20_max", "value": 76.32241302318047}, {"type": "nauc_recall_at_20_std", "value": -0.8322169447488666}, {"type": "nauc_recall_at_3_diff1", "value": 69.58783002593157}, {"type": "nauc_recall_at_3_max", "value": 55.89660919896563}, {"type": "nauc_recall_at_3_std", "value": -21.183005510917862}, {"type": "nauc_recall_at_5_diff1", "value": 65.53660499878802}, {"type": "nauc_recall_at_5_max", "value": 58.218018535135805}, {"type": "nauc_recall_at_5_std", "value": -8.328952210032455}, {"type": "ndcg_at_1", "value": 66.333}, {"type": "ndcg_at_10", "value": 80.08999999999999}, {"type": "ndcg_at_100", "value": 81.24900000000001}, {"type": "ndcg_at_1000", "value": 81.28800000000001}, {"type": "ndcg_at_20", "value": 80.625}, {"type": "ndcg_at_3", "value": 74.98700000000001}, {"type": "ndcg_at_5", "value": 78.553}, {"type": "precision_at_1", "value": 66.333}, {"type": "precision_at_10", "value": 10.667}, {"type": "precision_at_100", "value": 1.127}, {"type": "precision_at_1000", "value": 0.11299999999999999}, {"type": "precision_at_20", "value": 5.45}, {"type": "precision_at_3", "value": 29.555999999999997}, {"type": "precision_at_5", "value": 20.133000000000003}, {"type": "recall_at_1", "value": 63.161}, {"type": "recall_at_10", "value": 94.167}, {"type": "recall_at_100", "value": 99.667}, {"type": "recall_at_1000", "value": 100.0}, {"type": "recall_at_20", "value": 96.167}, {"type": "recall_at_3", "value": 80.972}, {"type": "recall_at_5", "value": 89.90599999999999}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB SprintDuplicateQuestions", "type": "mteb/sprintduplicatequestions-pairclassification", "config": "default", "split": "test", "revision": "d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46"}, "metrics": [{"type": "cosine_accuracy", "value": 99.81881188118813}, {"type": "cosine_accuracy_threshold", "value": 85.55081486701965}, {"type": "cosine_ap", "value": 96.0359661816236}, {"type": "cosine_f1", "value": 90.6584992343032}, {"type": "cosine_f1_threshold", "value": 84.82859134674072}, {"type": "cosine_precision", "value": 92.59645464025026}, {"type": "cosine_recall", "value": 88.8}, {"type": "dot_accuracy", "value": 99.81881188118813}, {"type": "dot_accuracy_threshold", "value": 84.91908311843872}, {"type": "dot_ap", "value": 96.05740121094365}, {"type": "dot_f1", "value": 90.81885856079404}, {"type": "dot_f1_threshold", "value": 83.84919166564941}, {"type": "dot_precision", "value": 90.14778325123153}, {"type": "dot_recall", "value": 91.5}, {"type": "euclidean_accuracy", "value": 99.82079207920792}, {"type": "euclidean_accuracy_threshold", "value": 54.49706315994263}, {"type": "euclidean_ap", "value": 96.03223527068818}, {"type": "euclidean_f1", "value": 90.72270630445925}, {"type": "euclidean_f1_threshold", "value": 54.49706315994263}, {"type": "euclidean_precision", "value": 93.05993690851734}, {"type": "euclidean_recall", "value": 88.5}, {"type": "main_score", "value": 96.32671902439806}, {"type": "manhattan_accuracy", "value": 99.83267326732673}, {"type": "manhattan_accuracy_threshold", "value": 3818.192672729492}, {"type": "manhattan_ap", "value": 96.32671902439806}, {"type": "manhattan_f1", "value": 91.52032112393378}, {"type": "manhattan_f1_threshold", "value": 3818.192672729492}, {"type": "manhattan_precision", "value": 91.8429003021148}, {"type": "manhattan_recall", "value": 91.2}, {"type": "max_ap", "value": 96.32671902439806}, {"type": "max_f1", "value": 91.52032112393378}, {"type": "max_precision", "value": 93.05993690851734}, {"type": "max_recall", "value": 91.5}, {"type": "similarity_accuracy", "value": 99.81881188118813}, {"type": "similarity_accuracy_threshold", "value": 85.55081486701965}, {"type": "similarity_ap", "value": 96.0359661816236}, {"type": "similarity_f1", "value": 90.6584992343032}, {"type": "similarity_f1_threshold", "value": 84.82859134674072}, {"type": "similarity_precision", "value": 92.59645464025026}, {"type": "similarity_recall", "value": 88.8}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClustering", "type": "mteb/stackexchange-clustering", "config": "default", "split": "test", "revision": "6cbc1f7b2bc0622f2e39d2c77fa502909748c259"}, "metrics": [{"type": "main_score", "value": 80.28558559137414}, {"type": "v_measure", "value": 80.28558559137414}, {"type": "v_measure_std", "value": 2.795276520287584}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClusteringP2P", "type": "mteb/stackexchange-clustering-p2p", "config": "default", "split": "test", "revision": "815ca46b2622cec33ccafc3735d572c266efdb44"}, "metrics": [{"type": "main_score", "value": 49.57135582416209}, {"type": "v_measure", "value": 49.57135582416209}, {"type": "v_measure_std", "value": 1.6414135468423754}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB StackOverflowDupQuestions", "type": "mteb/stackoverflowdupquestions-reranking", "config": "default", "split": "test", "revision": "e185fbe320c72810689fc5848eb6114e1ef5ec69"}, "metrics": [{"type": "main_score", "value": 55.253002583598644}, {"type": "map", "value": 55.253002583598644}, {"type": "mrr", "value": 56.24172396231219}, {"type": "nAUC_map_diff1", "value": 40.00053248203427}, {"type": "nAUC_map_max", "value": 10.05441740585869}, {"type": "nAUC_map_std", "value": 8.227169286387552}, {"type": "nAUC_mrr_diff1", "value": 40.250446264233744}, {"type": "nAUC_mrr_max", "value": 10.586310195339053}, {"type": "nAUC_mrr_std", "value": 8.47326494370076}]}, {"task": {"type": "Summarization"}, "dataset": {"name": "MTEB SummEval", "type": "mteb/summeval", "config": "default", "split": "test", "revision": "cda12ad7615edc362dbf25a00fdd61d3b1eaf93c"}, "metrics": [{"type": "cosine_pearson", "value": 31.19874648747059}, {"type": "cosine_spearman", "value": 31.493550648844863}, {"type": "dot_pearson", "value": 31.157847680289407}, {"type": "dot_spearman", "value": 31.575299712180538}, {"type": "main_score", "value": 31.493550648844863}, {"type": "pearson", "value": 31.19874648747059}, {"type": "spearman", "value": 31.493550648844863}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB TRECCOVID", "type": "mteb/trec-covid", "config": "default", "split": "test", "revision": "bb9466bac8153a0349341eb1b22e06409e78ef4e"}, "metrics": [{"type": "main_score", "value": 85.983}, {"type": "map_at_1", "value": 0.247}, {"type": "map_at_10", "value": 2.177}, {"type": "map_at_100", "value": 14.804}, {"type": "map_at_1000", "value": 37.045}, {"type": "map_at_20", "value": 4.12}, {"type": "map_at_3", "value": 0.7000000000000001}, {"type": "map_at_5", "value": 1.1320000000000001}, {"type": "mrr_at_1", "value": 96.0}, {"type": "mrr_at_10", "value": 98.0}, {"type": "mrr_at_100", "value": 98.0}, {"type": "mrr_at_1000", "value": 98.0}, {"type": "mrr_at_20", "value": 98.0}, {"type": "mrr_at_3", "value": 98.0}, {"type": "mrr_at_5", "value": 98.0}, {"type": "nauc_map_at_1000_diff1", "value": -0.9165125200337213}, {"type": "nauc_map_at_1000_max", "value": 40.260117798042764}, {"type": "nauc_map_at_1000_std", "value": 71.72789335831554}, {"type": "nauc_map_at_100_diff1", "value": 20.493827311583953}, {"type": "nauc_map_at_100_max", "value": 21.005742079276462}, {"type": "nauc_map_at_100_std", "value": 62.53815607831659}, {"type": "nauc_map_at_10_diff1", "value": 31.289297684528215}, {"type": "nauc_map_at_10_max", "value": 7.86554294370268}, {"type": "nauc_map_at_10_std", "value": 37.26191657133897}, {"type": "nauc_map_at_1_diff1", "value": 25.57568148849456}, {"type": "nauc_map_at_1_max", "value": -5.9767435623941445}, {"type": "nauc_map_at_1_std", "value": 30.849871717506755}, {"type": "nauc_map_at_20_diff1", "value": 30.896018204532087}, {"type": "nauc_map_at_20_max", "value": 8.667077299744314}, {"type": "nauc_map_at_20_std", "value": 41.512687168412924}, {"type": "nauc_map_at_3_diff1", "value": 29.44724521006598}, {"type": "nauc_map_at_3_max", "value": 1.597496889532064}, {"type": "nauc_map_at_3_std", "value": 32.25013773854697}, {"type": "nauc_map_at_5_diff1", "value": 27.387036605618825}, {"type": "nauc_map_at_5_max", "value": 5.402983746211454}, {"type": "nauc_map_at_5_std", "value": 33.940523962472184}, {"type": "nauc_mrr_at_1000_diff1", "value": -14.122315592903503}, {"type": "nauc_mrr_at_1000_max", "value": 33.84687208216605}, {"type": "nauc_mrr_at_1000_std", "value": 86.11111111111092}, {"type": "nauc_mrr_at_100_diff1", "value": -14.122315592903503}, {"type": "nauc_mrr_at_100_max", "value": 33.84687208216605}, {"type": "nauc_mrr_at_100_std", "value": 86.11111111111092}, {"type": "nauc_mrr_at_10_diff1", "value": -14.122315592903503}, {"type": "nauc_mrr_at_10_max", "value": 33.84687208216605}, {"type": "nauc_mrr_at_10_std", "value": 86.11111111111092}, {"type": "nauc_mrr_at_1_diff1", "value": -14.122315592903831}, {"type": "nauc_mrr_at_1_max", "value": 33.84687208216637}, {"type": "nauc_mrr_at_1_std", "value": 86.11111111111124}, {"type": "nauc_mrr_at_20_diff1", "value": -14.122315592903503}, {"type": "nauc_mrr_at_20_max", "value": 33.84687208216605}, {"type": "nauc_mrr_at_20_std", "value": 86.11111111111092}, {"type": "nauc_mrr_at_3_diff1", "value": -14.122315592903503}, {"type": "nauc_mrr_at_3_max", "value": 33.84687208216605}, {"type": "nauc_mrr_at_3_std", "value": 86.11111111111092}, {"type": "nauc_mrr_at_5_diff1", "value": -14.122315592903503}, {"type": "nauc_mrr_at_5_max", "value": 33.84687208216605}, {"type": "nauc_mrr_at_5_std", "value": 86.11111111111092}, {"type": "nauc_ndcg_at_1000_diff1", "value": 8.745907669561928}, {"type": "nauc_ndcg_at_1000_max", "value": 45.43307237994533}, {"type": "nauc_ndcg_at_1000_std", "value": 74.93357447176336}, {"type": "nauc_ndcg_at_100_diff1", "value": -3.9719350773353765}, {"type": "nauc_ndcg_at_100_max", "value": 44.43705332397461}, {"type": "nauc_ndcg_at_100_std", "value": 61.59493812371758}, {"type": "nauc_ndcg_at_10_diff1", "value": 15.230915878367348}, {"type": "nauc_ndcg_at_10_max", "value": 48.332840970836635}, {"type": "nauc_ndcg_at_10_std", "value": 46.888785065125774}, {"type": "nauc_ndcg_at_1_diff1", "value": 13.219732337379442}, {"type": "nauc_ndcg_at_1_max", "value": 45.19919078742603}, {"type": "nauc_ndcg_at_1_std", "value": 64.68253968253977}, {"type": "nauc_ndcg_at_20_diff1", "value": 12.479648691964865}, {"type": "nauc_ndcg_at_20_max", "value": 48.76688248450331}, {"type": "nauc_ndcg_at_20_std", "value": 51.450399755887545}, {"type": "nauc_ndcg_at_3_diff1", "value": 6.165414201871464}, {"type": "nauc_ndcg_at_3_max", "value": 45.089689347691035}, {"type": "nauc_ndcg_at_3_std", "value": 41.08249161845213}, {"type": "nauc_ndcg_at_5_diff1", "value": 7.411245806844721}, {"type": "nauc_ndcg_at_5_max", "value": 47.818748093538076}, {"type": "nauc_ndcg_at_5_std", "value": 45.907685763676575}, {"type": "nauc_precision_at_1000_diff1", "value": -30.574290219847345}, {"type": "nauc_precision_at_1000_max", "value": 32.56926126118719}, {"type": "nauc_precision_at_1000_std", "value": 14.584504392628874}, {"type": "nauc_precision_at_100_diff1", "value": -10.199740234718847}, {"type": "nauc_precision_at_100_max", "value": 41.0213226769777}, {"type": "nauc_precision_at_100_std", "value": 56.975760776771324}, {"type": "nauc_precision_at_10_diff1", "value": 7.865792689701161}, {"type": "nauc_precision_at_10_max", "value": 52.00432275201737}, {"type": "nauc_precision_at_10_std", "value": 43.89512276413724}, {"type": "nauc_precision_at_1_diff1", "value": -14.122315592903831}, {"type": "nauc_precision_at_1_max", "value": 33.84687208216637}, {"type": "nauc_precision_at_1_std", "value": 86.11111111111124}, {"type": "nauc_precision_at_20_diff1", "value": 5.481424191880084}, {"type": "nauc_precision_at_20_max", "value": 46.86629331792725}, {"type": "nauc_precision_at_20_std", "value": 49.245692667517496}, {"type": "nauc_precision_at_3_diff1", "value": -5.870408807869163}, {"type": "nauc_precision_at_3_max", "value": 48.73657612128875}, {"type": "nauc_precision_at_3_std", "value": 41.15152062088262}, {"type": "nauc_precision_at_5_diff1", "value": -4.550610529125413}, {"type": "nauc_precision_at_5_max", "value": 60.390115878205386}, {"type": "nauc_precision_at_5_std", "value": 44.16494295055696}, {"type": "nauc_recall_at_1000_diff1", "value": 8.047794367079034}, {"type": "nauc_recall_at_1000_max", "value": 37.07551482870489}, {"type": "nauc_recall_at_1000_std", "value": 66.20862163364201}, {"type": "nauc_recall_at_100_diff1", "value": 25.08104923597475}, {"type": "nauc_recall_at_100_max", "value": 9.971294642165734}, {"type": "nauc_recall_at_100_std", "value": 51.737814074891254}, {"type": "nauc_recall_at_10_diff1", "value": 32.33148478369628}, {"type": "nauc_recall_at_10_max", "value": 1.3767192150014917}, {"type": "nauc_recall_at_10_std", "value": 30.801926742876308}, {"type": "nauc_recall_at_1_diff1", "value": 25.57568148849456}, {"type": "nauc_recall_at_1_max", "value": -5.9767435623941445}, {"type": "nauc_recall_at_1_std", "value": 30.849871717506755}, {"type": "nauc_recall_at_20_diff1", "value": 31.716580022934654}, {"type": "nauc_recall_at_20_max", "value": -0.1281270579464631}, {"type": "nauc_recall_at_20_std", "value": 33.76185294993676}, {"type": "nauc_recall_at_3_diff1", "value": 29.758810004388348}, {"type": "nauc_recall_at_3_max", "value": -1.9442985017191816}, {"type": "nauc_recall_at_3_std", "value": 27.45550076962206}, {"type": "nauc_recall_at_5_diff1", "value": 27.047710181576672}, {"type": "nauc_recall_at_5_max", "value": 1.5237000700880248}, {"type": "nauc_recall_at_5_std", "value": 28.235297950159698}, {"type": "ndcg_at_1", "value": 94.0}, {"type": "ndcg_at_10", "value": 85.983}, {"type": "ndcg_at_100", "value": 69.195}, {"type": "ndcg_at_1000", "value": 62.541000000000004}, {"type": "ndcg_at_20", "value": 83.405}, {"type": "ndcg_at_3", "value": 89.98899999999999}, {"type": "ndcg_at_5", "value": 87.905}, {"type": "precision_at_1", "value": 96.0}, {"type": "precision_at_10", "value": 89.4}, {"type": "precision_at_100", "value": 71.54}, {"type": "precision_at_1000", "value": 27.594}, {"type": "precision_at_20", "value": 87.2}, {"type": "precision_at_3", "value": 92.667}, {"type": "precision_at_5", "value": 90.8}, {"type": "recall_at_1", "value": 0.247}, {"type": "recall_at_10", "value": 2.315}, {"type": "recall_at_100", "value": 17.574}, {"type": "recall_at_1000", "value": 59.336999999999996}, {"type": "recall_at_20", "value": 4.491}, {"type": "recall_at_3", "value": 0.7250000000000001}, {"type": "recall_at_5", "value": 1.1820000000000002}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB Touche2020", "type": "mteb/touche2020", "config": "default", "split": "test", "revision": "a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f"}, "metrics": [{"type": "main_score", "value": 29.944}, {"type": "map_at_1", "value": 3.064}, {"type": "map_at_10", "value": 11.501999999999999}, {"type": "map_at_100", "value": 18.736}, {"type": "map_at_1000", "value": 20.333000000000002}, {"type": "map_at_20", "value": 14.057}, {"type": "map_at_3", "value": 6.300999999999999}, {"type": "map_at_5", "value": 8.463}, {"type": "mrr_at_1", "value": 44.89795918367347}, {"type": "mrr_at_10", "value": 58.41188856494979}, {"type": "mrr_at_100", "value": 58.93964266413245}, {"type": "mrr_at_1000", "value": 58.93964266413245}, {"type": "mrr_at_20", "value": 58.767485349118}, {"type": "mrr_at_3", "value": 54.42176870748299}, {"type": "mrr_at_5", "value": 56.666666666666664}, {"type": "nauc_map_at_1000_diff1", "value": 11.478593385608479}, {"type": "nauc_map_at_1000_max", "value": 10.309889845044324}, {"type": "nauc_map_at_1000_std", "value": 21.16721939940238}, {"type": "nauc_map_at_100_diff1", "value": 11.570438543562418}, {"type": "nauc_map_at_100_max", "value": 8.426183648064834}, {"type": "nauc_map_at_100_std", "value": 18.56231985033613}, {"type": "nauc_map_at_10_diff1", "value": 22.37735506247481}, {"type": "nauc_map_at_10_max", "value": 5.455946239060806}, {"type": "nauc_map_at_10_std", "value": -4.2848826518388154}, {"type": "nauc_map_at_1_diff1", "value": 27.853645380676824}, {"type": "nauc_map_at_1_max", "value": 7.30739948053113}, {"type": "nauc_map_at_1_std", "value": -0.2773663157814586}, {"type": "nauc_map_at_20_diff1", "value": 14.724669779924648}, {"type": "nauc_map_at_20_max", "value": 10.12882779173533}, {"type": "nauc_map_at_20_std", "value": 4.4803777672120875}, {"type": "nauc_map_at_3_diff1", "value": 31.891173385921263}, {"type": "nauc_map_at_3_max", "value": 4.889652271827218}, {"type": "nauc_map_at_3_std", "value": -9.477460238651643}, {"type": "nauc_map_at_5_diff1", "value": 31.489012040465003}, {"type": "nauc_map_at_5_max", "value": 1.7330092417337482}, {"type": "nauc_map_at_5_std", "value": -8.137018608469637}, {"type": "nauc_mrr_at_1000_diff1", "value": 24.411522237082416}, {"type": "nauc_mrr_at_1000_max", "value": 11.286971076556688}, {"type": "nauc_mrr_at_1000_std", "value": 23.443174210894043}, {"type": "nauc_mrr_at_100_diff1", "value": 24.411522237082416}, {"type": "nauc_mrr_at_100_max", "value": 11.286971076556688}, {"type": "nauc_mrr_at_100_std", "value": 23.443174210894043}, {"type": "nauc_mrr_at_10_diff1", "value": 23.948152308265186}, {"type": "nauc_mrr_at_10_max", "value": 12.22420979621155}, {"type": "nauc_mrr_at_10_std", "value": 23.557939024705544}, {"type": "nauc_mrr_at_1_diff1", "value": 17.902334894536107}, {"type": "nauc_mrr_at_1_max", "value": 17.36969662861018}, {"type": "nauc_mrr_at_1_std", "value": 19.425714969048734}, {"type": "nauc_mrr_at_20_diff1", "value": 24.635893795899797}, {"type": "nauc_mrr_at_20_max", "value": 11.330541067194913}, {"type": "nauc_mrr_at_20_std", "value": 23.74518583400233}, {"type": "nauc_mrr_at_3_diff1", "value": 25.045536328282587}, {"type": "nauc_mrr_at_3_max", "value": 7.497967004732733}, {"type": "nauc_mrr_at_3_std", "value": 24.167153007320078}, {"type": "nauc_mrr_at_5_diff1", "value": 24.328479930592454}, {"type": "nauc_mrr_at_5_max", "value": 10.037126854938336}, {"type": "nauc_mrr_at_5_std", "value": 25.236208055346136}, {"type": "nauc_ndcg_at_1000_diff1", "value": 15.555347444667389}, {"type": "nauc_ndcg_at_1000_max", "value": 13.356591700655718}, {"type": "nauc_ndcg_at_1000_std", "value": 42.42395845935052}, {"type": "nauc_ndcg_at_100_diff1", "value": 13.110526060413708}, {"type": "nauc_ndcg_at_100_max", "value": 3.140006440162515}, {"type": "nauc_ndcg_at_100_std", "value": 39.02733288398033}, {"type": "nauc_ndcg_at_10_diff1", "value": 20.68853369009725}, {"type": "nauc_ndcg_at_10_max", "value": 2.435389817058852}, {"type": "nauc_ndcg_at_10_std", "value": 10.038202768784316}, {"type": "nauc_ndcg_at_1_diff1", "value": 20.17287594582385}, {"type": "nauc_ndcg_at_1_max", "value": 12.487205168273196}, {"type": "nauc_ndcg_at_1_std", "value": 20.639827614373075}, {"type": "nauc_ndcg_at_20_diff1", "value": 16.987577348502985}, {"type": "nauc_ndcg_at_20_max", "value": 2.9978717644469266}, {"type": "nauc_ndcg_at_20_std", "value": 13.015690866750354}, {"type": "nauc_ndcg_at_3_diff1", "value": 32.392223079245575}, {"type": "nauc_ndcg_at_3_max", "value": 1.587587110582544}, {"type": "nauc_ndcg_at_3_std", "value": 12.850592473446609}, {"type": "nauc_ndcg_at_5_diff1", "value": 32.80244517369626}, {"type": "nauc_ndcg_at_5_max", "value": 5.8939933777508084}, {"type": "nauc_ndcg_at_5_std", "value": 15.779687411463414}, {"type": "nauc_precision_at_1000_diff1", "value": -14.314031720452537}, {"type": "nauc_precision_at_1000_max", "value": 32.87886666567266}, {"type": "nauc_precision_at_1000_std", "value": 21.49347046886851}, {"type": "nauc_precision_at_100_diff1", "value": -9.4034008613839}, {"type": "nauc_precision_at_100_max", "value": 16.784075123309645}, {"type": "nauc_precision_at_100_std", "value": 73.14688535393604}, {"type": "nauc_precision_at_10_diff1", "value": 6.855101404043058}, {"type": "nauc_precision_at_10_max", "value": 6.52491228645612}, {"type": "nauc_precision_at_10_std", "value": 16.104602266016744}, {"type": "nauc_precision_at_1_diff1", "value": 17.902334894536107}, {"type": "nauc_precision_at_1_max", "value": 17.36969662861018}, {"type": "nauc_precision_at_1_std", "value": 19.425714969048734}, {"type": "nauc_precision_at_20_diff1", "value": -5.337534613602212}, {"type": "nauc_precision_at_20_max", "value": 17.722925454767218}, {"type": "nauc_precision_at_20_std", "value": 34.26680462132849}, {"type": "nauc_precision_at_3_diff1", "value": 31.054623397809255}, {"type": "nauc_precision_at_3_max", "value": -0.92038600946826}, {"type": "nauc_precision_at_3_std", "value": 8.326997076862916}, {"type": "nauc_precision_at_5_diff1", "value": 29.784942296920462}, {"type": "nauc_precision_at_5_max", "value": 6.337469263434779}, {"type": "nauc_precision_at_5_std", "value": 12.789597196020974}, {"type": "nauc_recall_at_1000_diff1", "value": -3.8177981862041364}, {"type": "nauc_recall_at_1000_max", "value": 14.206064332229163}, {"type": "nauc_recall_at_1000_std", "value": 74.18853420771269}, {"type": "nauc_recall_at_100_diff1", "value": 0.7677996771461106}, {"type": "nauc_recall_at_100_max", "value": -4.139924106878441}, {"type": "nauc_recall_at_100_std", "value": 48.319930706362896}, {"type": "nauc_recall_at_10_diff1", "value": 12.038835537494322}, {"type": "nauc_recall_at_10_max", "value": -2.0498983557854418}, {"type": "nauc_recall_at_10_std", "value": -2.0339180690854493}, {"type": "nauc_recall_at_1_diff1", "value": 27.853645380676824}, {"type": "nauc_recall_at_1_max", "value": 7.30739948053113}, {"type": "nauc_recall_at_1_std", "value": -0.2773663157814586}, {"type": "nauc_recall_at_20_diff1", "value": 0.7907893667756708}, {"type": "nauc_recall_at_20_max", "value": 0.8795499810558195}, {"type": "nauc_recall_at_20_std", "value": 11.512483291688282}, {"type": "nauc_recall_at_3_diff1", "value": 33.19440392639576}, {"type": "nauc_recall_at_3_max", "value": -1.5494237697432613}, {"type": "nauc_recall_at_3_std", "value": -8.560408808376984}, {"type": "nauc_recall_at_5_diff1", "value": 27.42193873870941}, {"type": "nauc_recall_at_5_max", "value": -4.74350293281128}, {"type": "nauc_recall_at_5_std", "value": -7.618060131179654}, {"type": "ndcg_at_1", "value": 42.857}, {"type": "ndcg_at_10", "value": 29.944}, {"type": "ndcg_at_100", "value": 42.624}, {"type": "ndcg_at_1000", "value": 53.384}, {"type": "ndcg_at_20", "value": 30.135}, {"type": "ndcg_at_3", "value": 34.847}, {"type": "ndcg_at_5", "value": 32.573}, {"type": "precision_at_1", "value": 44.897999999999996}, {"type": "precision_at_10", "value": 25.306}, {"type": "precision_at_100", "value": 8.694}, {"type": "precision_at_1000", "value": 1.616}, {"type": "precision_at_20", "value": 19.082}, {"type": "precision_at_3", "value": 34.014}, {"type": "precision_at_5", "value": 31.019999999999996}, {"type": "recall_at_1", "value": 3.064}, {"type": "recall_at_10", "value": 17.849999999999998}, {"type": "recall_at_100", "value": 53.217999999999996}, {"type": "recall_at_1000", "value": 87.095}, {"type": "recall_at_20", "value": 26.111}, {"type": "recall_at_3", "value": 7.383000000000001}, {"type": "recall_at_5", "value": 11.434}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ToxicConversationsClassification", "type": "mteb/toxic_conversations_50k", "config": "default", "split": "test", "revision": "edfaf9da55d3dd50d43143d90c1ac476895ae6de"}, "metrics": [{"type": "accuracy", "value": 88.759765625}, {"type": "ap", "value": 36.49152357863017}, {"type": "ap_weighted", "value": 36.49152357863017}, {"type": "f1", "value": 74.4692714448641}, {"type": "f1_weighted", "value": 90.54372649306606}, {"type": "main_score", "value": 88.759765625}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB TweetSentimentExtractionClassification", "type": "mteb/tweet_sentiment_extraction", "config": "default", "split": "test", "revision": "d604517c81ca91fe16a244d1248fc021f9ecee7a"}, "metrics": [{"type": "accuracy", "value": 74.8443689869836}, {"type": "f1", "value": 75.1139662898148}, {"type": "f1_weighted", "value": 74.7369003946243}, {"type": "main_score", "value": 74.8443689869836}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB TwentyNewsgroupsClustering", "type": "mteb/twentynewsgroups-clustering", "config": "default", "split": "test", "revision": "6125ec4e24fa026cec8a478383ee943acfbd5449"}, "metrics": [{"type": "main_score", "value": 61.42918790942448}, {"type": "v_measure", "value": 61.42918790942448}, {"type": "v_measure_std", "value": 1.0156550098843082}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterSemEval2015", "type": "mteb/twittersemeval2015-pairclassification", "config": "default", "split": "test", "revision": "70970daeab8776df92f5ea462b6173c0b46fd2d1"}, "metrics": [{"type": "cosine_accuracy", "value": 88.22197055492639}, {"type": "cosine_accuracy_threshold", "value": 83.30042362213135}, {"type": "cosine_ap", "value": 80.57754959194938}, {"type": "cosine_f1", "value": 73.70579190158894}, {"type": "cosine_f1_threshold", "value": 81.04978799819946}, {"type": "cosine_precision", "value": 71.64922770303936}, {"type": "cosine_recall", "value": 75.8839050131926}, {"type": "dot_accuracy", "value": 88.23985217857782}, {"type": "dot_accuracy_threshold", "value": 83.31039547920227}, {"type": "dot_ap", "value": 80.57533213448181}, {"type": "dot_f1", "value": 73.61309601143302}, {"type": "dot_f1_threshold", "value": 81.33968114852905}, {"type": "dot_precision", "value": 72.51087791144101}, {"type": "dot_recall", "value": 74.74934036939314}, {"type": "euclidean_accuracy", "value": 88.22197055492639}, {"type": "euclidean_accuracy_threshold", "value": 58.290231227874756}, {"type": "euclidean_ap", "value": 80.57982723880139}, {"type": "euclidean_f1", "value": 73.63426519620417}, {"type": "euclidean_f1_threshold", "value": 61.55576705932617}, {"type": "euclidean_precision", "value": 71.63173652694611}, {"type": "euclidean_recall", "value": 75.75197889182058}, {"type": "main_score", "value": 80.57982723880139}, {"type": "manhattan_accuracy", "value": 88.14448351910353}, {"type": "manhattan_accuracy_threshold", "value": 3907.2471618652344}, {"type": "manhattan_ap", "value": 80.3538079655539}, {"type": "manhattan_f1", "value": 73.40466675261054}, {"type": "manhattan_f1_threshold", "value": 4103.794097900391}, {"type": "manhattan_precision", "value": 71.76707839677337}, {"type": "manhattan_recall", "value": 75.11873350923483}, {"type": "max_ap", "value": 80.57982723880139}, {"type": "max_f1", "value": 73.70579190158894}, {"type": "max_precision", "value": 72.51087791144101}, {"type": "max_recall", "value": 75.8839050131926}, {"type": "similarity_accuracy", "value": 88.22197055492639}, {"type": "similarity_accuracy_threshold", "value": 83.30042362213135}, {"type": "similarity_ap", "value": 80.57754959194938}, {"type": "similarity_f1", "value": 73.70579190158894}, {"type": "similarity_f1_threshold", "value": 81.04978799819946}, {"type": "similarity_precision", "value": 71.64922770303936}, {"type": "similarity_recall", "value": 75.8839050131926}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterURLCorpus", "type": "mteb/twitterurlcorpus-pairclassification", "config": "default", "split": "test", "revision": "8b6510b0b1fa4e4c4f879467980e9be563ec1cdf"}, "metrics": [{"type": "cosine_accuracy", "value": 89.88628866379477}, {"type": "cosine_accuracy_threshold", "value": 80.8050274848938}, {"type": "cosine_ap", "value": 87.57594591596816}, {"type": "cosine_f1", "value": 80.0812257707218}, {"type": "cosine_f1_threshold", "value": 77.990061044693}, {"type": "cosine_precision", "value": 76.93126197063205}, {"type": "cosine_recall", "value": 83.50015398829689}, {"type": "dot_accuracy", "value": 89.87852679784221}, {"type": "dot_accuracy_threshold", "value": 80.84419965744019}, {"type": "dot_ap", "value": 87.56136742222151}, {"type": "dot_f1", "value": 80.05898617511521}, {"type": "dot_f1_threshold", "value": 77.92385816574097}, {"type": "dot_precision", "value": 76.80554573106035}, {"type": "dot_recall", "value": 83.60024638127503}, {"type": "euclidean_accuracy", "value": 89.86882446540149}, {"type": "euclidean_accuracy_threshold", "value": 62.08193898200989}, {"type": "euclidean_ap", "value": 87.57517549192228}, {"type": "euclidean_f1", "value": 80.05286925872892}, {"type": "euclidean_f1_threshold", "value": 66.65036082267761}, {"type": "euclidean_precision", "value": 76.51063232507545}, {"type": "euclidean_recall", "value": 83.93902063443178}, {"type": "main_score", "value": 87.64162614197194}, {"type": "manhattan_accuracy", "value": 89.8959909962355}, {"type": "manhattan_accuracy_threshold", "value": 4176.108169555664}, {"type": "manhattan_ap", "value": 87.64162614197194}, {"type": "manhattan_f1", "value": 80.17116279069768}, {"type": "manhattan_f1_threshold", "value": 4433.153533935547}, {"type": "manhattan_precision", "value": 77.57615035644848}, {"type": "manhattan_recall", "value": 82.94579611949491}, {"type": "max_ap", "value": 87.64162614197194}, {"type": "max_f1", "value": 80.17116279069768}, {"type": "max_precision", "value": 77.57615035644848}, {"type": "max_recall", "value": 83.93902063443178}, {"type": "similarity_accuracy", "value": 89.88628866379477}, {"type": "similarity_accuracy_threshold", "value": 80.8050274848938}, {"type": "similarity_ap", "value": 87.57594591596816}, {"type": "similarity_f1", "value": 80.0812257707218}, {"type": "similarity_f1_threshold", "value": 77.990061044693}, {"type": "similarity_precision", "value": 76.93126197063205}, {"type": "similarity_recall", "value": 83.50015398829689}]}]}]}
sunzx0810/gte-Qwen2-7B-instruct-Q5_K_M-GGUF
sunzx0810
sentence-similarity
[ "sentence-transformers", "gguf", "qwen2", "text-generation", "mteb", "transformers", "Qwen2", "sentence-similarity", "llama-cpp", "gguf-my-repo", "custom_code", "base_model:Alibaba-NLP/gte-Qwen2-7B-instruct", "base_model:quantized:Alibaba-NLP/gte-Qwen2-7B-instruct", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us", "conversational" ]
2024-06-20T03:38:41
2024-06-25T07:02:31
114
6
--- base_model: Alibaba-NLP/gte-Qwen2-7B-instruct license: apache-2.0 tags: - mteb - sentence-transformers - transformers - Qwen2 - sentence-similarity - llama-cpp - gguf-my-repo model-index: - name: gte-qwen2-7B-instruct results: - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: mteb/amazon_counterfactual config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 91.31343283582089 - type: ap value: 67.64251402604096 - type: f1 value: 87.53372530755692 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification type: mteb/amazon_polarity config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 97.497825 - type: ap value: 96.30329547047529 - type: f1 value: 97.49769793778039 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: mteb/amazon_reviews_multi config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 62.564 - type: f1 value: 60.975777935041066 - task: type: Retrieval dataset: name: MTEB ArguAna type: mteb/arguana config: default split: test revision: c22ab2a51041ffd869aaddef7af8d8215647e41a metrics: - type: map_at_1 value: 36.486000000000004 - type: map_at_10 value: 54.842 - type: map_at_100 value: 55.206999999999994 - type: map_at_1000 value: 55.206999999999994 - type: map_at_3 value: 49.893 - type: map_at_5 value: 53.105000000000004 - type: mrr_at_1 value: 37.34 - type: mrr_at_10 value: 55.143 - type: mrr_at_100 value: 55.509 - type: mrr_at_1000 value: 55.509 - type: mrr_at_3 value: 50.212999999999994 - type: mrr_at_5 value: 53.432 - type: ndcg_at_1 value: 36.486000000000004 - type: ndcg_at_10 value: 64.273 - type: ndcg_at_100 value: 65.66199999999999 - type: ndcg_at_1000 value: 65.66199999999999 - type: ndcg_at_3 value: 54.352999999999994 - type: ndcg_at_5 value: 60.131 - type: precision_at_1 value: 36.486000000000004 - type: precision_at_10 value: 9.395000000000001 - type: precision_at_100 value: 0.996 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 22.428 - type: precision_at_5 value: 16.259 - type: recall_at_1 value: 36.486000000000004 - type: recall_at_10 value: 93.95400000000001 - type: recall_at_100 value: 99.644 - type: recall_at_1000 value: 99.644 - type: recall_at_3 value: 67.283 - type: recall_at_5 value: 81.294 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P type: mteb/arxiv-clustering-p2p config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 56.461169803700564 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S type: mteb/arxiv-clustering-s2s config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 51.73600434466286 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions type: mteb/askubuntudupquestions-reranking config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 67.57827065898053 - type: mrr value: 79.08136569493911 - task: type: STS dataset: name: MTEB BIOSSES type: mteb/biosses-sts config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 83.53324575999243 - type: cos_sim_spearman value: 81.37173362822374 - type: euclidean_pearson value: 82.19243335103444 - type: euclidean_spearman value: 81.33679307304334 - type: manhattan_pearson value: 82.38752665975699 - type: manhattan_spearman value: 81.31510583189689 - task: type: Classification dataset: name: MTEB Banking77Classification type: mteb/banking77 config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 87.56818181818181 - type: f1 value: 87.25826722019875 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P type: mteb/biorxiv-clustering-p2p config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 50.09239610327673 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S type: mteb/biorxiv-clustering-s2s config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 46.64733054606282 - task: type: Retrieval dataset: name: MTEB CQADupstackAndroidRetrieval type: BeIR/cqadupstack config: default split: test revision: f46a197baaae43b4f621051089b82a364682dfeb metrics: - type: map_at_1 value: 33.997 - type: map_at_10 value: 48.176 - type: map_at_100 value: 49.82 - type: map_at_1000 value: 49.924 - type: map_at_3 value: 43.626 - type: map_at_5 value: 46.275 - type: mrr_at_1 value: 42.059999999999995 - type: mrr_at_10 value: 53.726 - type: mrr_at_100 value: 54.398 - type: mrr_at_1000 value: 54.416 - type: mrr_at_3 value: 50.714999999999996 - type: mrr_at_5 value: 52.639 - type: ndcg_at_1 value: 42.059999999999995 - type: ndcg_at_10 value: 55.574999999999996 - type: ndcg_at_100 value: 60.744 - type: ndcg_at_1000 value: 61.85699999999999 - type: ndcg_at_3 value: 49.363 - type: ndcg_at_5 value: 52.44 - type: precision_at_1 value: 42.059999999999995 - type: precision_at_10 value: 11.101999999999999 - type: precision_at_100 value: 1.73 - type: precision_at_1000 value: 0.218 - type: precision_at_3 value: 24.464 - type: precision_at_5 value: 18.026 - type: recall_at_1 value: 33.997 - type: recall_at_10 value: 70.35900000000001 - type: recall_at_100 value: 91.642 - type: recall_at_1000 value: 97.977 - type: recall_at_3 value: 52.76 - type: recall_at_5 value: 61.148 - task: type: Retrieval dataset: name: MTEB CQADupstackEnglishRetrieval type: BeIR/cqadupstack config: default split: test revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 metrics: - type: map_at_1 value: 35.884 - type: map_at_10 value: 48.14 - type: map_at_100 value: 49.5 - type: map_at_1000 value: 49.63 - type: map_at_3 value: 44.646 - type: map_at_5 value: 46.617999999999995 - type: mrr_at_1 value: 44.458999999999996 - type: mrr_at_10 value: 53.751000000000005 - type: mrr_at_100 value: 54.37800000000001 - type: mrr_at_1000 value: 54.415 - type: mrr_at_3 value: 51.815 - type: mrr_at_5 value: 52.882 - type: ndcg_at_1 value: 44.458999999999996 - type: ndcg_at_10 value: 54.157 - type: ndcg_at_100 value: 58.362 - type: ndcg_at_1000 value: 60.178 - type: ndcg_at_3 value: 49.661 - type: ndcg_at_5 value: 51.74999999999999 - type: precision_at_1 value: 44.458999999999996 - type: precision_at_10 value: 10.248 - type: precision_at_100 value: 1.5890000000000002 - type: precision_at_1000 value: 0.207 - type: precision_at_3 value: 23.928 - type: precision_at_5 value: 16.878999999999998 - type: recall_at_1 value: 35.884 - type: recall_at_10 value: 64.798 - type: recall_at_100 value: 82.345 - type: recall_at_1000 value: 93.267 - type: recall_at_3 value: 51.847 - type: recall_at_5 value: 57.601 - task: type: Retrieval dataset: name: MTEB CQADupstackGamingRetrieval type: BeIR/cqadupstack config: default split: test revision: 4885aa143210c98657558c04aaf3dc47cfb54340 metrics: - type: map_at_1 value: 39.383 - type: map_at_10 value: 53.714 - type: map_at_100 value: 54.838 - type: map_at_1000 value: 54.87800000000001 - type: map_at_3 value: 50.114999999999995 - type: map_at_5 value: 52.153000000000006 - type: mrr_at_1 value: 45.016 - type: mrr_at_10 value: 56.732000000000006 - type: mrr_at_100 value: 57.411 - type: mrr_at_1000 value: 57.431 - type: mrr_at_3 value: 54.044000000000004 - type: mrr_at_5 value: 55.639 - type: ndcg_at_1 value: 45.016 - type: ndcg_at_10 value: 60.228 - type: ndcg_at_100 value: 64.277 - type: ndcg_at_1000 value: 65.07 - type: ndcg_at_3 value: 54.124 - type: ndcg_at_5 value: 57.147000000000006 - type: precision_at_1 value: 45.016 - type: precision_at_10 value: 9.937 - type: precision_at_100 value: 1.288 - type: precision_at_1000 value: 0.13899999999999998 - type: precision_at_3 value: 24.471999999999998 - type: precision_at_5 value: 16.991 - type: recall_at_1 value: 39.383 - type: recall_at_10 value: 76.175 - type: recall_at_100 value: 93.02 - type: recall_at_1000 value: 98.60900000000001 - type: recall_at_3 value: 60.265 - type: recall_at_5 value: 67.46600000000001 - task: type: Retrieval dataset: name: MTEB CQADupstackGisRetrieval type: BeIR/cqadupstack config: default split: test revision: 5003b3064772da1887988e05400cf3806fe491f2 metrics: - type: map_at_1 value: 27.426000000000002 - type: map_at_10 value: 37.397000000000006 - type: map_at_100 value: 38.61 - type: map_at_1000 value: 38.678000000000004 - type: map_at_3 value: 34.150999999999996 - type: map_at_5 value: 36.137 - type: mrr_at_1 value: 29.944 - type: mrr_at_10 value: 39.654 - type: mrr_at_100 value: 40.638000000000005 - type: mrr_at_1000 value: 40.691 - type: mrr_at_3 value: 36.817 - type: mrr_at_5 value: 38.524 - type: ndcg_at_1 value: 29.944 - type: ndcg_at_10 value: 43.094 - type: ndcg_at_100 value: 48.789 - type: ndcg_at_1000 value: 50.339999999999996 - type: ndcg_at_3 value: 36.984 - type: ndcg_at_5 value: 40.248 - type: precision_at_1 value: 29.944 - type: precision_at_10 value: 6.78 - type: precision_at_100 value: 1.024 - type: precision_at_1000 value: 0.11800000000000001 - type: precision_at_3 value: 15.895000000000001 - type: precision_at_5 value: 11.39 - type: recall_at_1 value: 27.426000000000002 - type: recall_at_10 value: 58.464000000000006 - type: recall_at_100 value: 84.193 - type: recall_at_1000 value: 95.52000000000001 - type: recall_at_3 value: 42.172 - type: recall_at_5 value: 50.101 - task: type: Retrieval dataset: name: MTEB CQADupstackMathematicaRetrieval type: BeIR/cqadupstack config: default split: test revision: 90fceea13679c63fe563ded68f3b6f06e50061de metrics: - type: map_at_1 value: 19.721 - type: map_at_10 value: 31.604 - type: map_at_100 value: 32.972 - type: map_at_1000 value: 33.077 - type: map_at_3 value: 27.218999999999998 - type: map_at_5 value: 29.53 - type: mrr_at_1 value: 25.0 - type: mrr_at_10 value: 35.843 - type: mrr_at_100 value: 36.785000000000004 - type: mrr_at_1000 value: 36.842000000000006 - type: mrr_at_3 value: 32.193 - type: mrr_at_5 value: 34.264 - type: ndcg_at_1 value: 25.0 - type: ndcg_at_10 value: 38.606 - type: ndcg_at_100 value: 44.272 - type: ndcg_at_1000 value: 46.527 - type: ndcg_at_3 value: 30.985000000000003 - type: ndcg_at_5 value: 34.43 - type: precision_at_1 value: 25.0 - type: precision_at_10 value: 7.811 - type: precision_at_100 value: 1.203 - type: precision_at_1000 value: 0.15 - type: precision_at_3 value: 15.423 - type: precision_at_5 value: 11.791 - type: recall_at_1 value: 19.721 - type: recall_at_10 value: 55.625 - type: recall_at_100 value: 79.34400000000001 - type: recall_at_1000 value: 95.208 - type: recall_at_3 value: 35.19 - type: recall_at_5 value: 43.626 - task: type: Retrieval dataset: name: MTEB CQADupstackPhysicsRetrieval type: BeIR/cqadupstack config: default split: test revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 metrics: - type: map_at_1 value: 33.784 - type: map_at_10 value: 47.522 - type: map_at_100 value: 48.949999999999996 - type: map_at_1000 value: 49.038 - type: map_at_3 value: 43.284 - type: map_at_5 value: 45.629 - type: mrr_at_1 value: 41.482 - type: mrr_at_10 value: 52.830999999999996 - type: mrr_at_100 value: 53.559999999999995 - type: mrr_at_1000 value: 53.588 - type: mrr_at_3 value: 50.016000000000005 - type: mrr_at_5 value: 51.614000000000004 - type: ndcg_at_1 value: 41.482 - type: ndcg_at_10 value: 54.569 - type: ndcg_at_100 value: 59.675999999999995 - type: ndcg_at_1000 value: 60.989000000000004 - type: ndcg_at_3 value: 48.187000000000005 - type: ndcg_at_5 value: 51.183 - type: precision_at_1 value: 41.482 - type: precision_at_10 value: 10.221 - type: precision_at_100 value: 1.486 - type: precision_at_1000 value: 0.17500000000000002 - type: precision_at_3 value: 23.548 - type: precision_at_5 value: 16.805 - type: recall_at_1 value: 33.784 - type: recall_at_10 value: 69.798 - type: recall_at_100 value: 90.098 - type: recall_at_1000 value: 98.176 - type: recall_at_3 value: 52.127 - type: recall_at_5 value: 59.861 - task: type: Retrieval dataset: name: MTEB CQADupstackProgrammersRetrieval type: BeIR/cqadupstack config: default split: test revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 metrics: - type: map_at_1 value: 28.038999999999998 - type: map_at_10 value: 41.904 - type: map_at_100 value: 43.36 - type: map_at_1000 value: 43.453 - type: map_at_3 value: 37.785999999999994 - type: map_at_5 value: 40.105000000000004 - type: mrr_at_1 value: 35.046 - type: mrr_at_10 value: 46.926 - type: mrr_at_100 value: 47.815000000000005 - type: mrr_at_1000 value: 47.849000000000004 - type: mrr_at_3 value: 44.273 - type: mrr_at_5 value: 45.774 - type: ndcg_at_1 value: 35.046 - type: ndcg_at_10 value: 48.937000000000005 - type: ndcg_at_100 value: 54.544000000000004 - type: ndcg_at_1000 value: 56.069 - type: ndcg_at_3 value: 42.858000000000004 - type: ndcg_at_5 value: 45.644 - type: precision_at_1 value: 35.046 - type: precision_at_10 value: 9.452 - type: precision_at_100 value: 1.429 - type: precision_at_1000 value: 0.173 - type: precision_at_3 value: 21.346999999999998 - type: precision_at_5 value: 15.342 - type: recall_at_1 value: 28.038999999999998 - type: recall_at_10 value: 64.59700000000001 - type: recall_at_100 value: 87.735 - type: recall_at_1000 value: 97.41300000000001 - type: recall_at_3 value: 47.368 - type: recall_at_5 value: 54.93900000000001 - task: type: Retrieval dataset: name: MTEB CQADupstackRetrieval type: BeIR/cqadupstack config: default split: test revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 metrics: - type: map_at_1 value: 28.17291666666667 - type: map_at_10 value: 40.025749999999995 - type: map_at_100 value: 41.39208333333333 - type: map_at_1000 value: 41.499249999999996 - type: map_at_3 value: 36.347 - type: map_at_5 value: 38.41391666666667 - type: mrr_at_1 value: 33.65925 - type: mrr_at_10 value: 44.085499999999996 - type: mrr_at_100 value: 44.94116666666667 - type: mrr_at_1000 value: 44.9855 - type: mrr_at_3 value: 41.2815 - type: mrr_at_5 value: 42.91491666666666 - type: ndcg_at_1 value: 33.65925 - type: ndcg_at_10 value: 46.430833333333325 - type: ndcg_at_100 value: 51.761 - type: ndcg_at_1000 value: 53.50899999999999 - type: ndcg_at_3 value: 40.45133333333333 - type: ndcg_at_5 value: 43.31483333333334 - type: precision_at_1 value: 33.65925 - type: precision_at_10 value: 8.4995 - type: precision_at_100 value: 1.3210000000000004 - type: precision_at_1000 value: 0.16591666666666666 - type: precision_at_3 value: 19.165083333333335 - type: precision_at_5 value: 13.81816666666667 - type: recall_at_1 value: 28.17291666666667 - type: recall_at_10 value: 61.12624999999999 - type: recall_at_100 value: 83.97266666666667 - type: recall_at_1000 value: 95.66550000000001 - type: recall_at_3 value: 44.661249999999995 - type: recall_at_5 value: 51.983333333333334 - type: map_at_1 value: 17.936 - type: map_at_10 value: 27.399 - type: map_at_100 value: 28.632 - type: map_at_1000 value: 28.738000000000003 - type: map_at_3 value: 24.456 - type: map_at_5 value: 26.06 - type: mrr_at_1 value: 19.224 - type: mrr_at_10 value: 28.998 - type: mrr_at_100 value: 30.11 - type: mrr_at_1000 value: 30.177 - type: mrr_at_3 value: 26.247999999999998 - type: mrr_at_5 value: 27.708 - type: ndcg_at_1 value: 19.224 - type: ndcg_at_10 value: 32.911 - type: ndcg_at_100 value: 38.873999999999995 - type: ndcg_at_1000 value: 41.277 - type: ndcg_at_3 value: 27.142 - type: ndcg_at_5 value: 29.755 - type: precision_at_1 value: 19.224 - type: precision_at_10 value: 5.6930000000000005 - type: precision_at_100 value: 0.9259999999999999 - type: precision_at_1000 value: 0.126 - type: precision_at_3 value: 12.138 - type: precision_at_5 value: 8.909 - type: recall_at_1 value: 17.936 - type: recall_at_10 value: 48.096 - type: recall_at_100 value: 75.389 - type: recall_at_1000 value: 92.803 - type: recall_at_3 value: 32.812999999999995 - type: recall_at_5 value: 38.851 - task: type: Retrieval dataset: name: MTEB CQADupstackStatsRetrieval type: BeIR/cqadupstack config: default split: test revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a metrics: - type: map_at_1 value: 24.681 - type: map_at_10 value: 34.892 - type: map_at_100 value: 35.996 - type: map_at_1000 value: 36.083 - type: map_at_3 value: 31.491999999999997 - type: map_at_5 value: 33.632 - type: mrr_at_1 value: 28.528 - type: mrr_at_10 value: 37.694 - type: mrr_at_100 value: 38.613 - type: mrr_at_1000 value: 38.668 - type: mrr_at_3 value: 34.714 - type: mrr_at_5 value: 36.616 - type: ndcg_at_1 value: 28.528 - type: ndcg_at_10 value: 40.703 - type: ndcg_at_100 value: 45.993 - type: ndcg_at_1000 value: 47.847 - type: ndcg_at_3 value: 34.622 - type: ndcg_at_5 value: 38.035999999999994 - type: precision_at_1 value: 28.528 - type: precision_at_10 value: 6.902 - type: precision_at_100 value: 1.0370000000000001 - type: precision_at_1000 value: 0.126 - type: precision_at_3 value: 15.798000000000002 - type: precision_at_5 value: 11.655999999999999 - type: recall_at_1 value: 24.681 - type: recall_at_10 value: 55.81 - type: recall_at_100 value: 79.785 - type: recall_at_1000 value: 92.959 - type: recall_at_3 value: 39.074 - type: recall_at_5 value: 47.568 - task: type: Retrieval dataset: name: MTEB CQADupstackTexRetrieval type: BeIR/cqadupstack config: default split: test revision: 46989137a86843e03a6195de44b09deda022eec7 metrics: - type: map_at_1 value: 18.627 - type: map_at_10 value: 27.872000000000003 - type: map_at_100 value: 29.237999999999996 - type: map_at_1000 value: 29.363 - type: map_at_3 value: 24.751 - type: map_at_5 value: 26.521 - type: mrr_at_1 value: 23.021 - type: mrr_at_10 value: 31.924000000000003 - type: mrr_at_100 value: 32.922000000000004 - type: mrr_at_1000 value: 32.988 - type: mrr_at_3 value: 29.192 - type: mrr_at_5 value: 30.798 - type: ndcg_at_1 value: 23.021 - type: ndcg_at_10 value: 33.535 - type: ndcg_at_100 value: 39.732 - type: ndcg_at_1000 value: 42.201 - type: ndcg_at_3 value: 28.153 - type: ndcg_at_5 value: 30.746000000000002 - type: precision_at_1 value: 23.021 - type: precision_at_10 value: 6.459 - type: precision_at_100 value: 1.1320000000000001 - type: precision_at_1000 value: 0.153 - type: precision_at_3 value: 13.719000000000001 - type: precision_at_5 value: 10.193000000000001 - type: recall_at_1 value: 18.627 - type: recall_at_10 value: 46.463 - type: recall_at_100 value: 74.226 - type: recall_at_1000 value: 91.28500000000001 - type: recall_at_3 value: 31.357000000000003 - type: recall_at_5 value: 38.067 - task: type: Retrieval dataset: name: MTEB CQADupstackUnixRetrieval type: BeIR/cqadupstack config: default split: test revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 metrics: - type: map_at_1 value: 31.457 - type: map_at_10 value: 42.888 - type: map_at_100 value: 44.24 - type: map_at_1000 value: 44.327 - type: map_at_3 value: 39.588 - type: map_at_5 value: 41.423 - type: mrr_at_1 value: 37.126999999999995 - type: mrr_at_10 value: 47.083000000000006 - type: mrr_at_100 value: 47.997 - type: mrr_at_1000 value: 48.044 - type: mrr_at_3 value: 44.574000000000005 - type: mrr_at_5 value: 46.202 - type: ndcg_at_1 value: 37.126999999999995 - type: ndcg_at_10 value: 48.833 - type: ndcg_at_100 value: 54.327000000000005 - type: ndcg_at_1000 value: 56.011 - type: ndcg_at_3 value: 43.541999999999994 - type: ndcg_at_5 value: 46.127 - type: precision_at_1 value: 37.126999999999995 - type: precision_at_10 value: 8.376999999999999 - type: precision_at_100 value: 1.2309999999999999 - type: precision_at_1000 value: 0.146 - type: precision_at_3 value: 20.211000000000002 - type: precision_at_5 value: 14.16 - type: recall_at_1 value: 31.457 - type: recall_at_10 value: 62.369 - type: recall_at_100 value: 85.444 - type: recall_at_1000 value: 96.65599999999999 - type: recall_at_3 value: 47.961 - type: recall_at_5 value: 54.676 - task: type: Retrieval dataset: name: MTEB CQADupstackWebmastersRetrieval type: BeIR/cqadupstack config: default split: test revision: 160c094312a0e1facb97e55eeddb698c0abe3571 metrics: - type: map_at_1 value: 27.139999999999997 - type: map_at_10 value: 38.801 - type: map_at_100 value: 40.549 - type: map_at_1000 value: 40.802 - type: map_at_3 value: 35.05 - type: map_at_5 value: 36.884 - type: mrr_at_1 value: 33.004 - type: mrr_at_10 value: 43.864 - type: mrr_at_100 value: 44.667 - type: mrr_at_1000 value: 44.717 - type: mrr_at_3 value: 40.777 - type: mrr_at_5 value: 42.319 - type: ndcg_at_1 value: 33.004 - type: ndcg_at_10 value: 46.022 - type: ndcg_at_100 value: 51.542 - type: ndcg_at_1000 value: 53.742000000000004 - type: ndcg_at_3 value: 39.795 - type: ndcg_at_5 value: 42.272 - type: precision_at_1 value: 33.004 - type: precision_at_10 value: 9.012 - type: precision_at_100 value: 1.7770000000000001 - type: precision_at_1000 value: 0.26 - type: precision_at_3 value: 19.038 - type: precision_at_5 value: 13.675999999999998 - type: recall_at_1 value: 27.139999999999997 - type: recall_at_10 value: 60.961 - type: recall_at_100 value: 84.451 - type: recall_at_1000 value: 98.113 - type: recall_at_3 value: 43.001 - type: recall_at_5 value: 49.896 - task: type: Retrieval dataset: name: MTEB ClimateFEVER type: mteb/climate-fever config: default split: test revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 metrics: - type: map_at_1 value: 22.076999999999998 - type: map_at_10 value: 35.44 - type: map_at_100 value: 37.651 - type: map_at_1000 value: 37.824999999999996 - type: map_at_3 value: 30.764999999999997 - type: map_at_5 value: 33.26 - type: mrr_at_1 value: 50.163000000000004 - type: mrr_at_10 value: 61.207 - type: mrr_at_100 value: 61.675000000000004 - type: mrr_at_1000 value: 61.692 - type: mrr_at_3 value: 58.60999999999999 - type: mrr_at_5 value: 60.307 - type: ndcg_at_1 value: 50.163000000000004 - type: ndcg_at_10 value: 45.882 - type: ndcg_at_100 value: 53.239999999999995 - type: ndcg_at_1000 value: 55.852000000000004 - type: ndcg_at_3 value: 40.514 - type: ndcg_at_5 value: 42.038 - type: precision_at_1 value: 50.163000000000004 - type: precision_at_10 value: 13.466000000000001 - type: precision_at_100 value: 2.164 - type: precision_at_1000 value: 0.266 - type: precision_at_3 value: 29.707 - type: precision_at_5 value: 21.694 - type: recall_at_1 value: 22.076999999999998 - type: recall_at_10 value: 50.193 - type: recall_at_100 value: 74.993 - type: recall_at_1000 value: 89.131 - type: recall_at_3 value: 35.472 - type: recall_at_5 value: 41.814 - task: type: Retrieval dataset: name: MTEB DBPedia type: mteb/dbpedia config: default split: test revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 metrics: - type: map_at_1 value: 9.953 - type: map_at_10 value: 24.515 - type: map_at_100 value: 36.173 - type: map_at_1000 value: 38.351 - type: map_at_3 value: 16.592000000000002 - type: map_at_5 value: 20.036 - type: mrr_at_1 value: 74.25 - type: mrr_at_10 value: 81.813 - type: mrr_at_100 value: 82.006 - type: mrr_at_1000 value: 82.011 - type: mrr_at_3 value: 80.875 - type: mrr_at_5 value: 81.362 - type: ndcg_at_1 value: 62.5 - type: ndcg_at_10 value: 52.42 - type: ndcg_at_100 value: 56.808 - type: ndcg_at_1000 value: 63.532999999999994 - type: ndcg_at_3 value: 56.654 - type: ndcg_at_5 value: 54.18300000000001 - type: precision_at_1 value: 74.25 - type: precision_at_10 value: 42.699999999999996 - type: precision_at_100 value: 13.675 - type: precision_at_1000 value: 2.664 - type: precision_at_3 value: 60.5 - type: precision_at_5 value: 52.800000000000004 - type: recall_at_1 value: 9.953 - type: recall_at_10 value: 30.253999999999998 - type: recall_at_100 value: 62.516000000000005 - type: recall_at_1000 value: 84.163 - type: recall_at_3 value: 18.13 - type: recall_at_5 value: 22.771 - task: type: Classification dataset: name: MTEB EmotionClassification type: mteb/emotion config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 79.455 - type: f1 value: 74.16798697647569 - task: type: Retrieval dataset: name: MTEB FEVER type: mteb/fever config: default split: test revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 metrics: - type: map_at_1 value: 87.531 - type: map_at_10 value: 93.16799999999999 - type: map_at_100 value: 93.341 - type: map_at_1000 value: 93.349 - type: map_at_3 value: 92.444 - type: map_at_5 value: 92.865 - type: mrr_at_1 value: 94.014 - type: mrr_at_10 value: 96.761 - type: mrr_at_100 value: 96.762 - type: mrr_at_1000 value: 96.762 - type: mrr_at_3 value: 96.672 - type: mrr_at_5 value: 96.736 - type: ndcg_at_1 value: 94.014 - type: ndcg_at_10 value: 95.112 - type: ndcg_at_100 value: 95.578 - type: ndcg_at_1000 value: 95.68900000000001 - type: ndcg_at_3 value: 94.392 - type: ndcg_at_5 value: 94.72500000000001 - type: precision_at_1 value: 94.014 - type: precision_at_10 value: 11.065 - type: precision_at_100 value: 1.157 - type: precision_at_1000 value: 0.11800000000000001 - type: precision_at_3 value: 35.259 - type: precision_at_5 value: 21.599 - type: recall_at_1 value: 87.531 - type: recall_at_10 value: 97.356 - type: recall_at_100 value: 98.965 - type: recall_at_1000 value: 99.607 - type: recall_at_3 value: 95.312 - type: recall_at_5 value: 96.295 - task: type: Retrieval dataset: name: MTEB FiQA2018 type: mteb/fiqa config: default split: test revision: 27a168819829fe9bcd655c2df245fb19452e8e06 metrics: - type: map_at_1 value: 32.055 - type: map_at_10 value: 53.114 - type: map_at_100 value: 55.235 - type: map_at_1000 value: 55.345 - type: map_at_3 value: 45.854 - type: map_at_5 value: 50.025 - type: mrr_at_1 value: 60.34 - type: mrr_at_10 value: 68.804 - type: mrr_at_100 value: 69.309 - type: mrr_at_1000 value: 69.32199999999999 - type: mrr_at_3 value: 66.40899999999999 - type: mrr_at_5 value: 67.976 - type: ndcg_at_1 value: 60.34 - type: ndcg_at_10 value: 62.031000000000006 - type: ndcg_at_100 value: 68.00500000000001 - type: ndcg_at_1000 value: 69.286 - type: ndcg_at_3 value: 56.355999999999995 - type: ndcg_at_5 value: 58.687 - type: precision_at_1 value: 60.34 - type: precision_at_10 value: 17.176 - type: precision_at_100 value: 2.36 - type: precision_at_1000 value: 0.259 - type: precision_at_3 value: 37.14 - type: precision_at_5 value: 27.809 - type: recall_at_1 value: 32.055 - type: recall_at_10 value: 70.91 - type: recall_at_100 value: 91.83 - type: recall_at_1000 value: 98.871 - type: recall_at_3 value: 51.202999999999996 - type: recall_at_5 value: 60.563 - task: type: Retrieval dataset: name: MTEB HotpotQA type: mteb/hotpotqa config: default split: test revision: ab518f4d6fcca38d87c25209f94beba119d02014 metrics: - type: map_at_1 value: 43.68 - type: map_at_10 value: 64.389 - type: map_at_100 value: 65.24 - type: map_at_1000 value: 65.303 - type: map_at_3 value: 61.309000000000005 - type: map_at_5 value: 63.275999999999996 - type: mrr_at_1 value: 87.36 - type: mrr_at_10 value: 91.12 - type: mrr_at_100 value: 91.227 - type: mrr_at_1000 value: 91.229 - type: mrr_at_3 value: 90.57600000000001 - type: mrr_at_5 value: 90.912 - type: ndcg_at_1 value: 87.36 - type: ndcg_at_10 value: 73.076 - type: ndcg_at_100 value: 75.895 - type: ndcg_at_1000 value: 77.049 - type: ndcg_at_3 value: 68.929 - type: ndcg_at_5 value: 71.28 - type: precision_at_1 value: 87.36 - type: precision_at_10 value: 14.741000000000001 - type: precision_at_100 value: 1.694 - type: precision_at_1000 value: 0.185 - type: precision_at_3 value: 43.043 - type: precision_at_5 value: 27.681 - type: recall_at_1 value: 43.68 - type: recall_at_10 value: 73.707 - type: recall_at_100 value: 84.7 - type: recall_at_1000 value: 92.309 - type: recall_at_3 value: 64.564 - type: recall_at_5 value: 69.203 - task: type: Classification dataset: name: MTEB ImdbClassification type: mteb/imdb config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 96.75399999999999 - type: ap value: 95.29389839242187 - type: f1 value: 96.75348377433475 - task: type: Retrieval dataset: name: MTEB MSMARCO type: mteb/msmarco config: default split: dev revision: c5a29a104738b98a9e76336939199e264163d4a0 metrics: - type: map_at_1 value: 25.176 - type: map_at_10 value: 38.598 - type: map_at_100 value: 39.707 - type: map_at_1000 value: 39.744 - type: map_at_3 value: 34.566 - type: map_at_5 value: 36.863 - type: mrr_at_1 value: 25.874000000000002 - type: mrr_at_10 value: 39.214 - type: mrr_at_100 value: 40.251 - type: mrr_at_1000 value: 40.281 - type: mrr_at_3 value: 35.291 - type: mrr_at_5 value: 37.545 - type: ndcg_at_1 value: 25.874000000000002 - type: ndcg_at_10 value: 45.98 - type: ndcg_at_100 value: 51.197 - type: ndcg_at_1000 value: 52.073 - type: ndcg_at_3 value: 37.785999999999994 - type: ndcg_at_5 value: 41.870000000000005 - type: precision_at_1 value: 25.874000000000002 - type: precision_at_10 value: 7.181 - type: precision_at_100 value: 0.979 - type: precision_at_1000 value: 0.106 - type: precision_at_3 value: 16.051000000000002 - type: precision_at_5 value: 11.713 - type: recall_at_1 value: 25.176 - type: recall_at_10 value: 68.67699999999999 - type: recall_at_100 value: 92.55 - type: recall_at_1000 value: 99.164 - type: recall_at_3 value: 46.372 - type: recall_at_5 value: 56.16 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: mteb/mtop_domain config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 99.03784769721841 - type: f1 value: 98.97791641821495 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: mteb/mtop_intent config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 91.88326493388054 - type: f1 value: 73.74809928034335 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: mteb/amazon_massive_intent config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 85.41358439811701 - type: f1 value: 83.503679460639 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: mteb/amazon_massive_scenario config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 89.77135171486215 - type: f1 value: 88.89843747468366 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P type: mteb/medrxiv-clustering-p2p config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 46.22695362087359 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S type: mteb/medrxiv-clustering-s2s config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 44.132372165849425 - task: type: Reranking dataset: name: MTEB MindSmallReranking type: mteb/mind_small config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 33.35680810650402 - type: mrr value: 34.72625715637218 - task: type: Retrieval dataset: name: MTEB NFCorpus type: mteb/nfcorpus config: default split: test revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 metrics: - type: map_at_1 value: 7.165000000000001 - type: map_at_10 value: 15.424 - type: map_at_100 value: 20.28 - type: map_at_1000 value: 22.065 - type: map_at_3 value: 11.236 - type: map_at_5 value: 13.025999999999998 - type: mrr_at_1 value: 51.702999999999996 - type: mrr_at_10 value: 59.965 - type: mrr_at_100 value: 60.667 - type: mrr_at_1000 value: 60.702999999999996 - type: mrr_at_3 value: 58.772000000000006 - type: mrr_at_5 value: 59.267 - type: ndcg_at_1 value: 49.536 - type: ndcg_at_10 value: 40.6 - type: ndcg_at_100 value: 37.848 - type: ndcg_at_1000 value: 46.657 - type: ndcg_at_3 value: 46.117999999999995 - type: ndcg_at_5 value: 43.619 - type: precision_at_1 value: 51.393 - type: precision_at_10 value: 30.31 - type: precision_at_100 value: 9.972 - type: precision_at_1000 value: 2.329 - type: precision_at_3 value: 43.137 - type: precision_at_5 value: 37.585 - type: recall_at_1 value: 7.165000000000001 - type: recall_at_10 value: 19.689999999999998 - type: recall_at_100 value: 39.237 - type: recall_at_1000 value: 71.417 - type: recall_at_3 value: 12.247 - type: recall_at_5 value: 14.902999999999999 - task: type: Retrieval dataset: name: MTEB NQ type: mteb/nq config: default split: test revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 metrics: - type: map_at_1 value: 42.653999999999996 - type: map_at_10 value: 59.611999999999995 - type: map_at_100 value: 60.32300000000001 - type: map_at_1000 value: 60.336 - type: map_at_3 value: 55.584999999999994 - type: map_at_5 value: 58.19 - type: mrr_at_1 value: 47.683 - type: mrr_at_10 value: 62.06700000000001 - type: mrr_at_100 value: 62.537 - type: mrr_at_1000 value: 62.544999999999995 - type: mrr_at_3 value: 59.178 - type: mrr_at_5 value: 61.034 - type: ndcg_at_1 value: 47.654 - type: ndcg_at_10 value: 67.001 - type: ndcg_at_100 value: 69.73899999999999 - type: ndcg_at_1000 value: 69.986 - type: ndcg_at_3 value: 59.95700000000001 - type: ndcg_at_5 value: 64.025 - type: precision_at_1 value: 47.654 - type: precision_at_10 value: 10.367999999999999 - type: precision_at_100 value: 1.192 - type: precision_at_1000 value: 0.121 - type: precision_at_3 value: 26.651000000000003 - type: precision_at_5 value: 18.459 - type: recall_at_1 value: 42.653999999999996 - type: recall_at_10 value: 86.619 - type: recall_at_100 value: 98.04899999999999 - type: recall_at_1000 value: 99.812 - type: recall_at_3 value: 68.987 - type: recall_at_5 value: 78.158 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval type: mteb/quora config: default split: test revision: None metrics: - type: map_at_1 value: 72.538 - type: map_at_10 value: 86.702 - type: map_at_100 value: 87.31 - type: map_at_1000 value: 87.323 - type: map_at_3 value: 83.87 - type: map_at_5 value: 85.682 - type: mrr_at_1 value: 83.31 - type: mrr_at_10 value: 89.225 - type: mrr_at_100 value: 89.30399999999999 - type: mrr_at_1000 value: 89.30399999999999 - type: mrr_at_3 value: 88.44300000000001 - type: mrr_at_5 value: 89.005 - type: ndcg_at_1 value: 83.32000000000001 - type: ndcg_at_10 value: 90.095 - type: ndcg_at_100 value: 91.12 - type: ndcg_at_1000 value: 91.179 - type: ndcg_at_3 value: 87.606 - type: ndcg_at_5 value: 89.031 - type: precision_at_1 value: 83.32000000000001 - type: precision_at_10 value: 13.641 - type: precision_at_100 value: 1.541 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 38.377 - type: precision_at_5 value: 25.162000000000003 - type: recall_at_1 value: 72.538 - type: recall_at_10 value: 96.47200000000001 - type: recall_at_100 value: 99.785 - type: recall_at_1000 value: 99.99900000000001 - type: recall_at_3 value: 89.278 - type: recall_at_5 value: 93.367 - task: type: Clustering dataset: name: MTEB RedditClustering type: mteb/reddit-clustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 73.55219145406065 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P type: mteb/reddit-clustering-p2p config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 74.13437105242755 - task: type: Retrieval dataset: name: MTEB SCIDOCS type: mteb/scidocs config: default split: test revision: None metrics: - type: map_at_1 value: 6.873 - type: map_at_10 value: 17.944 - type: map_at_100 value: 21.171 - type: map_at_1000 value: 21.528 - type: map_at_3 value: 12.415 - type: map_at_5 value: 15.187999999999999 - type: mrr_at_1 value: 33.800000000000004 - type: mrr_at_10 value: 46.455 - type: mrr_at_100 value: 47.378 - type: mrr_at_1000 value: 47.394999999999996 - type: mrr_at_3 value: 42.367 - type: mrr_at_5 value: 44.972 - type: ndcg_at_1 value: 33.800000000000004 - type: ndcg_at_10 value: 28.907 - type: ndcg_at_100 value: 39.695 - type: ndcg_at_1000 value: 44.582 - type: ndcg_at_3 value: 26.949 - type: ndcg_at_5 value: 23.988 - type: precision_at_1 value: 33.800000000000004 - type: precision_at_10 value: 15.079999999999998 - type: precision_at_100 value: 3.056 - type: precision_at_1000 value: 0.42100000000000004 - type: precision_at_3 value: 25.167 - type: precision_at_5 value: 21.26 - type: recall_at_1 value: 6.873 - type: recall_at_10 value: 30.568 - type: recall_at_100 value: 62.062 - type: recall_at_1000 value: 85.37700000000001 - type: recall_at_3 value: 15.312999999999999 - type: recall_at_5 value: 21.575 - task: type: STS dataset: name: MTEB SICK-R type: mteb/sickr-sts config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 82.37009118256057 - type: cos_sim_spearman value: 79.27986395671529 - type: euclidean_pearson value: 79.18037715442115 - type: euclidean_spearman value: 79.28004791561621 - type: manhattan_pearson value: 79.34062972800541 - type: manhattan_spearman value: 79.43106695543402 - task: type: STS dataset: name: MTEB STS12 type: mteb/sts12-sts config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 87.48474767383833 - type: cos_sim_spearman value: 79.54505388752513 - type: euclidean_pearson value: 83.43282704179565 - type: euclidean_spearman value: 79.54579919925405 - type: manhattan_pearson value: 83.77564492427952 - type: manhattan_spearman value: 79.84558396989286 - task: type: STS dataset: name: MTEB STS13 type: mteb/sts13-sts config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 88.803698035802 - type: cos_sim_spearman value: 88.83451367754881 - type: euclidean_pearson value: 88.28939285711628 - type: euclidean_spearman value: 88.83528996073112 - type: manhattan_pearson value: 88.28017412671795 - type: manhattan_spearman value: 88.9228828016344 - task: type: STS dataset: name: MTEB STS14 type: mteb/sts14-sts config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 85.27469288153428 - type: cos_sim_spearman value: 83.87477064876288 - type: euclidean_pearson value: 84.2601737035379 - type: euclidean_spearman value: 83.87431082479074 - type: manhattan_pearson value: 84.3621547772745 - type: manhattan_spearman value: 84.12094375000423 - task: type: STS dataset: name: MTEB STS15 type: mteb/sts15-sts config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 88.12749863201587 - type: cos_sim_spearman value: 88.54287568368565 - type: euclidean_pearson value: 87.90429700607999 - type: euclidean_spearman value: 88.5437689576261 - type: manhattan_pearson value: 88.19276653356833 - type: manhattan_spearman value: 88.99995393814679 - task: type: STS dataset: name: MTEB STS16 type: mteb/sts16-sts config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 85.68398747560902 - type: cos_sim_spearman value: 86.48815303460574 - type: euclidean_pearson value: 85.52356631237954 - type: euclidean_spearman value: 86.486391949551 - type: manhattan_pearson value: 85.67267981761788 - type: manhattan_spearman value: 86.7073696332485 - task: type: STS dataset: name: MTEB STS17 (en-en) type: mteb/sts17-crosslingual-sts config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 88.9057107443124 - type: cos_sim_spearman value: 88.7312168757697 - type: euclidean_pearson value: 88.72810439714794 - type: euclidean_spearman value: 88.71976185854771 - type: manhattan_pearson value: 88.50433745949111 - type: manhattan_spearman value: 88.51726175544195 - task: type: STS dataset: name: MTEB STS22 (en) type: mteb/sts22-crosslingual-sts config: en split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 67.59391795109886 - type: cos_sim_spearman value: 66.87613008631367 - type: euclidean_pearson value: 69.23198488262217 - type: euclidean_spearman value: 66.85427723013692 - type: manhattan_pearson value: 69.50730124841084 - type: manhattan_spearman value: 67.10404669820792 - task: type: STS dataset: name: MTEB STSBenchmark type: mteb/stsbenchmark-sts config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 87.0820605344619 - type: cos_sim_spearman value: 86.8518089863434 - type: euclidean_pearson value: 86.31087134689284 - type: euclidean_spearman value: 86.8518520517941 - type: manhattan_pearson value: 86.47203796160612 - type: manhattan_spearman value: 87.1080149734421 - task: type: Reranking dataset: name: MTEB SciDocsRR type: mteb/scidocs-reranking config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 89.09255369305481 - type: mrr value: 97.10323445617563 - task: type: Retrieval dataset: name: MTEB SciFact type: mteb/scifact config: default split: test revision: 0228b52cf27578f30900b9e5271d331663a030d7 metrics: - type: map_at_1 value: 61.260999999999996 - type: map_at_10 value: 74.043 - type: map_at_100 value: 74.37700000000001 - type: map_at_1000 value: 74.384 - type: map_at_3 value: 71.222 - type: map_at_5 value: 72.875 - type: mrr_at_1 value: 64.333 - type: mrr_at_10 value: 74.984 - type: mrr_at_100 value: 75.247 - type: mrr_at_1000 value: 75.25500000000001 - type: mrr_at_3 value: 73.167 - type: mrr_at_5 value: 74.35000000000001 - type: ndcg_at_1 value: 64.333 - type: ndcg_at_10 value: 79.06 - type: ndcg_at_100 value: 80.416 - type: ndcg_at_1000 value: 80.55600000000001 - type: ndcg_at_3 value: 74.753 - type: ndcg_at_5 value: 76.97500000000001 - type: precision_at_1 value: 64.333 - type: precision_at_10 value: 10.567 - type: precision_at_100 value: 1.1199999999999999 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 29.889 - type: precision_at_5 value: 19.533 - type: recall_at_1 value: 61.260999999999996 - type: recall_at_10 value: 93.167 - type: recall_at_100 value: 99.0 - type: recall_at_1000 value: 100.0 - type: recall_at_3 value: 81.667 - type: recall_at_5 value: 87.394 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions type: mteb/sprintduplicatequestions-pairclassification config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.71980198019801 - type: cos_sim_ap value: 92.81616007802704 - type: cos_sim_f1 value: 85.17548454688318 - type: cos_sim_precision value: 89.43894389438944 - type: cos_sim_recall value: 81.3 - type: dot_accuracy value: 99.71980198019801 - type: dot_ap value: 92.81398760591358 - type: dot_f1 value: 85.17548454688318 - type: dot_precision value: 89.43894389438944 - type: dot_recall value: 81.3 - type: euclidean_accuracy value: 99.71980198019801 - type: euclidean_ap value: 92.81560637245072 - type: euclidean_f1 value: 85.17548454688318 - type: euclidean_precision value: 89.43894389438944 - type: euclidean_recall value: 81.3 - type: manhattan_accuracy value: 99.73069306930694 - type: manhattan_ap value: 93.14005487480794 - type: manhattan_f1 value: 85.56263269639068 - type: manhattan_precision value: 91.17647058823529 - type: manhattan_recall value: 80.60000000000001 - type: max_accuracy value: 99.73069306930694 - type: max_ap value: 93.14005487480794 - type: max_f1 value: 85.56263269639068 - task: type: Clustering dataset: name: MTEB StackExchangeClustering type: mteb/stackexchange-clustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 79.86443362395185 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P type: mteb/stackexchange-clustering-p2p config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 49.40897096662564 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions type: mteb/stackoverflowdupquestions-reranking config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 55.66040806627947 - type: mrr value: 56.58670475766064 - task: type: Summarization dataset: name: MTEB SummEval type: mteb/summeval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 31.51015090598575 - type: cos_sim_spearman value: 31.35016454939226 - type: dot_pearson value: 31.5150068731 - type: dot_spearman value: 31.34790869023487 - task: type: Retrieval dataset: name: MTEB TRECCOVID type: mteb/trec-covid config: default split: test revision: None metrics: - type: map_at_1 value: 0.254 - type: map_at_10 value: 2.064 - type: map_at_100 value: 12.909 - type: map_at_1000 value: 31.761 - type: map_at_3 value: 0.738 - type: map_at_5 value: 1.155 - type: mrr_at_1 value: 96.0 - type: mrr_at_10 value: 98.0 - type: mrr_at_100 value: 98.0 - type: mrr_at_1000 value: 98.0 - type: mrr_at_3 value: 98.0 - type: mrr_at_5 value: 98.0 - type: ndcg_at_1 value: 93.0 - type: ndcg_at_10 value: 82.258 - type: ndcg_at_100 value: 64.34 - type: ndcg_at_1000 value: 57.912 - type: ndcg_at_3 value: 90.827 - type: ndcg_at_5 value: 86.79 - type: precision_at_1 value: 96.0 - type: precision_at_10 value: 84.8 - type: precision_at_100 value: 66.0 - type: precision_at_1000 value: 25.356 - type: precision_at_3 value: 94.667 - type: precision_at_5 value: 90.4 - type: recall_at_1 value: 0.254 - type: recall_at_10 value: 2.1950000000000003 - type: recall_at_100 value: 16.088 - type: recall_at_1000 value: 54.559000000000005 - type: recall_at_3 value: 0.75 - type: recall_at_5 value: 1.191 - task: type: Retrieval dataset: name: MTEB Touche2020 type: mteb/touche2020 config: default split: test revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f metrics: - type: map_at_1 value: 2.976 - type: map_at_10 value: 11.389000000000001 - type: map_at_100 value: 18.429000000000002 - type: map_at_1000 value: 20.113 - type: map_at_3 value: 6.483 - type: map_at_5 value: 8.770999999999999 - type: mrr_at_1 value: 40.816 - type: mrr_at_10 value: 58.118 - type: mrr_at_100 value: 58.489999999999995 - type: mrr_at_1000 value: 58.489999999999995 - type: mrr_at_3 value: 53.061 - type: mrr_at_5 value: 57.041 - type: ndcg_at_1 value: 40.816 - type: ndcg_at_10 value: 30.567 - type: ndcg_at_100 value: 42.44 - type: ndcg_at_1000 value: 53.480000000000004 - type: ndcg_at_3 value: 36.016 - type: ndcg_at_5 value: 34.257 - type: precision_at_1 value: 42.857 - type: precision_at_10 value: 25.714 - type: precision_at_100 value: 8.429 - type: precision_at_1000 value: 1.5939999999999999 - type: precision_at_3 value: 36.735 - type: precision_at_5 value: 33.878 - type: recall_at_1 value: 2.976 - type: recall_at_10 value: 17.854999999999997 - type: recall_at_100 value: 51.833 - type: recall_at_1000 value: 86.223 - type: recall_at_3 value: 7.887 - type: recall_at_5 value: 12.026 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification type: mteb/toxic_conversations_50k config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 85.1174 - type: ap value: 30.169441069345748 - type: f1 value: 69.79254701873245 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification type: mteb/tweet_sentiment_extraction config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 72.58347481607245 - type: f1 value: 72.74877295564937 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering type: mteb/twentynewsgroups-clustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 53.90586138221305 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 type: mteb/twittersemeval2015-pairclassification config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 87.35769207844072 - type: cos_sim_ap value: 77.9645072410354 - type: cos_sim_f1 value: 71.32352941176471 - type: cos_sim_precision value: 66.5903890160183 - type: cos_sim_recall value: 76.78100263852242 - type: dot_accuracy value: 87.37557370209214 - type: dot_ap value: 77.96250046429908 - type: dot_f1 value: 71.28932757557064 - type: dot_precision value: 66.95249130938586 - type: dot_recall value: 76.22691292875989 - type: euclidean_accuracy value: 87.35173153722357 - type: euclidean_ap value: 77.96520460741593 - type: euclidean_f1 value: 71.32470733210104 - type: euclidean_precision value: 66.91329479768785 - type: euclidean_recall value: 76.35883905013192 - type: manhattan_accuracy value: 87.25636287774931 - type: manhattan_ap value: 77.77752485611796 - type: manhattan_f1 value: 71.18148599269183 - type: manhattan_precision value: 66.10859728506787 - type: manhattan_recall value: 77.0976253298153 - type: max_accuracy value: 87.37557370209214 - type: max_ap value: 77.96520460741593 - type: max_f1 value: 71.32470733210104 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus type: mteb/twitterurlcorpus-pairclassification config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 89.38176737687739 - type: cos_sim_ap value: 86.58811861657401 - type: cos_sim_f1 value: 79.09430644097604 - type: cos_sim_precision value: 75.45085977911366 - type: cos_sim_recall value: 83.10748383122882 - type: dot_accuracy value: 89.38370784336554 - type: dot_ap value: 86.58840606004333 - type: dot_f1 value: 79.10179860068133 - type: dot_precision value: 75.44546153308643 - type: dot_recall value: 83.13058207576223 - type: euclidean_accuracy value: 89.38564830985369 - type: euclidean_ap value: 86.58820721061164 - type: euclidean_f1 value: 79.09070942235888 - type: euclidean_precision value: 75.38729937194697 - type: euclidean_recall value: 83.17677856482906 - type: manhattan_accuracy value: 89.40699344122326 - type: manhattan_ap value: 86.60631843011362 - type: manhattan_f1 value: 79.14949970570925 - type: manhattan_precision value: 75.78191039729502 - type: manhattan_recall value: 82.83030489682784 - type: max_accuracy value: 89.40699344122326 - type: max_ap value: 86.60631843011362 - type: max_f1 value: 79.14949970570925 - task: type: STS dataset: name: MTEB AFQMC type: C-MTEB/AFQMC config: default split: validation revision: b44c3b011063adb25877c13823db83bb193913c4 metrics: - type: cos_sim_pearson value: 65.58442135663871 - type: cos_sim_spearman value: 72.2538631361313 - type: euclidean_pearson value: 70.97255486607429 - type: euclidean_spearman value: 72.25374250228647 - type: manhattan_pearson value: 70.83250199989911 - type: manhattan_spearman value: 72.14819496536272 - task: type: STS dataset: name: MTEB ATEC type: C-MTEB/ATEC config: default split: test revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865 metrics: - type: cos_sim_pearson value: 59.99478404929932 - type: cos_sim_spearman value: 62.61836216999812 - type: euclidean_pearson value: 66.86429811933593 - type: euclidean_spearman value: 62.6183520374191 - type: manhattan_pearson value: 66.8063778911633 - type: manhattan_spearman value: 62.569607573241115 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (zh) type: mteb/amazon_reviews_multi config: zh split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 53.98400000000001 - type: f1 value: 51.21447361350723 - task: type: STS dataset: name: MTEB BQ type: C-MTEB/BQ config: default split: test revision: e3dda5e115e487b39ec7e618c0c6a29137052a55 metrics: - type: cos_sim_pearson value: 79.11941660686553 - type: cos_sim_spearman value: 81.25029594540435 - type: euclidean_pearson value: 82.06973504238826 - type: euclidean_spearman value: 81.2501989488524 - type: manhattan_pearson value: 82.10094630392753 - type: manhattan_spearman value: 81.27987244392389 - task: type: Clustering dataset: name: MTEB CLSClusteringP2P type: C-MTEB/CLSClusteringP2P config: default split: test revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476 metrics: - type: v_measure value: 47.07270168705156 - task: type: Clustering dataset: name: MTEB CLSClusteringS2S type: C-MTEB/CLSClusteringS2S config: default split: test revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f metrics: - type: v_measure value: 45.98511703185043 - task: type: Reranking dataset: name: MTEB CMedQAv1 type: C-MTEB/CMedQAv1-reranking config: default split: test revision: 8d7f1e942507dac42dc58017c1a001c3717da7df metrics: - type: map value: 88.19895157194931 - type: mrr value: 90.21424603174603 - task: type: Reranking dataset: name: MTEB CMedQAv2 type: C-MTEB/CMedQAv2-reranking config: default split: test revision: 23d186750531a14a0357ca22cd92d712fd512ea0 metrics: - type: map value: 88.03317320980119 - type: mrr value: 89.9461507936508 - task: type: Retrieval dataset: name: MTEB CmedqaRetrieval type: C-MTEB/CmedqaRetrieval config: default split: dev revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301 metrics: - type: map_at_1 value: 29.037000000000003 - type: map_at_10 value: 42.001 - type: map_at_100 value: 43.773 - type: map_at_1000 value: 43.878 - type: map_at_3 value: 37.637 - type: map_at_5 value: 40.034 - type: mrr_at_1 value: 43.136 - type: mrr_at_10 value: 51.158 - type: mrr_at_100 value: 52.083 - type: mrr_at_1000 value: 52.12 - type: mrr_at_3 value: 48.733 - type: mrr_at_5 value: 50.025 - type: ndcg_at_1 value: 43.136 - type: ndcg_at_10 value: 48.685 - type: ndcg_at_100 value: 55.513 - type: ndcg_at_1000 value: 57.242000000000004 - type: ndcg_at_3 value: 43.329 - type: ndcg_at_5 value: 45.438 - type: precision_at_1 value: 43.136 - type: precision_at_10 value: 10.56 - type: precision_at_100 value: 1.6129999999999998 - type: precision_at_1000 value: 0.184 - type: precision_at_3 value: 24.064 - type: precision_at_5 value: 17.269000000000002 - type: recall_at_1 value: 29.037000000000003 - type: recall_at_10 value: 59.245000000000005 - type: recall_at_100 value: 87.355 - type: recall_at_1000 value: 98.74000000000001 - type: recall_at_3 value: 42.99 - type: recall_at_5 value: 49.681999999999995 - task: type: PairClassification dataset: name: MTEB Cmnli type: C-MTEB/CMNLI config: default split: validation revision: 41bc36f332156f7adc9e38f53777c959b2ae9766 metrics: - type: cos_sim_accuracy value: 82.68190018039687 - type: cos_sim_ap value: 90.18017125327886 - type: cos_sim_f1 value: 83.64080906868193 - type: cos_sim_precision value: 79.7076890489303 - type: cos_sim_recall value: 87.98223053542202 - type: dot_accuracy value: 82.68190018039687 - type: dot_ap value: 90.18782350103646 - type: dot_f1 value: 83.64242087729039 - type: dot_precision value: 79.65313028764805 - type: dot_recall value: 88.05237315875614 - type: euclidean_accuracy value: 82.68190018039687 - type: euclidean_ap value: 90.1801957900632 - type: euclidean_f1 value: 83.63636363636364 - type: euclidean_precision value: 79.52772506852203 - type: euclidean_recall value: 88.19265840542437 - type: manhattan_accuracy value: 82.14070956103427 - type: manhattan_ap value: 89.96178420101427 - type: manhattan_f1 value: 83.21087838578791 - type: manhattan_precision value: 78.35605121850475 - type: manhattan_recall value: 88.70703764320785 - type: max_accuracy value: 82.68190018039687 - type: max_ap value: 90.18782350103646 - type: max_f1 value: 83.64242087729039 - task: type: Retrieval dataset: name: MTEB CovidRetrieval type: C-MTEB/CovidRetrieval config: default split: dev revision: 1271c7809071a13532e05f25fb53511ffce77117 metrics: - type: map_at_1 value: 72.234 - type: map_at_10 value: 80.10000000000001 - type: map_at_100 value: 80.36 - type: map_at_1000 value: 80.363 - type: map_at_3 value: 78.315 - type: map_at_5 value: 79.607 - type: mrr_at_1 value: 72.392 - type: mrr_at_10 value: 80.117 - type: mrr_at_100 value: 80.36999999999999 - type: mrr_at_1000 value: 80.373 - type: mrr_at_3 value: 78.469 - type: mrr_at_5 value: 79.633 - type: ndcg_at_1 value: 72.392 - type: ndcg_at_10 value: 83.651 - type: ndcg_at_100 value: 84.749 - type: ndcg_at_1000 value: 84.83000000000001 - type: ndcg_at_3 value: 80.253 - type: ndcg_at_5 value: 82.485 - type: precision_at_1 value: 72.392 - type: precision_at_10 value: 9.557 - type: precision_at_100 value: 1.004 - type: precision_at_1000 value: 0.101 - type: precision_at_3 value: 28.732000000000003 - type: precision_at_5 value: 18.377 - type: recall_at_1 value: 72.234 - type: recall_at_10 value: 94.573 - type: recall_at_100 value: 99.368 - type: recall_at_1000 value: 100.0 - type: recall_at_3 value: 85.669 - type: recall_at_5 value: 91.01700000000001 - task: type: Retrieval dataset: name: MTEB DuRetrieval type: C-MTEB/DuRetrieval config: default split: dev revision: a1a333e290fe30b10f3f56498e3a0d911a693ced metrics: - type: map_at_1 value: 26.173999999999996 - type: map_at_10 value: 80.04 - type: map_at_100 value: 82.94500000000001 - type: map_at_1000 value: 82.98100000000001 - type: map_at_3 value: 55.562999999999995 - type: map_at_5 value: 69.89800000000001 - type: mrr_at_1 value: 89.5 - type: mrr_at_10 value: 92.996 - type: mrr_at_100 value: 93.06400000000001 - type: mrr_at_1000 value: 93.065 - type: mrr_at_3 value: 92.658 - type: mrr_at_5 value: 92.84599999999999 - type: ndcg_at_1 value: 89.5 - type: ndcg_at_10 value: 87.443 - type: ndcg_at_100 value: 90.253 - type: ndcg_at_1000 value: 90.549 - type: ndcg_at_3 value: 85.874 - type: ndcg_at_5 value: 84.842 - type: precision_at_1 value: 89.5 - type: precision_at_10 value: 41.805 - type: precision_at_100 value: 4.827 - type: precision_at_1000 value: 0.49 - type: precision_at_3 value: 76.85 - type: precision_at_5 value: 64.8 - type: recall_at_1 value: 26.173999999999996 - type: recall_at_10 value: 89.101 - type: recall_at_100 value: 98.08099999999999 - type: recall_at_1000 value: 99.529 - type: recall_at_3 value: 57.902 - type: recall_at_5 value: 74.602 - task: type: Retrieval dataset: name: MTEB EcomRetrieval type: C-MTEB/EcomRetrieval config: default split: dev revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9 metrics: - type: map_at_1 value: 56.10000000000001 - type: map_at_10 value: 66.15299999999999 - type: map_at_100 value: 66.625 - type: map_at_1000 value: 66.636 - type: map_at_3 value: 63.632999999999996 - type: map_at_5 value: 65.293 - type: mrr_at_1 value: 56.10000000000001 - type: mrr_at_10 value: 66.15299999999999 - type: mrr_at_100 value: 66.625 - type: mrr_at_1000 value: 66.636 - type: mrr_at_3 value: 63.632999999999996 - type: mrr_at_5 value: 65.293 - type: ndcg_at_1 value: 56.10000000000001 - type: ndcg_at_10 value: 71.146 - type: ndcg_at_100 value: 73.27799999999999 - type: ndcg_at_1000 value: 73.529 - type: ndcg_at_3 value: 66.09 - type: ndcg_at_5 value: 69.08999999999999 - type: precision_at_1 value: 56.10000000000001 - type: precision_at_10 value: 8.68 - type: precision_at_100 value: 0.964 - type: precision_at_1000 value: 0.098 - type: precision_at_3 value: 24.4 - type: precision_at_5 value: 16.1 - type: recall_at_1 value: 56.10000000000001 - type: recall_at_10 value: 86.8 - type: recall_at_100 value: 96.39999999999999 - type: recall_at_1000 value: 98.3 - type: recall_at_3 value: 73.2 - type: recall_at_5 value: 80.5 - task: type: Classification dataset: name: MTEB IFlyTek type: C-MTEB/IFlyTek-classification config: default split: validation revision: 421605374b29664c5fc098418fe20ada9bd55f8a metrics: - type: accuracy value: 54.52096960369373 - type: f1 value: 40.930845295808695 - task: type: Classification dataset: name: MTEB JDReview type: C-MTEB/JDReview-classification config: default split: test revision: b7c64bd89eb87f8ded463478346f76731f07bf8b metrics: - type: accuracy value: 86.51031894934334 - type: ap value: 55.9516014323483 - type: f1 value: 81.54813679326381 - task: type: STS dataset: name: MTEB LCQMC type: C-MTEB/LCQMC config: default split: test revision: 17f9b096f80380fce5ed12a9be8be7784b337daf metrics: - type: cos_sim_pearson value: 69.67437838574276 - type: cos_sim_spearman value: 73.81314174653045 - type: euclidean_pearson value: 72.63430276680275 - type: euclidean_spearman value: 73.81358736777001 - type: manhattan_pearson value: 72.58743833842829 - type: manhattan_spearman value: 73.7590419009179 - task: type: Reranking dataset: name: MTEB MMarcoReranking type: C-MTEB/Mmarco-reranking config: default split: dev revision: None metrics: - type: map value: 31.648613483640254 - type: mrr value: 30.37420634920635 - task: type: Retrieval dataset: name: MTEB MMarcoRetrieval type: C-MTEB/MMarcoRetrieval config: default split: dev revision: 539bbde593d947e2a124ba72651aafc09eb33fc2 metrics: - type: map_at_1 value: 73.28099999999999 - type: map_at_10 value: 81.977 - type: map_at_100 value: 82.222 - type: map_at_1000 value: 82.22699999999999 - type: map_at_3 value: 80.441 - type: map_at_5 value: 81.46600000000001 - type: mrr_at_1 value: 75.673 - type: mrr_at_10 value: 82.41000000000001 - type: mrr_at_100 value: 82.616 - type: mrr_at_1000 value: 82.621 - type: mrr_at_3 value: 81.094 - type: mrr_at_5 value: 81.962 - type: ndcg_at_1 value: 75.673 - type: ndcg_at_10 value: 85.15599999999999 - type: ndcg_at_100 value: 86.151 - type: ndcg_at_1000 value: 86.26899999999999 - type: ndcg_at_3 value: 82.304 - type: ndcg_at_5 value: 84.009 - type: precision_at_1 value: 75.673 - type: precision_at_10 value: 10.042 - type: precision_at_100 value: 1.052 - type: precision_at_1000 value: 0.106 - type: precision_at_3 value: 30.673000000000002 - type: precision_at_5 value: 19.326999999999998 - type: recall_at_1 value: 73.28099999999999 - type: recall_at_10 value: 94.446 - type: recall_at_100 value: 98.737 - type: recall_at_1000 value: 99.649 - type: recall_at_3 value: 86.984 - type: recall_at_5 value: 91.024 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (zh-CN) type: mteb/amazon_massive_intent config: zh-CN split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 81.08607935440484 - type: f1 value: 78.24879986066307 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (zh-CN) type: mteb/amazon_massive_scenario config: zh-CN split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 86.05917955615332 - type: f1 value: 85.05279279434997 - task: type: Retrieval dataset: name: MTEB MedicalRetrieval type: C-MTEB/MedicalRetrieval config: default split: dev revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6 metrics: - type: map_at_1 value: 56.2 - type: map_at_10 value: 62.57899999999999 - type: map_at_100 value: 63.154999999999994 - type: map_at_1000 value: 63.193 - type: map_at_3 value: 61.217 - type: map_at_5 value: 62.012 - type: mrr_at_1 value: 56.3 - type: mrr_at_10 value: 62.629000000000005 - type: mrr_at_100 value: 63.205999999999996 - type: mrr_at_1000 value: 63.244 - type: mrr_at_3 value: 61.267 - type: mrr_at_5 value: 62.062 - type: ndcg_at_1 value: 56.2 - type: ndcg_at_10 value: 65.592 - type: ndcg_at_100 value: 68.657 - type: ndcg_at_1000 value: 69.671 - type: ndcg_at_3 value: 62.808 - type: ndcg_at_5 value: 64.24499999999999 - type: precision_at_1 value: 56.2 - type: precision_at_10 value: 7.5 - type: precision_at_100 value: 0.899 - type: precision_at_1000 value: 0.098 - type: precision_at_3 value: 22.467000000000002 - type: precision_at_5 value: 14.180000000000001 - type: recall_at_1 value: 56.2 - type: recall_at_10 value: 75.0 - type: recall_at_100 value: 89.9 - type: recall_at_1000 value: 97.89999999999999 - type: recall_at_3 value: 67.4 - type: recall_at_5 value: 70.89999999999999 - task: type: Classification dataset: name: MTEB MultilingualSentiment type: C-MTEB/MultilingualSentiment-classification config: default split: validation revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a metrics: - type: accuracy value: 76.87666666666667 - type: f1 value: 76.7317686219665 - task: type: PairClassification dataset: name: MTEB Ocnli type: C-MTEB/OCNLI config: default split: validation revision: 66e76a618a34d6d565d5538088562851e6daa7ec metrics: - type: cos_sim_accuracy value: 79.64266377910124 - type: cos_sim_ap value: 84.78274442344829 - type: cos_sim_f1 value: 81.16947472745292 - type: cos_sim_precision value: 76.47058823529412 - type: cos_sim_recall value: 86.48363252375924 - type: dot_accuracy value: 79.64266377910124 - type: dot_ap value: 84.7851404063692 - type: dot_f1 value: 81.16947472745292 - type: dot_precision value: 76.47058823529412 - type: dot_recall value: 86.48363252375924 - type: euclidean_accuracy value: 79.64266377910124 - type: euclidean_ap value: 84.78068373762378 - type: euclidean_f1 value: 81.14794656110837 - type: euclidean_precision value: 76.35009310986965 - type: euclidean_recall value: 86.58922914466737 - type: manhattan_accuracy value: 79.48023822414727 - type: manhattan_ap value: 84.72928897427576 - type: manhattan_f1 value: 81.32084770823064 - type: manhattan_precision value: 76.24768946395564 - type: manhattan_recall value: 87.11721224920802 - type: max_accuracy value: 79.64266377910124 - type: max_ap value: 84.7851404063692 - type: max_f1 value: 81.32084770823064 - task: type: Classification dataset: name: MTEB OnlineShopping type: C-MTEB/OnlineShopping-classification config: default split: test revision: e610f2ebd179a8fda30ae534c3878750a96db120 metrics: - type: accuracy value: 94.3 - type: ap value: 92.8664032274438 - type: f1 value: 94.29311102997727 - task: type: STS dataset: name: MTEB PAWSX type: C-MTEB/PAWSX config: default split: test revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1 metrics: - type: cos_sim_pearson value: 48.51392279882909 - type: cos_sim_spearman value: 54.06338895994974 - type: euclidean_pearson value: 52.58480559573412 - type: euclidean_spearman value: 54.06417276612201 - type: manhattan_pearson value: 52.69525121721343 - type: manhattan_spearman value: 54.048147455389675 - task: type: STS dataset: name: MTEB QBQTC type: C-MTEB/QBQTC config: default split: test revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7 metrics: - type: cos_sim_pearson value: 29.728387290757325 - type: cos_sim_spearman value: 31.366121633635284 - type: euclidean_pearson value: 29.14588368552961 - type: euclidean_spearman value: 31.36764411112844 - type: manhattan_pearson value: 29.63517350523121 - type: manhattan_spearman value: 31.94157020583762 - task: type: STS dataset: name: MTEB STS22 (zh) type: mteb/sts22-crosslingual-sts config: zh split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 63.64868296271406 - type: cos_sim_spearman value: 66.12800618164744 - type: euclidean_pearson value: 63.21405767340238 - type: euclidean_spearman value: 66.12786567790748 - type: manhattan_pearson value: 64.04300276525848 - type: manhattan_spearman value: 66.5066857145652 - task: type: STS dataset: name: MTEB STSB type: C-MTEB/STSB config: default split: test revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0 metrics: - type: cos_sim_pearson value: 81.2302623912794 - type: cos_sim_spearman value: 81.16833673266562 - type: euclidean_pearson value: 79.47647843876024 - type: euclidean_spearman value: 81.16944349524972 - type: manhattan_pearson value: 79.84947238492208 - type: manhattan_spearman value: 81.64626599410026 - task: type: Reranking dataset: name: MTEB T2Reranking type: C-MTEB/T2Reranking config: default split: dev revision: 76631901a18387f85eaa53e5450019b87ad58ef9 metrics: - type: map value: 67.80129586475687 - type: mrr value: 77.77402311635554 - task: type: Retrieval dataset: name: MTEB T2Retrieval type: C-MTEB/T2Retrieval config: default split: dev revision: 8731a845f1bf500a4f111cf1070785c793d10e64 metrics: - type: map_at_1 value: 28.666999999999998 - type: map_at_10 value: 81.063 - type: map_at_100 value: 84.504 - type: map_at_1000 value: 84.552 - type: map_at_3 value: 56.897 - type: map_at_5 value: 70.073 - type: mrr_at_1 value: 92.087 - type: mrr_at_10 value: 94.132 - type: mrr_at_100 value: 94.19800000000001 - type: mrr_at_1000 value: 94.19999999999999 - type: mrr_at_3 value: 93.78999999999999 - type: mrr_at_5 value: 94.002 - type: ndcg_at_1 value: 92.087 - type: ndcg_at_10 value: 87.734 - type: ndcg_at_100 value: 90.736 - type: ndcg_at_1000 value: 91.184 - type: ndcg_at_3 value: 88.78 - type: ndcg_at_5 value: 87.676 - type: precision_at_1 value: 92.087 - type: precision_at_10 value: 43.46 - type: precision_at_100 value: 5.07 - type: precision_at_1000 value: 0.518 - type: precision_at_3 value: 77.49000000000001 - type: precision_at_5 value: 65.194 - type: recall_at_1 value: 28.666999999999998 - type: recall_at_10 value: 86.632 - type: recall_at_100 value: 96.646 - type: recall_at_1000 value: 98.917 - type: recall_at_3 value: 58.333999999999996 - type: recall_at_5 value: 72.974 - task: type: Classification dataset: name: MTEB TNews type: C-MTEB/TNews-classification config: default split: validation revision: 317f262bf1e6126357bbe89e875451e4b0938fe4 metrics: - type: accuracy value: 52.971999999999994 - type: f1 value: 50.2898280984929 - task: type: Clustering dataset: name: MTEB ThuNewsClusteringP2P type: C-MTEB/ThuNewsClusteringP2P config: default split: test revision: 5798586b105c0434e4f0fe5e767abe619442cf93 metrics: - type: v_measure value: 86.0797948663824 - task: type: Clustering dataset: name: MTEB ThuNewsClusteringS2S type: C-MTEB/ThuNewsClusteringS2S config: default split: test revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d metrics: - type: v_measure value: 85.10759092255017 - task: type: Retrieval dataset: name: MTEB VideoRetrieval type: C-MTEB/VideoRetrieval config: default split: dev revision: 58c2597a5943a2ba48f4668c3b90d796283c5639 metrics: - type: map_at_1 value: 65.60000000000001 - type: map_at_10 value: 74.773 - type: map_at_100 value: 75.128 - type: map_at_1000 value: 75.136 - type: map_at_3 value: 73.05 - type: map_at_5 value: 74.13499999999999 - type: mrr_at_1 value: 65.60000000000001 - type: mrr_at_10 value: 74.773 - type: mrr_at_100 value: 75.128 - type: mrr_at_1000 value: 75.136 - type: mrr_at_3 value: 73.05 - type: mrr_at_5 value: 74.13499999999999 - type: ndcg_at_1 value: 65.60000000000001 - type: ndcg_at_10 value: 78.84299999999999 - type: ndcg_at_100 value: 80.40899999999999 - type: ndcg_at_1000 value: 80.57 - type: ndcg_at_3 value: 75.40599999999999 - type: ndcg_at_5 value: 77.351 - type: precision_at_1 value: 65.60000000000001 - type: precision_at_10 value: 9.139999999999999 - type: precision_at_100 value: 0.984 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 27.400000000000002 - type: precision_at_5 value: 17.380000000000003 - type: recall_at_1 value: 65.60000000000001 - type: recall_at_10 value: 91.4 - type: recall_at_100 value: 98.4 - type: recall_at_1000 value: 99.6 - type: recall_at_3 value: 82.19999999999999 - type: recall_at_5 value: 86.9 - task: type: Classification dataset: name: MTEB Waimai type: C-MTEB/waimai-classification config: default split: test revision: 339287def212450dcaa9df8c22bf93e9980c7023 metrics: - type: accuracy value: 89.47 - type: ap value: 75.59561751845389 - type: f1 value: 87.95207751382563 --- # sunzx0810/gte-Qwen2-7B-instruct-Q5_K_M-GGUF This model was converted to GGUF format from [`Alibaba-NLP/gte-Qwen2-7B-instruct`](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo sunzx0810/gte-Qwen2-7B-instruct-Q5_K_M-GGUF --hf-file gte-qwen2-7b-instruct-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo sunzx0810/gte-Qwen2-7B-instruct-Q5_K_M-GGUF --hf-file gte-qwen2-7b-instruct-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo sunzx0810/gte-Qwen2-7B-instruct-Q5_K_M-GGUF --hf-file gte-qwen2-7b-instruct-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo sunzx0810/gte-Qwen2-7B-instruct-Q5_K_M-GGUF --hf-file gte-qwen2-7b-instruct-q5_k_m.gguf -c 2048 ```
[ "SUMMARIZATION" ]
[ "BIOSSES", "SCIFACT" ]
Non_BioNLP
# sunzx0810/gte-Qwen2-7B-instruct-Q5_K_M-GGUF This model was converted to GGUF format from [`Alibaba-NLP/gte-Qwen2-7B-instruct`](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo sunzx0810/gte-Qwen2-7B-instruct-Q5_K_M-GGUF --hf-file gte-qwen2-7b-instruct-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo sunzx0810/gte-Qwen2-7B-instruct-Q5_K_M-GGUF --hf-file gte-qwen2-7b-instruct-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo sunzx0810/gte-Qwen2-7B-instruct-Q5_K_M-GGUF --hf-file gte-qwen2-7b-instruct-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo sunzx0810/gte-Qwen2-7B-instruct-Q5_K_M-GGUF --hf-file gte-qwen2-7b-instruct-q5_k_m.gguf -c 2048 ```
{"base_model": "Alibaba-NLP/gte-Qwen2-7B-instruct", "license": "apache-2.0", "tags": ["mteb", "sentence-transformers", "transformers", "Qwen2", "sentence-similarity", "llama-cpp", "gguf-my-repo"], "model-index": [{"name": "gte-qwen2-7B-instruct", "results": [{"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonCounterfactualClassification (en)", "type": "mteb/amazon_counterfactual", "config": "en", "split": "test", "revision": "e8379541af4e31359cca9fbcf4b00f2671dba205"}, "metrics": [{"type": "accuracy", "value": 91.31343283582089}, {"type": "ap", "value": 67.64251402604096}, {"type": "f1", "value": 87.53372530755692}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonPolarityClassification", "type": "mteb/amazon_polarity", "config": "default", "split": "test", "revision": "e2d317d38cd51312af73b3d32a06d1a08b442046"}, "metrics": [{"type": "accuracy", "value": 97.497825}, {"type": "ap", "value": 96.30329547047529}, {"type": "f1", "value": 97.49769793778039}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonReviewsClassification (en)", "type": "mteb/amazon_reviews_multi", "config": "en", "split": "test", "revision": "1399c76144fd37290681b995c656ef9b2e06e26d"}, "metrics": [{"type": "accuracy", "value": 62.564}, {"type": "f1", "value": 60.975777935041066}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ArguAna", "type": "mteb/arguana", "config": "default", "split": "test", "revision": "c22ab2a51041ffd869aaddef7af8d8215647e41a"}, "metrics": [{"type": "map_at_1", "value": 36.486000000000004}, {"type": "map_at_10", "value": 54.842}, {"type": "map_at_100", "value": 55.206999999999994}, {"type": "map_at_1000", "value": 55.206999999999994}, {"type": "map_at_3", "value": 49.893}, {"type": "map_at_5", "value": 53.105000000000004}, {"type": "mrr_at_1", "value": 37.34}, {"type": "mrr_at_10", "value": 55.143}, {"type": "mrr_at_100", "value": 55.509}, {"type": "mrr_at_1000", "value": 55.509}, {"type": "mrr_at_3", "value": 50.212999999999994}, {"type": "mrr_at_5", "value": 53.432}, {"type": "ndcg_at_1", "value": 36.486000000000004}, {"type": "ndcg_at_10", "value": 64.273}, {"type": "ndcg_at_100", "value": 65.66199999999999}, {"type": "ndcg_at_1000", "value": 65.66199999999999}, {"type": "ndcg_at_3", "value": 54.352999999999994}, {"type": "ndcg_at_5", "value": 60.131}, {"type": "precision_at_1", "value": 36.486000000000004}, {"type": "precision_at_10", "value": 9.395000000000001}, {"type": "precision_at_100", "value": 0.996}, {"type": "precision_at_1000", "value": 0.1}, {"type": "precision_at_3", "value": 22.428}, {"type": "precision_at_5", "value": 16.259}, {"type": "recall_at_1", "value": 36.486000000000004}, {"type": "recall_at_10", "value": 93.95400000000001}, {"type": "recall_at_100", "value": 99.644}, {"type": "recall_at_1000", "value": 99.644}, {"type": "recall_at_3", "value": 67.283}, {"type": "recall_at_5", "value": 81.294}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringP2P", "type": "mteb/arxiv-clustering-p2p", "config": "default", "split": "test", "revision": "a122ad7f3f0291bf49cc6f4d32aa80929df69d5d"}, "metrics": [{"type": "v_measure", "value": 56.461169803700564}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringS2S", "type": "mteb/arxiv-clustering-s2s", "config": "default", "split": "test", "revision": "f910caf1a6075f7329cdf8c1a6135696f37dbd53"}, "metrics": [{"type": "v_measure", "value": 51.73600434466286}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB AskUbuntuDupQuestions", "type": "mteb/askubuntudupquestions-reranking", "config": "default", "split": "test", "revision": "2000358ca161889fa9c082cb41daa8dcfb161a54"}, "metrics": [{"type": "map", "value": 67.57827065898053}, {"type": "mrr", "value": 79.08136569493911}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB BIOSSES", "type": "mteb/biosses-sts", "config": "default", "split": "test", "revision": "d3fb88f8f02e40887cd149695127462bbcf29b4a"}, "metrics": [{"type": "cos_sim_pearson", "value": 83.53324575999243}, {"type": "cos_sim_spearman", "value": 81.37173362822374}, {"type": "euclidean_pearson", "value": 82.19243335103444}, {"type": "euclidean_spearman", "value": 81.33679307304334}, {"type": "manhattan_pearson", "value": 82.38752665975699}, {"type": "manhattan_spearman", "value": 81.31510583189689}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB Banking77Classification", "type": "mteb/banking77", "config": "default", "split": "test", "revision": "0fd18e25b25c072e09e0d92ab615fda904d66300"}, "metrics": [{"type": "accuracy", "value": 87.56818181818181}, {"type": "f1", "value": 87.25826722019875}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringP2P", "type": "mteb/biorxiv-clustering-p2p", "config": "default", "split": "test", "revision": "65b79d1d13f80053f67aca9498d9402c2d9f1f40"}, "metrics": [{"type": "v_measure", "value": 50.09239610327673}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringS2S", "type": "mteb/biorxiv-clustering-s2s", "config": "default", "split": "test", "revision": "258694dd0231531bc1fd9de6ceb52a0853c6d908"}, "metrics": [{"type": "v_measure", "value": 46.64733054606282}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackAndroidRetrieval", "type": "BeIR/cqadupstack", "config": "default", "split": "test", "revision": "f46a197baaae43b4f621051089b82a364682dfeb"}, "metrics": [{"type": "map_at_1", "value": 33.997}, {"type": "map_at_10", "value": 48.176}, {"type": "map_at_100", "value": 49.82}, {"type": "map_at_1000", "value": 49.924}, {"type": "map_at_3", "value": 43.626}, {"type": "map_at_5", "value": 46.275}, {"type": "mrr_at_1", "value": 42.059999999999995}, {"type": "mrr_at_10", "value": 53.726}, {"type": "mrr_at_100", "value": 54.398}, {"type": "mrr_at_1000", "value": 54.416}, {"type": "mrr_at_3", "value": 50.714999999999996}, {"type": "mrr_at_5", "value": 52.639}, {"type": "ndcg_at_1", "value": 42.059999999999995}, {"type": "ndcg_at_10", "value": 55.574999999999996}, {"type": "ndcg_at_100", "value": 60.744}, {"type": "ndcg_at_1000", "value": 61.85699999999999}, {"type": "ndcg_at_3", "value": 49.363}, {"type": "ndcg_at_5", "value": 52.44}, {"type": "precision_at_1", "value": 42.059999999999995}, {"type": "precision_at_10", "value": 11.101999999999999}, {"type": "precision_at_100", "value": 1.73}, {"type": "precision_at_1000", "value": 0.218}, {"type": "precision_at_3", "value": 24.464}, {"type": "precision_at_5", "value": 18.026}, {"type": "recall_at_1", "value": 33.997}, {"type": "recall_at_10", "value": 70.35900000000001}, {"type": "recall_at_100", "value": 91.642}, {"type": "recall_at_1000", "value": 97.977}, {"type": "recall_at_3", "value": 52.76}, {"type": "recall_at_5", "value": 61.148}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackEnglishRetrieval", "type": "BeIR/cqadupstack", "config": "default", "split": "test", "revision": "ad9991cb51e31e31e430383c75ffb2885547b5f0"}, "metrics": [{"type": "map_at_1", "value": 35.884}, {"type": "map_at_10", "value": 48.14}, {"type": "map_at_100", "value": 49.5}, {"type": "map_at_1000", "value": 49.63}, {"type": "map_at_3", "value": 44.646}, {"type": "map_at_5", "value": 46.617999999999995}, {"type": "mrr_at_1", "value": 44.458999999999996}, {"type": "mrr_at_10", "value": 53.751000000000005}, {"type": "mrr_at_100", "value": 54.37800000000001}, {"type": "mrr_at_1000", "value": 54.415}, {"type": "mrr_at_3", "value": 51.815}, {"type": "mrr_at_5", "value": 52.882}, {"type": "ndcg_at_1", "value": 44.458999999999996}, {"type": "ndcg_at_10", "value": 54.157}, {"type": "ndcg_at_100", "value": 58.362}, {"type": "ndcg_at_1000", "value": 60.178}, {"type": "ndcg_at_3", "value": 49.661}, {"type": "ndcg_at_5", "value": 51.74999999999999}, {"type": "precision_at_1", "value": 44.458999999999996}, {"type": "precision_at_10", "value": 10.248}, {"type": "precision_at_100", "value": 1.5890000000000002}, {"type": "precision_at_1000", "value": 0.207}, {"type": "precision_at_3", "value": 23.928}, {"type": "precision_at_5", "value": 16.878999999999998}, {"type": "recall_at_1", "value": 35.884}, {"type": "recall_at_10", "value": 64.798}, {"type": "recall_at_100", "value": 82.345}, {"type": "recall_at_1000", "value": 93.267}, {"type": "recall_at_3", "value": 51.847}, {"type": "recall_at_5", "value": 57.601}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackGamingRetrieval", "type": "BeIR/cqadupstack", "config": "default", "split": "test", "revision": "4885aa143210c98657558c04aaf3dc47cfb54340"}, "metrics": [{"type": "map_at_1", "value": 39.383}, {"type": "map_at_10", "value": 53.714}, {"type": "map_at_100", "value": 54.838}, {"type": "map_at_1000", "value": 54.87800000000001}, {"type": "map_at_3", "value": 50.114999999999995}, {"type": "map_at_5", "value": 52.153000000000006}, {"type": "mrr_at_1", "value": 45.016}, {"type": "mrr_at_10", "value": 56.732000000000006}, {"type": "mrr_at_100", "value": 57.411}, {"type": "mrr_at_1000", "value": 57.431}, {"type": "mrr_at_3", "value": 54.044000000000004}, {"type": "mrr_at_5", "value": 55.639}, {"type": "ndcg_at_1", "value": 45.016}, {"type": "ndcg_at_10", "value": 60.228}, {"type": "ndcg_at_100", "value": 64.277}, {"type": "ndcg_at_1000", "value": 65.07}, {"type": "ndcg_at_3", "value": 54.124}, {"type": "ndcg_at_5", "value": 57.147000000000006}, {"type": "precision_at_1", "value": 45.016}, {"type": "precision_at_10", "value": 9.937}, {"type": "precision_at_100", "value": 1.288}, {"type": "precision_at_1000", "value": 0.13899999999999998}, {"type": "precision_at_3", "value": 24.471999999999998}, {"type": "precision_at_5", "value": 16.991}, {"type": "recall_at_1", "value": 39.383}, {"type": "recall_at_10", "value": 76.175}, {"type": "recall_at_100", "value": 93.02}, {"type": "recall_at_1000", "value": 98.60900000000001}, {"type": "recall_at_3", "value": 60.265}, {"type": "recall_at_5", "value": 67.46600000000001}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackGisRetrieval", "type": "BeIR/cqadupstack", "config": "default", "split": "test", "revision": "5003b3064772da1887988e05400cf3806fe491f2"}, "metrics": [{"type": "map_at_1", "value": 27.426000000000002}, {"type": "map_at_10", "value": 37.397000000000006}, {"type": "map_at_100", "value": 38.61}, {"type": "map_at_1000", "value": 38.678000000000004}, {"type": "map_at_3", "value": 34.150999999999996}, {"type": "map_at_5", "value": 36.137}, {"type": "mrr_at_1", "value": 29.944}, {"type": "mrr_at_10", "value": 39.654}, {"type": "mrr_at_100", "value": 40.638000000000005}, {"type": "mrr_at_1000", "value": 40.691}, {"type": "mrr_at_3", "value": 36.817}, {"type": "mrr_at_5", "value": 38.524}, {"type": "ndcg_at_1", "value": 29.944}, {"type": "ndcg_at_10", "value": 43.094}, {"type": "ndcg_at_100", "value": 48.789}, {"type": "ndcg_at_1000", "value": 50.339999999999996}, {"type": "ndcg_at_3", "value": 36.984}, {"type": "ndcg_at_5", "value": 40.248}, {"type": "precision_at_1", "value": 29.944}, {"type": "precision_at_10", "value": 6.78}, {"type": "precision_at_100", "value": 1.024}, {"type": "precision_at_1000", "value": 0.11800000000000001}, {"type": "precision_at_3", "value": 15.895000000000001}, {"type": "precision_at_5", "value": 11.39}, {"type": "recall_at_1", "value": 27.426000000000002}, {"type": "recall_at_10", "value": 58.464000000000006}, {"type": "recall_at_100", "value": 84.193}, {"type": "recall_at_1000", "value": 95.52000000000001}, {"type": "recall_at_3", "value": 42.172}, {"type": "recall_at_5", "value": 50.101}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackMathematicaRetrieval", "type": "BeIR/cqadupstack", "config": "default", "split": "test", "revision": "90fceea13679c63fe563ded68f3b6f06e50061de"}, "metrics": [{"type": "map_at_1", "value": 19.721}, {"type": "map_at_10", "value": 31.604}, {"type": "map_at_100", "value": 32.972}, {"type": "map_at_1000", "value": 33.077}, {"type": "map_at_3", "value": 27.218999999999998}, {"type": "map_at_5", "value": 29.53}, {"type": "mrr_at_1", "value": 25.0}, {"type": "mrr_at_10", "value": 35.843}, {"type": "mrr_at_100", "value": 36.785000000000004}, {"type": "mrr_at_1000", "value": 36.842000000000006}, {"type": "mrr_at_3", "value": 32.193}, {"type": "mrr_at_5", "value": 34.264}, {"type": "ndcg_at_1", "value": 25.0}, {"type": "ndcg_at_10", "value": 38.606}, {"type": "ndcg_at_100", "value": 44.272}, {"type": "ndcg_at_1000", "value": 46.527}, {"type": "ndcg_at_3", "value": 30.985000000000003}, {"type": "ndcg_at_5", "value": 34.43}, {"type": "precision_at_1", "value": 25.0}, {"type": "precision_at_10", "value": 7.811}, {"type": "precision_at_100", "value": 1.203}, {"type": "precision_at_1000", "value": 0.15}, {"type": "precision_at_3", "value": 15.423}, {"type": "precision_at_5", "value": 11.791}, {"type": "recall_at_1", "value": 19.721}, {"type": "recall_at_10", "value": 55.625}, {"type": "recall_at_100", "value": 79.34400000000001}, {"type": "recall_at_1000", "value": 95.208}, {"type": "recall_at_3", "value": 35.19}, {"type": "recall_at_5", "value": 43.626}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackPhysicsRetrieval", "type": "BeIR/cqadupstack", "config": "default", "split": "test", "revision": "79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4"}, "metrics": [{"type": "map_at_1", "value": 33.784}, {"type": "map_at_10", "value": 47.522}, {"type": "map_at_100", "value": 48.949999999999996}, {"type": "map_at_1000", "value": 49.038}, {"type": "map_at_3", "value": 43.284}, {"type": "map_at_5", "value": 45.629}, {"type": "mrr_at_1", "value": 41.482}, {"type": "mrr_at_10", "value": 52.830999999999996}, {"type": "mrr_at_100", "value": 53.559999999999995}, {"type": "mrr_at_1000", "value": 53.588}, {"type": "mrr_at_3", "value": 50.016000000000005}, {"type": "mrr_at_5", "value": 51.614000000000004}, {"type": "ndcg_at_1", "value": 41.482}, {"type": "ndcg_at_10", "value": 54.569}, {"type": "ndcg_at_100", "value": 59.675999999999995}, {"type": "ndcg_at_1000", "value": 60.989000000000004}, {"type": "ndcg_at_3", "value": 48.187000000000005}, {"type": "ndcg_at_5", "value": 51.183}, {"type": "precision_at_1", "value": 41.482}, {"type": "precision_at_10", "value": 10.221}, {"type": "precision_at_100", "value": 1.486}, {"type": "precision_at_1000", "value": 0.17500000000000002}, {"type": "precision_at_3", "value": 23.548}, {"type": "precision_at_5", "value": 16.805}, {"type": "recall_at_1", "value": 33.784}, {"type": "recall_at_10", "value": 69.798}, {"type": "recall_at_100", "value": 90.098}, {"type": "recall_at_1000", "value": 98.176}, {"type": "recall_at_3", "value": 52.127}, {"type": "recall_at_5", "value": 59.861}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackProgrammersRetrieval", "type": "BeIR/cqadupstack", "config": "default", "split": "test", "revision": "6184bc1440d2dbc7612be22b50686b8826d22b32"}, "metrics": [{"type": "map_at_1", "value": 28.038999999999998}, {"type": "map_at_10", "value": 41.904}, {"type": "map_at_100", "value": 43.36}, {"type": "map_at_1000", "value": 43.453}, {"type": "map_at_3", "value": 37.785999999999994}, {"type": "map_at_5", "value": 40.105000000000004}, {"type": "mrr_at_1", "value": 35.046}, {"type": "mrr_at_10", "value": 46.926}, {"type": "mrr_at_100", "value": 47.815000000000005}, {"type": "mrr_at_1000", "value": 47.849000000000004}, {"type": "mrr_at_3", "value": 44.273}, {"type": "mrr_at_5", "value": 45.774}, {"type": "ndcg_at_1", "value": 35.046}, {"type": "ndcg_at_10", "value": 48.937000000000005}, {"type": "ndcg_at_100", "value": 54.544000000000004}, {"type": "ndcg_at_1000", "value": 56.069}, {"type": "ndcg_at_3", "value": 42.858000000000004}, {"type": "ndcg_at_5", "value": 45.644}, {"type": "precision_at_1", "value": 35.046}, {"type": "precision_at_10", "value": 9.452}, {"type": "precision_at_100", "value": 1.429}, {"type": "precision_at_1000", "value": 0.173}, {"type": "precision_at_3", "value": 21.346999999999998}, {"type": "precision_at_5", "value": 15.342}, {"type": "recall_at_1", "value": 28.038999999999998}, {"type": "recall_at_10", "value": 64.59700000000001}, {"type": "recall_at_100", "value": 87.735}, {"type": "recall_at_1000", "value": 97.41300000000001}, {"type": "recall_at_3", "value": 47.368}, {"type": "recall_at_5", "value": 54.93900000000001}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackRetrieval", "type": "BeIR/cqadupstack", "config": "default", "split": "test", "revision": "4ffe81d471b1924886b33c7567bfb200e9eec5c4"}, "metrics": [{"type": "map_at_1", "value": 28.17291666666667}, {"type": "map_at_10", "value": 40.025749999999995}, {"type": "map_at_100", "value": 41.39208333333333}, {"type": "map_at_1000", "value": 41.499249999999996}, {"type": "map_at_3", "value": 36.347}, {"type": "map_at_5", "value": 38.41391666666667}, {"type": "mrr_at_1", "value": 33.65925}, {"type": "mrr_at_10", "value": 44.085499999999996}, {"type": "mrr_at_100", "value": 44.94116666666667}, {"type": "mrr_at_1000", "value": 44.9855}, {"type": "mrr_at_3", "value": 41.2815}, {"type": "mrr_at_5", "value": 42.91491666666666}, {"type": "ndcg_at_1", "value": 33.65925}, {"type": "ndcg_at_10", "value": 46.430833333333325}, {"type": "ndcg_at_100", "value": 51.761}, {"type": "ndcg_at_1000", "value": 53.50899999999999}, {"type": "ndcg_at_3", "value": 40.45133333333333}, {"type": "ndcg_at_5", "value": 43.31483333333334}, {"type": "precision_at_1", "value": 33.65925}, {"type": "precision_at_10", "value": 8.4995}, {"type": "precision_at_100", "value": 1.3210000000000004}, {"type": "precision_at_1000", "value": 0.16591666666666666}, {"type": "precision_at_3", "value": 19.165083333333335}, {"type": "precision_at_5", "value": 13.81816666666667}, {"type": "recall_at_1", "value": 28.17291666666667}, {"type": "recall_at_10", "value": 61.12624999999999}, {"type": "recall_at_100", "value": 83.97266666666667}, {"type": "recall_at_1000", "value": 95.66550000000001}, {"type": "recall_at_3", "value": 44.661249999999995}, {"type": "recall_at_5", "value": 51.983333333333334}, {"type": "map_at_1", "value": 17.936}, {"type": "map_at_10", "value": 27.399}, {"type": "map_at_100", "value": 28.632}, {"type": "map_at_1000", "value": 28.738000000000003}, {"type": "map_at_3", "value": 24.456}, {"type": "map_at_5", "value": 26.06}, {"type": "mrr_at_1", "value": 19.224}, {"type": "mrr_at_10", "value": 28.998}, {"type": "mrr_at_100", "value": 30.11}, {"type": "mrr_at_1000", "value": 30.177}, {"type": "mrr_at_3", "value": 26.247999999999998}, {"type": "mrr_at_5", "value": 27.708}, {"type": "ndcg_at_1", "value": 19.224}, {"type": "ndcg_at_10", "value": 32.911}, {"type": "ndcg_at_100", "value": 38.873999999999995}, {"type": "ndcg_at_1000", "value": 41.277}, {"type": "ndcg_at_3", "value": 27.142}, {"type": "ndcg_at_5", "value": 29.755}, {"type": "precision_at_1", "value": 19.224}, {"type": "precision_at_10", "value": 5.6930000000000005}, {"type": "precision_at_100", "value": 0.9259999999999999}, {"type": "precision_at_1000", "value": 0.126}, {"type": "precision_at_3", "value": 12.138}, {"type": "precision_at_5", "value": 8.909}, {"type": "recall_at_1", "value": 17.936}, {"type": "recall_at_10", "value": 48.096}, {"type": "recall_at_100", "value": 75.389}, {"type": "recall_at_1000", "value": 92.803}, {"type": "recall_at_3", "value": 32.812999999999995}, {"type": "recall_at_5", "value": 38.851}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackStatsRetrieval", "type": "BeIR/cqadupstack", "config": "default", "split": "test", "revision": "65ac3a16b8e91f9cee4c9828cc7c335575432a2a"}, "metrics": [{"type": "map_at_1", "value": 24.681}, {"type": "map_at_10", "value": 34.892}, {"type": "map_at_100", "value": 35.996}, {"type": "map_at_1000", "value": 36.083}, {"type": "map_at_3", "value": 31.491999999999997}, {"type": "map_at_5", "value": 33.632}, {"type": "mrr_at_1", "value": 28.528}, {"type": "mrr_at_10", "value": 37.694}, {"type": "mrr_at_100", "value": 38.613}, {"type": "mrr_at_1000", "value": 38.668}, {"type": "mrr_at_3", "value": 34.714}, {"type": "mrr_at_5", "value": 36.616}, {"type": "ndcg_at_1", "value": 28.528}, {"type": "ndcg_at_10", "value": 40.703}, {"type": "ndcg_at_100", "value": 45.993}, {"type": "ndcg_at_1000", "value": 47.847}, {"type": "ndcg_at_3", "value": 34.622}, {"type": "ndcg_at_5", "value": 38.035999999999994}, {"type": "precision_at_1", "value": 28.528}, {"type": "precision_at_10", "value": 6.902}, {"type": "precision_at_100", "value": 1.0370000000000001}, {"type": "precision_at_1000", "value": 0.126}, {"type": "precision_at_3", "value": 15.798000000000002}, {"type": "precision_at_5", "value": 11.655999999999999}, {"type": "recall_at_1", "value": 24.681}, {"type": "recall_at_10", "value": 55.81}, {"type": "recall_at_100", "value": 79.785}, {"type": "recall_at_1000", "value": 92.959}, {"type": "recall_at_3", "value": 39.074}, {"type": "recall_at_5", "value": 47.568}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackTexRetrieval", "type": "BeIR/cqadupstack", "config": "default", "split": "test", "revision": "46989137a86843e03a6195de44b09deda022eec7"}, "metrics": [{"type": "map_at_1", "value": 18.627}, {"type": "map_at_10", "value": 27.872000000000003}, {"type": "map_at_100", "value": 29.237999999999996}, {"type": "map_at_1000", "value": 29.363}, {"type": "map_at_3", "value": 24.751}, {"type": "map_at_5", "value": 26.521}, {"type": "mrr_at_1", "value": 23.021}, {"type": "mrr_at_10", "value": 31.924000000000003}, {"type": "mrr_at_100", "value": 32.922000000000004}, {"type": "mrr_at_1000", "value": 32.988}, {"type": "mrr_at_3", "value": 29.192}, {"type": "mrr_at_5", "value": 30.798}, {"type": "ndcg_at_1", "value": 23.021}, {"type": "ndcg_at_10", "value": 33.535}, {"type": "ndcg_at_100", "value": 39.732}, {"type": "ndcg_at_1000", "value": 42.201}, {"type": "ndcg_at_3", "value": 28.153}, {"type": "ndcg_at_5", "value": 30.746000000000002}, {"type": "precision_at_1", "value": 23.021}, {"type": "precision_at_10", "value": 6.459}, {"type": "precision_at_100", "value": 1.1320000000000001}, {"type": "precision_at_1000", "value": 0.153}, {"type": "precision_at_3", "value": 13.719000000000001}, {"type": "precision_at_5", "value": 10.193000000000001}, {"type": "recall_at_1", "value": 18.627}, {"type": "recall_at_10", "value": 46.463}, {"type": "recall_at_100", "value": 74.226}, {"type": "recall_at_1000", "value": 91.28500000000001}, {"type": "recall_at_3", "value": 31.357000000000003}, {"type": "recall_at_5", "value": 38.067}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackUnixRetrieval", "type": "BeIR/cqadupstack", "config": "default", "split": "test", "revision": "6c6430d3a6d36f8d2a829195bc5dc94d7e063e53"}, "metrics": [{"type": "map_at_1", "value": 31.457}, {"type": "map_at_10", "value": 42.888}, {"type": "map_at_100", "value": 44.24}, {"type": "map_at_1000", "value": 44.327}, {"type": "map_at_3", "value": 39.588}, {"type": "map_at_5", "value": 41.423}, {"type": "mrr_at_1", "value": 37.126999999999995}, {"type": "mrr_at_10", "value": 47.083000000000006}, {"type": "mrr_at_100", "value": 47.997}, {"type": "mrr_at_1000", "value": 48.044}, {"type": "mrr_at_3", "value": 44.574000000000005}, {"type": "mrr_at_5", "value": 46.202}, {"type": "ndcg_at_1", "value": 37.126999999999995}, {"type": "ndcg_at_10", "value": 48.833}, {"type": "ndcg_at_100", "value": 54.327000000000005}, {"type": "ndcg_at_1000", "value": 56.011}, {"type": "ndcg_at_3", "value": 43.541999999999994}, {"type": "ndcg_at_5", "value": 46.127}, {"type": "precision_at_1", "value": 37.126999999999995}, {"type": "precision_at_10", "value": 8.376999999999999}, {"type": "precision_at_100", "value": 1.2309999999999999}, {"type": "precision_at_1000", "value": 0.146}, {"type": "precision_at_3", "value": 20.211000000000002}, {"type": "precision_at_5", "value": 14.16}, {"type": "recall_at_1", "value": 31.457}, {"type": "recall_at_10", "value": 62.369}, {"type": "recall_at_100", "value": 85.444}, {"type": "recall_at_1000", "value": 96.65599999999999}, {"type": "recall_at_3", "value": 47.961}, {"type": "recall_at_5", "value": 54.676}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackWebmastersRetrieval", "type": "BeIR/cqadupstack", "config": "default", "split": "test", "revision": "160c094312a0e1facb97e55eeddb698c0abe3571"}, "metrics": [{"type": "map_at_1", "value": 27.139999999999997}, {"type": "map_at_10", "value": 38.801}, {"type": "map_at_100", "value": 40.549}, {"type": "map_at_1000", "value": 40.802}, {"type": "map_at_3", "value": 35.05}, {"type": "map_at_5", "value": 36.884}, {"type": "mrr_at_1", "value": 33.004}, {"type": "mrr_at_10", "value": 43.864}, {"type": "mrr_at_100", "value": 44.667}, {"type": "mrr_at_1000", "value": 44.717}, {"type": "mrr_at_3", "value": 40.777}, {"type": "mrr_at_5", "value": 42.319}, {"type": "ndcg_at_1", "value": 33.004}, {"type": "ndcg_at_10", "value": 46.022}, {"type": "ndcg_at_100", "value": 51.542}, {"type": "ndcg_at_1000", "value": 53.742000000000004}, {"type": "ndcg_at_3", "value": 39.795}, {"type": "ndcg_at_5", "value": 42.272}, {"type": "precision_at_1", "value": 33.004}, {"type": "precision_at_10", "value": 9.012}, {"type": "precision_at_100", "value": 1.7770000000000001}, {"type": "precision_at_1000", "value": 0.26}, {"type": "precision_at_3", "value": 19.038}, {"type": "precision_at_5", "value": 13.675999999999998}, {"type": "recall_at_1", "value": 27.139999999999997}, {"type": "recall_at_10", "value": 60.961}, {"type": "recall_at_100", "value": 84.451}, {"type": "recall_at_1000", "value": 98.113}, {"type": "recall_at_3", "value": 43.001}, {"type": "recall_at_5", "value": 49.896}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ClimateFEVER", "type": "mteb/climate-fever", "config": "default", "split": "test", "revision": "47f2ac6acb640fc46020b02a5b59fdda04d39380"}, "metrics": [{"type": "map_at_1", "value": 22.076999999999998}, {"type": "map_at_10", "value": 35.44}, {"type": "map_at_100", "value": 37.651}, {"type": "map_at_1000", "value": 37.824999999999996}, {"type": "map_at_3", "value": 30.764999999999997}, {"type": "map_at_5", "value": 33.26}, {"type": "mrr_at_1", "value": 50.163000000000004}, {"type": "mrr_at_10", "value": 61.207}, {"type": "mrr_at_100", "value": 61.675000000000004}, {"type": "mrr_at_1000", "value": 61.692}, {"type": "mrr_at_3", "value": 58.60999999999999}, {"type": "mrr_at_5", "value": 60.307}, {"type": "ndcg_at_1", "value": 50.163000000000004}, {"type": "ndcg_at_10", "value": 45.882}, {"type": "ndcg_at_100", "value": 53.239999999999995}, {"type": "ndcg_at_1000", "value": 55.852000000000004}, {"type": "ndcg_at_3", "value": 40.514}, {"type": "ndcg_at_5", "value": 42.038}, {"type": "precision_at_1", "value": 50.163000000000004}, {"type": "precision_at_10", "value": 13.466000000000001}, {"type": "precision_at_100", "value": 2.164}, {"type": "precision_at_1000", "value": 0.266}, {"type": "precision_at_3", "value": 29.707}, {"type": "precision_at_5", "value": 21.694}, {"type": "recall_at_1", "value": 22.076999999999998}, {"type": "recall_at_10", "value": 50.193}, {"type": "recall_at_100", "value": 74.993}, {"type": "recall_at_1000", "value": 89.131}, {"type": "recall_at_3", "value": 35.472}, {"type": "recall_at_5", "value": 41.814}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB DBPedia", "type": "mteb/dbpedia", "config": "default", "split": "test", "revision": "c0f706b76e590d620bd6618b3ca8efdd34e2d659"}, "metrics": [{"type": "map_at_1", "value": 9.953}, {"type": "map_at_10", "value": 24.515}, {"type": "map_at_100", "value": 36.173}, {"type": "map_at_1000", "value": 38.351}, {"type": "map_at_3", "value": 16.592000000000002}, {"type": "map_at_5", "value": 20.036}, {"type": "mrr_at_1", "value": 74.25}, {"type": "mrr_at_10", "value": 81.813}, {"type": "mrr_at_100", "value": 82.006}, {"type": "mrr_at_1000", "value": 82.011}, {"type": "mrr_at_3", "value": 80.875}, {"type": "mrr_at_5", "value": 81.362}, {"type": "ndcg_at_1", "value": 62.5}, {"type": "ndcg_at_10", "value": 52.42}, {"type": "ndcg_at_100", "value": 56.808}, {"type": "ndcg_at_1000", "value": 63.532999999999994}, {"type": "ndcg_at_3", "value": 56.654}, {"type": "ndcg_at_5", "value": 54.18300000000001}, {"type": "precision_at_1", "value": 74.25}, {"type": "precision_at_10", "value": 42.699999999999996}, {"type": "precision_at_100", "value": 13.675}, {"type": "precision_at_1000", "value": 2.664}, {"type": "precision_at_3", "value": 60.5}, {"type": "precision_at_5", "value": 52.800000000000004}, {"type": "recall_at_1", "value": 9.953}, {"type": "recall_at_10", "value": 30.253999999999998}, {"type": "recall_at_100", "value": 62.516000000000005}, {"type": "recall_at_1000", "value": 84.163}, {"type": "recall_at_3", "value": 18.13}, {"type": "recall_at_5", "value": 22.771}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB EmotionClassification", "type": "mteb/emotion", "config": "default", "split": "test", "revision": "4f58c6b202a23cf9a4da393831edf4f9183cad37"}, "metrics": [{"type": "accuracy", "value": 79.455}, {"type": "f1", "value": 74.16798697647569}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB FEVER", "type": "mteb/fever", "config": "default", "split": "test", "revision": "bea83ef9e8fb933d90a2f1d5515737465d613e12"}, "metrics": [{"type": "map_at_1", "value": 87.531}, {"type": "map_at_10", "value": 93.16799999999999}, {"type": "map_at_100", "value": 93.341}, {"type": "map_at_1000", "value": 93.349}, {"type": "map_at_3", "value": 92.444}, {"type": "map_at_5", "value": 92.865}, {"type": "mrr_at_1", "value": 94.014}, {"type": "mrr_at_10", "value": 96.761}, {"type": "mrr_at_100", "value": 96.762}, {"type": "mrr_at_1000", "value": 96.762}, {"type": "mrr_at_3", "value": 96.672}, {"type": "mrr_at_5", "value": 96.736}, {"type": "ndcg_at_1", "value": 94.014}, {"type": "ndcg_at_10", "value": 95.112}, {"type": "ndcg_at_100", "value": 95.578}, {"type": "ndcg_at_1000", "value": 95.68900000000001}, {"type": "ndcg_at_3", "value": 94.392}, {"type": "ndcg_at_5", "value": 94.72500000000001}, {"type": "precision_at_1", "value": 94.014}, {"type": "precision_at_10", "value": 11.065}, {"type": "precision_at_100", "value": 1.157}, {"type": "precision_at_1000", "value": 0.11800000000000001}, {"type": "precision_at_3", "value": 35.259}, {"type": "precision_at_5", "value": 21.599}, {"type": "recall_at_1", "value": 87.531}, {"type": "recall_at_10", "value": 97.356}, {"type": "recall_at_100", "value": 98.965}, {"type": "recall_at_1000", "value": 99.607}, {"type": "recall_at_3", "value": 95.312}, {"type": "recall_at_5", "value": 96.295}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB FiQA2018", "type": "mteb/fiqa", "config": "default", "split": "test", "revision": "27a168819829fe9bcd655c2df245fb19452e8e06"}, "metrics": [{"type": "map_at_1", "value": 32.055}, {"type": "map_at_10", "value": 53.114}, {"type": "map_at_100", "value": 55.235}, {"type": "map_at_1000", "value": 55.345}, {"type": "map_at_3", "value": 45.854}, {"type": "map_at_5", "value": 50.025}, {"type": "mrr_at_1", "value": 60.34}, {"type": "mrr_at_10", "value": 68.804}, {"type": "mrr_at_100", "value": 69.309}, {"type": "mrr_at_1000", "value": 69.32199999999999}, {"type": "mrr_at_3", "value": 66.40899999999999}, {"type": "mrr_at_5", "value": 67.976}, {"type": "ndcg_at_1", "value": 60.34}, {"type": "ndcg_at_10", "value": 62.031000000000006}, {"type": "ndcg_at_100", "value": 68.00500000000001}, {"type": "ndcg_at_1000", "value": 69.286}, {"type": "ndcg_at_3", "value": 56.355999999999995}, {"type": "ndcg_at_5", "value": 58.687}, {"type": "precision_at_1", "value": 60.34}, {"type": "precision_at_10", "value": 17.176}, {"type": "precision_at_100", "value": 2.36}, {"type": "precision_at_1000", "value": 0.259}, {"type": "precision_at_3", "value": 37.14}, {"type": "precision_at_5", "value": 27.809}, {"type": "recall_at_1", "value": 32.055}, {"type": "recall_at_10", "value": 70.91}, {"type": "recall_at_100", "value": 91.83}, {"type": "recall_at_1000", "value": 98.871}, {"type": "recall_at_3", "value": 51.202999999999996}, {"type": "recall_at_5", "value": 60.563}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB HotpotQA", "type": "mteb/hotpotqa", "config": "default", "split": "test", "revision": "ab518f4d6fcca38d87c25209f94beba119d02014"}, "metrics": [{"type": "map_at_1", "value": 43.68}, {"type": "map_at_10", "value": 64.389}, {"type": "map_at_100", "value": 65.24}, {"type": "map_at_1000", "value": 65.303}, {"type": "map_at_3", "value": 61.309000000000005}, {"type": "map_at_5", "value": 63.275999999999996}, {"type": "mrr_at_1", "value": 87.36}, {"type": "mrr_at_10", "value": 91.12}, {"type": "mrr_at_100", "value": 91.227}, {"type": "mrr_at_1000", "value": 91.229}, {"type": "mrr_at_3", "value": 90.57600000000001}, {"type": "mrr_at_5", "value": 90.912}, {"type": "ndcg_at_1", "value": 87.36}, {"type": "ndcg_at_10", "value": 73.076}, {"type": "ndcg_at_100", "value": 75.895}, {"type": "ndcg_at_1000", "value": 77.049}, {"type": "ndcg_at_3", "value": 68.929}, {"type": "ndcg_at_5", "value": 71.28}, {"type": "precision_at_1", "value": 87.36}, {"type": "precision_at_10", "value": 14.741000000000001}, {"type": "precision_at_100", "value": 1.694}, {"type": "precision_at_1000", "value": 0.185}, {"type": "precision_at_3", "value": 43.043}, {"type": "precision_at_5", "value": 27.681}, {"type": "recall_at_1", "value": 43.68}, {"type": "recall_at_10", "value": 73.707}, {"type": "recall_at_100", "value": 84.7}, {"type": "recall_at_1000", "value": 92.309}, {"type": "recall_at_3", "value": 64.564}, {"type": "recall_at_5", "value": 69.203}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ImdbClassification", "type": "mteb/imdb", "config": "default", "split": "test", "revision": "3d86128a09e091d6018b6d26cad27f2739fc2db7"}, "metrics": [{"type": "accuracy", "value": 96.75399999999999}, {"type": "ap", "value": 95.29389839242187}, {"type": "f1", "value": 96.75348377433475}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB MSMARCO", "type": "mteb/msmarco", "config": "default", "split": "dev", "revision": "c5a29a104738b98a9e76336939199e264163d4a0"}, "metrics": [{"type": "map_at_1", "value": 25.176}, {"type": "map_at_10", "value": 38.598}, {"type": "map_at_100", "value": 39.707}, {"type": "map_at_1000", "value": 39.744}, {"type": "map_at_3", "value": 34.566}, {"type": "map_at_5", "value": 36.863}, {"type": "mrr_at_1", "value": 25.874000000000002}, {"type": "mrr_at_10", "value": 39.214}, {"type": "mrr_at_100", "value": 40.251}, {"type": "mrr_at_1000", "value": 40.281}, {"type": "mrr_at_3", "value": 35.291}, {"type": "mrr_at_5", "value": 37.545}, {"type": "ndcg_at_1", "value": 25.874000000000002}, {"type": "ndcg_at_10", "value": 45.98}, {"type": "ndcg_at_100", "value": 51.197}, {"type": "ndcg_at_1000", "value": 52.073}, {"type": "ndcg_at_3", "value": 37.785999999999994}, {"type": "ndcg_at_5", "value": 41.870000000000005}, {"type": "precision_at_1", "value": 25.874000000000002}, {"type": "precision_at_10", "value": 7.181}, {"type": "precision_at_100", "value": 0.979}, {"type": "precision_at_1000", "value": 0.106}, {"type": "precision_at_3", "value": 16.051000000000002}, {"type": "precision_at_5", "value": 11.713}, {"type": "recall_at_1", "value": 25.176}, {"type": "recall_at_10", "value": 68.67699999999999}, {"type": "recall_at_100", "value": 92.55}, {"type": "recall_at_1000", "value": 99.164}, {"type": "recall_at_3", "value": 46.372}, {"type": "recall_at_5", "value": 56.16}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPDomainClassification (en)", "type": "mteb/mtop_domain", "config": "en", "split": "test", "revision": "d80d48c1eb48d3562165c59d59d0034df9fff0bf"}, "metrics": [{"type": "accuracy", "value": 99.03784769721841}, {"type": "f1", "value": 98.97791641821495}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPIntentClassification (en)", "type": "mteb/mtop_intent", "config": "en", "split": "test", "revision": "ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba"}, "metrics": [{"type": "accuracy", "value": 91.88326493388054}, {"type": "f1", "value": 73.74809928034335}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (en)", "type": "mteb/amazon_massive_intent", "config": "en", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 85.41358439811701}, {"type": "f1", "value": 83.503679460639}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (en)", "type": "mteb/amazon_massive_scenario", "config": "en", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 89.77135171486215}, {"type": "f1", "value": 88.89843747468366}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringP2P", "type": "mteb/medrxiv-clustering-p2p", "config": "default", "split": "test", "revision": "e7a26af6f3ae46b30dde8737f02c07b1505bcc73"}, "metrics": [{"type": "v_measure", "value": 46.22695362087359}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringS2S", "type": "mteb/medrxiv-clustering-s2s", "config": "default", "split": "test", "revision": "35191c8c0dca72d8ff3efcd72aa802307d469663"}, "metrics": [{"type": "v_measure", "value": 44.132372165849425}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB MindSmallReranking", "type": "mteb/mind_small", "config": "default", "split": "test", "revision": "3bdac13927fdc888b903db93b2ffdbd90b295a69"}, "metrics": [{"type": "map", "value": 33.35680810650402}, {"type": "mrr", "value": 34.72625715637218}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB NFCorpus", "type": "mteb/nfcorpus", "config": "default", "split": "test", "revision": "ec0fa4fe99da2ff19ca1214b7966684033a58814"}, "metrics": [{"type": "map_at_1", "value": 7.165000000000001}, {"type": "map_at_10", "value": 15.424}, {"type": "map_at_100", "value": 20.28}, {"type": "map_at_1000", "value": 22.065}, {"type": "map_at_3", "value": 11.236}, {"type": "map_at_5", "value": 13.025999999999998}, {"type": "mrr_at_1", "value": 51.702999999999996}, {"type": "mrr_at_10", "value": 59.965}, {"type": "mrr_at_100", "value": 60.667}, {"type": "mrr_at_1000", "value": 60.702999999999996}, {"type": "mrr_at_3", "value": 58.772000000000006}, {"type": "mrr_at_5", "value": 59.267}, {"type": "ndcg_at_1", "value": 49.536}, {"type": "ndcg_at_10", "value": 40.6}, {"type": "ndcg_at_100", "value": 37.848}, {"type": "ndcg_at_1000", "value": 46.657}, {"type": "ndcg_at_3", "value": 46.117999999999995}, {"type": "ndcg_at_5", "value": 43.619}, {"type": "precision_at_1", "value": 51.393}, {"type": "precision_at_10", "value": 30.31}, {"type": "precision_at_100", "value": 9.972}, {"type": "precision_at_1000", "value": 2.329}, {"type": "precision_at_3", "value": 43.137}, {"type": "precision_at_5", "value": 37.585}, {"type": "recall_at_1", "value": 7.165000000000001}, {"type": "recall_at_10", "value": 19.689999999999998}, {"type": "recall_at_100", "value": 39.237}, {"type": "recall_at_1000", "value": 71.417}, {"type": "recall_at_3", "value": 12.247}, {"type": "recall_at_5", "value": 14.902999999999999}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB NQ", "type": "mteb/nq", "config": "default", "split": "test", "revision": "b774495ed302d8c44a3a7ea25c90dbce03968f31"}, "metrics": [{"type": "map_at_1", "value": 42.653999999999996}, {"type": "map_at_10", "value": 59.611999999999995}, {"type": "map_at_100", "value": 60.32300000000001}, {"type": "map_at_1000", "value": 60.336}, {"type": "map_at_3", "value": 55.584999999999994}, {"type": "map_at_5", "value": 58.19}, {"type": "mrr_at_1", "value": 47.683}, {"type": "mrr_at_10", "value": 62.06700000000001}, {"type": "mrr_at_100", "value": 62.537}, {"type": "mrr_at_1000", "value": 62.544999999999995}, {"type": "mrr_at_3", "value": 59.178}, {"type": "mrr_at_5", "value": 61.034}, {"type": "ndcg_at_1", "value": 47.654}, {"type": "ndcg_at_10", "value": 67.001}, {"type": "ndcg_at_100", "value": 69.73899999999999}, {"type": "ndcg_at_1000", "value": 69.986}, {"type": "ndcg_at_3", "value": 59.95700000000001}, {"type": "ndcg_at_5", "value": 64.025}, {"type": "precision_at_1", "value": 47.654}, {"type": "precision_at_10", "value": 10.367999999999999}, {"type": "precision_at_100", "value": 1.192}, {"type": "precision_at_1000", "value": 0.121}, {"type": "precision_at_3", "value": 26.651000000000003}, {"type": "precision_at_5", "value": 18.459}, {"type": "recall_at_1", "value": 42.653999999999996}, {"type": "recall_at_10", "value": 86.619}, {"type": "recall_at_100", "value": 98.04899999999999}, {"type": "recall_at_1000", "value": 99.812}, {"type": "recall_at_3", "value": 68.987}, {"type": "recall_at_5", "value": 78.158}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB QuoraRetrieval", "type": "mteb/quora", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 72.538}, {"type": "map_at_10", "value": 86.702}, {"type": "map_at_100", "value": 87.31}, {"type": "map_at_1000", "value": 87.323}, {"type": "map_at_3", "value": 83.87}, {"type": "map_at_5", "value": 85.682}, {"type": "mrr_at_1", "value": 83.31}, {"type": "mrr_at_10", "value": 89.225}, {"type": "mrr_at_100", "value": 89.30399999999999}, {"type": "mrr_at_1000", "value": 89.30399999999999}, {"type": "mrr_at_3", "value": 88.44300000000001}, {"type": "mrr_at_5", "value": 89.005}, {"type": "ndcg_at_1", "value": 83.32000000000001}, {"type": "ndcg_at_10", "value": 90.095}, {"type": "ndcg_at_100", "value": 91.12}, {"type": "ndcg_at_1000", "value": 91.179}, {"type": "ndcg_at_3", "value": 87.606}, {"type": "ndcg_at_5", "value": 89.031}, {"type": "precision_at_1", "value": 83.32000000000001}, {"type": "precision_at_10", "value": 13.641}, {"type": "precision_at_100", "value": 1.541}, {"type": "precision_at_1000", "value": 0.157}, {"type": "precision_at_3", "value": 38.377}, {"type": "precision_at_5", "value": 25.162000000000003}, {"type": "recall_at_1", "value": 72.538}, {"type": "recall_at_10", "value": 96.47200000000001}, {"type": "recall_at_100", "value": 99.785}, {"type": "recall_at_1000", "value": 99.99900000000001}, {"type": "recall_at_3", "value": 89.278}, {"type": "recall_at_5", "value": 93.367}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClustering", "type": "mteb/reddit-clustering", "config": "default", "split": "test", "revision": "24640382cdbf8abc73003fb0fa6d111a705499eb"}, "metrics": [{"type": "v_measure", "value": 73.55219145406065}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClusteringP2P", "type": "mteb/reddit-clustering-p2p", "config": "default", "split": "test", "revision": "282350215ef01743dc01b456c7f5241fa8937f16"}, "metrics": [{"type": "v_measure", "value": 74.13437105242755}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB SCIDOCS", "type": "mteb/scidocs", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 6.873}, {"type": "map_at_10", "value": 17.944}, {"type": "map_at_100", "value": 21.171}, {"type": "map_at_1000", "value": 21.528}, {"type": "map_at_3", "value": 12.415}, {"type": "map_at_5", "value": 15.187999999999999}, {"type": "mrr_at_1", "value": 33.800000000000004}, {"type": "mrr_at_10", "value": 46.455}, {"type": "mrr_at_100", "value": 47.378}, {"type": "mrr_at_1000", "value": 47.394999999999996}, {"type": "mrr_at_3", "value": 42.367}, {"type": "mrr_at_5", "value": 44.972}, {"type": "ndcg_at_1", "value": 33.800000000000004}, {"type": "ndcg_at_10", "value": 28.907}, {"type": "ndcg_at_100", "value": 39.695}, {"type": "ndcg_at_1000", "value": 44.582}, {"type": "ndcg_at_3", "value": 26.949}, {"type": "ndcg_at_5", "value": 23.988}, {"type": "precision_at_1", "value": 33.800000000000004}, {"type": "precision_at_10", "value": 15.079999999999998}, {"type": "precision_at_100", "value": 3.056}, {"type": "precision_at_1000", "value": 0.42100000000000004}, {"type": "precision_at_3", "value": 25.167}, {"type": "precision_at_5", "value": 21.26}, {"type": "recall_at_1", "value": 6.873}, {"type": "recall_at_10", "value": 30.568}, {"type": "recall_at_100", "value": 62.062}, {"type": "recall_at_1000", "value": 85.37700000000001}, {"type": "recall_at_3", "value": 15.312999999999999}, {"type": "recall_at_5", "value": 21.575}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB SICK-R", "type": "mteb/sickr-sts", "config": "default", "split": "test", "revision": "a6ea5a8cab320b040a23452cc28066d9beae2cee"}, "metrics": [{"type": "cos_sim_pearson", "value": 82.37009118256057}, {"type": "cos_sim_spearman", "value": 79.27986395671529}, {"type": "euclidean_pearson", "value": 79.18037715442115}, {"type": "euclidean_spearman", "value": 79.28004791561621}, {"type": "manhattan_pearson", "value": 79.34062972800541}, {"type": "manhattan_spearman", "value": 79.43106695543402}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS12", "type": "mteb/sts12-sts", "config": "default", "split": "test", "revision": "a0d554a64d88156834ff5ae9920b964011b16384"}, "metrics": [{"type": "cos_sim_pearson", "value": 87.48474767383833}, {"type": "cos_sim_spearman", "value": 79.54505388752513}, {"type": "euclidean_pearson", "value": 83.43282704179565}, {"type": "euclidean_spearman", "value": 79.54579919925405}, {"type": "manhattan_pearson", "value": 83.77564492427952}, {"type": "manhattan_spearman", "value": 79.84558396989286}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS13", "type": "mteb/sts13-sts", "config": "default", "split": "test", "revision": "7e90230a92c190f1bf69ae9002b8cea547a64cca"}, "metrics": [{"type": "cos_sim_pearson", "value": 88.803698035802}, {"type": "cos_sim_spearman", "value": 88.83451367754881}, {"type": "euclidean_pearson", "value": 88.28939285711628}, {"type": "euclidean_spearman", "value": 88.83528996073112}, {"type": "manhattan_pearson", "value": 88.28017412671795}, {"type": "manhattan_spearman", "value": 88.9228828016344}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS14", "type": "mteb/sts14-sts", "config": "default", "split": "test", "revision": "6031580fec1f6af667f0bd2da0a551cf4f0b2375"}, "metrics": [{"type": "cos_sim_pearson", "value": 85.27469288153428}, {"type": "cos_sim_spearman", "value": 83.87477064876288}, {"type": "euclidean_pearson", "value": 84.2601737035379}, {"type": "euclidean_spearman", "value": 83.87431082479074}, {"type": "manhattan_pearson", "value": 84.3621547772745}, {"type": "manhattan_spearman", "value": 84.12094375000423}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS15", "type": "mteb/sts15-sts", "config": "default", "split": "test", "revision": "ae752c7c21bf194d8b67fd573edf7ae58183cbe3"}, "metrics": [{"type": "cos_sim_pearson", "value": 88.12749863201587}, {"type": "cos_sim_spearman", "value": 88.54287568368565}, {"type": "euclidean_pearson", "value": 87.90429700607999}, {"type": "euclidean_spearman", "value": 88.5437689576261}, {"type": "manhattan_pearson", "value": 88.19276653356833}, {"type": "manhattan_spearman", "value": 88.99995393814679}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS16", "type": "mteb/sts16-sts", "config": "default", "split": "test", "revision": "4d8694f8f0e0100860b497b999b3dbed754a0513"}, "metrics": [{"type": "cos_sim_pearson", "value": 85.68398747560902}, {"type": "cos_sim_spearman", "value": 86.48815303460574}, {"type": "euclidean_pearson", "value": 85.52356631237954}, {"type": "euclidean_spearman", "value": 86.486391949551}, {"type": "manhattan_pearson", "value": 85.67267981761788}, {"type": "manhattan_spearman", "value": 86.7073696332485}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS17 (en-en)", "type": "mteb/sts17-crosslingual-sts", "config": "en-en", "split": "test", "revision": "af5e6fb845001ecf41f4c1e033ce921939a2a68d"}, "metrics": [{"type": "cos_sim_pearson", "value": 88.9057107443124}, {"type": "cos_sim_spearman", "value": 88.7312168757697}, {"type": "euclidean_pearson", "value": 88.72810439714794}, {"type": "euclidean_spearman", "value": 88.71976185854771}, {"type": "manhattan_pearson", "value": 88.50433745949111}, {"type": "manhattan_spearman", "value": 88.51726175544195}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (en)", "type": "mteb/sts22-crosslingual-sts", "config": "en", "split": "test", "revision": "eea2b4fe26a775864c896887d910b76a8098ad3f"}, "metrics": [{"type": "cos_sim_pearson", "value": 67.59391795109886}, {"type": "cos_sim_spearman", "value": 66.87613008631367}, {"type": "euclidean_pearson", "value": 69.23198488262217}, {"type": "euclidean_spearman", "value": 66.85427723013692}, {"type": "manhattan_pearson", "value": 69.50730124841084}, {"type": "manhattan_spearman", "value": 67.10404669820792}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STSBenchmark", "type": "mteb/stsbenchmark-sts", "config": "default", "split": "test", "revision": "b0fddb56ed78048fa8b90373c8a3cfc37b684831"}, "metrics": [{"type": "cos_sim_pearson", "value": 87.0820605344619}, {"type": "cos_sim_spearman", "value": 86.8518089863434}, {"type": "euclidean_pearson", "value": 86.31087134689284}, {"type": "euclidean_spearman", "value": 86.8518520517941}, {"type": "manhattan_pearson", "value": 86.47203796160612}, {"type": "manhattan_spearman", "value": 87.1080149734421}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB SciDocsRR", "type": "mteb/scidocs-reranking", "config": "default", "split": "test", "revision": "d3c5e1fc0b855ab6097bf1cda04dd73947d7caab"}, "metrics": [{"type": "map", "value": 89.09255369305481}, {"type": "mrr", "value": 97.10323445617563}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB SciFact", "type": "mteb/scifact", "config": "default", "split": "test", "revision": "0228b52cf27578f30900b9e5271d331663a030d7"}, "metrics": [{"type": "map_at_1", "value": 61.260999999999996}, {"type": "map_at_10", "value": 74.043}, {"type": "map_at_100", "value": 74.37700000000001}, {"type": "map_at_1000", "value": 74.384}, {"type": "map_at_3", "value": 71.222}, {"type": "map_at_5", "value": 72.875}, {"type": "mrr_at_1", "value": 64.333}, {"type": "mrr_at_10", "value": 74.984}, {"type": "mrr_at_100", "value": 75.247}, {"type": "mrr_at_1000", "value": 75.25500000000001}, {"type": "mrr_at_3", "value": 73.167}, {"type": "mrr_at_5", "value": 74.35000000000001}, {"type": "ndcg_at_1", "value": 64.333}, {"type": "ndcg_at_10", "value": 79.06}, {"type": "ndcg_at_100", "value": 80.416}, {"type": "ndcg_at_1000", "value": 80.55600000000001}, {"type": "ndcg_at_3", "value": 74.753}, {"type": "ndcg_at_5", "value": 76.97500000000001}, {"type": "precision_at_1", "value": 64.333}, {"type": "precision_at_10", "value": 10.567}, {"type": "precision_at_100", "value": 1.1199999999999999}, {"type": "precision_at_1000", "value": 0.11299999999999999}, {"type": "precision_at_3", "value": 29.889}, {"type": "precision_at_5", "value": 19.533}, {"type": "recall_at_1", "value": 61.260999999999996}, {"type": "recall_at_10", "value": 93.167}, {"type": "recall_at_100", "value": 99.0}, {"type": "recall_at_1000", "value": 100.0}, {"type": "recall_at_3", "value": 81.667}, {"type": "recall_at_5", "value": 87.394}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB SprintDuplicateQuestions", "type": "mteb/sprintduplicatequestions-pairclassification", "config": "default", "split": "test", "revision": "d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46"}, "metrics": [{"type": "cos_sim_accuracy", "value": 99.71980198019801}, {"type": "cos_sim_ap", "value": 92.81616007802704}, {"type": "cos_sim_f1", "value": 85.17548454688318}, {"type": "cos_sim_precision", "value": 89.43894389438944}, {"type": "cos_sim_recall", "value": 81.3}, {"type": "dot_accuracy", "value": 99.71980198019801}, {"type": "dot_ap", "value": 92.81398760591358}, {"type": "dot_f1", "value": 85.17548454688318}, {"type": "dot_precision", "value": 89.43894389438944}, {"type": "dot_recall", "value": 81.3}, {"type": "euclidean_accuracy", "value": 99.71980198019801}, {"type": "euclidean_ap", "value": 92.81560637245072}, {"type": "euclidean_f1", "value": 85.17548454688318}, {"type": "euclidean_precision", "value": 89.43894389438944}, {"type": "euclidean_recall", "value": 81.3}, {"type": "manhattan_accuracy", "value": 99.73069306930694}, {"type": "manhattan_ap", "value": 93.14005487480794}, {"type": "manhattan_f1", "value": 85.56263269639068}, {"type": "manhattan_precision", "value": 91.17647058823529}, {"type": "manhattan_recall", "value": 80.60000000000001}, {"type": "max_accuracy", "value": 99.73069306930694}, {"type": "max_ap", "value": 93.14005487480794}, {"type": "max_f1", "value": 85.56263269639068}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClustering", "type": "mteb/stackexchange-clustering", "config": "default", "split": "test", "revision": "6cbc1f7b2bc0622f2e39d2c77fa502909748c259"}, "metrics": [{"type": "v_measure", "value": 79.86443362395185}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClusteringP2P", "type": "mteb/stackexchange-clustering-p2p", "config": "default", "split": "test", "revision": "815ca46b2622cec33ccafc3735d572c266efdb44"}, "metrics": [{"type": "v_measure", "value": 49.40897096662564}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB StackOverflowDupQuestions", "type": "mteb/stackoverflowdupquestions-reranking", "config": "default", "split": "test", "revision": "e185fbe320c72810689fc5848eb6114e1ef5ec69"}, "metrics": [{"type": "map", "value": 55.66040806627947}, {"type": "mrr", "value": 56.58670475766064}]}, {"task": {"type": "Summarization"}, "dataset": {"name": "MTEB SummEval", "type": "mteb/summeval", "config": "default", "split": "test", "revision": "cda12ad7615edc362dbf25a00fdd61d3b1eaf93c"}, "metrics": [{"type": "cos_sim_pearson", "value": 31.51015090598575}, {"type": "cos_sim_spearman", "value": 31.35016454939226}, {"type": "dot_pearson", "value": 31.5150068731}, {"type": "dot_spearman", "value": 31.34790869023487}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB TRECCOVID", "type": "mteb/trec-covid", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 0.254}, {"type": "map_at_10", "value": 2.064}, {"type": "map_at_100", "value": 12.909}, {"type": "map_at_1000", "value": 31.761}, {"type": "map_at_3", "value": 0.738}, {"type": "map_at_5", "value": 1.155}, {"type": "mrr_at_1", "value": 96.0}, {"type": "mrr_at_10", "value": 98.0}, {"type": "mrr_at_100", "value": 98.0}, {"type": "mrr_at_1000", "value": 98.0}, {"type": "mrr_at_3", "value": 98.0}, {"type": "mrr_at_5", "value": 98.0}, {"type": "ndcg_at_1", "value": 93.0}, {"type": "ndcg_at_10", "value": 82.258}, {"type": "ndcg_at_100", "value": 64.34}, {"type": "ndcg_at_1000", "value": 57.912}, {"type": "ndcg_at_3", "value": 90.827}, {"type": "ndcg_at_5", "value": 86.79}, {"type": "precision_at_1", "value": 96.0}, {"type": "precision_at_10", "value": 84.8}, {"type": "precision_at_100", "value": 66.0}, {"type": "precision_at_1000", "value": 25.356}, {"type": "precision_at_3", "value": 94.667}, {"type": "precision_at_5", "value": 90.4}, {"type": "recall_at_1", "value": 0.254}, {"type": "recall_at_10", "value": 2.1950000000000003}, {"type": "recall_at_100", "value": 16.088}, {"type": "recall_at_1000", "value": 54.559000000000005}, {"type": "recall_at_3", "value": 0.75}, {"type": "recall_at_5", "value": 1.191}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB Touche2020", "type": "mteb/touche2020", "config": "default", "split": "test", "revision": "a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f"}, "metrics": [{"type": "map_at_1", "value": 2.976}, {"type": "map_at_10", "value": 11.389000000000001}, {"type": "map_at_100", "value": 18.429000000000002}, {"type": "map_at_1000", "value": 20.113}, {"type": "map_at_3", "value": 6.483}, {"type": "map_at_5", "value": 8.770999999999999}, {"type": "mrr_at_1", "value": 40.816}, {"type": "mrr_at_10", "value": 58.118}, {"type": "mrr_at_100", "value": 58.489999999999995}, {"type": "mrr_at_1000", "value": 58.489999999999995}, {"type": "mrr_at_3", "value": 53.061}, {"type": "mrr_at_5", "value": 57.041}, {"type": "ndcg_at_1", "value": 40.816}, {"type": "ndcg_at_10", "value": 30.567}, {"type": "ndcg_at_100", "value": 42.44}, {"type": "ndcg_at_1000", "value": 53.480000000000004}, {"type": "ndcg_at_3", "value": 36.016}, {"type": "ndcg_at_5", "value": 34.257}, {"type": "precision_at_1", "value": 42.857}, {"type": "precision_at_10", "value": 25.714}, {"type": "precision_at_100", "value": 8.429}, {"type": "precision_at_1000", "value": 1.5939999999999999}, {"type": "precision_at_3", "value": 36.735}, {"type": "precision_at_5", "value": 33.878}, {"type": "recall_at_1", "value": 2.976}, {"type": "recall_at_10", "value": 17.854999999999997}, {"type": "recall_at_100", "value": 51.833}, {"type": "recall_at_1000", "value": 86.223}, {"type": "recall_at_3", "value": 7.887}, {"type": "recall_at_5", "value": 12.026}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ToxicConversationsClassification", "type": "mteb/toxic_conversations_50k", "config": "default", "split": "test", "revision": "d7c0de2777da35d6aae2200a62c6e0e5af397c4c"}, "metrics": [{"type": "accuracy", "value": 85.1174}, {"type": "ap", "value": 30.169441069345748}, {"type": "f1", "value": 69.79254701873245}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB TweetSentimentExtractionClassification", "type": "mteb/tweet_sentiment_extraction", "config": "default", "split": "test", "revision": "d604517c81ca91fe16a244d1248fc021f9ecee7a"}, "metrics": [{"type": "accuracy", "value": 72.58347481607245}, {"type": "f1", "value": 72.74877295564937}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB TwentyNewsgroupsClustering", "type": "mteb/twentynewsgroups-clustering", "config": "default", "split": "test", "revision": "6125ec4e24fa026cec8a478383ee943acfbd5449"}, "metrics": [{"type": "v_measure", "value": 53.90586138221305}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterSemEval2015", "type": "mteb/twittersemeval2015-pairclassification", "config": "default", "split": "test", "revision": "70970daeab8776df92f5ea462b6173c0b46fd2d1"}, "metrics": [{"type": "cos_sim_accuracy", "value": 87.35769207844072}, {"type": "cos_sim_ap", "value": 77.9645072410354}, {"type": "cos_sim_f1", "value": 71.32352941176471}, {"type": "cos_sim_precision", "value": 66.5903890160183}, {"type": "cos_sim_recall", "value": 76.78100263852242}, {"type": "dot_accuracy", "value": 87.37557370209214}, {"type": "dot_ap", "value": 77.96250046429908}, {"type": "dot_f1", "value": 71.28932757557064}, {"type": "dot_precision", "value": 66.95249130938586}, {"type": "dot_recall", "value": 76.22691292875989}, {"type": "euclidean_accuracy", "value": 87.35173153722357}, {"type": "euclidean_ap", "value": 77.96520460741593}, {"type": "euclidean_f1", "value": 71.32470733210104}, {"type": "euclidean_precision", "value": 66.91329479768785}, {"type": "euclidean_recall", "value": 76.35883905013192}, {"type": "manhattan_accuracy", "value": 87.25636287774931}, {"type": "manhattan_ap", "value": 77.77752485611796}, {"type": "manhattan_f1", "value": 71.18148599269183}, {"type": "manhattan_precision", "value": 66.10859728506787}, {"type": "manhattan_recall", "value": 77.0976253298153}, {"type": "max_accuracy", "value": 87.37557370209214}, {"type": "max_ap", "value": 77.96520460741593}, {"type": "max_f1", "value": 71.32470733210104}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterURLCorpus", "type": "mteb/twitterurlcorpus-pairclassification", "config": "default", "split": "test", "revision": "8b6510b0b1fa4e4c4f879467980e9be563ec1cdf"}, "metrics": [{"type": "cos_sim_accuracy", "value": 89.38176737687739}, {"type": "cos_sim_ap", "value": 86.58811861657401}, {"type": "cos_sim_f1", "value": 79.09430644097604}, {"type": "cos_sim_precision", "value": 75.45085977911366}, {"type": "cos_sim_recall", "value": 83.10748383122882}, {"type": "dot_accuracy", "value": 89.38370784336554}, {"type": "dot_ap", "value": 86.58840606004333}, {"type": "dot_f1", "value": 79.10179860068133}, {"type": "dot_precision", "value": 75.44546153308643}, {"type": "dot_recall", "value": 83.13058207576223}, {"type": "euclidean_accuracy", "value": 89.38564830985369}, {"type": "euclidean_ap", "value": 86.58820721061164}, {"type": "euclidean_f1", "value": 79.09070942235888}, {"type": "euclidean_precision", "value": 75.38729937194697}, {"type": "euclidean_recall", "value": 83.17677856482906}, {"type": "manhattan_accuracy", "value": 89.40699344122326}, {"type": "manhattan_ap", "value": 86.60631843011362}, {"type": "manhattan_f1", "value": 79.14949970570925}, {"type": "manhattan_precision", "value": 75.78191039729502}, {"type": "manhattan_recall", "value": 82.83030489682784}, {"type": "max_accuracy", "value": 89.40699344122326}, {"type": "max_ap", "value": 86.60631843011362}, {"type": "max_f1", "value": 79.14949970570925}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB AFQMC", "type": "C-MTEB/AFQMC", "config": "default", "split": "validation", "revision": "b44c3b011063adb25877c13823db83bb193913c4"}, "metrics": [{"type": "cos_sim_pearson", "value": 65.58442135663871}, {"type": "cos_sim_spearman", "value": 72.2538631361313}, {"type": "euclidean_pearson", "value": 70.97255486607429}, {"type": "euclidean_spearman", "value": 72.25374250228647}, {"type": "manhattan_pearson", "value": 70.83250199989911}, {"type": "manhattan_spearman", "value": 72.14819496536272}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB ATEC", "type": "C-MTEB/ATEC", "config": "default", "split": "test", "revision": "0f319b1142f28d00e055a6770f3f726ae9b7d865"}, "metrics": [{"type": "cos_sim_pearson", "value": 59.99478404929932}, {"type": "cos_sim_spearman", "value": 62.61836216999812}, {"type": "euclidean_pearson", "value": 66.86429811933593}, {"type": "euclidean_spearman", "value": 62.6183520374191}, {"type": "manhattan_pearson", "value": 66.8063778911633}, {"type": "manhattan_spearman", "value": 62.569607573241115}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonReviewsClassification (zh)", "type": "mteb/amazon_reviews_multi", "config": "zh", "split": "test", "revision": "1399c76144fd37290681b995c656ef9b2e06e26d"}, "metrics": [{"type": "accuracy", "value": 53.98400000000001}, {"type": "f1", "value": 51.21447361350723}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB BQ", "type": "C-MTEB/BQ", "config": "default", "split": "test", "revision": "e3dda5e115e487b39ec7e618c0c6a29137052a55"}, "metrics": [{"type": "cos_sim_pearson", "value": 79.11941660686553}, {"type": "cos_sim_spearman", "value": 81.25029594540435}, {"type": "euclidean_pearson", "value": 82.06973504238826}, {"type": "euclidean_spearman", "value": 81.2501989488524}, {"type": "manhattan_pearson", "value": 82.10094630392753}, {"type": "manhattan_spearman", "value": 81.27987244392389}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB CLSClusteringP2P", "type": "C-MTEB/CLSClusteringP2P", "config": "default", "split": "test", "revision": "4b6227591c6c1a73bc76b1055f3b7f3588e72476"}, "metrics": [{"type": "v_measure", "value": 47.07270168705156}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB CLSClusteringS2S", "type": "C-MTEB/CLSClusteringS2S", "config": "default", "split": "test", "revision": "e458b3f5414b62b7f9f83499ac1f5497ae2e869f"}, "metrics": [{"type": "v_measure", "value": 45.98511703185043}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB CMedQAv1", "type": "C-MTEB/CMedQAv1-reranking", "config": "default", "split": "test", "revision": "8d7f1e942507dac42dc58017c1a001c3717da7df"}, "metrics": [{"type": "map", "value": 88.19895157194931}, {"type": "mrr", "value": 90.21424603174603}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB CMedQAv2", "type": "C-MTEB/CMedQAv2-reranking", "config": "default", "split": "test", "revision": "23d186750531a14a0357ca22cd92d712fd512ea0"}, "metrics": [{"type": "map", "value": 88.03317320980119}, {"type": "mrr", "value": 89.9461507936508}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CmedqaRetrieval", "type": "C-MTEB/CmedqaRetrieval", "config": "default", "split": "dev", "revision": "cd540c506dae1cf9e9a59c3e06f42030d54e7301"}, "metrics": [{"type": "map_at_1", "value": 29.037000000000003}, {"type": "map_at_10", "value": 42.001}, {"type": "map_at_100", "value": 43.773}, {"type": "map_at_1000", "value": 43.878}, {"type": "map_at_3", "value": 37.637}, {"type": "map_at_5", "value": 40.034}, {"type": "mrr_at_1", "value": 43.136}, {"type": "mrr_at_10", "value": 51.158}, {"type": "mrr_at_100", "value": 52.083}, {"type": "mrr_at_1000", "value": 52.12}, {"type": "mrr_at_3", "value": 48.733}, {"type": "mrr_at_5", "value": 50.025}, {"type": "ndcg_at_1", "value": 43.136}, {"type": "ndcg_at_10", "value": 48.685}, {"type": "ndcg_at_100", "value": 55.513}, {"type": "ndcg_at_1000", "value": 57.242000000000004}, {"type": "ndcg_at_3", "value": 43.329}, {"type": "ndcg_at_5", "value": 45.438}, {"type": "precision_at_1", "value": 43.136}, {"type": "precision_at_10", "value": 10.56}, {"type": "precision_at_100", "value": 1.6129999999999998}, {"type": "precision_at_1000", "value": 0.184}, {"type": "precision_at_3", "value": 24.064}, {"type": "precision_at_5", "value": 17.269000000000002}, {"type": "recall_at_1", "value": 29.037000000000003}, {"type": "recall_at_10", "value": 59.245000000000005}, {"type": "recall_at_100", "value": 87.355}, {"type": "recall_at_1000", "value": 98.74000000000001}, {"type": "recall_at_3", "value": 42.99}, {"type": "recall_at_5", "value": 49.681999999999995}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB Cmnli", "type": "C-MTEB/CMNLI", "config": "default", "split": "validation", "revision": "41bc36f332156f7adc9e38f53777c959b2ae9766"}, "metrics": [{"type": "cos_sim_accuracy", "value": 82.68190018039687}, {"type": "cos_sim_ap", "value": 90.18017125327886}, {"type": "cos_sim_f1", "value": 83.64080906868193}, {"type": "cos_sim_precision", "value": 79.7076890489303}, {"type": "cos_sim_recall", "value": 87.98223053542202}, {"type": "dot_accuracy", "value": 82.68190018039687}, {"type": "dot_ap", "value": 90.18782350103646}, {"type": "dot_f1", "value": 83.64242087729039}, {"type": "dot_precision", "value": 79.65313028764805}, {"type": "dot_recall", "value": 88.05237315875614}, {"type": "euclidean_accuracy", "value": 82.68190018039687}, {"type": "euclidean_ap", "value": 90.1801957900632}, {"type": "euclidean_f1", "value": 83.63636363636364}, {"type": "euclidean_precision", "value": 79.52772506852203}, {"type": "euclidean_recall", "value": 88.19265840542437}, {"type": "manhattan_accuracy", "value": 82.14070956103427}, {"type": "manhattan_ap", "value": 89.96178420101427}, {"type": "manhattan_f1", "value": 83.21087838578791}, {"type": "manhattan_precision", "value": 78.35605121850475}, {"type": "manhattan_recall", "value": 88.70703764320785}, {"type": "max_accuracy", "value": 82.68190018039687}, {"type": "max_ap", "value": 90.18782350103646}, {"type": "max_f1", "value": 83.64242087729039}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CovidRetrieval", "type": "C-MTEB/CovidRetrieval", "config": "default", "split": "dev", "revision": "1271c7809071a13532e05f25fb53511ffce77117"}, "metrics": [{"type": "map_at_1", "value": 72.234}, {"type": "map_at_10", "value": 80.10000000000001}, {"type": "map_at_100", "value": 80.36}, {"type": "map_at_1000", "value": 80.363}, {"type": "map_at_3", "value": 78.315}, {"type": "map_at_5", "value": 79.607}, {"type": "mrr_at_1", "value": 72.392}, {"type": "mrr_at_10", "value": 80.117}, {"type": "mrr_at_100", "value": 80.36999999999999}, {"type": "mrr_at_1000", "value": 80.373}, {"type": "mrr_at_3", "value": 78.469}, {"type": "mrr_at_5", "value": 79.633}, {"type": "ndcg_at_1", "value": 72.392}, {"type": "ndcg_at_10", "value": 83.651}, {"type": "ndcg_at_100", "value": 84.749}, {"type": "ndcg_at_1000", "value": 84.83000000000001}, {"type": "ndcg_at_3", "value": 80.253}, {"type": "ndcg_at_5", "value": 82.485}, {"type": "precision_at_1", "value": 72.392}, {"type": "precision_at_10", "value": 9.557}, {"type": "precision_at_100", "value": 1.004}, {"type": "precision_at_1000", "value": 0.101}, {"type": "precision_at_3", "value": 28.732000000000003}, {"type": "precision_at_5", "value": 18.377}, {"type": "recall_at_1", "value": 72.234}, {"type": "recall_at_10", "value": 94.573}, {"type": "recall_at_100", "value": 99.368}, {"type": "recall_at_1000", "value": 100.0}, {"type": "recall_at_3", "value": 85.669}, {"type": "recall_at_5", "value": 91.01700000000001}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB DuRetrieval", "type": "C-MTEB/DuRetrieval", "config": "default", "split": "dev", "revision": "a1a333e290fe30b10f3f56498e3a0d911a693ced"}, "metrics": [{"type": "map_at_1", "value": 26.173999999999996}, {"type": "map_at_10", "value": 80.04}, {"type": "map_at_100", "value": 82.94500000000001}, {"type": "map_at_1000", "value": 82.98100000000001}, {"type": "map_at_3", "value": 55.562999999999995}, {"type": "map_at_5", "value": 69.89800000000001}, {"type": "mrr_at_1", "value": 89.5}, {"type": "mrr_at_10", "value": 92.996}, {"type": "mrr_at_100", "value": 93.06400000000001}, {"type": "mrr_at_1000", "value": 93.065}, {"type": "mrr_at_3", "value": 92.658}, {"type": "mrr_at_5", "value": 92.84599999999999}, {"type": "ndcg_at_1", "value": 89.5}, {"type": "ndcg_at_10", "value": 87.443}, {"type": "ndcg_at_100", "value": 90.253}, {"type": "ndcg_at_1000", "value": 90.549}, {"type": "ndcg_at_3", "value": 85.874}, {"type": "ndcg_at_5", "value": 84.842}, {"type": "precision_at_1", "value": 89.5}, {"type": "precision_at_10", "value": 41.805}, {"type": "precision_at_100", "value": 4.827}, {"type": "precision_at_1000", "value": 0.49}, {"type": "precision_at_3", "value": 76.85}, {"type": "precision_at_5", "value": 64.8}, {"type": "recall_at_1", "value": 26.173999999999996}, {"type": "recall_at_10", "value": 89.101}, {"type": "recall_at_100", "value": 98.08099999999999}, {"type": "recall_at_1000", "value": 99.529}, {"type": "recall_at_3", "value": 57.902}, {"type": "recall_at_5", "value": 74.602}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB EcomRetrieval", "type": "C-MTEB/EcomRetrieval", "config": "default", "split": "dev", "revision": "687de13dc7294d6fd9be10c6945f9e8fec8166b9"}, "metrics": [{"type": "map_at_1", "value": 56.10000000000001}, {"type": "map_at_10", "value": 66.15299999999999}, {"type": "map_at_100", "value": 66.625}, {"type": "map_at_1000", "value": 66.636}, {"type": "map_at_3", "value": 63.632999999999996}, {"type": "map_at_5", "value": 65.293}, {"type": "mrr_at_1", "value": 56.10000000000001}, {"type": "mrr_at_10", "value": 66.15299999999999}, {"type": "mrr_at_100", "value": 66.625}, {"type": "mrr_at_1000", "value": 66.636}, {"type": "mrr_at_3", "value": 63.632999999999996}, {"type": "mrr_at_5", "value": 65.293}, {"type": "ndcg_at_1", "value": 56.10000000000001}, {"type": "ndcg_at_10", "value": 71.146}, {"type": "ndcg_at_100", "value": 73.27799999999999}, {"type": "ndcg_at_1000", "value": 73.529}, {"type": "ndcg_at_3", "value": 66.09}, {"type": "ndcg_at_5", "value": 69.08999999999999}, {"type": "precision_at_1", "value": 56.10000000000001}, {"type": "precision_at_10", "value": 8.68}, {"type": "precision_at_100", "value": 0.964}, {"type": "precision_at_1000", "value": 0.098}, {"type": "precision_at_3", "value": 24.4}, {"type": "precision_at_5", "value": 16.1}, {"type": "recall_at_1", "value": 56.10000000000001}, {"type": "recall_at_10", "value": 86.8}, {"type": "recall_at_100", "value": 96.39999999999999}, {"type": "recall_at_1000", "value": 98.3}, {"type": "recall_at_3", "value": 73.2}, {"type": "recall_at_5", "value": 80.5}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB IFlyTek", "type": "C-MTEB/IFlyTek-classification", "config": "default", "split": "validation", "revision": "421605374b29664c5fc098418fe20ada9bd55f8a"}, "metrics": [{"type": "accuracy", "value": 54.52096960369373}, {"type": "f1", "value": 40.930845295808695}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB JDReview", "type": "C-MTEB/JDReview-classification", "config": "default", "split": "test", "revision": "b7c64bd89eb87f8ded463478346f76731f07bf8b"}, "metrics": [{"type": "accuracy", "value": 86.51031894934334}, {"type": "ap", "value": 55.9516014323483}, {"type": "f1", "value": 81.54813679326381}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB LCQMC", "type": "C-MTEB/LCQMC", "config": "default", "split": "test", "revision": "17f9b096f80380fce5ed12a9be8be7784b337daf"}, "metrics": [{"type": "cos_sim_pearson", "value": 69.67437838574276}, {"type": "cos_sim_spearman", "value": 73.81314174653045}, {"type": "euclidean_pearson", "value": 72.63430276680275}, {"type": "euclidean_spearman", "value": 73.81358736777001}, {"type": "manhattan_pearson", "value": 72.58743833842829}, {"type": "manhattan_spearman", "value": 73.7590419009179}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB MMarcoReranking", "type": "C-MTEB/Mmarco-reranking", "config": "default", "split": "dev", "revision": "None"}, "metrics": [{"type": "map", "value": 31.648613483640254}, {"type": "mrr", "value": 30.37420634920635}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB MMarcoRetrieval", "type": "C-MTEB/MMarcoRetrieval", "config": "default", "split": "dev", "revision": "539bbde593d947e2a124ba72651aafc09eb33fc2"}, "metrics": [{"type": "map_at_1", "value": 73.28099999999999}, {"type": "map_at_10", "value": 81.977}, {"type": "map_at_100", "value": 82.222}, {"type": "map_at_1000", "value": 82.22699999999999}, {"type": "map_at_3", "value": 80.441}, {"type": "map_at_5", "value": 81.46600000000001}, {"type": "mrr_at_1", "value": 75.673}, {"type": "mrr_at_10", "value": 82.41000000000001}, {"type": "mrr_at_100", "value": 82.616}, {"type": "mrr_at_1000", "value": 82.621}, {"type": "mrr_at_3", "value": 81.094}, {"type": "mrr_at_5", "value": 81.962}, {"type": "ndcg_at_1", "value": 75.673}, {"type": "ndcg_at_10", "value": 85.15599999999999}, {"type": "ndcg_at_100", "value": 86.151}, {"type": "ndcg_at_1000", "value": 86.26899999999999}, {"type": "ndcg_at_3", "value": 82.304}, {"type": "ndcg_at_5", "value": 84.009}, {"type": "precision_at_1", "value": 75.673}, {"type": "precision_at_10", "value": 10.042}, {"type": "precision_at_100", "value": 1.052}, {"type": "precision_at_1000", "value": 0.106}, {"type": "precision_at_3", "value": 30.673000000000002}, {"type": "precision_at_5", "value": 19.326999999999998}, {"type": "recall_at_1", "value": 73.28099999999999}, {"type": "recall_at_10", "value": 94.446}, {"type": "recall_at_100", "value": 98.737}, {"type": "recall_at_1000", "value": 99.649}, {"type": "recall_at_3", "value": 86.984}, {"type": "recall_at_5", "value": 91.024}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (zh-CN)", "type": "mteb/amazon_massive_intent", "config": "zh-CN", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 81.08607935440484}, {"type": "f1", "value": 78.24879986066307}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (zh-CN)", "type": "mteb/amazon_massive_scenario", "config": "zh-CN", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 86.05917955615332}, {"type": "f1", "value": 85.05279279434997}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB MedicalRetrieval", "type": "C-MTEB/MedicalRetrieval", "config": "default", "split": "dev", "revision": "2039188fb5800a9803ba5048df7b76e6fb151fc6"}, "metrics": [{"type": "map_at_1", "value": 56.2}, {"type": "map_at_10", "value": 62.57899999999999}, {"type": "map_at_100", "value": 63.154999999999994}, {"type": "map_at_1000", "value": 63.193}, {"type": "map_at_3", "value": 61.217}, {"type": "map_at_5", "value": 62.012}, {"type": "mrr_at_1", "value": 56.3}, {"type": "mrr_at_10", "value": 62.629000000000005}, {"type": "mrr_at_100", "value": 63.205999999999996}, {"type": "mrr_at_1000", "value": 63.244}, {"type": "mrr_at_3", "value": 61.267}, {"type": "mrr_at_5", "value": 62.062}, {"type": "ndcg_at_1", "value": 56.2}, {"type": "ndcg_at_10", "value": 65.592}, {"type": "ndcg_at_100", "value": 68.657}, {"type": "ndcg_at_1000", "value": 69.671}, {"type": "ndcg_at_3", "value": 62.808}, {"type": "ndcg_at_5", "value": 64.24499999999999}, {"type": "precision_at_1", "value": 56.2}, {"type": "precision_at_10", "value": 7.5}, {"type": "precision_at_100", "value": 0.899}, {"type": "precision_at_1000", "value": 0.098}, {"type": "precision_at_3", "value": 22.467000000000002}, {"type": "precision_at_5", "value": 14.180000000000001}, {"type": "recall_at_1", "value": 56.2}, {"type": "recall_at_10", "value": 75.0}, {"type": "recall_at_100", "value": 89.9}, {"type": "recall_at_1000", "value": 97.89999999999999}, {"type": "recall_at_3", "value": 67.4}, {"type": "recall_at_5", "value": 70.89999999999999}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MultilingualSentiment", "type": "C-MTEB/MultilingualSentiment-classification", "config": "default", "split": "validation", "revision": "46958b007a63fdbf239b7672c25d0bea67b5ea1a"}, "metrics": [{"type": "accuracy", "value": 76.87666666666667}, {"type": "f1", "value": 76.7317686219665}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB Ocnli", "type": "C-MTEB/OCNLI", "config": "default", "split": "validation", "revision": "66e76a618a34d6d565d5538088562851e6daa7ec"}, "metrics": [{"type": "cos_sim_accuracy", "value": 79.64266377910124}, {"type": "cos_sim_ap", "value": 84.78274442344829}, {"type": "cos_sim_f1", "value": 81.16947472745292}, {"type": "cos_sim_precision", "value": 76.47058823529412}, {"type": "cos_sim_recall", "value": 86.48363252375924}, {"type": "dot_accuracy", "value": 79.64266377910124}, {"type": "dot_ap", "value": 84.7851404063692}, {"type": "dot_f1", "value": 81.16947472745292}, {"type": "dot_precision", "value": 76.47058823529412}, {"type": "dot_recall", "value": 86.48363252375924}, {"type": "euclidean_accuracy", "value": 79.64266377910124}, {"type": "euclidean_ap", "value": 84.78068373762378}, {"type": "euclidean_f1", "value": 81.14794656110837}, {"type": "euclidean_precision", "value": 76.35009310986965}, {"type": "euclidean_recall", "value": 86.58922914466737}, {"type": "manhattan_accuracy", "value": 79.48023822414727}, {"type": "manhattan_ap", "value": 84.72928897427576}, {"type": "manhattan_f1", "value": 81.32084770823064}, {"type": "manhattan_precision", "value": 76.24768946395564}, {"type": "manhattan_recall", "value": 87.11721224920802}, {"type": "max_accuracy", "value": 79.64266377910124}, {"type": "max_ap", "value": 84.7851404063692}, {"type": "max_f1", "value": 81.32084770823064}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB OnlineShopping", "type": "C-MTEB/OnlineShopping-classification", "config": "default", "split": "test", "revision": "e610f2ebd179a8fda30ae534c3878750a96db120"}, "metrics": [{"type": "accuracy", "value": 94.3}, {"type": "ap", "value": 92.8664032274438}, {"type": "f1", "value": 94.29311102997727}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB PAWSX", "type": "C-MTEB/PAWSX", "config": "default", "split": "test", "revision": "9c6a90e430ac22b5779fb019a23e820b11a8b5e1"}, "metrics": [{"type": "cos_sim_pearson", "value": 48.51392279882909}, {"type": "cos_sim_spearman", "value": 54.06338895994974}, {"type": "euclidean_pearson", "value": 52.58480559573412}, {"type": "euclidean_spearman", "value": 54.06417276612201}, {"type": "manhattan_pearson", "value": 52.69525121721343}, {"type": "manhattan_spearman", "value": 54.048147455389675}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB QBQTC", "type": "C-MTEB/QBQTC", "config": "default", "split": "test", "revision": "790b0510dc52b1553e8c49f3d2afb48c0e5c48b7"}, "metrics": [{"type": "cos_sim_pearson", "value": 29.728387290757325}, {"type": "cos_sim_spearman", "value": 31.366121633635284}, {"type": "euclidean_pearson", "value": 29.14588368552961}, {"type": "euclidean_spearman", "value": 31.36764411112844}, {"type": "manhattan_pearson", "value": 29.63517350523121}, {"type": "manhattan_spearman", "value": 31.94157020583762}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (zh)", "type": "mteb/sts22-crosslingual-sts", "config": "zh", "split": "test", "revision": "eea2b4fe26a775864c896887d910b76a8098ad3f"}, "metrics": [{"type": "cos_sim_pearson", "value": 63.64868296271406}, {"type": "cos_sim_spearman", "value": 66.12800618164744}, {"type": "euclidean_pearson", "value": 63.21405767340238}, {"type": "euclidean_spearman", "value": 66.12786567790748}, {"type": "manhattan_pearson", "value": 64.04300276525848}, {"type": "manhattan_spearman", "value": 66.5066857145652}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STSB", "type": "C-MTEB/STSB", "config": "default", "split": "test", "revision": "0cde68302b3541bb8b3c340dc0644b0b745b3dc0"}, "metrics": [{"type": "cos_sim_pearson", "value": 81.2302623912794}, {"type": "cos_sim_spearman", "value": 81.16833673266562}, {"type": "euclidean_pearson", "value": 79.47647843876024}, {"type": "euclidean_spearman", "value": 81.16944349524972}, {"type": "manhattan_pearson", "value": 79.84947238492208}, {"type": "manhattan_spearman", "value": 81.64626599410026}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB T2Reranking", "type": "C-MTEB/T2Reranking", "config": "default", "split": "dev", "revision": "76631901a18387f85eaa53e5450019b87ad58ef9"}, "metrics": [{"type": "map", "value": 67.80129586475687}, {"type": "mrr", "value": 77.77402311635554}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB T2Retrieval", "type": "C-MTEB/T2Retrieval", "config": "default", "split": "dev", "revision": "8731a845f1bf500a4f111cf1070785c793d10e64"}, "metrics": [{"type": "map_at_1", "value": 28.666999999999998}, {"type": "map_at_10", "value": 81.063}, {"type": "map_at_100", "value": 84.504}, {"type": "map_at_1000", "value": 84.552}, {"type": "map_at_3", "value": 56.897}, {"type": "map_at_5", "value": 70.073}, {"type": "mrr_at_1", "value": 92.087}, {"type": "mrr_at_10", "value": 94.132}, {"type": "mrr_at_100", "value": 94.19800000000001}, {"type": "mrr_at_1000", "value": 94.19999999999999}, {"type": "mrr_at_3", "value": 93.78999999999999}, {"type": "mrr_at_5", "value": 94.002}, {"type": "ndcg_at_1", "value": 92.087}, {"type": "ndcg_at_10", "value": 87.734}, {"type": "ndcg_at_100", "value": 90.736}, {"type": "ndcg_at_1000", "value": 91.184}, {"type": "ndcg_at_3", "value": 88.78}, {"type": "ndcg_at_5", "value": 87.676}, {"type": "precision_at_1", "value": 92.087}, {"type": "precision_at_10", "value": 43.46}, {"type": "precision_at_100", "value": 5.07}, {"type": "precision_at_1000", "value": 0.518}, {"type": "precision_at_3", "value": 77.49000000000001}, {"type": "precision_at_5", "value": 65.194}, {"type": "recall_at_1", "value": 28.666999999999998}, {"type": "recall_at_10", "value": 86.632}, {"type": "recall_at_100", "value": 96.646}, {"type": "recall_at_1000", "value": 98.917}, {"type": "recall_at_3", "value": 58.333999999999996}, {"type": "recall_at_5", "value": 72.974}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB TNews", "type": "C-MTEB/TNews-classification", "config": "default", "split": "validation", "revision": "317f262bf1e6126357bbe89e875451e4b0938fe4"}, "metrics": [{"type": "accuracy", "value": 52.971999999999994}, {"type": "f1", "value": 50.2898280984929}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ThuNewsClusteringP2P", "type": "C-MTEB/ThuNewsClusteringP2P", "config": "default", "split": "test", "revision": "5798586b105c0434e4f0fe5e767abe619442cf93"}, "metrics": [{"type": "v_measure", "value": 86.0797948663824}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ThuNewsClusteringS2S", "type": "C-MTEB/ThuNewsClusteringS2S", "config": "default", "split": "test", "revision": "8a8b2caeda43f39e13c4bc5bea0f8a667896e10d"}, "metrics": [{"type": "v_measure", "value": 85.10759092255017}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB VideoRetrieval", "type": "C-MTEB/VideoRetrieval", "config": "default", "split": "dev", "revision": "58c2597a5943a2ba48f4668c3b90d796283c5639"}, "metrics": [{"type": "map_at_1", "value": 65.60000000000001}, {"type": "map_at_10", "value": 74.773}, {"type": "map_at_100", "value": 75.128}, {"type": "map_at_1000", "value": 75.136}, {"type": "map_at_3", "value": 73.05}, {"type": "map_at_5", "value": 74.13499999999999}, {"type": "mrr_at_1", "value": 65.60000000000001}, {"type": "mrr_at_10", "value": 74.773}, {"type": "mrr_at_100", "value": 75.128}, {"type": "mrr_at_1000", "value": 75.136}, {"type": "mrr_at_3", "value": 73.05}, {"type": "mrr_at_5", "value": 74.13499999999999}, {"type": "ndcg_at_1", "value": 65.60000000000001}, {"type": "ndcg_at_10", "value": 78.84299999999999}, {"type": "ndcg_at_100", "value": 80.40899999999999}, {"type": "ndcg_at_1000", "value": 80.57}, {"type": "ndcg_at_3", "value": 75.40599999999999}, {"type": "ndcg_at_5", "value": 77.351}, {"type": "precision_at_1", "value": 65.60000000000001}, {"type": "precision_at_10", "value": 9.139999999999999}, {"type": "precision_at_100", "value": 0.984}, {"type": "precision_at_1000", "value": 0.1}, {"type": "precision_at_3", "value": 27.400000000000002}, {"type": "precision_at_5", "value": 17.380000000000003}, {"type": "recall_at_1", "value": 65.60000000000001}, {"type": "recall_at_10", "value": 91.4}, {"type": "recall_at_100", "value": 98.4}, {"type": "recall_at_1000", "value": 99.6}, {"type": "recall_at_3", "value": 82.19999999999999}, {"type": "recall_at_5", "value": 86.9}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB Waimai", "type": "C-MTEB/waimai-classification", "config": "default", "split": "test", "revision": "339287def212450dcaa9df8c22bf93e9980c7023"}, "metrics": [{"type": "accuracy", "value": 89.47}, {"type": "ap", "value": 75.59561751845389}, {"type": "f1", "value": 87.95207751382563}]}]}]}
LiteLLMs/Llama3-OpenBioLLM-8B-GGUF
LiteLLMs
null
[ "gguf", "llama-3", "llama", "Mixtral", "instruct", "finetune", "chatml", "DPO", "RLHF", "gpt4", "distillation", "GGUF", "en", "arxiv:2305.18290", "arxiv:2303.13375", "arxiv:2212.13138", "arxiv:2305.09617", "arxiv:2402.07023", "base_model:meta-llama/Meta-Llama-3-8B", "base_model:quantized:meta-llama/Meta-Llama-3-8B", "license:llama3", "endpoints_compatible", "region:us" ]
2024-04-29T16:51:27
2024-04-29T17:55:24
25
0
--- base_model: meta-llama/Meta-Llama-3-8B language: - en license: llama3 tags: - llama-3 - llama - Mixtral - instruct - finetune - chatml - DPO - RLHF - gpt4 - distillation - GGUF widget: - example_title: OpenBioLLM-8B messages: - role: system content: You are an expert and experienced from the healthcare and biomedical domain with extensive medical knowledge and practical experience. - role: user content: How long does it take for newborn jaundice to go away? output: text: 'Newborn jaundice, also known as neonatal jaundice, is a common condition in newborns where the yellowing of the skin and eyes occurs due to an elevated level of bilirubin in the blood. Bilirubin is a yellow pigment that forms when red blood cells break down. In most cases, newborn jaundice resolves on its own without any specific treatment. The duration of newborn jaundice can vary depending on several factors such as the underlying cause, gestational age at birth, and individual variations in bilirubin metabolism. Here are some general guidelines: 1. Physiological jaundice: This is the most common type of newborn jaundice and usually appears within 24-72 hours after birth. It tends to peak between the second and fifth day of life and gradually improves over the next week or two. By the time the baby is one week old, the jaundice should have mostly resolved. 2. Breast milk jaundice: This type of jaundice occurs in breastfed babies and may appear later than physiological jaundice, typically between the fifth and fourteenth day of life. It tends to persist for a longer duration but usually resolves within six weeks after birth. 3. Pathological jaundice: This type of jaundice is less common and occurs due to an underlying medical condition that affects bilirubin metabolism or liver function. The duration of pathological jaundice depends on the specific cause and may require treatment. It''s important for parents to monitor their newborn''s jaundice closely and seek medical advice if the jaundice progresses rapidly, becomes severe, or is accompanied by other symptoms such as poor feeding, lethargy, or excessive sleepiness. In these cases, further evaluation and management may be necessary. Remember that each baby is unique, and the timing of jaundice resolution can vary. If you have concerns about your newborn''s jaundice, it''s always best to consult with a healthcare professional for personalized advice and guidance.' quantized_by: andrijdavid model-index: - name: OpenBioLLM-8B results: [] --- # Llama3-OpenBioLLM-8B-GGUF - Original model: [Llama3-OpenBioLLM-8B](https://huggingface.co/aaditya/Llama3-OpenBioLLM-8B) <!-- description start --> ## Description This repo contains GGUF format model files for [Llama3-OpenBioLLM-8B](https://huggingface.co/aaditya/Llama3-OpenBioLLM-8B). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). This is the source project for GGUF, providing both a Command Line Interface (CLI) and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), Known as the most widely used web UI, this project boasts numerous features and powerful extensions, and supports GPU acceleration. * [Ollama](https://github.com/jmorganca/ollama) Ollama is a lightweight and extensible framework designed for building and running language models locally. It features a simple API for creating, managing, and executing models, along with a library of pre-built models for use in various applications​ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), A comprehensive web UI offering GPU acceleration across all platforms and architectures, particularly renowned for storytelling. * [GPT4All](https://gpt4all.io), This is a free and open source GUI that runs locally, supporting Windows, Linux, and macOS with full GPU acceleration. * [LM Studio](https://lmstudio.ai/) An intuitive and powerful local GUI for Windows and macOS (Silicon), featuring GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui). A notable web UI with a variety of unique features, including a comprehensive model library for easy model selection. * [Faraday.dev](https://faraday.dev/), An attractive, user-friendly character-based chat GUI for Windows and macOS (both Silicon and Intel), also offering GPU acceleration. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), A Python library equipped with GPU acceleration, LangChain support, and an OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), A Rust-based ML framework focusing on performance, including GPU support, and designed for ease of use. * [ctransformers](https://github.com/marella/ctransformers), A Python library featuring GPU acceleration, LangChain support, and an OpenAI-compatible AI server. * [localGPT](https://github.com/PromtEngineer/localGPT) An open-source initiative enabling private conversations with documents. <!-- README_GGUF.md-about-gguf end --> <!-- compatibility_gguf start --> ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single folder. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: LiteLLMs/Llama3-OpenBioLLM-8B-GGUF and below it, a specific filename to download, such as: Q4_0/Q4_0-00001-of-00009.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download LiteLLMs/Llama3-OpenBioLLM-8B-GGUF Q4_0/Q4_0-00001-of-00009.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage (click to read)</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download LiteLLMs/Llama3-OpenBioLLM-8B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install huggingface_hub[hf_transfer] ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download LiteLLMs/Llama3-OpenBioLLM-8B-GGUF Q4_0/Q4_0-00001-of-00009.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 35 -m Q4_0/Q4_0-00001-of-00009.gguf --color -c 8192 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<PROMPT>" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 8192` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python. ### How to load this model in Python code, using llama-cpp-python For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/). #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install llama-cpp-python # With NVidia CUDA acceleration CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python # Or with OpenBLAS acceleration CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python # Or with CLBLast acceleration CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python # Or with AMD ROCm GPU acceleration (Linux only) CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python # Or with Metal GPU acceleration for macOS systems only CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA: $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on" pip install llama-cpp-python ``` #### Simple llama-cpp-python example code ```python from llama_cpp import Llama # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = Llama( model_path="./Q4_0/Q4_0-00001-of-00009.gguf", # Download the model file first n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available ) # Simple inference example output = llm( "<PROMPT>", # Prompt max_tokens=512, # Generate up to 512 tokens stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using. echo=True # Whether to echo the prompt ) # Chat Completion API llm = Llama(model_path="./Q4_0/Q4_0-00001-of-00009.gguf", chat_format="llama-2") # Set chat_format according to the model you are using llm.create_chat_completion( messages = [ {"role": "system", "content": "You are a story writing assistant."}, { "role": "user", "content": "Write a story about llamas." } ] ) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer end --> <!-- original-model-card start --> # Original model card: Llama3-OpenBioLLM-8B <div align="center"> <img width="260px" src="https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/BrQCb95lmEIFz79QAmoNA.png"></div> ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/2FhDh8NDvMl7iSxbQz9BP.png) <div align="center"> <h1>Advancing Open-source Large Language Models in Medical Domain</h1> </div> <p align="center" style="margin-top: 0px;"> <a href="https://colab.research.google.com/drive/1F5oV20InEYeAJGmBwYF9NM_QhLmjBkKJ?usp=sharing"> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="OpenChat Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 10px; margin-top: 0px; margin-bottom: 0px;"/> <span class="link-text" style=" margin-right: 5px;">Online Demo</span> </a> | <a href="https://github.com/openlifescience-ai"> <img src="https://github.githubassets.com/assets/GitHub-Mark-ea2971cee799.png" alt="GitHub Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/> <span class="link-text" style=" margin-right: 5px;">GitHub</span> </a> | <a href="#"> <img src="https://github.com/alpayariyak/openchat/blob/master/assets/arxiv-logomark-small-square-border.png?raw=true" alt="ArXiv Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/> <span class="link-text" style="margin-right: 5px;">Paper</span> </a> | <a href="https://discord.gg/A5Fjf5zC69"> <img src="https://cloud.githubusercontent.com/assets/6291467/26705903/96c2d66e-477c-11e7-9f4e-f3c0efe96c9a.png" alt="Discord Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/> <span class="link-text">Discord</span> </a> </p> ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/KGmRE5w2sepNtwsEu8t7K.jpeg) Introducing OpenBioLLM-8B: A State-of-the-Art Open Source Biomedical Large Language Model OpenBioLLM-8B is an advanced open source language model designed specifically for the biomedical domain. Developed by Saama AI Labs, this model leverages cutting-edge techniques to achieve state-of-the-art performance on a wide range of biomedical tasks. 🏥 **Biomedical Specialization**: OpenBioLLM-8B is tailored for the unique language and knowledge requirements of the medical and life sciences fields. It was fine-tuned on a vast corpus of high-quality biomedical data, enabling it to understand and generate text with domain-specific accuracy and fluency. 🎓 **Superior Performance**: With 8 billion parameters, OpenBioLLM-8B outperforms other open source biomedical language models of similar scale. It has also demonstrated better results compared to larger proprietary & open-source models like GPT-3.5 and Meditron-70B on biomedical benchmarks. 🧠 **Advanced Training Techniques**: OpenBioLLM-8B builds upon the powerful foundations of the **Meta-Llama-3-8B** and [Meta-Llama-3-8B](meta-llama/Meta-Llama-3-8B) models. It incorporates the DPO dataset and fine-tuning recipe along with a custom diverse medical instruction dataset. Key components of the training pipeline include: <div align="center"> <img width="1200px" src="https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/oPchsJsEpQoGcGXVbh7YS.png"> </div> - **Policy Optimization**: [Direct Preference Optimization: Your Language Model is Secretly a Reward Model (DPO)](https://arxiv.org/abs/2305.18290) - **Ranking Dataset**: [berkeley-nest/Nectar](https://huggingface.co/datasets/berkeley-nest/Nectar) - **Fine-tuning dataset**: Custom Medical Instruct dataset (We plan to release a sample training dataset in our upcoming paper; please stay updated) This combination of cutting-edge techniques enables OpenBioLLM-8B to align with key capabilities and preferences for biomedical applications. ⚙️ **Release Details**: - **Model Size**: 8 billion parameters - **Quantization**: Optimized quantized versions available [Here](https://huggingface.co/aaditya/OpenBioLLM-Llama3-8B-GGUF) - **Language(s) (NLP):** en - **Developed By**: [Ankit Pal (Aaditya Ura)](https://aadityaura.github.io/) from Saama AI Labs - **License:** Meta-Llama License - **Fine-tuned from models:** [meta-llama/Meta-Llama-3-8B](meta-llama/Meta-Llama-3-8B) - **Resources for more information:** - Paper: Coming soon The model can be fine-tuned for more specialized tasks and datasets as needed. OpenBioLLM-8B represents an important step forward in democratizing advanced language AI for the biomedical community. By leveraging state-of-the-art architectures and training techniques from leading open source efforts like Llama-3, we have created a powerful tool to accelerate innovation and discovery in healthcare and the life sciences. We are excited to share OpenBioLLM-8B with researchers and developers around the world. ### Use with transformers **Important: Please use the exact chat template provided by Llama-3 instruct version. Otherwise there will be a degradation in the performance. The model output can be verbose in rare cases. Please consider setting temperature = 0 to make this happen less.** See the snippet below for usage with Transformers: ```python import transformers import torch model_id = "aaditya/OpenBioLLM-Llama3-8B" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device="auto", ) messages = [ {"role": "system", "content": "You are an expert and experienced from the healthcare and biomedical domain with extensive medical knowledge and practical experience. Your name is OpenBioLLM, and you were developed by Saama AI Labs. who's willing to help answer the user's query with explanation. In your explanation, leverage your deep medical expertise such as relevant anatomical structures, physiological processes, diagnostic criteria, treatment guidelines, or other pertinent medical concepts. Use precise medical terminology while still aiming to make the explanation clear and accessible to a general audience."}, {"role": "user", "content": "How can i split a 3mg or 4mg waefin pill so i can get a 2.5mg pill?"}, ] prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = pipeline( prompt, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.0, top_p=0.9, ) print(outputs[0]["generated_text"][len(prompt):]) ``` ## **Training procedure** ### **Training hyperparameters** <details> <summary>Click to see details</summary> - learning_rate: 0.0002 - lr_scheduler: cosine - train_batch_size: 12 - eval_batch_size: 8 - GPU: H100 80GB SXM5 - num_devices: 1 - optimizer: adamw_bnb_8bit - lr_scheduler_warmup_steps: 100 - num_epochs: 4 </details> ### **Peft hyperparameters** <details> <summary>Click to see details</summary> - adapter: qlora - lora_r: 128 - lora_alpha: 256 - lora_dropout: 0.05 - lora_target_linear: true -lora_target_modules: - q_proj - v_proj - k_proj - o_proj - gate_proj - down_proj - up_proj </details> ### **Training results** ### **Framework versions** - Transformers 4.39.3 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.1 - Axolotl - Lm harness for evaluation # Benchmark Results 🔥 OpenBioLLM-8B demonstrates superior performance compared to larger models, such as GPT-3.5, Meditron-70B across 9 diverse biomedical datasets, achieving state-of-the-art results with an average score of 72.50%, despite having a significantly smaller parameter count. The model's strong performance in domain-specific tasks, such as Clinical KG, Medical Genetics, and PubMedQA, highlights its ability to effectively capture and apply biomedical knowledge. 🚨 The GPT-4, Med-PaLM-1, and Med-PaLM-2 results are taken from their official papers. Since Med-PaLM doesn't provide zero-shot accuracy, we are using 5-shot accuracy from their paper for comparison. All results presented are in the zero-shot setting, except for Med-PaLM-2 and Med-PaLM-1, which use 5-shot accuracy. | | Clinical KG | Medical Genetics | Anatomy | Pro Medicine | College Biology | College Medicine | MedQA 4 opts | PubMedQA | MedMCQA | Avg | | | - | | - | | | **OpenBioLLM-70B** | **92.93** | **93.197** | **83.904** | 93.75 | 93.827 | **85.749** | 78.162 | 78.97 | **74.014** | **86.05588** | | Med-PaLM-2 (5-shot) | 88.3 | 90 | 77.8 | **95.2** | 94.4 | 80.9 | **79.7** | **79.2** | 71.3 | 84.08 | | **GPT-4** | 86.04 | 91 | 80 | 93.01 | **95.14** | 76.88 | 78.87 | 75.2 | 69.52 | 82.85 | | Med-PaLM-1 (Flan-PaLM, 5-shot) | 80.4 | 75 | 63.7 | 83.8 | 88.9 | 76.3 | 67.6 | 79 | 57.6 | 74.7 | | **OpenBioLLM-8B** | 76.101 | 86.1 | 69.829 | 78.21 | 84.213 | 68.042 | 58.993 | 74.12 | 56.913 | 72.502 | | Gemini-1.0 | 76.7 | 75.8 | 66.7 | 77.7 | 88 | 69.2 | 58 | 70.7 | 54.3 | 70.79 | | GPT-3.5 Turbo 1106 | 74.71 | 74 | 72.79 | 72.79 | 72.91 | 64.73 | 57.71 | 72.66 | 53.79 | 66 | | Meditron-70B | 66.79 | 69 | 53.33 | 71.69 | 76.38 | 63 | 57.1 | 76.6 | 46.85 | 64.52 | | gemma-7b | 69.81 | 70 | 59.26 | 66.18 | 79.86 | 60.12 | 47.21 | 76.2 | 48.96 | 64.18 | | Mistral-7B-v0.1 | 68.68 | 71 | 55.56 | 68.38 | 68.06 | 59.54 | 50.82 | 75.4 | 48.2 | 62.85 | | Apollo-7B | 62.26 | 72 | 61.48 | 69.12 | 70.83 | 55.49 | 55.22 | 39.8 | 53.77 | 60 | | MedAlpaca-7b | 57.36 | 69 | 57.04 | 67.28 | 65.28 | 54.34 | 41.71 | 72.8 | 37.51 | 58.03 | | BioMistral-7B | 59.9 | 64 | 56.5 | 60.4 | 59 | 54.7 | 50.6 | 77.5 | 48.1 | 57.3 | | AlpaCare-llama2-7b | 49.81 | 49 | 45.92 | 33.82 | 50 | 43.35 | 29.77 | 72.2 | 34.42 | 45.36 | | ClinicalGPT | 30.56 | 27 | 30.37 | 19.48 | 25 | 24.27 | 26.08 | 63.8 | 28.18 | 30.52 | <div align="center"> <img width="1600px" src="https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/_SzdcJSBjZyo8RS1bTEkP.png"> </div> ## Detailed Medical Subjectwise accuracy ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/UXF-V0col0Z0sS6BGPBkE.png) # Use Cases & Examples 🚨 **Below results are from the quantized version of OpenBioLLM-70B** # Summarize Clinical Notes OpenBioLLM-70B can efficiently analyze and summarize complex clinical notes, EHR data, and discharge summaries, extracting key information and generating concise, structured summaries ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/xdwdBgOxNi_TfML0hKlI8.png) # Answer Medical Questions OpenBioLLM-70B can provide answers to a wide range of medical questions. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/zO95GlwOQEZqCKQF69mE6.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/OKBczKw7gWeW5xsuDpc27.png) <details> <summary>Click to see details</summary> ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/eJGHT5khppYvJb8fQ-YW4.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/Cnbwrqa_-ORHRuNRC2P6Y.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/J9DhdcvukAc9mnnW9fj2C.png) </details> # Clinical Entity Recognition OpenBioLLM-70B can perform advanced clinical entity recognition by identifying and extracting key medical concepts, such as diseases, symptoms, medications, procedures, and anatomical structures, from unstructured clinical text. By leveraging its deep understanding of medical terminology and context, the model can accurately annotate and categorize clinical entities, enabling more efficient information retrieval, data analysis, and knowledge discovery from electronic health records, research articles, and other biomedical text sources. This capability can support various downstream applications, such as clinical decision support, pharmacovigilance, and medical research. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/_69BW4k9LVABFwtxixL45.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/DKy5wYCoPhoPPUc1-x8_J.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/7WD9zCCBZT4-4XlfnIQjl.png) # Biomarkers Extraction ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/ZttoM4AiteT7gFYVhjIpN.png) # Classification OpenBioLLM-70B can perform various biomedical classification tasks, such as disease prediction, sentiment analysis, medical document categorization ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/Bf5MW1d75qT-1F_TR_hC0.png) # De-Identification OpenBioLLM-70B can detect and remove personally identifiable information (PII) from medical records, ensuring patient privacy and compliance with data protection regulations like HIPAA. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/hKX4kzm--Tw5bj6K78msy.png) **Advisory Notice!** While OpenBioLLM-70B & 8B leverages high-quality data sources, its outputs may still contain inaccuracies, biases, or misalignments that could pose risks if relied upon for medical decision-making without further testing and refinement. The model's performance has not yet been rigorously evaluated in randomized controlled trials or real-world healthcare environments. Therefore, we strongly advise against using OpenBioLLM-70B & 8B for any direct patient care, clinical decision support, or other professional medical purposes at this time. Its use should be limited to research, development, and exploratory applications by qualified individuals who understand its limitations. OpenBioLLM-70B & 8B are intended solely as a research tool to assist healthcare professionals and should never be considered a replacement for the professional judgment and expertise of a qualified medical doctor. Appropriately adapting and validating OpenBioLLM-70B & 8B for specific medical use cases would require significant additional work, potentially including: - Thorough testing and evaluation in relevant clinical scenarios - Alignment with evidence-based guidelines and best practices - Mitigation of potential biases and failure modes - Integration with human oversight and interpretation - Compliance with regulatory and ethical standards Always consult a qualified healthcare provider for personal medical needs. # Citation If you find OpenBioLLM-70B & 8B useful in your work, please cite the model as follows: ``` @misc{OpenBioLLMs, author = {Ankit Pal, Malaikannan Sankarasubbu}, title = {OpenBioLLMs: Advancing Open-Source Large Language Models for Healthcare and Life Sciences}, year = {2024}, publisher = {Hugging Face}, journal = {Hugging Face repository}, howpublished = {\url{https://huggingface.co/aaditya/OpenBioLLM-Llama3-70B}} } ``` The accompanying paper is currently in progress and will be released soon. <div align="center"> <h2> 💌 Contact </h2> </div> We look forward to hearing you and collaborating on this exciting project! **Contributors:** - [Ankit Pal (Aaditya Ura)](https://aadityaura.github.io/) [aadityaura at gmail dot com] - Saama AI Labs - Note: I am looking for a funded PhD opportunity, especially if it fits my Responsible Generative AI, Multimodal LLMs, Geometric Deep Learning, and Healthcare AI skillset. # References We thank the [Meta Team](meta-llama/Meta-Llama-3-70B-Instruct) for their amazing models! Result sources - [1] GPT-4 [Capabilities of GPT-4 on Medical Challenge Problems] (https://arxiv.org/abs/2303.13375) - [2] Med-PaLM-1 [Large Language Models Encode Clinical Knowledge](https://arxiv.org/abs/2212.13138) - [3] Med-PaLM-2 [Towards Expert-Level Medical Question Answering with Large Language Models](https://arxiv.org/abs/2305.09617) - [4] Gemini-1.0 [Gemini Goes to Med School](https://arxiv.org/abs/2402.07023) <!-- original-model-card end -->
[ "QUESTION_ANSWERING" ]
[ "MEDQA", "PUBMEDQA" ]
BioNLP
# Llama3-OpenBioLLM-8B-GGUF - Original model: [Llama3-OpenBioLLM-8B](https://huggingface.co/aaditya/Llama3-OpenBioLLM-8B) <!-- description start --> ## Description This repo contains GGUF format model files for [Llama3-OpenBioLLM-8B](https://huggingface.co/aaditya/Llama3-OpenBioLLM-8B). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). This is the source project for GGUF, providing both a Command Line Interface (CLI) and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), Known as the most widely used web UI, this project boasts numerous features and powerful extensions, and supports GPU acceleration. * [Ollama](https://github.com/jmorganca/ollama) Ollama is a lightweight and extensible framework designed for building and running language models locally. It features a simple API for creating, managing, and executing models, along with a library of pre-built models for use in various applications​ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), A comprehensive web UI offering GPU acceleration across all platforms and architectures, particularly renowned for storytelling. * [GPT4All](https://gpt4all.io), This is a free and open source GUI that runs locally, supporting Windows, Linux, and macOS with full GPU acceleration. * [LM Studio](https://lmstudio.ai/) An intuitive and powerful local GUI for Windows and macOS (Silicon), featuring GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui). A notable web UI with a variety of unique features, including a comprehensive model library for easy model selection. * [Faraday.dev](https://faraday.dev/), An attractive, user-friendly character-based chat GUI for Windows and macOS (both Silicon and Intel), also offering GPU acceleration. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), A Python library equipped with GPU acceleration, LangChain support, and an OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), A Rust-based ML framework focusing on performance, including GPU support, and designed for ease of use. * [ctransformers](https://github.com/marella/ctransformers), A Python library featuring GPU acceleration, LangChain support, and an OpenAI-compatible AI server. * [localGPT](https://github.com/PromtEngineer/localGPT) An open-source initiative enabling private conversations with documents. <!-- README_GGUF.md-about-gguf end --> <!-- compatibility_gguf start --> ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single folder. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: LiteLLMs/Llama3-OpenBioLLM-8B-GGUF and below it, a specific filename to download, such as: Q4_0/Q4_0-00001-of-00009.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download LiteLLMs/Llama3-OpenBioLLM-8B-GGUF Q4_0/Q4_0-00001-of-00009.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage (click to read)</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download LiteLLMs/Llama3-OpenBioLLM-8B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install huggingface_hub[hf_transfer] ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download LiteLLMs/Llama3-OpenBioLLM-8B-GGUF Q4_0/Q4_0-00001-of-00009.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 35 -m Q4_0/Q4_0-00001-of-00009.gguf --color -c 8192 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<PROMPT>" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 8192` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python. ### How to load this model in Python code, using llama-cpp-python For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/). #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install llama-cpp-python # With NVidia CUDA acceleration CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python # Or with OpenBLAS acceleration CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python # Or with CLBLast acceleration CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python # Or with AMD ROCm GPU acceleration (Linux only) CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python # Or with Metal GPU acceleration for macOS systems only CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA: $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on" pip install llama-cpp-python ``` #### Simple llama-cpp-python example code ```python from llama_cpp import Llama # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = Llama( model_path="./Q4_0/Q4_0-00001-of-00009.gguf", # Download the model file first n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available ) # Simple inference example output = llm( "<PROMPT>", # Prompt max_tokens=512, # Generate up to 512 tokens stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using. echo=True # Whether to echo the prompt ) # Chat Completion API llm = Llama(model_path="./Q4_0/Q4_0-00001-of-00009.gguf", chat_format="llama-2") # Set chat_format according to the model you are using llm.create_chat_completion( messages = [ {"role": "system", "content": "You are a story writing assistant."}, { "role": "user", "content": "Write a story about llamas." } ] ) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer end --> <!-- original-model-card start --> # Original model card: Llama3-OpenBioLLM-8B <div align="center"> <img width="260px" src="https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/BrQCb95lmEIFz79QAmoNA.png"></div> ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/2FhDh8NDvMl7iSxbQz9BP.png) <div align="center"> <h1>Advancing Open-source Large Language Models in Medical Domain</h1> </div> <p align="center" style="margin-top: 0px;"> <a href="https://colab.research.google.com/drive/1F5oV20InEYeAJGmBwYF9NM_QhLmjBkKJ?usp=sharing"> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="OpenChat Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 10px; margin-top: 0px; margin-bottom: 0px;"/> <span class="link-text" style=" margin-right: 5px;">Online Demo</span> </a> | <a href="https://github.com/openlifescience-ai"> <img src="https://github.githubassets.com/assets/GitHub-Mark-ea2971cee799.png" alt="GitHub Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/> <span class="link-text" style=" margin-right: 5px;">GitHub</span> </a> | <a href="#"> <img src="https://github.com/alpayariyak/openchat/blob/master/assets/arxiv-logomark-small-square-border.png?raw=true" alt="ArXiv Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/> <span class="link-text" style="margin-right: 5px;">Paper</span> </a> | <a href="https://discord.gg/A5Fjf5zC69"> <img src="https://cloud.githubusercontent.com/assets/6291467/26705903/96c2d66e-477c-11e7-9f4e-f3c0efe96c9a.png" alt="Discord Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/> <span class="link-text">Discord</span> </a> </p> ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/KGmRE5w2sepNtwsEu8t7K.jpeg) Introducing OpenBioLLM-8B: A State-of-the-Art Open Source Biomedical Large Language Model OpenBioLLM-8B is an advanced open source language model designed specifically for the biomedical domain. Developed by Saama AI Labs, this model leverages cutting-edge techniques to achieve state-of-the-art performance on a wide range of biomedical tasks. 🏥 **Biomedical Specialization**: OpenBioLLM-8B is tailored for the unique language and knowledge requirements of the medical and life sciences fields. It was fine-tuned on a vast corpus of high-quality biomedical data, enabling it to understand and generate text with domain-specific accuracy and fluency. 🎓 **Superior Performance**: With 8 billion parameters, OpenBioLLM-8B outperforms other open source biomedical language models of similar scale. It has also demonstrated better results compared to larger proprietary & open-source models like GPT-3.5 and Meditron-70B on biomedical benchmarks. 🧠 **Advanced Training Techniques**: OpenBioLLM-8B builds upon the powerful foundations of the **Meta-Llama-3-8B** and [Meta-Llama-3-8B](meta-llama/Meta-Llama-3-8B) models. It incorporates the DPO dataset and fine-tuning recipe along with a custom diverse medical instruction dataset. Key components of the training pipeline include: <div align="center"> <img width="1200px" src="https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/oPchsJsEpQoGcGXVbh7YS.png"> </div> - **Policy Optimization**: [Direct Preference Optimization: Your Language Model is Secretly a Reward Model (DPO)](https://arxiv.org/abs/2305.18290) - **Ranking Dataset**: [berkeley-nest/Nectar](https://huggingface.co/datasets/berkeley-nest/Nectar) - **Fine-tuning dataset**: Custom Medical Instruct dataset (We plan to release a sample training dataset in our upcoming paper; please stay updated) This combination of cutting-edge techniques enables OpenBioLLM-8B to align with key capabilities and preferences for biomedical applications. ⚙️ **Release Details**: - **Model Size**: 8 billion parameters - **Quantization**: Optimized quantized versions available [Here](https://huggingface.co/aaditya/OpenBioLLM-Llama3-8B-GGUF) - **Language(s) (NLP):** en - **Developed By**: [Ankit Pal (Aaditya Ura)](https://aadityaura.github.io/) from Saama AI Labs - **License:** Meta-Llama License - **Fine-tuned from models:** [meta-llama/Meta-Llama-3-8B](meta-llama/Meta-Llama-3-8B) - **Resources for more information:** - Paper: Coming soon The model can be fine-tuned for more specialized tasks and datasets as needed. OpenBioLLM-8B represents an important step forward in democratizing advanced language AI for the biomedical community. By leveraging state-of-the-art architectures and training techniques from leading open source efforts like Llama-3, we have created a powerful tool to accelerate innovation and discovery in healthcare and the life sciences. We are excited to share OpenBioLLM-8B with researchers and developers around the world. ### Use with transformers **Important: Please use the exact chat template provided by Llama-3 instruct version. Otherwise there will be a degradation in the performance. The model output can be verbose in rare cases. Please consider setting temperature = 0 to make this happen less.** See the snippet below for usage with Transformers: ```python import transformers import torch model_id = "aaditya/OpenBioLLM-Llama3-8B" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device="auto", ) messages = [ {"role": "system", "content": "You are an expert and experienced from the healthcare and biomedical domain with extensive medical knowledge and practical experience. Your name is OpenBioLLM, and you were developed by Saama AI Labs. who's willing to help answer the user's query with explanation. In your explanation, leverage your deep medical expertise such as relevant anatomical structures, physiological processes, diagnostic criteria, treatment guidelines, or other pertinent medical concepts. Use precise medical terminology while still aiming to make the explanation clear and accessible to a general audience."}, {"role": "user", "content": "How can i split a 3mg or 4mg waefin pill so i can get a 2.5mg pill?"}, ] prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = pipeline( prompt, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.0, top_p=0.9, ) print(outputs[0]["generated_text"][len(prompt):]) ``` ## **Training procedure** ### **Training hyperparameters** <details> <summary>Click to see details</summary> - learning_rate: 0.0002 - lr_scheduler: cosine - train_batch_size: 12 - eval_batch_size: 8 - GPU: H100 80GB SXM5 - num_devices: 1 - optimizer: adamw_bnb_8bit - lr_scheduler_warmup_steps: 100 - num_epochs: 4 </details> ### **Peft hyperparameters** <details> <summary>Click to see details</summary> - adapter: qlora - lora_r: 128 - lora_alpha: 256 - lora_dropout: 0.05 - lora_target_linear: true -lora_target_modules: - q_proj - v_proj - k_proj - o_proj - gate_proj - down_proj - up_proj </details> ### **Training results** ### **Framework versions** - Transformers 4.39.3 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.1 - Axolotl - Lm harness for evaluation # Benchmark Results 🔥 OpenBioLLM-8B demonstrates superior performance compared to larger models, such as GPT-3.5, Meditron-70B across 9 diverse biomedical datasets, achieving state-of-the-art results with an average score of 72.50%, despite having a significantly smaller parameter count. The model's strong performance in domain-specific tasks, such as Clinical KG, Medical Genetics, and PubMedQA, highlights its ability to effectively capture and apply biomedical knowledge. 🚨 The GPT-4, Med-PaLM-1, and Med-PaLM-2 results are taken from their official papers. Since Med-PaLM doesn't provide zero-shot accuracy, we are using 5-shot accuracy from their paper for comparison. All results presented are in the zero-shot setting, except for Med-PaLM-2 and Med-PaLM-1, which use 5-shot accuracy. | | Clinical KG | Medical Genetics | Anatomy | Pro Medicine | College Biology | College Medicine | MedQA 4 opts | PubMedQA | MedMCQA | Avg | | | - | | - | | | **OpenBioLLM-70B** | **92.93** | **93.197** | **83.904** | 93.75 | 93.827 | **85.749** | 78.162 | 78.97 | **74.014** | **86.05588** | | Med-PaLM-2 (5-shot) | 88.3 | 90 | 77.8 | **95.2** | 94.4 | 80.9 | **79.7** | **79.2** | 71.3 | 84.08 | | **GPT-4** | 86.04 | 91 | 80 | 93.01 | **95.14** | 76.88 | 78.87 | 75.2 | 69.52 | 82.85 | | Med-PaLM-1 (Flan-PaLM, 5-shot) | 80.4 | 75 | 63.7 | 83.8 | 88.9 | 76.3 | 67.6 | 79 | 57.6 | 74.7 | | **OpenBioLLM-8B** | 76.101 | 86.1 | 69.829 | 78.21 | 84.213 | 68.042 | 58.993 | 74.12 | 56.913 | 72.502 | | Gemini-1.0 | 76.7 | 75.8 | 66.7 | 77.7 | 88 | 69.2 | 58 | 70.7 | 54.3 | 70.79 | | GPT-3.5 Turbo 1106 | 74.71 | 74 | 72.79 | 72.79 | 72.91 | 64.73 | 57.71 | 72.66 | 53.79 | 66 | | Meditron-70B | 66.79 | 69 | 53.33 | 71.69 | 76.38 | 63 | 57.1 | 76.6 | 46.85 | 64.52 | | gemma-7b | 69.81 | 70 | 59.26 | 66.18 | 79.86 | 60.12 | 47.21 | 76.2 | 48.96 | 64.18 | | Mistral-7B-v0.1 | 68.68 | 71 | 55.56 | 68.38 | 68.06 | 59.54 | 50.82 | 75.4 | 48.2 | 62.85 | | Apollo-7B | 62.26 | 72 | 61.48 | 69.12 | 70.83 | 55.49 | 55.22 | 39.8 | 53.77 | 60 | | MedAlpaca-7b | 57.36 | 69 | 57.04 | 67.28 | 65.28 | 54.34 | 41.71 | 72.8 | 37.51 | 58.03 | | BioMistral-7B | 59.9 | 64 | 56.5 | 60.4 | 59 | 54.7 | 50.6 | 77.5 | 48.1 | 57.3 | | AlpaCare-llama2-7b | 49.81 | 49 | 45.92 | 33.82 | 50 | 43.35 | 29.77 | 72.2 | 34.42 | 45.36 | | ClinicalGPT | 30.56 | 27 | 30.37 | 19.48 | 25 | 24.27 | 26.08 | 63.8 | 28.18 | 30.52 | <div align="center"> <img width="1600px" src="https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/_SzdcJSBjZyo8RS1bTEkP.png"> </div> ## Detailed Medical Subjectwise accuracy ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/UXF-V0col0Z0sS6BGPBkE.png) # Use Cases & Examples 🚨 **Below results are from the quantized version of OpenBioLLM-70B** # Summarize Clinical Notes OpenBioLLM-70B can efficiently analyze and summarize complex clinical notes, EHR data, and discharge summaries, extracting key information and generating concise, structured summaries ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/xdwdBgOxNi_TfML0hKlI8.png) # Answer Medical Questions OpenBioLLM-70B can provide answers to a wide range of medical questions. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/zO95GlwOQEZqCKQF69mE6.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/OKBczKw7gWeW5xsuDpc27.png) <details> <summary>Click to see details</summary> ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/eJGHT5khppYvJb8fQ-YW4.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/Cnbwrqa_-ORHRuNRC2P6Y.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/J9DhdcvukAc9mnnW9fj2C.png) </details> # Clinical Entity Recognition OpenBioLLM-70B can perform advanced clinical entity recognition by identifying and extracting key medical concepts, such as diseases, symptoms, medications, procedures, and anatomical structures, from unstructured clinical text. By leveraging its deep understanding of medical terminology and context, the model can accurately annotate and categorize clinical entities, enabling more efficient information retrieval, data analysis, and knowledge discovery from electronic health records, research articles, and other biomedical text sources. This capability can support various downstream applications, such as clinical decision support, pharmacovigilance, and medical research. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/_69BW4k9LVABFwtxixL45.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/DKy5wYCoPhoPPUc1-x8_J.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/7WD9zCCBZT4-4XlfnIQjl.png) # Biomarkers Extraction ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/ZttoM4AiteT7gFYVhjIpN.png) # Classification OpenBioLLM-70B can perform various biomedical classification tasks, such as disease prediction, sentiment analysis, medical document categorization ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/Bf5MW1d75qT-1F_TR_hC0.png) # De-Identification OpenBioLLM-70B can detect and remove personally identifiable information (PII) from medical records, ensuring patient privacy and compliance with data protection regulations like HIPAA. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/hKX4kzm--Tw5bj6K78msy.png) **Advisory Notice!** While OpenBioLLM-70B & 8B leverages high-quality data sources, its outputs may still contain inaccuracies, biases, or misalignments that could pose risks if relied upon for medical decision-making without further testing and refinement. The model's performance has not yet been rigorously evaluated in randomized controlled trials or real-world healthcare environments. Therefore, we strongly advise against using OpenBioLLM-70B & 8B for any direct patient care, clinical decision support, or other professional medical purposes at this time. Its use should be limited to research, development, and exploratory applications by qualified individuals who understand its limitations. OpenBioLLM-70B & 8B are intended solely as a research tool to assist healthcare professionals and should never be considered a replacement for the professional judgment and expertise of a qualified medical doctor. Appropriately adapting and validating OpenBioLLM-70B & 8B for specific medical use cases would require significant additional work, potentially including: - Thorough testing and evaluation in relevant clinical scenarios - Alignment with evidence-based guidelines and best practices - Mitigation of potential biases and failure modes - Integration with human oversight and interpretation - Compliance with regulatory and ethical standards Always consult a qualified healthcare provider for personal medical needs. # Citation If you find OpenBioLLM-70B & 8B useful in your work, please cite the model as follows: ``` @misc{OpenBioLLMs, author = {Ankit Pal, Malaikannan Sankarasubbu}, title = {OpenBioLLMs: Advancing Open-Source Large Language Models for Healthcare and Life Sciences}, year = {2024}, publisher = {Hugging Face}, journal = {Hugging Face repository}, howpublished = {\url{https://huggingface.co/aaditya/OpenBioLLM-Llama3-70B}} } ``` The accompanying paper is currently in progress and will be released soon. <div align="center"> <h2> 💌 Contact </h2> </div> We look forward to hearing you and collaborating on this exciting project! **Contributors:** - [Ankit Pal (Aaditya Ura)](https://aadityaura.github.io/) [aadityaura at gmail dot com] - Saama AI Labs - Note: I am looking for a funded PhD opportunity, especially if it fits my Responsible Generative AI, Multimodal LLMs, Geometric Deep Learning, and Healthcare AI skillset. # References We thank the [Meta Team](meta-llama/Meta-Llama-3-70B-Instruct) for their amazing models! Result sources - [1] GPT-4 [Capabilities of GPT-4 on Medical Challenge Problems] (https://arxiv.org/abs/2303.13375) - [2] Med-PaLM-1 [Large Language Models Encode Clinical Knowledge](https://arxiv.org/abs/2212.13138) - [3] Med-PaLM-2 [Towards Expert-Level Medical Question Answering with Large Language Models](https://arxiv.org/abs/2305.09617) - [4] Gemini-1.0 [Gemini Goes to Med School](https://arxiv.org/abs/2402.07023) <!-- original-model-card end -->
{"base_model": "meta-llama/Meta-Llama-3-8B", "language": ["en"], "license": "llama3", "tags": ["llama-3", "llama", "Mixtral", "instruct", "finetune", "chatml", "DPO", "RLHF", "gpt4", "distillation", "GGUF"], "widget": [{"example_title": "OpenBioLLM-8B", "messages": [{"role": "system", "content": "You are an expert and experienced from the healthcare and biomedical domain with extensive medical knowledge and practical experience."}, {"role": "user", "content": "How long does it take for newborn jaundice to go away?"}], "output": {"text": "Newborn jaundice, also known as neonatal jaundice, is a common condition in newborns where the yellowing of the skin and eyes occurs due to an elevated level of bilirubin in the blood. Bilirubin is a yellow pigment that forms when red blood cells break down. In most cases, newborn jaundice resolves on its own without any specific treatment.\nThe duration of newborn jaundice can vary depending on several factors such as the underlying cause, gestational age at birth, and individual variations in bilirubin metabolism. Here are some general guidelines:\n1. Physiological jaundice: This is the most common type of newborn jaundice and usually appears within 24-72 hours after birth. It tends to peak between the second and fifth day of life and gradually improves over the next week or two. By the time the baby is one week old, the jaundice should have mostly resolved. 2. Breast milk jaundice: This type of jaundice occurs in breastfed babies and may appear later than physiological jaundice, typically between the fifth and fourteenth day of life. It tends to persist for a longer duration but usually resolves within six weeks after birth. 3. Pathological jaundice: This type of jaundice is less common and occurs due to an underlying medical condition that affects bilirubin metabolism or liver function. The duration of pathological jaundice depends on the specific cause and may require treatment.\nIt's important for parents to monitor their newborn's jaundice closely and seek medical advice if the jaundice progresses rapidly, becomes severe, or is accompanied by other symptoms such as poor feeding, lethargy, or excessive sleepiness. In these cases, further evaluation and management may be necessary. Remember that each baby is unique, and the timing of jaundice resolution can vary. If you have concerns about your newborn's jaundice, it's always best to consult with a healthcare professional for personalized advice and guidance."}}], "quantized_by": "andrijdavid", "model-index": [{"name": "OpenBioLLM-8B", "results": []}]}
twadada/nmc-cls-100_correct
twadada
null
[ "mteb", "model-index", "region:us" ]
2024-09-13T07:45:45
2024-09-13T07:45:57
0
0
--- tags: - mteb model-index: - name: nomic_classification_100 results: - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: None config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 70.35820895522387 - type: ap value: 32.749463629599404 - type: f1 value: 64.24277142151362 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification type: None config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 64.705075 - type: ap value: 59.80751870729784 - type: f1 value: 64.44356439771583 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: None config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 33.642 - type: f1 value: 33.115627459191316 - task: type: Retrieval dataset: name: MTEB ArguAna type: None config: default split: test revision: c22ab2a51041ffd869aaddef7af8d8215647e41a metrics: - type: map_at_1 value: 17.852 - type: map_at_10 value: 29.279 - type: map_at_100 value: 30.55 - type: map_at_1000 value: 30.605 - type: map_at_3 value: 25.296000000000003 - type: map_at_5 value: 27.498 - type: mrr_at_1 value: 18.137 - type: mrr_at_10 value: 29.398999999999997 - type: mrr_at_100 value: 30.677 - type: mrr_at_1000 value: 30.731 - type: mrr_at_3 value: 25.427 - type: mrr_at_5 value: 27.614 - type: ndcg_at_1 value: 17.852 - type: ndcg_at_10 value: 36.071999999999996 - type: ndcg_at_100 value: 42.403 - type: ndcg_at_1000 value: 43.733 - type: ndcg_at_3 value: 27.799000000000003 - type: ndcg_at_5 value: 31.805 - type: precision_at_1 value: 17.852 - type: precision_at_10 value: 5.797 - type: precision_at_100 value: 0.878 - type: precision_at_1000 value: 0.098 - type: precision_at_3 value: 11.688 - type: precision_at_5 value: 8.976 - type: recall_at_1 value: 17.852 - type: recall_at_10 value: 57.965999999999994 - type: recall_at_100 value: 87.83800000000001 - type: recall_at_1000 value: 98.08 - type: recall_at_3 value: 35.064 - type: recall_at_5 value: 44.879000000000005 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P type: None config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 29.25407935159316 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S type: None config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 19.74540490543985 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions type: None config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 50.92680362916445 - type: mrr value: 63.515697137580794 - task: type: STS dataset: name: MTEB BIOSSES type: None config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 72.8794628935656 - type: cos_sim_spearman value: 72.28899655141599 - type: euclidean_pearson value: 72.84840274301827 - type: euclidean_spearman value: 72.28899655141599 - type: manhattan_pearson value: 72.27814398382203 - type: manhattan_spearman value: 71.66970533201172 - task: type: Classification dataset: name: MTEB Banking77Classification type: None config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 66.20129870129871 - type: f1 value: 65.02435616242589 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P type: None config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 28.56746746078776 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S type: None config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 19.212994376812908 - task: type: Retrieval dataset: name: MTEB CQADupstackAndroidRetrieval type: None config: default split: test revision: f46a197baaae43b4f621051089b82a364682dfeb metrics: - type: map_at_1 value: 17.7 - type: map_at_10 value: 23.182 - type: map_at_100 value: 24.2 - type: map_at_1000 value: 24.354 - type: map_at_3 value: 21.448 - type: map_at_5 value: 22.394 - type: mrr_at_1 value: 21.459 - type: mrr_at_10 value: 27.538 - type: mrr_at_100 value: 28.399 - type: mrr_at_1000 value: 28.479 - type: mrr_at_3 value: 25.775 - type: mrr_at_5 value: 26.705000000000002 - type: ndcg_at_1 value: 21.459 - type: ndcg_at_10 value: 26.987 - type: ndcg_at_100 value: 31.935999999999996 - type: ndcg_at_1000 value: 35.335 - type: ndcg_at_3 value: 24.214 - type: ndcg_at_5 value: 25.344 - type: precision_at_1 value: 21.459 - type: precision_at_10 value: 5.007000000000001 - type: precision_at_100 value: 0.9299999999999999 - type: precision_at_1000 value: 0.149 - type: precision_at_3 value: 11.445 - type: precision_at_5 value: 8.155 - type: recall_at_1 value: 17.7 - type: recall_at_10 value: 33.698 - type: recall_at_100 value: 55.933 - type: recall_at_1000 value: 79.567 - type: recall_at_3 value: 25.331 - type: recall_at_5 value: 28.681 - task: type: Retrieval dataset: name: MTEB CQADupstackEnglishRetrieval type: None config: default split: test revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 metrics: - type: map_at_1 value: 13.008000000000001 - type: map_at_10 value: 17.331 - type: map_at_100 value: 18.128 - type: map_at_1000 value: 18.253 - type: map_at_3 value: 15.708 - type: map_at_5 value: 16.601 - type: mrr_at_1 value: 16.624 - type: mrr_at_10 value: 21.038999999999998 - type: mrr_at_100 value: 21.782 - type: mrr_at_1000 value: 21.869 - type: mrr_at_3 value: 19.320999999999998 - type: mrr_at_5 value: 20.266000000000002 - type: ndcg_at_1 value: 16.624 - type: ndcg_at_10 value: 20.584 - type: ndcg_at_100 value: 24.43 - type: ndcg_at_1000 value: 27.486 - type: ndcg_at_3 value: 17.724999999999998 - type: ndcg_at_5 value: 18.990000000000002 - type: precision_at_1 value: 16.624 - type: precision_at_10 value: 3.8850000000000002 - type: precision_at_100 value: 0.7250000000000001 - type: precision_at_1000 value: 0.122 - type: precision_at_3 value: 8.514 - type: precision_at_5 value: 6.204 - type: recall_at_1 value: 13.008000000000001 - type: recall_at_10 value: 26.799 - type: recall_at_100 value: 43.802 - type: recall_at_1000 value: 65.035 - type: recall_at_3 value: 18.411 - type: recall_at_5 value: 21.887999999999998 - task: type: Retrieval dataset: name: MTEB CQADupstackGamingRetrieval type: None config: default split: test revision: 4885aa143210c98657558c04aaf3dc47cfb54340 metrics: - type: map_at_1 value: 18.459 - type: map_at_10 value: 24.775 - type: map_at_100 value: 25.691999999999997 - type: map_at_1000 value: 25.802999999999997 - type: map_at_3 value: 22.784 - type: map_at_5 value: 23.764 - type: mrr_at_1 value: 21.379 - type: mrr_at_10 value: 27.555000000000003 - type: mrr_at_100 value: 28.355000000000004 - type: mrr_at_1000 value: 28.438999999999997 - type: mrr_at_3 value: 25.663999999999998 - type: mrr_at_5 value: 26.598 - type: ndcg_at_1 value: 21.379 - type: ndcg_at_10 value: 28.691 - type: ndcg_at_100 value: 33.387 - type: ndcg_at_1000 value: 36.299 - type: ndcg_at_3 value: 24.883 - type: ndcg_at_5 value: 26.438 - type: precision_at_1 value: 21.379 - type: precision_at_10 value: 4.777 - type: precision_at_100 value: 0.7799999999999999 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 11.16 - type: precision_at_5 value: 7.7490000000000006 - type: recall_at_1 value: 18.459 - type: recall_at_10 value: 37.964999999999996 - type: recall_at_100 value: 59.728 - type: recall_at_1000 value: 81.351 - type: recall_at_3 value: 27.538 - type: recall_at_5 value: 31.464 - task: type: Retrieval dataset: name: MTEB CQADupstackGisRetrieval type: None config: default split: test revision: 5003b3064772da1887988e05400cf3806fe491f2 metrics: - type: map_at_1 value: 8.324 - type: map_at_10 value: 10.779 - type: map_at_100 value: 11.371 - type: map_at_1000 value: 11.466999999999999 - type: map_at_3 value: 9.922 - type: map_at_5 value: 10.319 - type: mrr_at_1 value: 9.153 - type: mrr_at_10 value: 11.700000000000001 - type: mrr_at_100 value: 12.314 - type: mrr_at_1000 value: 12.406 - type: mrr_at_3 value: 10.81 - type: mrr_at_5 value: 11.234 - type: ndcg_at_1 value: 9.153 - type: ndcg_at_10 value: 12.472 - type: ndcg_at_100 value: 15.942 - type: ndcg_at_1000 value: 19.118 - type: ndcg_at_3 value: 10.644 - type: ndcg_at_5 value: 11.355 - type: precision_at_1 value: 9.153 - type: precision_at_10 value: 1.921 - type: precision_at_100 value: 0.391 - type: precision_at_1000 value: 0.07100000000000001 - type: precision_at_3 value: 4.444 - type: precision_at_5 value: 3.073 - type: recall_at_1 value: 8.324 - type: recall_at_10 value: 16.971 - type: recall_at_100 value: 34.041 - type: recall_at_1000 value: 59.45399999999999 - type: recall_at_3 value: 11.77 - type: recall_at_5 value: 13.522 - task: type: Retrieval dataset: name: MTEB CQADupstackMathematicaRetrieval type: None config: default split: test revision: 90fceea13679c63fe563ded68f3b6f06e50061de metrics: - type: map_at_1 value: 3.998 - type: map_at_10 value: 6.22 - type: map_at_100 value: 6.687 - type: map_at_1000 value: 6.796 - type: map_at_3 value: 5.124 - type: map_at_5 value: 5.705 - type: mrr_at_1 value: 5.224 - type: mrr_at_10 value: 7.915 - type: mrr_at_100 value: 8.433 - type: mrr_at_1000 value: 8.530999999999999 - type: mrr_at_3 value: 6.654 - type: mrr_at_5 value: 7.276000000000001 - type: ndcg_at_1 value: 5.224 - type: ndcg_at_10 value: 8.238 - type: ndcg_at_100 value: 11.126999999999999 - type: ndcg_at_1000 value: 14.552999999999999 - type: ndcg_at_3 value: 6.0249999999999995 - type: ndcg_at_5 value: 6.981999999999999 - type: precision_at_1 value: 5.224 - type: precision_at_10 value: 1.7160000000000002 - type: precision_at_100 value: 0.371 - type: precision_at_1000 value: 0.078 - type: precision_at_3 value: 2.9850000000000003 - type: precision_at_5 value: 2.413 - type: recall_at_1 value: 3.998 - type: recall_at_10 value: 12.995999999999999 - type: recall_at_100 value: 26.819 - type: recall_at_1000 value: 52.608 - type: recall_at_3 value: 6.721000000000001 - type: recall_at_5 value: 9.198 - task: type: Retrieval dataset: name: MTEB CQADupstackPhysicsRetrieval type: None config: default split: test revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 metrics: - type: map_at_1 value: 12.331 - type: map_at_10 value: 16.913 - type: map_at_100 value: 17.841 - type: map_at_1000 value: 17.977 - type: map_at_3 value: 15.633 - type: map_at_5 value: 16.256 - type: mrr_at_1 value: 15.110999999999999 - type: mrr_at_10 value: 20.419999999999998 - type: mrr_at_100 value: 21.294 - type: mrr_at_1000 value: 21.386 - type: mrr_at_3 value: 18.961 - type: mrr_at_5 value: 19.682 - type: ndcg_at_1 value: 15.110999999999999 - type: ndcg_at_10 value: 20.115 - type: ndcg_at_100 value: 24.914 - type: ndcg_at_1000 value: 28.375 - type: ndcg_at_3 value: 17.732 - type: ndcg_at_5 value: 18.658 - type: precision_at_1 value: 15.110999999999999 - type: precision_at_10 value: 3.696 - type: precision_at_100 value: 0.762 - type: precision_at_1000 value: 0.125 - type: precision_at_3 value: 8.566 - type: precision_at_5 value: 5.9670000000000005 - type: recall_at_1 value: 12.331 - type: recall_at_10 value: 26.429000000000002 - type: recall_at_100 value: 47.341 - type: recall_at_1000 value: 72.149 - type: recall_at_3 value: 19.467000000000002 - type: recall_at_5 value: 21.981 - task: type: Retrieval dataset: name: MTEB CQADupstackProgrammersRetrieval type: None config: default split: test revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 metrics: - type: map_at_1 value: 8.262 - type: map_at_10 value: 11.962 - type: map_at_100 value: 12.729 - type: map_at_1000 value: 12.86 - type: map_at_3 value: 10.65 - type: map_at_5 value: 11.388 - type: mrr_at_1 value: 10.502 - type: mrr_at_10 value: 14.715 - type: mrr_at_100 value: 15.484 - type: mrr_at_1000 value: 15.581999999999999 - type: mrr_at_3 value: 13.299 - type: mrr_at_5 value: 14.097999999999999 - type: ndcg_at_1 value: 10.502 - type: ndcg_at_10 value: 14.649000000000001 - type: ndcg_at_100 value: 18.738 - type: ndcg_at_1000 value: 22.456 - type: ndcg_at_3 value: 12.222 - type: ndcg_at_5 value: 13.314 - type: precision_at_1 value: 10.502 - type: precision_at_10 value: 2.82 - type: precision_at_100 value: 0.588 - type: precision_at_1000 value: 0.108 - type: precision_at_3 value: 5.936 - type: precision_at_5 value: 4.452 - type: recall_at_1 value: 8.262 - type: recall_at_10 value: 20.168 - type: recall_at_100 value: 38.405 - type: recall_at_1000 value: 65.694 - type: recall_at_3 value: 13.428999999999998 - type: recall_at_5 value: 16.229 - task: type: Retrieval dataset: name: MTEB CQADupstackRetrieval type: mteb/cqadupstack config: default split: test revision: 4885aa143210c98657558c04aaf3dc47cfb54340 metrics: - type: map_at_1 value: 10.117416666666665 - type: map_at_10 value: 13.858333333333334 - type: map_at_100 value: 14.565166666666668 - type: map_at_1000 value: 14.68266666666667 - type: map_at_3 value: 12.60983333333333 - type: map_at_5 value: 13.277416666666667 - type: mrr_at_1 value: 12.332833333333335 - type: mrr_at_10 value: 16.376333333333335 - type: mrr_at_100 value: 17.063333333333333 - type: mrr_at_1000 value: 17.1535 - type: mrr_at_3 value: 15.040666666666667 - type: mrr_at_5 value: 15.764833333333334 - type: ndcg_at_1 value: 12.332833333333335 - type: ndcg_at_10 value: 16.51366666666667 - type: ndcg_at_100 value: 20.2845 - type: ndcg_at_1000 value: 23.54025 - type: ndcg_at_3 value: 14.171250000000002 - type: ndcg_at_5 value: 15.193583333333333 - type: precision_at_1 value: 12.332833333333335 - type: precision_at_10 value: 2.983083333333333 - type: precision_at_100 value: 0.58325 - type: precision_at_1000 value: 0.10250000000000001 - type: precision_at_3 value: 6.626083333333334 - type: precision_at_5 value: 4.774916666666665 - type: recall_at_1 value: 10.117416666666665 - type: recall_at_10 value: 22.14666666666667 - type: recall_at_100 value: 39.5745 - type: recall_at_1000 value: 63.73550000000001 - type: recall_at_3 value: 15.431666666666665 - type: recall_at_5 value: 18.1215 - task: type: Retrieval dataset: name: MTEB CQADupstackStatsRetrieval type: None config: default split: test revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a metrics: - type: map_at_1 value: 7.431 - type: map_at_10 value: 10.172 - type: map_at_100 value: 10.639999999999999 - type: map_at_1000 value: 10.716000000000001 - type: map_at_3 value: 9.242 - type: map_at_5 value: 9.614 - type: mrr_at_1 value: 9.202 - type: mrr_at_10 value: 12.08 - type: mrr_at_100 value: 12.58 - type: mrr_at_1000 value: 12.649 - type: mrr_at_3 value: 11.145 - type: mrr_at_5 value: 11.59 - type: ndcg_at_1 value: 9.202 - type: ndcg_at_10 value: 12.291 - type: ndcg_at_100 value: 14.940999999999999 - type: ndcg_at_1000 value: 17.325 - type: ndcg_at_3 value: 10.446 - type: ndcg_at_5 value: 11.027000000000001 - type: precision_at_1 value: 9.202 - type: precision_at_10 value: 2.193 - type: precision_at_100 value: 0.388 - type: precision_at_1000 value: 0.065 - type: precision_at_3 value: 4.806 - type: precision_at_5 value: 3.374 - type: recall_at_1 value: 7.431 - type: recall_at_10 value: 17.197000000000003 - type: recall_at_100 value: 29.704000000000004 - type: recall_at_1000 value: 48.278999999999996 - type: recall_at_3 value: 11.616999999999999 - type: recall_at_5 value: 13.181000000000001 - task: type: Retrieval dataset: name: MTEB CQADupstackTexRetrieval type: None config: default split: test revision: 46989137a86843e03a6195de44b09deda022eec7 metrics: - type: map_at_1 value: 5.348 - type: map_at_10 value: 7.591 - type: map_at_100 value: 8.109 - type: map_at_1000 value: 8.206 - type: map_at_3 value: 6.782000000000001 - type: map_at_5 value: 7.244000000000001 - type: mrr_at_1 value: 6.641 - type: mrr_at_10 value: 9.281 - type: mrr_at_100 value: 9.838 - type: mrr_at_1000 value: 9.922 - type: mrr_at_3 value: 8.286999999999999 - type: mrr_at_5 value: 8.866999999999999 - type: ndcg_at_1 value: 6.641 - type: ndcg_at_10 value: 9.302000000000001 - type: ndcg_at_100 value: 12.200999999999999 - type: ndcg_at_1000 value: 15.223999999999998 - type: ndcg_at_3 value: 7.692 - type: ndcg_at_5 value: 8.474 - type: precision_at_1 value: 6.641 - type: precision_at_10 value: 1.755 - type: precision_at_100 value: 0.388 - type: precision_at_1000 value: 0.079 - type: precision_at_3 value: 3.6249999999999996 - type: precision_at_5 value: 2.753 - type: recall_at_1 value: 5.348 - type: recall_at_10 value: 12.887 - type: recall_at_100 value: 26.391 - type: recall_at_1000 value: 49.156 - type: recall_at_3 value: 8.519 - type: recall_at_5 value: 10.431 - task: type: Retrieval dataset: name: MTEB CQADupstackUnixRetrieval type: None config: default split: test revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 metrics: - type: map_at_1 value: 7.9750000000000005 - type: map_at_10 value: 11.28 - type: map_at_100 value: 11.953 - type: map_at_1000 value: 12.051 - type: map_at_3 value: 10.022 - type: map_at_5 value: 10.807 - type: mrr_at_1 value: 9.795 - type: mrr_at_10 value: 13.544999999999998 - type: mrr_at_100 value: 14.249999999999998 - type: mrr_at_1000 value: 14.341000000000001 - type: mrr_at_3 value: 12.174 - type: mrr_at_5 value: 13.041 - type: ndcg_at_1 value: 9.795 - type: ndcg_at_10 value: 13.697000000000001 - type: ndcg_at_100 value: 17.389 - type: ndcg_at_1000 value: 20.46 - type: ndcg_at_3 value: 11.277 - type: ndcg_at_5 value: 12.579 - type: precision_at_1 value: 9.795 - type: precision_at_10 value: 2.435 - type: precision_at_100 value: 0.481 - type: precision_at_1000 value: 0.084 - type: precision_at_3 value: 5.255 - type: precision_at_5 value: 3.955 - type: recall_at_1 value: 7.9750000000000005 - type: recall_at_10 value: 18.981 - type: recall_at_100 value: 36.178 - type: recall_at_1000 value: 59.46900000000001 - type: recall_at_3 value: 12.371 - type: recall_at_5 value: 15.613 - task: type: Retrieval dataset: name: MTEB CQADupstackWebmastersRetrieval type: None config: default split: test revision: 160c094312a0e1facb97e55eeddb698c0abe3571 metrics: - type: map_at_1 value: 10.742 - type: map_at_10 value: 15.346000000000002 - type: map_at_100 value: 16.153000000000002 - type: map_at_1000 value: 16.311999999999998 - type: map_at_3 value: 14.222999999999999 - type: map_at_5 value: 14.777000000000001 - type: mrr_at_1 value: 14.032 - type: mrr_at_10 value: 18.83 - type: mrr_at_100 value: 19.564999999999998 - type: mrr_at_1000 value: 19.655 - type: mrr_at_3 value: 17.523 - type: mrr_at_5 value: 18.244 - type: ndcg_at_1 value: 14.032 - type: ndcg_at_10 value: 18.496000000000002 - type: ndcg_at_100 value: 22.377 - type: ndcg_at_1000 value: 26.284000000000002 - type: ndcg_at_3 value: 16.520000000000003 - type: ndcg_at_5 value: 17.276 - type: precision_at_1 value: 14.032 - type: precision_at_10 value: 3.5770000000000004 - type: precision_at_100 value: 0.783 - type: precision_at_1000 value: 0.16 - type: precision_at_3 value: 7.971 - type: precision_at_5 value: 5.692 - type: recall_at_1 value: 10.742 - type: recall_at_10 value: 24.157999999999998 - type: recall_at_100 value: 42.091 - type: recall_at_1000 value: 70.054 - type: recall_at_3 value: 17.916999999999998 - type: recall_at_5 value: 20.131 - task: type: Retrieval dataset: name: MTEB CQADupstackWordpressRetrieval type: None config: default split: test revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 metrics: - type: map_at_1 value: 7.831 - type: map_at_10 value: 10.749 - type: map_at_100 value: 11.279 - type: map_at_1000 value: 11.397 - type: map_at_3 value: 9.78 - type: map_at_5 value: 10.459999999999999 - type: mrr_at_1 value: 8.872 - type: mrr_at_10 value: 11.898 - type: mrr_at_100 value: 12.466000000000001 - type: mrr_at_1000 value: 12.583 - type: mrr_at_3 value: 10.875 - type: mrr_at_5 value: 11.577 - type: ndcg_at_1 value: 8.872 - type: ndcg_at_10 value: 12.642000000000001 - type: ndcg_at_100 value: 16.032 - type: ndcg_at_1000 value: 19.567999999999998 - type: ndcg_at_3 value: 10.674999999999999 - type: ndcg_at_5 value: 11.886 - type: precision_at_1 value: 8.872 - type: precision_at_10 value: 2.015 - type: precision_at_100 value: 0.41200000000000003 - type: precision_at_1000 value: 0.077 - type: precision_at_3 value: 4.806 - type: precision_at_5 value: 3.512 - type: recall_at_1 value: 7.831 - type: recall_at_10 value: 17.511 - type: recall_at_100 value: 34.461000000000006 - type: recall_at_1000 value: 62.01 - type: recall_at_3 value: 12.089 - type: recall_at_5 value: 15.139 - task: type: Retrieval dataset: name: MTEB ClimateFEVER type: None config: default split: test revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 metrics: - type: map_at_1 value: 3.3300000000000005 - type: map_at_10 value: 5.8709999999999996 - type: map_at_100 value: 6.7860000000000005 - type: map_at_1000 value: 6.955 - type: map_at_3 value: 4.714 - type: map_at_5 value: 5.26 - type: mrr_at_1 value: 7.101 - type: mrr_at_10 value: 12.125 - type: mrr_at_100 value: 13.200000000000001 - type: mrr_at_1000 value: 13.295000000000002 - type: mrr_at_3 value: 10.119 - type: mrr_at_5 value: 11.038 - type: ndcg_at_1 value: 7.101 - type: ndcg_at_10 value: 9.159 - type: ndcg_at_100 value: 14.030000000000001 - type: ndcg_at_1000 value: 18.013 - type: ndcg_at_3 value: 6.6739999999999995 - type: ndcg_at_5 value: 7.4719999999999995 - type: precision_at_1 value: 7.101 - type: precision_at_10 value: 3.16 - type: precision_at_100 value: 0.84 - type: precision_at_1000 value: 0.156 - type: precision_at_3 value: 5.081 - type: precision_at_5 value: 4.143 - type: recall_at_1 value: 3.3300000000000005 - type: recall_at_10 value: 12.215 - type: recall_at_100 value: 29.683999999999997 - type: recall_at_1000 value: 52.951 - type: recall_at_3 value: 6.356000000000001 - type: recall_at_5 value: 8.315 - task: type: Retrieval dataset: name: MTEB DBPedia type: None config: default split: test revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 metrics: - type: map_at_1 value: 1.718 - type: map_at_10 value: 3.639 - type: map_at_100 value: 4.853 - type: map_at_1000 value: 5.219 - type: map_at_3 value: 2.6149999999999998 - type: map_at_5 value: 3.073 - type: mrr_at_1 value: 20.0 - type: mrr_at_10 value: 26.88 - type: mrr_at_100 value: 27.753 - type: mrr_at_1000 value: 27.822000000000003 - type: mrr_at_3 value: 24.667 - type: mrr_at_5 value: 25.654 - type: ndcg_at_1 value: 15.0 - type: ndcg_at_10 value: 10.878 - type: ndcg_at_100 value: 12.011 - type: ndcg_at_1000 value: 16.492 - type: ndcg_at_3 value: 12.818999999999999 - type: ndcg_at_5 value: 11.554 - type: precision_at_1 value: 20.0 - type: precision_at_10 value: 9.625 - type: precision_at_100 value: 3.037 - type: precision_at_1000 value: 0.7080000000000001 - type: precision_at_3 value: 15.082999999999998 - type: precision_at_5 value: 12.1 - type: recall_at_1 value: 1.718 - type: recall_at_10 value: 5.716 - type: recall_at_100 value: 14.266000000000002 - type: recall_at_1000 value: 30.012 - type: recall_at_3 value: 3.108 - type: recall_at_5 value: 4.181 - task: type: Classification dataset: name: MTEB EmotionClassification type: None config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 41.114999999999995 - type: f1 value: 37.00141090816854 - task: type: Retrieval dataset: name: MTEB FEVER type: None config: default split: test revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 metrics: - type: map_at_1 value: 5.523 - type: map_at_10 value: 8.036 - type: map_at_100 value: 8.581999999999999 - type: map_at_1000 value: 8.657 - type: map_at_3 value: 7.13 - type: map_at_5 value: 7.536 - type: mrr_at_1 value: 5.836 - type: mrr_at_10 value: 8.547 - type: mrr_at_100 value: 9.123000000000001 - type: mrr_at_1000 value: 9.197 - type: mrr_at_3 value: 7.563000000000001 - type: mrr_at_5 value: 8.006 - type: ndcg_at_1 value: 5.836 - type: ndcg_at_10 value: 9.764000000000001 - type: ndcg_at_100 value: 12.866 - type: ndcg_at_1000 value: 15.243 - type: ndcg_at_3 value: 7.7700000000000005 - type: ndcg_at_5 value: 8.518 - type: precision_at_1 value: 5.836 - type: precision_at_10 value: 1.6070000000000002 - type: precision_at_100 value: 0.331 - type: precision_at_1000 value: 0.055 - type: precision_at_3 value: 3.2849999999999997 - type: precision_at_5 value: 2.37 - type: recall_at_1 value: 5.523 - type: recall_at_10 value: 14.795 - type: recall_at_100 value: 29.932 - type: recall_at_1000 value: 48.946 - type: recall_at_3 value: 9.208 - type: recall_at_5 value: 10.984 - task: type: Retrieval dataset: name: MTEB FiQA2018 type: None config: default split: test revision: 27a168819829fe9bcd655c2df245fb19452e8e06 metrics: - type: map_at_1 value: 4.135 - type: map_at_10 value: 6.433999999999999 - type: map_at_100 value: 7.196 - type: map_at_1000 value: 7.356999999999999 - type: map_at_3 value: 5.339 - type: map_at_5 value: 5.878 - type: mrr_at_1 value: 8.796 - type: mrr_at_10 value: 12.357999999999999 - type: mrr_at_100 value: 13.208 - type: mrr_at_1000 value: 13.318 - type: mrr_at_3 value: 10.777000000000001 - type: mrr_at_5 value: 11.525 - type: ndcg_at_1 value: 8.796 - type: ndcg_at_10 value: 9.332 - type: ndcg_at_100 value: 13.517999999999999 - type: ndcg_at_1000 value: 17.907999999999998 - type: ndcg_at_3 value: 7.481999999999999 - type: ndcg_at_5 value: 8.065 - type: precision_at_1 value: 8.796 - type: precision_at_10 value: 2.8240000000000003 - type: precision_at_100 value: 0.705 - type: precision_at_1000 value: 0.14400000000000002 - type: precision_at_3 value: 4.887 - type: precision_at_5 value: 3.8580000000000005 - type: recall_at_1 value: 4.135 - type: recall_at_10 value: 12.292 - type: recall_at_100 value: 28.915999999999997 - type: recall_at_1000 value: 57.477999999999994 - type: recall_at_3 value: 6.747 - type: recall_at_5 value: 8.667 - task: type: Retrieval dataset: name: MTEB HotpotQA type: None config: default split: test revision: ab518f4d6fcca38d87c25209f94beba119d02014 metrics: - type: map_at_1 value: 5.928 - type: map_at_10 value: 8.469 - type: map_at_100 value: 8.936 - type: map_at_1000 value: 9.02 - type: map_at_3 value: 7.582 - type: map_at_5 value: 8.021 - type: mrr_at_1 value: 11.857 - type: mrr_at_10 value: 15.675 - type: mrr_at_100 value: 16.273 - type: mrr_at_1000 value: 16.356 - type: mrr_at_3 value: 14.347999999999999 - type: mrr_at_5 value: 14.995 - type: ndcg_at_1 value: 11.857 - type: ndcg_at_10 value: 11.651 - type: ndcg_at_100 value: 14.374999999999998 - type: ndcg_at_1000 value: 16.912 - type: ndcg_at_3 value: 9.625 - type: ndcg_at_5 value: 10.474 - type: precision_at_1 value: 11.857 - type: precision_at_10 value: 2.777 - type: precision_at_100 value: 0.503 - type: precision_at_1000 value: 0.08499999999999999 - type: precision_at_3 value: 6.140000000000001 - type: precision_at_5 value: 4.362 - type: recall_at_1 value: 5.928 - type: recall_at_10 value: 13.883000000000001 - type: recall_at_100 value: 25.137999999999998 - type: recall_at_1000 value: 42.315999999999995 - type: recall_at_3 value: 9.21 - type: recall_at_5 value: 10.905 - task: type: Classification dataset: name: MTEB ImdbClassification type: None config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 65.4388 - type: ap value: 60.440774024423426 - type: f1 value: 65.31315753102281 - task: type: Retrieval dataset: name: MTEB MSMARCO type: None config: default split: dev revision: c5a29a104738b98a9e76336939199e264163d4a0 metrics: - type: map_at_1 value: 3.4479999999999995 - type: map_at_10 value: 5.74 - type: map_at_100 value: 6.2780000000000005 - type: map_at_1000 value: 6.358999999999999 - type: map_at_3 value: 4.82 - type: map_at_5 value: 5.3 - type: mrr_at_1 value: 3.5389999999999997 - type: mrr_at_10 value: 5.906000000000001 - type: mrr_at_100 value: 6.455 - type: mrr_at_1000 value: 6.5360000000000005 - type: mrr_at_3 value: 4.9639999999999995 - type: mrr_at_5 value: 5.453 - type: ndcg_at_1 value: 3.5389999999999997 - type: ndcg_at_10 value: 7.255000000000001 - type: ndcg_at_100 value: 10.308 - type: ndcg_at_1000 value: 12.93 - type: ndcg_at_3 value: 5.314 - type: ndcg_at_5 value: 6.184 - type: precision_at_1 value: 3.5389999999999997 - type: precision_at_10 value: 1.246 - type: precision_at_100 value: 0.28500000000000003 - type: precision_at_1000 value: 0.051000000000000004 - type: precision_at_3 value: 2.297 - type: precision_at_5 value: 1.814 - type: recall_at_1 value: 3.4479999999999995 - type: recall_at_10 value: 11.982 - type: recall_at_100 value: 27.123 - type: recall_at_1000 value: 48.489 - type: recall_at_3 value: 6.607 - type: recall_at_5 value: 8.706 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: None config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 85.9484724122207 - type: f1 value: 85.39768490584245 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: None config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 58.48837209302326 - type: f1 value: 39.10849416181491 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: None config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 60.632145258910555 - type: f1 value: 58.09773014884143 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: None config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 67.68325487558843 - type: f1 value: 65.91204845805859 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P type: None config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 26.41069242141184 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S type: None config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 23.307848920918044 - task: type: Reranking dataset: name: MTEB MindSmallReranking type: None config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 28.270878365120332 - type: mrr value: 29.057926505909254 - task: type: Retrieval dataset: name: MTEB NFCorpus type: None config: default split: test revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 metrics: - type: map_at_1 value: 1.855 - type: map_at_10 value: 3.582 - type: map_at_100 value: 4.694 - type: map_at_1000 value: 5.739 - type: map_at_3 value: 2.677 - type: map_at_5 value: 3.1 - type: mrr_at_1 value: 18.884999999999998 - type: mrr_at_10 value: 27.256999999999998 - type: mrr_at_100 value: 28.327999999999996 - type: mrr_at_1000 value: 28.402 - type: mrr_at_3 value: 24.2 - type: mrr_at_5 value: 26.011 - type: ndcg_at_1 value: 17.957 - type: ndcg_at_10 value: 14.051 - type: ndcg_at_100 value: 14.282 - type: ndcg_at_1000 value: 24.3 - type: ndcg_at_3 value: 15.478 - type: ndcg_at_5 value: 14.782 - type: precision_at_1 value: 18.884999999999998 - type: precision_at_10 value: 10.743 - type: precision_at_100 value: 4.449 - type: precision_at_1000 value: 1.7670000000000001 - type: precision_at_3 value: 14.654 - type: precision_at_5 value: 12.940999999999999 - type: recall_at_1 value: 1.855 - type: recall_at_10 value: 6.861000000000001 - type: recall_at_100 value: 18.044 - type: recall_at_1000 value: 52.712 - type: recall_at_3 value: 3.3369999999999997 - type: recall_at_5 value: 4.562 - task: type: Retrieval dataset: name: MTEB NQ type: None config: default split: test revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 metrics: - type: map_at_1 value: 4.881 - type: map_at_10 value: 8.241999999999999 - type: map_at_100 value: 8.956999999999999 - type: map_at_1000 value: 9.062000000000001 - type: map_at_3 value: 6.981 - type: map_at_5 value: 7.61 - type: mrr_at_1 value: 5.5329999999999995 - type: mrr_at_10 value: 9.184000000000001 - type: mrr_at_100 value: 9.918000000000001 - type: mrr_at_1000 value: 10.018 - type: mrr_at_3 value: 7.836 - type: mrr_at_5 value: 8.518 - type: ndcg_at_1 value: 5.5329999999999995 - type: ndcg_at_10 value: 10.554 - type: ndcg_at_100 value: 14.341999999999999 - type: ndcg_at_1000 value: 17.458000000000002 - type: ndcg_at_3 value: 7.8759999999999994 - type: ndcg_at_5 value: 9.023 - type: precision_at_1 value: 5.5329999999999995 - type: precision_at_10 value: 1.944 - type: precision_at_100 value: 0.411 - type: precision_at_1000 value: 0.07100000000000001 - type: precision_at_3 value: 3.669 - type: precision_at_5 value: 2.8160000000000003 - type: recall_at_1 value: 4.881 - type: recall_at_10 value: 16.898 - type: recall_at_100 value: 34.625 - type: recall_at_1000 value: 58.901 - type: recall_at_3 value: 9.651 - type: recall_at_5 value: 12.35 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval type: None config: default split: test revision: None metrics: - type: map_at_1 value: 53.159 - type: map_at_10 value: 64.053 - type: map_at_100 value: 64.938 - type: map_at_1000 value: 64.994 - type: map_at_3 value: 61.413 - type: map_at_5 value: 62.966 - type: mrr_at_1 value: 61.129999999999995 - type: mrr_at_10 value: 68.84400000000001 - type: mrr_at_100 value: 69.3 - type: mrr_at_1000 value: 69.319 - type: mrr_at_3 value: 67.113 - type: mrr_at_5 value: 68.162 - type: ndcg_at_1 value: 61.160000000000004 - type: ndcg_at_10 value: 68.944 - type: ndcg_at_100 value: 72.10499999999999 - type: ndcg_at_1000 value: 73.046 - type: ndcg_at_3 value: 65.223 - type: ndcg_at_5 value: 67.05 - type: precision_at_1 value: 61.160000000000004 - type: precision_at_10 value: 10.392999999999999 - type: precision_at_100 value: 1.327 - type: precision_at_1000 value: 0.149 - type: precision_at_3 value: 28.13 - type: precision_at_5 value: 18.656 - type: recall_at_1 value: 53.159 - type: recall_at_10 value: 78.412 - type: recall_at_100 value: 91.399 - type: recall_at_1000 value: 97.52 - type: recall_at_3 value: 67.794 - type: recall_at_5 value: 72.801 - type: map_at_1 value: 1.8450000000000002 - type: map_at_10 value: 4.172 - type: map_at_100 value: 5.092 - type: map_at_1000 value: 5.3100000000000005 - type: map_at_3 value: 3.093 - type: map_at_5 value: 3.6450000000000005 - type: mrr_at_1 value: 9.1 - type: mrr_at_10 value: 15.15 - type: mrr_at_100 value: 16.216 - type: mrr_at_1000 value: 16.332 - type: mrr_at_3 value: 12.55 - type: mrr_at_5 value: 13.975000000000001 - type: ndcg_at_1 value: 9.1 - type: ndcg_at_10 value: 8.065999999999999 - type: ndcg_at_100 value: 12.982 - type: ndcg_at_1000 value: 18.046 - type: ndcg_at_3 value: 7.295999999999999 - type: ndcg_at_5 value: 6.572 - type: precision_at_1 value: 9.1 - type: precision_at_10 value: 4.29 - type: precision_at_100 value: 1.16 - type: precision_at_1000 value: 0.23900000000000002 - type: precision_at_3 value: 6.833 - type: precision_at_5 value: 5.88 - type: recall_at_1 value: 1.8450000000000002 - type: recall_at_10 value: 8.706999999999999 - type: recall_at_100 value: 23.645 - type: recall_at_1000 value: 48.597 - type: recall_at_3 value: 4.175 - type: recall_at_5 value: 5.973 - type: map_at_1 value: 0.058 - type: map_at_10 value: 0.445 - type: map_at_100 value: 2.489 - type: map_at_1000 value: 6.3100000000000005 - type: map_at_3 value: 0.16999999999999998 - type: map_at_5 value: 0.254 - type: mrr_at_1 value: 32.0 - type: mrr_at_10 value: 46.016 - type: mrr_at_100 value: 46.683 - type: mrr_at_1000 value: 46.719 - type: mrr_at_3 value: 41.667 - type: mrr_at_5 value: 42.967 - type: ndcg_at_1 value: 26.0 - type: ndcg_at_10 value: 29.885 - type: ndcg_at_100 value: 22.958000000000002 - type: ndcg_at_1000 value: 22.244 - type: ndcg_at_3 value: 29.787999999999997 - type: ndcg_at_5 value: 29.494999999999997 - type: precision_at_1 value: 32.0 - type: precision_at_10 value: 33.800000000000004 - type: precision_at_100 value: 24.52 - type: precision_at_1000 value: 11.196 - type: precision_at_3 value: 35.333 - type: precision_at_5 value: 34.0 - type: recall_at_1 value: 0.058 - type: recall_at_10 value: 0.657 - type: recall_at_100 value: 5.069 - type: recall_at_1000 value: 22.447 - type: recall_at_3 value: 0.2 - type: recall_at_5 value: 0.32299999999999995 - task: type: Clustering dataset: name: MTEB RedditClustering type: None config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 30.140589231842256 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P type: None config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 39.92770613505385 - task: type: STS dataset: name: MTEB SICK-R type: None config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 75.59024815989618 - type: cos_sim_spearman value: 68.11624653233133 - type: euclidean_pearson value: 73.27920094980502 - type: euclidean_spearman value: 68.11632959681863 - type: manhattan_pearson value: 72.54935141266294 - type: manhattan_spearman value: 67.12457070604133 - task: type: STS dataset: name: MTEB STS12 type: None config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 69.40126270570799 - type: cos_sim_spearman value: 62.14207404840335 - type: euclidean_pearson value: 66.27602017682412 - type: euclidean_spearman value: 62.143384728461314 - type: manhattan_pearson value: 67.07706053549664 - type: manhattan_spearman value: 63.06497657163255 - task: type: STS dataset: name: MTEB STS13 type: None config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 75.5989515866992 - type: cos_sim_spearman value: 77.15211512453997 - type: euclidean_pearson value: 76.70296919445704 - type: euclidean_spearman value: 77.15215294384531 - type: manhattan_pearson value: 77.00183340244841 - type: manhattan_spearman value: 77.54347126493187 - task: type: STS dataset: name: MTEB STS14 type: None config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 73.76592708615566 - type: cos_sim_spearman value: 70.57102535486983 - type: euclidean_pearson value: 73.16493844323281 - type: euclidean_spearman value: 70.57101566858893 - type: manhattan_pearson value: 73.3644832097739 - type: manhattan_spearman value: 70.93527541966915 - task: type: STS dataset: name: MTEB STS15 type: None config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 75.95076880553377 - type: cos_sim_spearman value: 77.68458699868269 - type: euclidean_pearson value: 77.7470713475935 - type: euclidean_spearman value: 77.6845933113232 - type: manhattan_pearson value: 78.19369618957612 - type: manhattan_spearman value: 78.11088657087784 - task: type: STS dataset: name: MTEB STS16 type: None config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 71.9715763028299 - type: cos_sim_spearman value: 73.53220647955904 - type: euclidean_pearson value: 73.57406594330985 - type: euclidean_spearman value: 73.53303581777323 - type: manhattan_pearson value: 74.03967460920595 - type: manhattan_spearman value: 74.05778553630698 - task: type: STS dataset: name: MTEB STS17 (en-en) type: None config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 78.73667148725723 - type: cos_sim_spearman value: 80.81028828869353 - type: euclidean_pearson value: 81.15810431179573 - type: euclidean_spearman value: 80.81116429309112 - type: manhattan_pearson value: 81.55719120035107 - type: manhattan_spearman value: 81.20882260152872 - task: type: STS dataset: name: MTEB STS22 (en) type: None config: en split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 61.43534524580482 - type: cos_sim_spearman value: 59.839157733781434 - type: euclidean_pearson value: 61.83093863698779 - type: euclidean_spearman value: 59.839157733781434 - type: manhattan_pearson value: 62.55988010471628 - type: manhattan_spearman value: 60.30306061143011 - task: type: STS dataset: name: MTEB STSBenchmark type: None config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 72.25188934839379 - type: cos_sim_spearman value: 70.9113050369473 - type: euclidean_pearson value: 72.68710352046212 - type: euclidean_spearman value: 70.9113534378691 - type: manhattan_pearson value: 73.09745859415004 - type: manhattan_spearman value: 71.26505067192102 - task: type: Reranking dataset: name: MTEB SciDocsRR type: None config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 67.5036392977626 - type: mrr value: 87.43891003694925 - task: type: Retrieval dataset: name: MTEB SciFact type: None config: default split: test revision: 0228b52cf27578f30900b9e5271d331663a030d7 metrics: - type: map_at_1 value: 20.889 - type: map_at_10 value: 27.165 - type: map_at_100 value: 28.368 - type: map_at_1000 value: 28.483999999999998 - type: map_at_3 value: 25.180999999999997 - type: map_at_5 value: 26.269 - type: mrr_at_1 value: 22.0 - type: mrr_at_10 value: 28.512999999999998 - type: mrr_at_100 value: 29.531000000000002 - type: mrr_at_1000 value: 29.635 - type: mrr_at_3 value: 26.611 - type: mrr_at_5 value: 27.594 - type: ndcg_at_1 value: 22.0 - type: ndcg_at_10 value: 30.814000000000004 - type: ndcg_at_100 value: 36.647999999999996 - type: ndcg_at_1000 value: 39.81 - type: ndcg_at_3 value: 26.845999999999997 - type: ndcg_at_5 value: 28.677999999999997 - type: precision_at_1 value: 22.0 - type: precision_at_10 value: 4.5 - type: precision_at_100 value: 0.773 - type: precision_at_1000 value: 0.105 - type: precision_at_3 value: 10.778 - type: precision_at_5 value: 7.5329999999999995 - type: recall_at_1 value: 20.889 - type: recall_at_10 value: 40.861 - type: recall_at_100 value: 68.089 - type: recall_at_1000 value: 93.05 - type: recall_at_3 value: 30.083 - type: recall_at_5 value: 34.556 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions type: None config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.47524752475248 - type: cos_sim_ap value: 75.756486791625 - type: cos_sim_f1 value: 70.0162074554295 - type: cos_sim_precision value: 76.14571092831962 - type: cos_sim_recall value: 64.8 - type: dot_accuracy value: 99.47524752475248 - type: dot_ap value: 75.756486791625 - type: dot_f1 value: 70.0162074554295 - type: dot_precision value: 76.14571092831962 - type: dot_recall value: 64.8 - type: euclidean_accuracy value: 99.47524752475248 - type: euclidean_ap value: 75.756486791625 - type: euclidean_f1 value: 70.0162074554295 - type: euclidean_precision value: 76.14571092831962 - type: euclidean_recall value: 64.8 - type: manhattan_accuracy value: 99.53069306930693 - type: manhattan_ap value: 78.93311079752957 - type: manhattan_f1 value: 72.61292166952545 - type: manhattan_precision value: 84.77970627503338 - type: manhattan_recall value: 63.5 - type: max_accuracy value: 99.53069306930693 - type: max_ap value: 78.93311079752957 - type: max_f1 value: 72.61292166952545 - task: type: Clustering dataset: name: MTEB StackExchangeClustering type: None config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 38.956591584917824 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P type: None config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 28.829387041051085 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions type: None config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 41.618168302388256 - type: mrr value: 42.031210211357276 - task: type: Summarization dataset: name: MTEB SummEval type: None config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 29.716182681356333 - type: cos_sim_spearman value: 28.852160879670087 - type: dot_pearson value: 29.716182648715844 - type: dot_spearman value: 28.951026187665967 - task: type: Retrieval dataset: name: MTEB Touche2020 type: None config: default split: test revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f metrics: - type: map_at_1 value: 2.157 - type: map_at_10 value: 6.787999999999999 - type: map_at_100 value: 9.948 - type: map_at_1000 value: 11.331 - type: map_at_3 value: 4.642 - type: map_at_5 value: 5.718999999999999 - type: mrr_at_1 value: 28.571 - type: mrr_at_10 value: 39.195 - type: mrr_at_100 value: 40.778999999999996 - type: mrr_at_1000 value: 40.797 - type: mrr_at_3 value: 36.394999999999996 - type: mrr_at_5 value: 38.129000000000005 - type: ndcg_at_1 value: 28.571 - type: ndcg_at_10 value: 17.936 - type: ndcg_at_100 value: 26.552999999999997 - type: ndcg_at_1000 value: 38.318000000000005 - type: ndcg_at_3 value: 24.192 - type: ndcg_at_5 value: 21.732000000000003 - type: precision_at_1 value: 28.571 - type: precision_at_10 value: 14.285999999999998 - type: precision_at_100 value: 5.489999999999999 - type: precision_at_1000 value: 1.2710000000000001 - type: precision_at_3 value: 24.490000000000002 - type: precision_at_5 value: 20.816000000000003 - type: recall_at_1 value: 2.157 - type: recall_at_10 value: 9.729000000000001 - type: recall_at_100 value: 32.688 - type: recall_at_1000 value: 69.123 - type: recall_at_3 value: 5.26 - type: recall_at_5 value: 7.109 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification type: None config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 67.9134 - type: ap value: 12.774220384041032 - type: f1 value: 52.153059662642434 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification type: None config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 53.613469156762875 - type: f1 value: 53.786522868566145 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering type: None config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 30.747359446594245 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 type: None config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 83.97806520832091 - type: cos_sim_ap value: 66.35427447671117 - type: cos_sim_f1 value: 63.0426851514046 - type: cos_sim_precision value: 58.47056169636815 - type: cos_sim_recall value: 68.3905013192612 - type: dot_accuracy value: 83.97806520832091 - type: dot_ap value: 66.35427447671117 - type: dot_f1 value: 63.0426851514046 - type: dot_precision value: 58.47056169636815 - type: dot_recall value: 68.3905013192612 - type: euclidean_accuracy value: 83.97806520832091 - type: euclidean_ap value: 66.35427447671117 - type: euclidean_f1 value: 63.0426851514046 - type: euclidean_precision value: 58.47056169636815 - type: euclidean_recall value: 68.3905013192612 - type: manhattan_accuracy value: 83.97210466710378 - type: manhattan_ap value: 65.97618382203181 - type: manhattan_f1 value: 62.53991648243675 - type: manhattan_precision value: 58.501838235294116 - type: manhattan_recall value: 67.17678100263852 - type: max_accuracy value: 83.97806520832091 - type: max_ap value: 66.35427447671117 - type: max_f1 value: 63.0426851514046 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus type: None config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 86.71362595567975 - type: cos_sim_ap value: 80.86796720185393 - type: cos_sim_f1 value: 73.24097703244622 - type: cos_sim_precision value: 69.5540783824955 - type: cos_sim_recall value: 77.34062211271944 - type: dot_accuracy value: 86.71362595567975 - type: dot_ap value: 80.86797238493406 - type: dot_f1 value: 73.24097703244622 - type: dot_precision value: 69.5540783824955 - type: dot_recall value: 77.34062211271944 - type: euclidean_accuracy value: 86.71362595567975 - type: euclidean_ap value: 80.86796690301992 - type: euclidean_f1 value: 73.24097703244622 - type: euclidean_precision value: 69.5540783824955 - type: euclidean_recall value: 77.34062211271944 - type: manhattan_accuracy value: 86.64376916210657 - type: manhattan_ap value: 80.8520473693602 - type: manhattan_f1 value: 73.15887850467291 - type: manhattan_precision value: 71.10158407208255 - type: manhattan_recall value: 75.33877425315676 - type: max_accuracy value: 86.71362595567975 - type: max_ap value: 80.86797238493406 - type: max_f1 value: 73.24097703244622 ---
[ "SUMMARIZATION" ]
[ "BIOSSES", "SCIFACT" ]
Non_BioNLP
{"tags": ["mteb"], "model-index": [{"name": "nomic_classification_100", "results": [{"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonCounterfactualClassification (en)", "type": "None", "config": "en", "split": "test", "revision": "e8379541af4e31359cca9fbcf4b00f2671dba205"}, "metrics": [{"type": "accuracy", "value": 70.35820895522387}, {"type": "ap", "value": 32.749463629599404}, {"type": "f1", "value": 64.24277142151362}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonPolarityClassification", "type": "None", "config": "default", "split": "test", "revision": "e2d317d38cd51312af73b3d32a06d1a08b442046"}, "metrics": [{"type": "accuracy", "value": 64.705075}, {"type": "ap", "value": 59.80751870729784}, {"type": "f1", "value": 64.44356439771583}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonReviewsClassification (en)", "type": "None", "config": "en", "split": "test", "revision": "1399c76144fd37290681b995c656ef9b2e06e26d"}, "metrics": [{"type": "accuracy", "value": 33.642}, {"type": "f1", "value": 33.115627459191316}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ArguAna", "type": "None", "config": "default", "split": "test", "revision": "c22ab2a51041ffd869aaddef7af8d8215647e41a"}, "metrics": [{"type": "map_at_1", "value": 17.852}, {"type": "map_at_10", "value": 29.279}, {"type": "map_at_100", "value": 30.55}, {"type": "map_at_1000", "value": 30.605}, {"type": "map_at_3", "value": 25.296000000000003}, {"type": "map_at_5", "value": 27.498}, {"type": "mrr_at_1", "value": 18.137}, {"type": "mrr_at_10", "value": 29.398999999999997}, {"type": "mrr_at_100", "value": 30.677}, {"type": "mrr_at_1000", "value": 30.731}, {"type": "mrr_at_3", "value": 25.427}, {"type": "mrr_at_5", "value": 27.614}, {"type": "ndcg_at_1", "value": 17.852}, {"type": "ndcg_at_10", "value": 36.071999999999996}, {"type": "ndcg_at_100", "value": 42.403}, {"type": "ndcg_at_1000", "value": 43.733}, {"type": "ndcg_at_3", "value": 27.799000000000003}, {"type": "ndcg_at_5", "value": 31.805}, {"type": "precision_at_1", "value": 17.852}, {"type": "precision_at_10", "value": 5.797}, {"type": "precision_at_100", "value": 0.878}, {"type": "precision_at_1000", "value": 0.098}, {"type": "precision_at_3", "value": 11.688}, {"type": "precision_at_5", "value": 8.976}, {"type": "recall_at_1", "value": 17.852}, {"type": "recall_at_10", "value": 57.965999999999994}, {"type": "recall_at_100", "value": 87.83800000000001}, {"type": "recall_at_1000", "value": 98.08}, {"type": "recall_at_3", "value": 35.064}, {"type": "recall_at_5", "value": 44.879000000000005}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringP2P", "type": "None", "config": "default", "split": "test", "revision": "a122ad7f3f0291bf49cc6f4d32aa80929df69d5d"}, "metrics": [{"type": "v_measure", "value": 29.25407935159316}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringS2S", "type": "None", "config": "default", "split": "test", "revision": "f910caf1a6075f7329cdf8c1a6135696f37dbd53"}, "metrics": [{"type": "v_measure", "value": 19.74540490543985}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB AskUbuntuDupQuestions", "type": "None", "config": "default", "split": "test", "revision": "2000358ca161889fa9c082cb41daa8dcfb161a54"}, "metrics": [{"type": "map", "value": 50.92680362916445}, {"type": "mrr", "value": 63.515697137580794}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB BIOSSES", "type": "None", "config": "default", "split": "test", "revision": "d3fb88f8f02e40887cd149695127462bbcf29b4a"}, "metrics": [{"type": "cos_sim_pearson", "value": 72.8794628935656}, {"type": "cos_sim_spearman", "value": 72.28899655141599}, {"type": "euclidean_pearson", "value": 72.84840274301827}, {"type": "euclidean_spearman", "value": 72.28899655141599}, {"type": "manhattan_pearson", "value": 72.27814398382203}, {"type": "manhattan_spearman", "value": 71.66970533201172}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB Banking77Classification", "type": "None", "config": "default", "split": "test", "revision": "0fd18e25b25c072e09e0d92ab615fda904d66300"}, "metrics": [{"type": "accuracy", "value": 66.20129870129871}, {"type": "f1", "value": 65.02435616242589}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringP2P", "type": "None", "config": "default", "split": "test", "revision": "65b79d1d13f80053f67aca9498d9402c2d9f1f40"}, "metrics": [{"type": "v_measure", "value": 28.56746746078776}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringS2S", "type": "None", "config": "default", "split": "test", "revision": "258694dd0231531bc1fd9de6ceb52a0853c6d908"}, "metrics": [{"type": "v_measure", "value": 19.212994376812908}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackAndroidRetrieval", "type": "None", "config": "default", "split": "test", "revision": "f46a197baaae43b4f621051089b82a364682dfeb"}, "metrics": [{"type": "map_at_1", "value": 17.7}, {"type": "map_at_10", "value": 23.182}, {"type": "map_at_100", "value": 24.2}, {"type": "map_at_1000", "value": 24.354}, {"type": "map_at_3", "value": 21.448}, {"type": "map_at_5", "value": 22.394}, {"type": "mrr_at_1", "value": 21.459}, {"type": "mrr_at_10", "value": 27.538}, {"type": "mrr_at_100", "value": 28.399}, {"type": "mrr_at_1000", "value": 28.479}, {"type": "mrr_at_3", "value": 25.775}, {"type": "mrr_at_5", "value": 26.705000000000002}, {"type": "ndcg_at_1", "value": 21.459}, {"type": "ndcg_at_10", "value": 26.987}, {"type": "ndcg_at_100", "value": 31.935999999999996}, {"type": "ndcg_at_1000", "value": 35.335}, {"type": "ndcg_at_3", "value": 24.214}, {"type": "ndcg_at_5", "value": 25.344}, {"type": "precision_at_1", "value": 21.459}, {"type": "precision_at_10", "value": 5.007000000000001}, {"type": "precision_at_100", "value": 0.9299999999999999}, {"type": "precision_at_1000", "value": 0.149}, {"type": "precision_at_3", "value": 11.445}, {"type": "precision_at_5", "value": 8.155}, {"type": "recall_at_1", "value": 17.7}, {"type": "recall_at_10", "value": 33.698}, {"type": "recall_at_100", "value": 55.933}, {"type": "recall_at_1000", "value": 79.567}, {"type": "recall_at_3", "value": 25.331}, {"type": "recall_at_5", "value": 28.681}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackEnglishRetrieval", "type": "None", "config": "default", "split": "test", "revision": "ad9991cb51e31e31e430383c75ffb2885547b5f0"}, "metrics": [{"type": "map_at_1", "value": 13.008000000000001}, {"type": "map_at_10", "value": 17.331}, {"type": "map_at_100", "value": 18.128}, {"type": "map_at_1000", "value": 18.253}, {"type": "map_at_3", "value": 15.708}, {"type": "map_at_5", "value": 16.601}, {"type": "mrr_at_1", "value": 16.624}, {"type": "mrr_at_10", "value": 21.038999999999998}, {"type": "mrr_at_100", "value": 21.782}, {"type": "mrr_at_1000", "value": 21.869}, {"type": "mrr_at_3", "value": 19.320999999999998}, {"type": "mrr_at_5", "value": 20.266000000000002}, {"type": "ndcg_at_1", "value": 16.624}, {"type": "ndcg_at_10", "value": 20.584}, {"type": "ndcg_at_100", "value": 24.43}, {"type": "ndcg_at_1000", "value": 27.486}, {"type": "ndcg_at_3", "value": 17.724999999999998}, {"type": "ndcg_at_5", "value": 18.990000000000002}, {"type": "precision_at_1", "value": 16.624}, {"type": "precision_at_10", "value": 3.8850000000000002}, {"type": "precision_at_100", "value": 0.7250000000000001}, {"type": "precision_at_1000", "value": 0.122}, {"type": "precision_at_3", "value": 8.514}, {"type": "precision_at_5", "value": 6.204}, {"type": "recall_at_1", "value": 13.008000000000001}, {"type": "recall_at_10", "value": 26.799}, {"type": "recall_at_100", "value": 43.802}, {"type": "recall_at_1000", "value": 65.035}, {"type": "recall_at_3", "value": 18.411}, {"type": "recall_at_5", "value": 21.887999999999998}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackGamingRetrieval", "type": "None", "config": "default", "split": "test", "revision": "4885aa143210c98657558c04aaf3dc47cfb54340"}, "metrics": [{"type": "map_at_1", "value": 18.459}, {"type": "map_at_10", "value": 24.775}, {"type": "map_at_100", "value": 25.691999999999997}, {"type": "map_at_1000", "value": 25.802999999999997}, {"type": "map_at_3", "value": 22.784}, {"type": "map_at_5", "value": 23.764}, {"type": "mrr_at_1", "value": 21.379}, {"type": "mrr_at_10", "value": 27.555000000000003}, {"type": "mrr_at_100", "value": 28.355000000000004}, {"type": "mrr_at_1000", "value": 28.438999999999997}, {"type": "mrr_at_3", "value": 25.663999999999998}, {"type": "mrr_at_5", "value": 26.598}, {"type": "ndcg_at_1", "value": 21.379}, {"type": "ndcg_at_10", "value": 28.691}, {"type": "ndcg_at_100", "value": 33.387}, {"type": "ndcg_at_1000", "value": 36.299}, {"type": "ndcg_at_3", "value": 24.883}, {"type": "ndcg_at_5", "value": 26.438}, {"type": "precision_at_1", "value": 21.379}, {"type": "precision_at_10", "value": 4.777}, {"type": "precision_at_100", "value": 0.7799999999999999}, {"type": "precision_at_1000", "value": 0.11199999999999999}, {"type": "precision_at_3", "value": 11.16}, {"type": "precision_at_5", "value": 7.7490000000000006}, {"type": "recall_at_1", "value": 18.459}, {"type": "recall_at_10", "value": 37.964999999999996}, {"type": "recall_at_100", "value": 59.728}, {"type": "recall_at_1000", "value": 81.351}, {"type": "recall_at_3", "value": 27.538}, {"type": "recall_at_5", "value": 31.464}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackGisRetrieval", "type": "None", "config": "default", "split": "test", "revision": "5003b3064772da1887988e05400cf3806fe491f2"}, "metrics": [{"type": "map_at_1", "value": 8.324}, {"type": "map_at_10", "value": 10.779}, {"type": "map_at_100", "value": 11.371}, {"type": "map_at_1000", "value": 11.466999999999999}, {"type": "map_at_3", "value": 9.922}, {"type": "map_at_5", "value": 10.319}, {"type": "mrr_at_1", "value": 9.153}, {"type": "mrr_at_10", "value": 11.700000000000001}, {"type": "mrr_at_100", "value": 12.314}, {"type": "mrr_at_1000", "value": 12.406}, {"type": "mrr_at_3", "value": 10.81}, {"type": "mrr_at_5", "value": 11.234}, {"type": "ndcg_at_1", "value": 9.153}, {"type": "ndcg_at_10", "value": 12.472}, {"type": "ndcg_at_100", "value": 15.942}, {"type": "ndcg_at_1000", "value": 19.118}, {"type": "ndcg_at_3", "value": 10.644}, {"type": "ndcg_at_5", "value": 11.355}, {"type": "precision_at_1", "value": 9.153}, {"type": "precision_at_10", "value": 1.921}, {"type": "precision_at_100", "value": 0.391}, {"type": "precision_at_1000", "value": 0.07100000000000001}, {"type": "precision_at_3", "value": 4.444}, {"type": "precision_at_5", "value": 3.073}, {"type": "recall_at_1", "value": 8.324}, {"type": "recall_at_10", "value": 16.971}, {"type": "recall_at_100", "value": 34.041}, {"type": "recall_at_1000", "value": 59.45399999999999}, {"type": "recall_at_3", "value": 11.77}, {"type": "recall_at_5", "value": 13.522}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackMathematicaRetrieval", "type": "None", "config": "default", "split": "test", "revision": "90fceea13679c63fe563ded68f3b6f06e50061de"}, "metrics": [{"type": "map_at_1", "value": 3.998}, {"type": "map_at_10", "value": 6.22}, {"type": "map_at_100", "value": 6.687}, {"type": "map_at_1000", "value": 6.796}, {"type": "map_at_3", "value": 5.124}, {"type": "map_at_5", "value": 5.705}, {"type": "mrr_at_1", "value": 5.224}, {"type": "mrr_at_10", "value": 7.915}, {"type": "mrr_at_100", "value": 8.433}, {"type": "mrr_at_1000", "value": 8.530999999999999}, {"type": "mrr_at_3", "value": 6.654}, {"type": "mrr_at_5", "value": 7.276000000000001}, {"type": "ndcg_at_1", "value": 5.224}, {"type": "ndcg_at_10", "value": 8.238}, {"type": "ndcg_at_100", "value": 11.126999999999999}, {"type": "ndcg_at_1000", "value": 14.552999999999999}, {"type": "ndcg_at_3", "value": 6.0249999999999995}, {"type": "ndcg_at_5", "value": 6.981999999999999}, {"type": "precision_at_1", "value": 5.224}, {"type": "precision_at_10", "value": 1.7160000000000002}, {"type": "precision_at_100", "value": 0.371}, {"type": "precision_at_1000", "value": 0.078}, {"type": "precision_at_3", "value": 2.9850000000000003}, {"type": "precision_at_5", "value": 2.413}, {"type": "recall_at_1", "value": 3.998}, {"type": "recall_at_10", "value": 12.995999999999999}, {"type": "recall_at_100", "value": 26.819}, {"type": "recall_at_1000", "value": 52.608}, {"type": "recall_at_3", "value": 6.721000000000001}, {"type": "recall_at_5", "value": 9.198}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackPhysicsRetrieval", "type": "None", "config": "default", "split": "test", "revision": "79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4"}, "metrics": [{"type": "map_at_1", "value": 12.331}, {"type": "map_at_10", "value": 16.913}, {"type": "map_at_100", "value": 17.841}, {"type": "map_at_1000", "value": 17.977}, {"type": "map_at_3", "value": 15.633}, {"type": "map_at_5", "value": 16.256}, {"type": "mrr_at_1", "value": 15.110999999999999}, {"type": "mrr_at_10", "value": 20.419999999999998}, {"type": "mrr_at_100", "value": 21.294}, {"type": "mrr_at_1000", "value": 21.386}, {"type": "mrr_at_3", "value": 18.961}, {"type": "mrr_at_5", "value": 19.682}, {"type": "ndcg_at_1", "value": 15.110999999999999}, {"type": "ndcg_at_10", "value": 20.115}, {"type": "ndcg_at_100", "value": 24.914}, {"type": "ndcg_at_1000", "value": 28.375}, {"type": "ndcg_at_3", "value": 17.732}, {"type": "ndcg_at_5", "value": 18.658}, {"type": "precision_at_1", "value": 15.110999999999999}, {"type": "precision_at_10", "value": 3.696}, {"type": "precision_at_100", "value": 0.762}, {"type": "precision_at_1000", "value": 0.125}, {"type": "precision_at_3", "value": 8.566}, {"type": "precision_at_5", "value": 5.9670000000000005}, {"type": "recall_at_1", "value": 12.331}, {"type": "recall_at_10", "value": 26.429000000000002}, {"type": "recall_at_100", "value": 47.341}, {"type": "recall_at_1000", "value": 72.149}, {"type": "recall_at_3", "value": 19.467000000000002}, {"type": "recall_at_5", "value": 21.981}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackProgrammersRetrieval", "type": "None", "config": "default", "split": "test", "revision": "6184bc1440d2dbc7612be22b50686b8826d22b32"}, "metrics": [{"type": "map_at_1", "value": 8.262}, {"type": "map_at_10", "value": 11.962}, {"type": "map_at_100", "value": 12.729}, {"type": "map_at_1000", "value": 12.86}, {"type": "map_at_3", "value": 10.65}, {"type": "map_at_5", "value": 11.388}, {"type": "mrr_at_1", "value": 10.502}, {"type": "mrr_at_10", "value": 14.715}, {"type": "mrr_at_100", "value": 15.484}, {"type": "mrr_at_1000", "value": 15.581999999999999}, {"type": "mrr_at_3", "value": 13.299}, {"type": "mrr_at_5", "value": 14.097999999999999}, {"type": "ndcg_at_1", "value": 10.502}, {"type": "ndcg_at_10", "value": 14.649000000000001}, {"type": "ndcg_at_100", "value": 18.738}, {"type": "ndcg_at_1000", "value": 22.456}, {"type": "ndcg_at_3", "value": 12.222}, {"type": "ndcg_at_5", "value": 13.314}, {"type": "precision_at_1", "value": 10.502}, {"type": "precision_at_10", "value": 2.82}, {"type": "precision_at_100", "value": 0.588}, {"type": "precision_at_1000", "value": 0.108}, {"type": "precision_at_3", "value": 5.936}, {"type": "precision_at_5", "value": 4.452}, {"type": "recall_at_1", "value": 8.262}, {"type": "recall_at_10", "value": 20.168}, {"type": "recall_at_100", "value": 38.405}, {"type": "recall_at_1000", "value": 65.694}, {"type": "recall_at_3", "value": 13.428999999999998}, {"type": "recall_at_5", "value": 16.229}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackRetrieval", "type": "mteb/cqadupstack", "config": "default", "split": "test", "revision": "4885aa143210c98657558c04aaf3dc47cfb54340"}, "metrics": [{"type": "map_at_1", "value": 10.117416666666665}, {"type": "map_at_10", "value": 13.858333333333334}, {"type": "map_at_100", "value": 14.565166666666668}, {"type": "map_at_1000", "value": 14.68266666666667}, {"type": "map_at_3", "value": 12.60983333333333}, {"type": "map_at_5", "value": 13.277416666666667}, {"type": "mrr_at_1", "value": 12.332833333333335}, {"type": "mrr_at_10", "value": 16.376333333333335}, {"type": "mrr_at_100", "value": 17.063333333333333}, {"type": "mrr_at_1000", "value": 17.1535}, {"type": "mrr_at_3", "value": 15.040666666666667}, {"type": "mrr_at_5", "value": 15.764833333333334}, {"type": "ndcg_at_1", "value": 12.332833333333335}, {"type": "ndcg_at_10", "value": 16.51366666666667}, {"type": "ndcg_at_100", "value": 20.2845}, {"type": "ndcg_at_1000", "value": 23.54025}, {"type": "ndcg_at_3", "value": 14.171250000000002}, {"type": "ndcg_at_5", "value": 15.193583333333333}, {"type": "precision_at_1", "value": 12.332833333333335}, {"type": "precision_at_10", "value": 2.983083333333333}, {"type": "precision_at_100", "value": 0.58325}, {"type": "precision_at_1000", "value": 0.10250000000000001}, {"type": "precision_at_3", "value": 6.626083333333334}, {"type": "precision_at_5", "value": 4.774916666666665}, {"type": "recall_at_1", "value": 10.117416666666665}, {"type": "recall_at_10", "value": 22.14666666666667}, {"type": "recall_at_100", "value": 39.5745}, {"type": "recall_at_1000", "value": 63.73550000000001}, {"type": "recall_at_3", "value": 15.431666666666665}, {"type": "recall_at_5", "value": 18.1215}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackStatsRetrieval", "type": "None", "config": "default", "split": "test", "revision": "65ac3a16b8e91f9cee4c9828cc7c335575432a2a"}, "metrics": [{"type": "map_at_1", "value": 7.431}, {"type": "map_at_10", "value": 10.172}, {"type": "map_at_100", "value": 10.639999999999999}, {"type": "map_at_1000", "value": 10.716000000000001}, {"type": "map_at_3", "value": 9.242}, {"type": "map_at_5", "value": 9.614}, {"type": "mrr_at_1", "value": 9.202}, {"type": "mrr_at_10", "value": 12.08}, {"type": "mrr_at_100", "value": 12.58}, {"type": "mrr_at_1000", "value": 12.649}, {"type": "mrr_at_3", "value": 11.145}, {"type": "mrr_at_5", "value": 11.59}, {"type": "ndcg_at_1", "value": 9.202}, {"type": "ndcg_at_10", "value": 12.291}, {"type": "ndcg_at_100", "value": 14.940999999999999}, {"type": "ndcg_at_1000", "value": 17.325}, {"type": "ndcg_at_3", "value": 10.446}, {"type": "ndcg_at_5", "value": 11.027000000000001}, {"type": "precision_at_1", "value": 9.202}, {"type": "precision_at_10", "value": 2.193}, {"type": "precision_at_100", "value": 0.388}, {"type": "precision_at_1000", "value": 0.065}, {"type": "precision_at_3", "value": 4.806}, {"type": "precision_at_5", "value": 3.374}, {"type": "recall_at_1", "value": 7.431}, {"type": "recall_at_10", "value": 17.197000000000003}, {"type": "recall_at_100", "value": 29.704000000000004}, {"type": "recall_at_1000", "value": 48.278999999999996}, {"type": "recall_at_3", "value": 11.616999999999999}, {"type": "recall_at_5", "value": 13.181000000000001}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackTexRetrieval", "type": "None", "config": "default", "split": "test", "revision": "46989137a86843e03a6195de44b09deda022eec7"}, "metrics": [{"type": "map_at_1", "value": 5.348}, {"type": "map_at_10", "value": 7.591}, {"type": "map_at_100", "value": 8.109}, {"type": "map_at_1000", "value": 8.206}, {"type": "map_at_3", "value": 6.782000000000001}, {"type": "map_at_5", "value": 7.244000000000001}, {"type": "mrr_at_1", "value": 6.641}, {"type": "mrr_at_10", "value": 9.281}, {"type": "mrr_at_100", "value": 9.838}, {"type": "mrr_at_1000", "value": 9.922}, {"type": "mrr_at_3", "value": 8.286999999999999}, {"type": "mrr_at_5", "value": 8.866999999999999}, {"type": "ndcg_at_1", "value": 6.641}, {"type": "ndcg_at_10", "value": 9.302000000000001}, {"type": "ndcg_at_100", "value": 12.200999999999999}, {"type": "ndcg_at_1000", "value": 15.223999999999998}, {"type": "ndcg_at_3", "value": 7.692}, {"type": "ndcg_at_5", "value": 8.474}, {"type": "precision_at_1", "value": 6.641}, {"type": "precision_at_10", "value": 1.755}, {"type": "precision_at_100", "value": 0.388}, {"type": "precision_at_1000", "value": 0.079}, {"type": "precision_at_3", "value": 3.6249999999999996}, {"type": "precision_at_5", "value": 2.753}, {"type": "recall_at_1", "value": 5.348}, {"type": "recall_at_10", "value": 12.887}, {"type": "recall_at_100", "value": 26.391}, {"type": "recall_at_1000", "value": 49.156}, {"type": "recall_at_3", "value": 8.519}, {"type": "recall_at_5", "value": 10.431}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackUnixRetrieval", "type": "None", "config": "default", "split": "test", "revision": "6c6430d3a6d36f8d2a829195bc5dc94d7e063e53"}, "metrics": [{"type": "map_at_1", "value": 7.9750000000000005}, {"type": "map_at_10", "value": 11.28}, {"type": "map_at_100", "value": 11.953}, {"type": "map_at_1000", "value": 12.051}, {"type": "map_at_3", "value": 10.022}, {"type": "map_at_5", "value": 10.807}, {"type": "mrr_at_1", "value": 9.795}, {"type": "mrr_at_10", "value": 13.544999999999998}, {"type": "mrr_at_100", "value": 14.249999999999998}, {"type": "mrr_at_1000", "value": 14.341000000000001}, {"type": "mrr_at_3", "value": 12.174}, {"type": "mrr_at_5", "value": 13.041}, {"type": "ndcg_at_1", "value": 9.795}, {"type": "ndcg_at_10", "value": 13.697000000000001}, {"type": "ndcg_at_100", "value": 17.389}, {"type": "ndcg_at_1000", "value": 20.46}, {"type": "ndcg_at_3", "value": 11.277}, {"type": "ndcg_at_5", "value": 12.579}, {"type": "precision_at_1", "value": 9.795}, {"type": "precision_at_10", "value": 2.435}, {"type": "precision_at_100", "value": 0.481}, {"type": "precision_at_1000", "value": 0.084}, {"type": "precision_at_3", "value": 5.255}, {"type": "precision_at_5", "value": 3.955}, {"type": "recall_at_1", "value": 7.9750000000000005}, {"type": "recall_at_10", "value": 18.981}, {"type": "recall_at_100", "value": 36.178}, {"type": "recall_at_1000", "value": 59.46900000000001}, {"type": "recall_at_3", "value": 12.371}, {"type": "recall_at_5", "value": 15.613}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackWebmastersRetrieval", "type": "None", "config": "default", "split": "test", "revision": "160c094312a0e1facb97e55eeddb698c0abe3571"}, "metrics": [{"type": "map_at_1", "value": 10.742}, {"type": "map_at_10", "value": 15.346000000000002}, {"type": "map_at_100", "value": 16.153000000000002}, {"type": "map_at_1000", "value": 16.311999999999998}, {"type": "map_at_3", "value": 14.222999999999999}, {"type": "map_at_5", "value": 14.777000000000001}, {"type": "mrr_at_1", "value": 14.032}, {"type": "mrr_at_10", "value": 18.83}, {"type": "mrr_at_100", "value": 19.564999999999998}, {"type": "mrr_at_1000", "value": 19.655}, {"type": "mrr_at_3", "value": 17.523}, {"type": "mrr_at_5", "value": 18.244}, {"type": "ndcg_at_1", "value": 14.032}, {"type": "ndcg_at_10", "value": 18.496000000000002}, {"type": "ndcg_at_100", "value": 22.377}, {"type": "ndcg_at_1000", "value": 26.284000000000002}, {"type": "ndcg_at_3", "value": 16.520000000000003}, {"type": "ndcg_at_5", "value": 17.276}, {"type": "precision_at_1", "value": 14.032}, {"type": "precision_at_10", "value": 3.5770000000000004}, {"type": "precision_at_100", "value": 0.783}, {"type": "precision_at_1000", "value": 0.16}, {"type": "precision_at_3", "value": 7.971}, {"type": "precision_at_5", "value": 5.692}, {"type": "recall_at_1", "value": 10.742}, {"type": "recall_at_10", "value": 24.157999999999998}, {"type": "recall_at_100", "value": 42.091}, {"type": "recall_at_1000", "value": 70.054}, {"type": "recall_at_3", "value": 17.916999999999998}, {"type": "recall_at_5", "value": 20.131}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackWordpressRetrieval", "type": "None", "config": "default", "split": "test", "revision": "4ffe81d471b1924886b33c7567bfb200e9eec5c4"}, "metrics": [{"type": "map_at_1", "value": 7.831}, {"type": "map_at_10", "value": 10.749}, {"type": "map_at_100", "value": 11.279}, {"type": "map_at_1000", "value": 11.397}, {"type": "map_at_3", "value": 9.78}, {"type": "map_at_5", "value": 10.459999999999999}, {"type": "mrr_at_1", "value": 8.872}, {"type": "mrr_at_10", "value": 11.898}, {"type": "mrr_at_100", "value": 12.466000000000001}, {"type": "mrr_at_1000", "value": 12.583}, {"type": "mrr_at_3", "value": 10.875}, {"type": "mrr_at_5", "value": 11.577}, {"type": "ndcg_at_1", "value": 8.872}, {"type": "ndcg_at_10", "value": 12.642000000000001}, {"type": "ndcg_at_100", "value": 16.032}, {"type": "ndcg_at_1000", "value": 19.567999999999998}, {"type": "ndcg_at_3", "value": 10.674999999999999}, {"type": "ndcg_at_5", "value": 11.886}, {"type": "precision_at_1", "value": 8.872}, {"type": "precision_at_10", "value": 2.015}, {"type": "precision_at_100", "value": 0.41200000000000003}, {"type": "precision_at_1000", "value": 0.077}, {"type": "precision_at_3", "value": 4.806}, {"type": "precision_at_5", "value": 3.512}, {"type": "recall_at_1", "value": 7.831}, {"type": "recall_at_10", "value": 17.511}, {"type": "recall_at_100", "value": 34.461000000000006}, {"type": "recall_at_1000", "value": 62.01}, {"type": "recall_at_3", "value": 12.089}, {"type": "recall_at_5", "value": 15.139}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ClimateFEVER", "type": "None", "config": "default", "split": "test", "revision": "47f2ac6acb640fc46020b02a5b59fdda04d39380"}, "metrics": [{"type": "map_at_1", "value": 3.3300000000000005}, {"type": "map_at_10", "value": 5.8709999999999996}, {"type": "map_at_100", "value": 6.7860000000000005}, {"type": "map_at_1000", "value": 6.955}, {"type": "map_at_3", "value": 4.714}, {"type": "map_at_5", "value": 5.26}, {"type": "mrr_at_1", "value": 7.101}, {"type": "mrr_at_10", "value": 12.125}, {"type": "mrr_at_100", "value": 13.200000000000001}, {"type": "mrr_at_1000", "value": 13.295000000000002}, {"type": "mrr_at_3", "value": 10.119}, {"type": "mrr_at_5", "value": 11.038}, {"type": "ndcg_at_1", "value": 7.101}, {"type": "ndcg_at_10", "value": 9.159}, {"type": "ndcg_at_100", "value": 14.030000000000001}, {"type": "ndcg_at_1000", "value": 18.013}, {"type": "ndcg_at_3", "value": 6.6739999999999995}, {"type": "ndcg_at_5", "value": 7.4719999999999995}, {"type": "precision_at_1", "value": 7.101}, {"type": "precision_at_10", "value": 3.16}, {"type": "precision_at_100", "value": 0.84}, {"type": "precision_at_1000", "value": 0.156}, {"type": "precision_at_3", "value": 5.081}, {"type": "precision_at_5", "value": 4.143}, {"type": "recall_at_1", "value": 3.3300000000000005}, {"type": "recall_at_10", "value": 12.215}, {"type": "recall_at_100", "value": 29.683999999999997}, {"type": "recall_at_1000", "value": 52.951}, {"type": "recall_at_3", "value": 6.356000000000001}, {"type": "recall_at_5", "value": 8.315}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB DBPedia", "type": "None", "config": "default", "split": "test", "revision": "c0f706b76e590d620bd6618b3ca8efdd34e2d659"}, "metrics": [{"type": "map_at_1", "value": 1.718}, {"type": "map_at_10", "value": 3.639}, {"type": "map_at_100", "value": 4.853}, {"type": "map_at_1000", "value": 5.219}, {"type": "map_at_3", "value": 2.6149999999999998}, {"type": "map_at_5", "value": 3.073}, {"type": "mrr_at_1", "value": 20.0}, {"type": "mrr_at_10", "value": 26.88}, {"type": "mrr_at_100", "value": 27.753}, {"type": "mrr_at_1000", "value": 27.822000000000003}, {"type": "mrr_at_3", "value": 24.667}, {"type": "mrr_at_5", "value": 25.654}, {"type": "ndcg_at_1", "value": 15.0}, {"type": "ndcg_at_10", "value": 10.878}, {"type": "ndcg_at_100", "value": 12.011}, {"type": "ndcg_at_1000", "value": 16.492}, {"type": "ndcg_at_3", "value": 12.818999999999999}, {"type": "ndcg_at_5", "value": 11.554}, {"type": "precision_at_1", "value": 20.0}, {"type": "precision_at_10", "value": 9.625}, {"type": "precision_at_100", "value": 3.037}, {"type": "precision_at_1000", "value": 0.7080000000000001}, {"type": "precision_at_3", "value": 15.082999999999998}, {"type": "precision_at_5", "value": 12.1}, {"type": "recall_at_1", "value": 1.718}, {"type": "recall_at_10", "value": 5.716}, {"type": "recall_at_100", "value": 14.266000000000002}, {"type": "recall_at_1000", "value": 30.012}, {"type": "recall_at_3", "value": 3.108}, {"type": "recall_at_5", "value": 4.181}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB EmotionClassification", "type": "None", "config": "default", "split": "test", "revision": "4f58c6b202a23cf9a4da393831edf4f9183cad37"}, "metrics": [{"type": "accuracy", "value": 41.114999999999995}, {"type": "f1", "value": 37.00141090816854}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB FEVER", "type": "None", "config": "default", "split": "test", "revision": "bea83ef9e8fb933d90a2f1d5515737465d613e12"}, "metrics": [{"type": "map_at_1", "value": 5.523}, {"type": "map_at_10", "value": 8.036}, {"type": "map_at_100", "value": 8.581999999999999}, {"type": "map_at_1000", "value": 8.657}, {"type": "map_at_3", "value": 7.13}, {"type": "map_at_5", "value": 7.536}, {"type": "mrr_at_1", "value": 5.836}, {"type": "mrr_at_10", "value": 8.547}, {"type": "mrr_at_100", "value": 9.123000000000001}, {"type": "mrr_at_1000", "value": 9.197}, {"type": "mrr_at_3", "value": 7.563000000000001}, {"type": "mrr_at_5", "value": 8.006}, {"type": "ndcg_at_1", "value": 5.836}, {"type": "ndcg_at_10", "value": 9.764000000000001}, {"type": "ndcg_at_100", "value": 12.866}, {"type": "ndcg_at_1000", "value": 15.243}, {"type": "ndcg_at_3", "value": 7.7700000000000005}, {"type": "ndcg_at_5", "value": 8.518}, {"type": "precision_at_1", "value": 5.836}, {"type": "precision_at_10", "value": 1.6070000000000002}, {"type": "precision_at_100", "value": 0.331}, {"type": "precision_at_1000", "value": 0.055}, {"type": "precision_at_3", "value": 3.2849999999999997}, {"type": "precision_at_5", "value": 2.37}, {"type": "recall_at_1", "value": 5.523}, {"type": "recall_at_10", "value": 14.795}, {"type": "recall_at_100", "value": 29.932}, {"type": "recall_at_1000", "value": 48.946}, {"type": "recall_at_3", "value": 9.208}, {"type": "recall_at_5", "value": 10.984}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB FiQA2018", "type": "None", "config": "default", "split": "test", "revision": "27a168819829fe9bcd655c2df245fb19452e8e06"}, "metrics": [{"type": "map_at_1", "value": 4.135}, {"type": "map_at_10", "value": 6.433999999999999}, {"type": "map_at_100", "value": 7.196}, {"type": "map_at_1000", "value": 7.356999999999999}, {"type": "map_at_3", "value": 5.339}, {"type": "map_at_5", "value": 5.878}, {"type": "mrr_at_1", "value": 8.796}, {"type": "mrr_at_10", "value": 12.357999999999999}, {"type": "mrr_at_100", "value": 13.208}, {"type": "mrr_at_1000", "value": 13.318}, {"type": "mrr_at_3", "value": 10.777000000000001}, {"type": "mrr_at_5", "value": 11.525}, {"type": "ndcg_at_1", "value": 8.796}, {"type": "ndcg_at_10", "value": 9.332}, {"type": "ndcg_at_100", "value": 13.517999999999999}, {"type": "ndcg_at_1000", "value": 17.907999999999998}, {"type": "ndcg_at_3", "value": 7.481999999999999}, {"type": "ndcg_at_5", "value": 8.065}, {"type": "precision_at_1", "value": 8.796}, {"type": "precision_at_10", "value": 2.8240000000000003}, {"type": "precision_at_100", "value": 0.705}, {"type": "precision_at_1000", "value": 0.14400000000000002}, {"type": "precision_at_3", "value": 4.887}, {"type": "precision_at_5", "value": 3.8580000000000005}, {"type": "recall_at_1", "value": 4.135}, {"type": "recall_at_10", "value": 12.292}, {"type": "recall_at_100", "value": 28.915999999999997}, {"type": "recall_at_1000", "value": 57.477999999999994}, {"type": "recall_at_3", "value": 6.747}, {"type": "recall_at_5", "value": 8.667}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB HotpotQA", "type": "None", "config": "default", "split": "test", "revision": "ab518f4d6fcca38d87c25209f94beba119d02014"}, "metrics": [{"type": "map_at_1", "value": 5.928}, {"type": "map_at_10", "value": 8.469}, {"type": "map_at_100", "value": 8.936}, {"type": "map_at_1000", "value": 9.02}, {"type": "map_at_3", "value": 7.582}, {"type": "map_at_5", "value": 8.021}, {"type": "mrr_at_1", "value": 11.857}, {"type": "mrr_at_10", "value": 15.675}, {"type": "mrr_at_100", "value": 16.273}, {"type": "mrr_at_1000", "value": 16.356}, {"type": "mrr_at_3", "value": 14.347999999999999}, {"type": "mrr_at_5", "value": 14.995}, {"type": "ndcg_at_1", "value": 11.857}, {"type": "ndcg_at_10", "value": 11.651}, {"type": "ndcg_at_100", "value": 14.374999999999998}, {"type": "ndcg_at_1000", "value": 16.912}, {"type": "ndcg_at_3", "value": 9.625}, {"type": "ndcg_at_5", "value": 10.474}, {"type": "precision_at_1", "value": 11.857}, {"type": "precision_at_10", "value": 2.777}, {"type": "precision_at_100", "value": 0.503}, {"type": "precision_at_1000", "value": 0.08499999999999999}, {"type": "precision_at_3", "value": 6.140000000000001}, {"type": "precision_at_5", "value": 4.362}, {"type": "recall_at_1", "value": 5.928}, {"type": "recall_at_10", "value": 13.883000000000001}, {"type": "recall_at_100", "value": 25.137999999999998}, {"type": "recall_at_1000", "value": 42.315999999999995}, {"type": "recall_at_3", "value": 9.21}, {"type": "recall_at_5", "value": 10.905}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ImdbClassification", "type": "None", "config": "default", "split": "test", "revision": "3d86128a09e091d6018b6d26cad27f2739fc2db7"}, "metrics": [{"type": "accuracy", "value": 65.4388}, {"type": "ap", "value": 60.440774024423426}, {"type": "f1", "value": 65.31315753102281}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB MSMARCO", "type": "None", "config": "default", "split": "dev", "revision": "c5a29a104738b98a9e76336939199e264163d4a0"}, "metrics": [{"type": "map_at_1", "value": 3.4479999999999995}, {"type": "map_at_10", "value": 5.74}, {"type": "map_at_100", "value": 6.2780000000000005}, {"type": "map_at_1000", "value": 6.358999999999999}, {"type": "map_at_3", "value": 4.82}, {"type": "map_at_5", "value": 5.3}, {"type": "mrr_at_1", "value": 3.5389999999999997}, {"type": "mrr_at_10", "value": 5.906000000000001}, {"type": "mrr_at_100", "value": 6.455}, {"type": "mrr_at_1000", "value": 6.5360000000000005}, {"type": "mrr_at_3", "value": 4.9639999999999995}, {"type": "mrr_at_5", "value": 5.453}, {"type": "ndcg_at_1", "value": 3.5389999999999997}, {"type": "ndcg_at_10", "value": 7.255000000000001}, {"type": "ndcg_at_100", "value": 10.308}, {"type": "ndcg_at_1000", "value": 12.93}, {"type": "ndcg_at_3", "value": 5.314}, {"type": "ndcg_at_5", "value": 6.184}, {"type": "precision_at_1", "value": 3.5389999999999997}, {"type": "precision_at_10", "value": 1.246}, {"type": "precision_at_100", "value": 0.28500000000000003}, {"type": "precision_at_1000", "value": 0.051000000000000004}, {"type": "precision_at_3", "value": 2.297}, {"type": "precision_at_5", "value": 1.814}, {"type": "recall_at_1", "value": 3.4479999999999995}, {"type": "recall_at_10", "value": 11.982}, {"type": "recall_at_100", "value": 27.123}, {"type": "recall_at_1000", "value": 48.489}, {"type": "recall_at_3", "value": 6.607}, {"type": "recall_at_5", "value": 8.706}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPDomainClassification (en)", "type": "None", "config": "en", "split": "test", "revision": "d80d48c1eb48d3562165c59d59d0034df9fff0bf"}, "metrics": [{"type": "accuracy", "value": 85.9484724122207}, {"type": "f1", "value": 85.39768490584245}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPIntentClassification (en)", "type": "None", "config": "en", "split": "test", "revision": "ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba"}, "metrics": [{"type": "accuracy", "value": 58.48837209302326}, {"type": "f1", "value": 39.10849416181491}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (en)", "type": "None", "config": "en", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 60.632145258910555}, {"type": "f1", "value": 58.09773014884143}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (en)", "type": "None", "config": "en", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 67.68325487558843}, {"type": "f1", "value": 65.91204845805859}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringP2P", "type": "None", "config": "default", "split": "test", "revision": "e7a26af6f3ae46b30dde8737f02c07b1505bcc73"}, "metrics": [{"type": "v_measure", "value": 26.41069242141184}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringS2S", "type": "None", "config": "default", "split": "test", "revision": "35191c8c0dca72d8ff3efcd72aa802307d469663"}, "metrics": [{"type": "v_measure", "value": 23.307848920918044}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB MindSmallReranking", "type": "None", "config": "default", "split": "test", "revision": "3bdac13927fdc888b903db93b2ffdbd90b295a69"}, "metrics": [{"type": "map", "value": 28.270878365120332}, {"type": "mrr", "value": 29.057926505909254}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB NFCorpus", "type": "None", "config": "default", "split": "test", "revision": "ec0fa4fe99da2ff19ca1214b7966684033a58814"}, "metrics": [{"type": "map_at_1", "value": 1.855}, {"type": "map_at_10", "value": 3.582}, {"type": "map_at_100", "value": 4.694}, {"type": "map_at_1000", "value": 5.739}, {"type": "map_at_3", "value": 2.677}, {"type": "map_at_5", "value": 3.1}, {"type": "mrr_at_1", "value": 18.884999999999998}, {"type": "mrr_at_10", "value": 27.256999999999998}, {"type": "mrr_at_100", "value": 28.327999999999996}, {"type": "mrr_at_1000", "value": 28.402}, {"type": "mrr_at_3", "value": 24.2}, {"type": "mrr_at_5", "value": 26.011}, {"type": "ndcg_at_1", "value": 17.957}, {"type": "ndcg_at_10", "value": 14.051}, {"type": "ndcg_at_100", "value": 14.282}, {"type": "ndcg_at_1000", "value": 24.3}, {"type": "ndcg_at_3", "value": 15.478}, {"type": "ndcg_at_5", "value": 14.782}, {"type": "precision_at_1", "value": 18.884999999999998}, {"type": "precision_at_10", "value": 10.743}, {"type": "precision_at_100", "value": 4.449}, {"type": "precision_at_1000", "value": 1.7670000000000001}, {"type": "precision_at_3", "value": 14.654}, {"type": "precision_at_5", "value": 12.940999999999999}, {"type": "recall_at_1", "value": 1.855}, {"type": "recall_at_10", "value": 6.861000000000001}, {"type": "recall_at_100", "value": 18.044}, {"type": "recall_at_1000", "value": 52.712}, {"type": "recall_at_3", "value": 3.3369999999999997}, {"type": "recall_at_5", "value": 4.562}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB NQ", "type": "None", "config": "default", "split": "test", "revision": "b774495ed302d8c44a3a7ea25c90dbce03968f31"}, "metrics": [{"type": "map_at_1", "value": 4.881}, {"type": "map_at_10", "value": 8.241999999999999}, {"type": "map_at_100", "value": 8.956999999999999}, {"type": "map_at_1000", "value": 9.062000000000001}, {"type": "map_at_3", "value": 6.981}, {"type": "map_at_5", "value": 7.61}, {"type": "mrr_at_1", "value": 5.5329999999999995}, {"type": "mrr_at_10", "value": 9.184000000000001}, {"type": "mrr_at_100", "value": 9.918000000000001}, {"type": "mrr_at_1000", "value": 10.018}, {"type": "mrr_at_3", "value": 7.836}, {"type": "mrr_at_5", "value": 8.518}, {"type": "ndcg_at_1", "value": 5.5329999999999995}, {"type": "ndcg_at_10", "value": 10.554}, {"type": "ndcg_at_100", "value": 14.341999999999999}, {"type": "ndcg_at_1000", "value": 17.458000000000002}, {"type": "ndcg_at_3", "value": 7.8759999999999994}, {"type": "ndcg_at_5", "value": 9.023}, {"type": "precision_at_1", "value": 5.5329999999999995}, {"type": "precision_at_10", "value": 1.944}, {"type": "precision_at_100", "value": 0.411}, {"type": "precision_at_1000", "value": 0.07100000000000001}, {"type": "precision_at_3", "value": 3.669}, {"type": "precision_at_5", "value": 2.8160000000000003}, {"type": "recall_at_1", "value": 4.881}, {"type": "recall_at_10", "value": 16.898}, {"type": "recall_at_100", "value": 34.625}, {"type": "recall_at_1000", "value": 58.901}, {"type": "recall_at_3", "value": 9.651}, {"type": "recall_at_5", "value": 12.35}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB QuoraRetrieval", "type": "None", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 53.159}, {"type": "map_at_10", "value": 64.053}, {"type": "map_at_100", "value": 64.938}, {"type": "map_at_1000", "value": 64.994}, {"type": "map_at_3", "value": 61.413}, {"type": "map_at_5", "value": 62.966}, {"type": "mrr_at_1", "value": 61.129999999999995}, {"type": "mrr_at_10", "value": 68.84400000000001}, {"type": "mrr_at_100", "value": 69.3}, {"type": "mrr_at_1000", "value": 69.319}, {"type": "mrr_at_3", "value": 67.113}, {"type": "mrr_at_5", "value": 68.162}, {"type": "ndcg_at_1", "value": 61.160000000000004}, {"type": "ndcg_at_10", "value": 68.944}, {"type": "ndcg_at_100", "value": 72.10499999999999}, {"type": "ndcg_at_1000", "value": 73.046}, {"type": "ndcg_at_3", "value": 65.223}, {"type": "ndcg_at_5", "value": 67.05}, {"type": "precision_at_1", "value": 61.160000000000004}, {"type": "precision_at_10", "value": 10.392999999999999}, {"type": "precision_at_100", "value": 1.327}, {"type": "precision_at_1000", "value": 0.149}, {"type": "precision_at_3", "value": 28.13}, {"type": "precision_at_5", "value": 18.656}, {"type": "recall_at_1", "value": 53.159}, {"type": "recall_at_10", "value": 78.412}, {"type": "recall_at_100", "value": 91.399}, {"type": "recall_at_1000", "value": 97.52}, {"type": "recall_at_3", "value": 67.794}, {"type": "recall_at_5", "value": 72.801}, {"type": "map_at_1", "value": 1.8450000000000002}, {"type": "map_at_10", "value": 4.172}, {"type": "map_at_100", "value": 5.092}, {"type": "map_at_1000", "value": 5.3100000000000005}, {"type": "map_at_3", "value": 3.093}, {"type": "map_at_5", "value": 3.6450000000000005}, {"type": "mrr_at_1", "value": 9.1}, {"type": "mrr_at_10", "value": 15.15}, {"type": "mrr_at_100", "value": 16.216}, {"type": "mrr_at_1000", "value": 16.332}, {"type": "mrr_at_3", "value": 12.55}, {"type": "mrr_at_5", "value": 13.975000000000001}, {"type": "ndcg_at_1", "value": 9.1}, {"type": "ndcg_at_10", "value": 8.065999999999999}, {"type": "ndcg_at_100", "value": 12.982}, {"type": "ndcg_at_1000", "value": 18.046}, {"type": "ndcg_at_3", "value": 7.295999999999999}, {"type": "ndcg_at_5", "value": 6.572}, {"type": "precision_at_1", "value": 9.1}, {"type": "precision_at_10", "value": 4.29}, {"type": "precision_at_100", "value": 1.16}, {"type": "precision_at_1000", "value": 0.23900000000000002}, {"type": "precision_at_3", "value": 6.833}, {"type": "precision_at_5", "value": 5.88}, {"type": "recall_at_1", "value": 1.8450000000000002}, {"type": "recall_at_10", "value": 8.706999999999999}, {"type": "recall_at_100", "value": 23.645}, {"type": "recall_at_1000", "value": 48.597}, {"type": "recall_at_3", "value": 4.175}, {"type": "recall_at_5", "value": 5.973}, {"type": "map_at_1", "value": 0.058}, {"type": "map_at_10", "value": 0.445}, {"type": "map_at_100", "value": 2.489}, {"type": "map_at_1000", "value": 6.3100000000000005}, {"type": "map_at_3", "value": 0.16999999999999998}, {"type": "map_at_5", "value": 0.254}, {"type": "mrr_at_1", "value": 32.0}, {"type": "mrr_at_10", "value": 46.016}, {"type": "mrr_at_100", "value": 46.683}, {"type": "mrr_at_1000", "value": 46.719}, {"type": "mrr_at_3", "value": 41.667}, {"type": "mrr_at_5", "value": 42.967}, {"type": "ndcg_at_1", "value": 26.0}, {"type": "ndcg_at_10", "value": 29.885}, {"type": "ndcg_at_100", "value": 22.958000000000002}, {"type": "ndcg_at_1000", "value": 22.244}, {"type": "ndcg_at_3", "value": 29.787999999999997}, {"type": "ndcg_at_5", "value": 29.494999999999997}, {"type": "precision_at_1", "value": 32.0}, {"type": "precision_at_10", "value": 33.800000000000004}, {"type": "precision_at_100", "value": 24.52}, {"type": "precision_at_1000", "value": 11.196}, {"type": "precision_at_3", "value": 35.333}, {"type": "precision_at_5", "value": 34.0}, {"type": "recall_at_1", "value": 0.058}, {"type": "recall_at_10", "value": 0.657}, {"type": "recall_at_100", "value": 5.069}, {"type": "recall_at_1000", "value": 22.447}, {"type": "recall_at_3", "value": 0.2}, {"type": "recall_at_5", "value": 0.32299999999999995}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClustering", "type": "None", "config": "default", "split": "test", "revision": "24640382cdbf8abc73003fb0fa6d111a705499eb"}, "metrics": [{"type": "v_measure", "value": 30.140589231842256}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClusteringP2P", "type": "None", "config": "default", "split": "test", "revision": "282350215ef01743dc01b456c7f5241fa8937f16"}, "metrics": [{"type": "v_measure", "value": 39.92770613505385}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB SICK-R", "type": "None", "config": "default", "split": "test", "revision": "a6ea5a8cab320b040a23452cc28066d9beae2cee"}, "metrics": [{"type": "cos_sim_pearson", "value": 75.59024815989618}, {"type": "cos_sim_spearman", "value": 68.11624653233133}, {"type": "euclidean_pearson", "value": 73.27920094980502}, {"type": "euclidean_spearman", "value": 68.11632959681863}, {"type": "manhattan_pearson", "value": 72.54935141266294}, {"type": "manhattan_spearman", "value": 67.12457070604133}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS12", "type": "None", "config": "default", "split": "test", "revision": "a0d554a64d88156834ff5ae9920b964011b16384"}, "metrics": [{"type": "cos_sim_pearson", "value": 69.40126270570799}, {"type": "cos_sim_spearman", "value": 62.14207404840335}, {"type": "euclidean_pearson", "value": 66.27602017682412}, {"type": "euclidean_spearman", "value": 62.143384728461314}, {"type": "manhattan_pearson", "value": 67.07706053549664}, {"type": "manhattan_spearman", "value": 63.06497657163255}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS13", "type": "None", "config": "default", "split": "test", "revision": "7e90230a92c190f1bf69ae9002b8cea547a64cca"}, "metrics": [{"type": "cos_sim_pearson", "value": 75.5989515866992}, {"type": "cos_sim_spearman", "value": 77.15211512453997}, {"type": "euclidean_pearson", "value": 76.70296919445704}, {"type": "euclidean_spearman", "value": 77.15215294384531}, {"type": "manhattan_pearson", "value": 77.00183340244841}, {"type": "manhattan_spearman", "value": 77.54347126493187}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS14", "type": "None", "config": "default", "split": "test", "revision": "6031580fec1f6af667f0bd2da0a551cf4f0b2375"}, "metrics": [{"type": "cos_sim_pearson", "value": 73.76592708615566}, {"type": "cos_sim_spearman", "value": 70.57102535486983}, {"type": "euclidean_pearson", "value": 73.16493844323281}, {"type": "euclidean_spearman", "value": 70.57101566858893}, {"type": "manhattan_pearson", "value": 73.3644832097739}, {"type": "manhattan_spearman", "value": 70.93527541966915}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS15", "type": "None", "config": "default", "split": "test", "revision": "ae752c7c21bf194d8b67fd573edf7ae58183cbe3"}, "metrics": [{"type": "cos_sim_pearson", "value": 75.95076880553377}, {"type": "cos_sim_spearman", "value": 77.68458699868269}, {"type": "euclidean_pearson", "value": 77.7470713475935}, {"type": "euclidean_spearman", "value": 77.6845933113232}, {"type": "manhattan_pearson", "value": 78.19369618957612}, {"type": "manhattan_spearman", "value": 78.11088657087784}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS16", "type": "None", "config": "default", "split": "test", "revision": "4d8694f8f0e0100860b497b999b3dbed754a0513"}, "metrics": [{"type": "cos_sim_pearson", "value": 71.9715763028299}, {"type": "cos_sim_spearman", "value": 73.53220647955904}, {"type": "euclidean_pearson", "value": 73.57406594330985}, {"type": "euclidean_spearman", "value": 73.53303581777323}, {"type": "manhattan_pearson", "value": 74.03967460920595}, {"type": "manhattan_spearman", "value": 74.05778553630698}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS17 (en-en)", "type": "None", "config": "en-en", "split": "test", "revision": "af5e6fb845001ecf41f4c1e033ce921939a2a68d"}, "metrics": [{"type": "cos_sim_pearson", "value": 78.73667148725723}, {"type": "cos_sim_spearman", "value": 80.81028828869353}, {"type": "euclidean_pearson", "value": 81.15810431179573}, {"type": "euclidean_spearman", "value": 80.81116429309112}, {"type": "manhattan_pearson", "value": 81.55719120035107}, {"type": "manhattan_spearman", "value": 81.20882260152872}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (en)", "type": "None", "config": "en", "split": "test", "revision": "eea2b4fe26a775864c896887d910b76a8098ad3f"}, "metrics": [{"type": "cos_sim_pearson", "value": 61.43534524580482}, {"type": "cos_sim_spearman", "value": 59.839157733781434}, {"type": "euclidean_pearson", "value": 61.83093863698779}, {"type": "euclidean_spearman", "value": 59.839157733781434}, {"type": "manhattan_pearson", "value": 62.55988010471628}, {"type": "manhattan_spearman", "value": 60.30306061143011}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STSBenchmark", "type": "None", "config": "default", "split": "test", "revision": "b0fddb56ed78048fa8b90373c8a3cfc37b684831"}, "metrics": [{"type": "cos_sim_pearson", "value": 72.25188934839379}, {"type": "cos_sim_spearman", "value": 70.9113050369473}, {"type": "euclidean_pearson", "value": 72.68710352046212}, {"type": "euclidean_spearman", "value": 70.9113534378691}, {"type": "manhattan_pearson", "value": 73.09745859415004}, {"type": "manhattan_spearman", "value": 71.26505067192102}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB SciDocsRR", "type": "None", "config": "default", "split": "test", "revision": "d3c5e1fc0b855ab6097bf1cda04dd73947d7caab"}, "metrics": [{"type": "map", "value": 67.5036392977626}, {"type": "mrr", "value": 87.43891003694925}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB SciFact", "type": "None", "config": "default", "split": "test", "revision": "0228b52cf27578f30900b9e5271d331663a030d7"}, "metrics": [{"type": "map_at_1", "value": 20.889}, {"type": "map_at_10", "value": 27.165}, {"type": "map_at_100", "value": 28.368}, {"type": "map_at_1000", "value": 28.483999999999998}, {"type": "map_at_3", "value": 25.180999999999997}, {"type": "map_at_5", "value": 26.269}, {"type": "mrr_at_1", "value": 22.0}, {"type": "mrr_at_10", "value": 28.512999999999998}, {"type": "mrr_at_100", "value": 29.531000000000002}, {"type": "mrr_at_1000", "value": 29.635}, {"type": "mrr_at_3", "value": 26.611}, {"type": "mrr_at_5", "value": 27.594}, {"type": "ndcg_at_1", "value": 22.0}, {"type": "ndcg_at_10", "value": 30.814000000000004}, {"type": "ndcg_at_100", "value": 36.647999999999996}, {"type": "ndcg_at_1000", "value": 39.81}, {"type": "ndcg_at_3", "value": 26.845999999999997}, {"type": "ndcg_at_5", "value": 28.677999999999997}, {"type": "precision_at_1", "value": 22.0}, {"type": "precision_at_10", "value": 4.5}, {"type": "precision_at_100", "value": 0.773}, {"type": "precision_at_1000", "value": 0.105}, {"type": "precision_at_3", "value": 10.778}, {"type": "precision_at_5", "value": 7.5329999999999995}, {"type": "recall_at_1", "value": 20.889}, {"type": "recall_at_10", "value": 40.861}, {"type": "recall_at_100", "value": 68.089}, {"type": "recall_at_1000", "value": 93.05}, {"type": "recall_at_3", "value": 30.083}, {"type": "recall_at_5", "value": 34.556}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB SprintDuplicateQuestions", "type": "None", "config": "default", "split": "test", "revision": "d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46"}, "metrics": [{"type": "cos_sim_accuracy", "value": 99.47524752475248}, {"type": "cos_sim_ap", "value": 75.756486791625}, {"type": "cos_sim_f1", "value": 70.0162074554295}, {"type": "cos_sim_precision", "value": 76.14571092831962}, {"type": "cos_sim_recall", "value": 64.8}, {"type": "dot_accuracy", "value": 99.47524752475248}, {"type": "dot_ap", "value": 75.756486791625}, {"type": "dot_f1", "value": 70.0162074554295}, {"type": "dot_precision", "value": 76.14571092831962}, {"type": "dot_recall", "value": 64.8}, {"type": "euclidean_accuracy", "value": 99.47524752475248}, {"type": "euclidean_ap", "value": 75.756486791625}, {"type": "euclidean_f1", "value": 70.0162074554295}, {"type": "euclidean_precision", "value": 76.14571092831962}, {"type": "euclidean_recall", "value": 64.8}, {"type": "manhattan_accuracy", "value": 99.53069306930693}, {"type": "manhattan_ap", "value": 78.93311079752957}, {"type": "manhattan_f1", "value": 72.61292166952545}, {"type": "manhattan_precision", "value": 84.77970627503338}, {"type": "manhattan_recall", "value": 63.5}, {"type": "max_accuracy", "value": 99.53069306930693}, {"type": "max_ap", "value": 78.93311079752957}, {"type": "max_f1", "value": 72.61292166952545}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClustering", "type": "None", "config": "default", "split": "test", "revision": "6cbc1f7b2bc0622f2e39d2c77fa502909748c259"}, "metrics": [{"type": "v_measure", "value": 38.956591584917824}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClusteringP2P", "type": "None", "config": "default", "split": "test", "revision": "815ca46b2622cec33ccafc3735d572c266efdb44"}, "metrics": [{"type": "v_measure", "value": 28.829387041051085}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB StackOverflowDupQuestions", "type": "None", "config": "default", "split": "test", "revision": "e185fbe320c72810689fc5848eb6114e1ef5ec69"}, "metrics": [{"type": "map", "value": 41.618168302388256}, {"type": "mrr", "value": 42.031210211357276}]}, {"task": {"type": "Summarization"}, "dataset": {"name": "MTEB SummEval", "type": "None", "config": "default", "split": "test", "revision": "cda12ad7615edc362dbf25a00fdd61d3b1eaf93c"}, "metrics": [{"type": "cos_sim_pearson", "value": 29.716182681356333}, {"type": "cos_sim_spearman", "value": 28.852160879670087}, {"type": "dot_pearson", "value": 29.716182648715844}, {"type": "dot_spearman", "value": 28.951026187665967}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB Touche2020", "type": "None", "config": "default", "split": "test", "revision": "a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f"}, "metrics": [{"type": "map_at_1", "value": 2.157}, {"type": "map_at_10", "value": 6.787999999999999}, {"type": "map_at_100", "value": 9.948}, {"type": "map_at_1000", "value": 11.331}, {"type": "map_at_3", "value": 4.642}, {"type": "map_at_5", "value": 5.718999999999999}, {"type": "mrr_at_1", "value": 28.571}, {"type": "mrr_at_10", "value": 39.195}, {"type": "mrr_at_100", "value": 40.778999999999996}, {"type": "mrr_at_1000", "value": 40.797}, {"type": "mrr_at_3", "value": 36.394999999999996}, {"type": "mrr_at_5", "value": 38.129000000000005}, {"type": "ndcg_at_1", "value": 28.571}, {"type": "ndcg_at_10", "value": 17.936}, {"type": "ndcg_at_100", "value": 26.552999999999997}, {"type": "ndcg_at_1000", "value": 38.318000000000005}, {"type": "ndcg_at_3", "value": 24.192}, {"type": "ndcg_at_5", "value": 21.732000000000003}, {"type": "precision_at_1", "value": 28.571}, {"type": "precision_at_10", "value": 14.285999999999998}, {"type": "precision_at_100", "value": 5.489999999999999}, {"type": "precision_at_1000", "value": 1.2710000000000001}, {"type": "precision_at_3", "value": 24.490000000000002}, {"type": "precision_at_5", "value": 20.816000000000003}, {"type": "recall_at_1", "value": 2.157}, {"type": "recall_at_10", "value": 9.729000000000001}, {"type": "recall_at_100", "value": 32.688}, {"type": "recall_at_1000", "value": 69.123}, {"type": "recall_at_3", "value": 5.26}, {"type": "recall_at_5", "value": 7.109}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ToxicConversationsClassification", "type": "None", "config": "default", "split": "test", "revision": "d7c0de2777da35d6aae2200a62c6e0e5af397c4c"}, "metrics": [{"type": "accuracy", "value": 67.9134}, {"type": "ap", "value": 12.774220384041032}, {"type": "f1", "value": 52.153059662642434}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB TweetSentimentExtractionClassification", "type": "None", "config": "default", "split": "test", "revision": "d604517c81ca91fe16a244d1248fc021f9ecee7a"}, "metrics": [{"type": "accuracy", "value": 53.613469156762875}, {"type": "f1", "value": 53.786522868566145}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB TwentyNewsgroupsClustering", "type": "None", "config": "default", "split": "test", "revision": "6125ec4e24fa026cec8a478383ee943acfbd5449"}, "metrics": [{"type": "v_measure", "value": 30.747359446594245}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterSemEval2015", "type": "None", "config": "default", "split": "test", "revision": "70970daeab8776df92f5ea462b6173c0b46fd2d1"}, "metrics": [{"type": "cos_sim_accuracy", "value": 83.97806520832091}, {"type": "cos_sim_ap", "value": 66.35427447671117}, {"type": "cos_sim_f1", "value": 63.0426851514046}, {"type": "cos_sim_precision", "value": 58.47056169636815}, {"type": "cos_sim_recall", "value": 68.3905013192612}, {"type": "dot_accuracy", "value": 83.97806520832091}, {"type": "dot_ap", "value": 66.35427447671117}, {"type": "dot_f1", "value": 63.0426851514046}, {"type": "dot_precision", "value": 58.47056169636815}, {"type": "dot_recall", "value": 68.3905013192612}, {"type": "euclidean_accuracy", "value": 83.97806520832091}, {"type": "euclidean_ap", "value": 66.35427447671117}, {"type": "euclidean_f1", "value": 63.0426851514046}, {"type": "euclidean_precision", "value": 58.47056169636815}, {"type": "euclidean_recall", "value": 68.3905013192612}, {"type": "manhattan_accuracy", "value": 83.97210466710378}, {"type": "manhattan_ap", "value": 65.97618382203181}, {"type": "manhattan_f1", "value": 62.53991648243675}, {"type": "manhattan_precision", "value": 58.501838235294116}, {"type": "manhattan_recall", "value": 67.17678100263852}, {"type": "max_accuracy", "value": 83.97806520832091}, {"type": "max_ap", "value": 66.35427447671117}, {"type": "max_f1", "value": 63.0426851514046}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterURLCorpus", "type": "None", "config": "default", "split": "test", "revision": "8b6510b0b1fa4e4c4f879467980e9be563ec1cdf"}, "metrics": [{"type": "cos_sim_accuracy", "value": 86.71362595567975}, {"type": "cos_sim_ap", "value": 80.86796720185393}, {"type": "cos_sim_f1", "value": 73.24097703244622}, {"type": "cos_sim_precision", "value": 69.5540783824955}, {"type": "cos_sim_recall", "value": 77.34062211271944}, {"type": "dot_accuracy", "value": 86.71362595567975}, {"type": "dot_ap", "value": 80.86797238493406}, {"type": "dot_f1", "value": 73.24097703244622}, {"type": "dot_precision", "value": 69.5540783824955}, {"type": "dot_recall", "value": 77.34062211271944}, {"type": "euclidean_accuracy", "value": 86.71362595567975}, {"type": "euclidean_ap", "value": 80.86796690301992}, {"type": "euclidean_f1", "value": 73.24097703244622}, {"type": "euclidean_precision", "value": 69.5540783824955}, {"type": "euclidean_recall", "value": 77.34062211271944}, {"type": "manhattan_accuracy", "value": 86.64376916210657}, {"type": "manhattan_ap", "value": 80.8520473693602}, {"type": "manhattan_f1", "value": 73.15887850467291}, {"type": "manhattan_precision", "value": 71.10158407208255}, {"type": "manhattan_recall", "value": 75.33877425315676}, {"type": "max_accuracy", "value": 86.71362595567975}, {"type": "max_ap", "value": 80.86797238493406}, {"type": "max_f1", "value": 73.24097703244622}]}]}]}
minhtuan7akp/gte-base-vietnamese-finetune-matryoshka
minhtuan7akp
sentence-similarity
[ "sentence-transformers", "safetensors", "new", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:21892", "loss:MatryoshkaLoss", "loss:MultipleNegativesRankingLoss", "custom_code", "arxiv:1908.10084", "arxiv:2205.13147", "arxiv:1705.00652", "base_model:Alibaba-NLP/gte-multilingual-base", "base_model:finetune:Alibaba-NLP/gte-multilingual-base", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
2025-03-04T02:20:08
2025-03-04T02:22:44
10
0
--- base_model: Alibaba-NLP/gte-multilingual-base library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:21892 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: Sự khác biệt giữa các thời đại trong nghệ thuật trang trí rồng được thể hiện như thế nào qua các thời Hùng Vương, Lý, Trần, Hồ, Lê, Mạc, Nguyễn? sentences: - "Tài liệu tham khảo\r\n323. Nguyễn Quang Ngọc, “Mấy nhận xét về kết cấu kinh tế\ \ của \r\nmột số làng thương nghiệp ờ vùng đồng bằng Bắc Bộ thế kỳ \r\nXVIII-XIX”,\ \ Tạp chí Nghiên cứu Lịch sứ, số 5 (218), 1984.\r\n324. Nguyễn Quang Ngọc, Phan\ \ Đại Doãn, “Mấy ý kiến về hoạt \r\nđộng thương nghiệp ở nông thôn đồng bằng Bắc\ \ Bộ thế kỷ \r\nXVIII-XIX (hiện tượng và bản chất)”, Tạp chí Nghiên cứu\r\nLịch\ \ sử, số 5 (224), 1985.\r\n325. Nguyễn Quang Ngọc, “Thêm vài ý kiến về Tam Điệp”,\ \ Tạp \r\nchí Nghiên cứu Lịch sử, số 1 (244), 1989.\r\n326. Nguyễn Quang Ngọc,\ \ về một số làng buôn ở Đồng bàng Bắc \r\nBộ thế kỳ XVIII-XIX, Hội Sừ học Việt\ \ Nam, 1993.\r\n327. Nguyễn Quang Ngọc, Vũ Văn Quân, “Tư liệu về nguồn gốc \r\n\ chức năng và hoạt động cùa đội Hoàng Sa”, Tạp chí Khoa\r\nhọc xã hội, Đại học\ \ Quốc gia, t.XIV, số 3, 1998, ư. 10-20.\r\n328. Nguyễn Quang Ngọc, “Bảo vệ chủ\ \ quyền ưên Biển Đông: \r\nmột hoạt động nổi bật của vương triều Tây Sơn”, Tạp\ \ chí \r\nLịch sử quân sự, số 1, 1999, tr. 15-18.\r\n329. Nguyễn Quang Ngọc (Chủ\ \ biên), Tiến trình lịch sứ Việt Nam,\r\nNxb. Giáo dục, Hà Nội, 2001.\r\n330.\ \ Nguyền Quân, Phan cẩm Thượng, Mỹ thuật cùa người Việt,\r\nNxb. Mỹ thuật. Hà\ \ Nội. 1989.\r\n331. Nguyễn Tài Thư (Chủ biên), Lịch sử tư tưởng Việt Nam, 2\r\ \ntập, Nxb. Khoa học xã hội, Hà Nội, 1993.\r\n332. Nguyễn Tài Thư, Nho học và\ \ Nho học ớ Việt Nam: Một số lý\r\nluận và thực tiễn, Nxb. Khoa học xã hội, Hà\ \ Nội, 1997.\r\n333. Nguyễn Tưòmg Phượng, Binh chế Việt Nam qua các thời đại,\r\ \nNgày Mai, 1950." - "Ba Thục, Kinh Sở, Ngô Việt…). Kết thúc cuộc \"Hán Sở tranh hùng\", nhà Hán\r\n\ đã thống nhất đất nước Trung Hoa từ bắc xuống nam (tiền bắc hậu nam) và phát\r\ \ntriển đất nước theo một trật tự ngược lại: tiền nam hậu bắc\".\r\nCó thể hình\ \ dung cơ cấu của văn hóa Trung Hoa như sau: \r\nVĂN HOÁ\r\nTRUNG\r\nHOA\r\n=\r\ \nVăn hoá lưu vực sông Hoàng Hà\r\n+\r\nVăn hoá nông\r\nnghiệp lúa nước\r\nĐông\ \ Nam Á\r\nVăn hoá du\r\nmục Tây Bắc +\r\nVăn hoá nông\r\nnghiệp khối Trung\r\n\ Nguyên\r\nMối liên hệ và sự tác động qua lại giữa văn hóa Việt Nam với Trung Hoa,\r\ \ngiữa văn hóa phương Bắc cổ đại với văn hóa phương Nam cổ đại (trong đó có\r\n\ văn hóa Nam – Á - Bách Việt) có thể trình bày trong bảng 1.5.\r\nVĂN HOÁ\r\nP.BẮC\ \ CỔ ĐẠI\r\nVĂN HOÁ PHƯƠNG NAM (= Đ.N.Á cổ đại)\r\nVăn hoá Nam-Á (Bách Việt)\r\ \nVăn hóa vùng lưu\r\nvực sông Hoàng\r\nHà\r\nVăn hóa vùng lưu\r\nvực sông Dương\r\ \nTử\r\nVăn hóa vùng lưu\r\nvực s. Hồng, s.\r\nMã\r\nVăn hóa miền\r\nTrung và\ \ đồng\r\nbằng s. Mê Kông\r\nVĂN HOÁ TRUNG HOA VĂN HOÁ VIỆT NAM\r\nBảng 1.5: Quan\ \ hệ cội nguồn giữa văn hóa Việt Nam và Trung Hoa\r\nBài 3: TIẾN TRÌNH VĂN HÓA\ \ VIỆT NAM\r\nTiến trình văn hóa Việt Nam có thể chia thành 6 giai đoạn: văn hóa\ \ tiền\r\nsử, văn hóa Văn Lang - Âu Lạc, văn hóa thời chống Bắc thuộc, văn hóa\ \ Đại\r\nViệt, văn hóa Đại Nam và văn hóa hiện đại. Sáu giai đoạn này tạo thành\ \ ba lớp:\r\nlớp văn hóa bản địa, lớp văn hóa giao lưu với Trung Hoa và khu vực,\ \ lớp văn\r\nhóa giao lưu với phương Tây.\r\n3.1. Lớp văn hóa bản địa\r\n28\r\n\ Downloaded by Tu?n ?ào Minh ([email protected])\r\nlOMoARcPSD|49704028" - "trái), và hình bán nguyệt (đôi dưới, phải). Trước mắt ta là sự hòa hợp tuyệt\ \ vời\r\ncủa cái động (vật nhau) trong thế tĩnh của ba hình hình học với những\ \ cạnh đáy\r\nvững vàng cho thấy sự ngang sức ngang tài của các chàng trai; sự\ \ vận động liên\r\ntục của cơ bắp như dừng lại. Hai người chờ vật được khuôn lại\ \ trong hai hình\r\nchữ nhật đứng tạo nên cảm giác co ro bất tận trong cái rét\ \ của lễ hội đầu xuân.\r\n4.1.3. Thủ pháp mô hình hóa đã tạo nên một nền nghệ\ \ thuật trang trí và\r\nnhiều mô hình mang tính triết lí sâu sắc.\r\nBộ Tứ Linh\ \ (Hình 4.20a) với long (rồng) biểu trưng cho uy là nam tính; li\r\n(= long mã)\ \ hoặc lân (kì lân, con vật tưởng tượng đầu sư tử, mình nai, đuôi trâu,\r\n131\r\ \nDownloaded by Tu?n ?ào Minh ([email protected])\r\nlOMoARcPSD|49704028\r\ \năn cỏ, rất hiền lành - hình 4.20b) biểu trưng cho ước vọng thái bình, quy (rùa)\r\ \nhiểu tượng cho sự sống lâu và phượng (phụng) biểu tượng cho nữ tính. Rồng -\r\ \nPhượng biểu tượng cho hạnh phúc lứa đôi (ở Trung Hoa hiên tượng này là\r\n“loan-phượng”:\ \ loan là con đực, phượng là con cái). Đồ án trang trí RỒNG phổ\r\nbiến đến mức\ \ phản ánh những đặc trưng cửa từng thời đại. Rồng thời Hùng\r\nvương, thời Lí,\ \ Trần, Hồ, Lê, Mạc, Nguyễn – mỗi thời có những nét đặc thù\r\nriêng tương ứng\ \ với thời đại của mình.\r\nTứ linh cộng thêm ngư-phúc-hạc-hổ thì thành BÁT VẬT.\ \ Ngư (Cá) gắn\r\nvới truyền thuyết \"cá hóa rồng\" biểu tượng cho sự thành đạt.\ \ Chữ phúc là “sự tốt\r\nlành, may mắn” đồng âm và viết gần giống với chữ bức\ \ nghĩa là \"con dơi\", vì" - source_sentence: Nhiệm vụ quan trọng nhất của các nước công nghiệp chủ nghĩa châu Âu và Nhật Bản sau chiến tranh thế giới thứ hai là gì? sentences: - "Dupuis phái tự mình hành động. Tháng 10-1872, Dupuis đi Hương \r\nCảng và Thượng\ \ Hải mua pháo thuyền và đạn dược, mộ quân lính,\r\n1. Đó là các cuộc thám hiểm\ \ cùa phái đoàn Doudard de Lagrée và Francis \r\nGamier vào những năm từ 1866\ \ đến 1870.\r\n2. Nguyễn Phan Quang (1949), Việt Nam thế ky XIX (1802-1884), Nxb.\ \ \r\nThành phố Hồ Chí Minh, tr. 321.\r\n159\r\nLỊCH SỪ VIỆT NAM - TẬP 6\r\nrồi\ \ đến tháng 11 năm đó thì kéo nhau về Bắc Kỳ. Cùng lúc đó, bọn \r\nthực dân hiếu\ \ chiến ở Nam Kỳ cũng lợi dụng việc triều đình Huế \r\nyêu cầu đưa ra Bắc tiễu\ \ trừ giặc biển để phái tàu chiến ra tiếp tay \r\ncho Dupuis. Cậy có lực lượng\ \ mạnh, Dupuis buộc Kinh lược sứ Lê \r\nTuấn trong vòng hai tuần phải xin triều\ \ đình Huế cho phép hắn \r\nđược mượn đường đi lên Vân Nam. Nhung hạn 2 tuần chưa\ \ hết và \r\ngiấy phép cũng chưa có mà Dupuis đã nổ súng, rồi tự tiện kéo đoàn\ \ \r\ntàu vào Cửa cấm (Hải Phòng) ngược sông Hồng lên Hà Nội (ngày \r\n22-12-1872).\ \ Theo sử nhà Nguyễn thì ngày 2-12-1872, Dupuis “từ\r\nHài Dương đi đen Bắc Ninh,\ \ Hà Nội, các quan tình và quân thứ 2-\r\n3 lần biện bác ngăn trở không cho đi,\ \ nhưng chúng không nghe\r\nTrong khoảng thời gian từ năm 1872 đến năm 1873, Dupuis\ \ đã ỷ \r\nthế quân Pháp và triều đình nhà Thanh, trắng trợn xâm phạm chủ \r\n\ quyền Việt Nam, liên tiếp gây ra nhiều vụ khiêu khích, cướp phá \r\nđối với nhân\ \ dân dọc hai bờ sông, tấn công các đồn bốt của triều \r\nđình nhà Nguyễn.\r\n\ Trước hành động ngang ngược cùa Dupuis, quân dân Hà Nội \r\nmặc dù chưa có lệnh\ \ triều đình nhung vẫn tích cực đề phòng. Lệnh" - "hội loài người nói chung hay cùa một quốc gia, một dân tộc nói \r\nriêng. Nghiên\ \ cứu lịch sử là nhằm tìm hiểu những sự kiện xảy ra \r\ntrong quá khứ để từ đó\ \ rút ra các bài học kinh nghiệm cho hiện tại \r\nvà tương lai. Nghiên cứu và\ \ biên soạn lịch sừ, vì vậy, trở thành một \r\nyêu cầu bức thiết của mọi quốc\ \ gia, dân tộc. Phạm Công Trứ, nhà \r\nchính trị danh tiếng, nhà sử học sống ở\ \ thế kỳ XVII, trong bài Tựa\r\nsách Đại Việt sử ký bản kỷ tục biên viết: \"Vì\ \ sao mà làm quốc sử?\r\nVĩ sử chù yếu là để ghi chép sự việc. Có chinh trị cùa\ \ một đời tất\r\nphải có sử của một đời. Mà ngòi bút chép sử giữ nghị luận rất\r\ \nnghiêm, ca ngợi đời thịnh trị thì sáng tỏ ngang với mặt trời, mặt\r\ntrăng,\ \ lên án kẻ loạn tặc thì gay gắt nhu sương thu lạnh buốt,\r\nngười thiện biết\ \ có thể bắt chước, người ác biết có thể tự răn, quan\r\nhệ đến việc chính trị\ \ không phải là không nhiều. Cho nên làm sử là\r\ncốt để cho được như thế\"'.\r\ \nViệt Nam là một dân tộc có lịch sử lâu đời. Việt Nam cũng là \r\nmột dân tộc\ \ yêu sử và có rất nhiều người ham thích tìm tòi, nghiên \r\ncứu và biên soạn\ \ lịch sử. Đã có nhiều công trình lịch sử được công \r\nbố, không chi do các cơ\ \ quan, tổ chức chuyên nghiên cứu biên \r\nsoạn, mà còn do cá nhân người yêu sử\ \ thực hiện... Điều này vừa có \r\nmặt tích cực, lại cỏ mặt tiêu cực. Tích cực\ \ vì sẽ góp phần giúp nhân \r\ndân hiểu thêm về lịch sử nước nhà, nhưng cũng chứa\ \ đựng yếu tố \r\ntiêu cực là dễ dẫn tới những hiểu biết phiến diện, sai lầm về\ \ lịch \r\nsử... đôi khi đồng nhất truyền thuyết với lịch sử?" - "LỊCH SỪ VIỆT NAM - TẬP 11\r\ngiầu mạnh hcm nhờ chiến tranh. Những nước bại trận\ \ như Đức, Ý, \r\nNhật thì kiệt quệ. Song dù thắng hay bại, sự kết thúc chiến\ \ tranh đặt \r\ncho mỗi nước những yêu cầu cấp bách cần giải quyết, tạo nên \r\ \nnhững đặc trưng kinh tế - xã hội ở nhóm nước này.\r\nSau chiến tranh thế giới,\ \ những nưóc công nghiệp chủ nghĩa \r\nchâu Âu và Nhật Bản đều bị chiến tranh\ \ tàn phá nặng nề. Nhiệm vụ \r\nquan trọng của họ ỉà hàn gắn vết thương chiến\ \ tranh, khôi phục \r\nkinh tế, ổn định đời sống xã hội. Đối với Mỹ, nhiệm vụ\ \ chủ yếu là \r\nphải chuyển hướng vận hành kinh tế từ một nền kinh tế phục vụ\ \ \r\nquân sự thời chiến sang nền kinh tế thời bình.\r\nNhừng nét cơ bản của tình\ \ hình thế giới nêu trên đã tác động \r\nđến hầu hết các khu vực trên thế giới,\ \ đặc biệt là khu vực Châu Á \r\nvà Đông Nam Á, tạo điều kiện thuận lợi cho cuộc\ \ đấu tranh giải \r\nphóng của các dân tộc Đông Dương. Từ đầu những năm 1950,\ \ tình \r\nhình cách mạng ba nước Đông Dương chuyển biến nhanh chóng. \r\nVới\ \ cuộc đi thăm Trung Quốc, Liên Xô của Chủ tịch Hồ Chí Minh \r\nđầu năm 1950 và\ \ việc các nước xã hội chủ nghĩa công nhận và đặt \r\nquan hệ ngoại giao với Chính\ \ phủ Việt Nam Dân chủ Cộng hòa là \r\nmột thắng lợi ngoại giao vô cùng quan trọng.\ \ Thắng lợi về ngoại \r\ngiao này đã chấm dứt thời kỳ chiến đấu đom độc, hầu như\ \ bị cách ly \r\nvới bên ngoài và từ đó tiếp nhận được sự đồng tình về chính trị\ \ và \r\nsự viện trợ về vật chất.\r\nVới sự giúp đỡ của Liên Xô, Trung Quốc và\ \ các nước xã hội" - source_sentence: Chức năng của quan Đốc học trong việc quản lý giáo dục ở các tỉnh là gì? sentences: - "Định, Phú Yên, Biên Hoà, Gia Định, Vĩnh Long, Định Tường, An \r\nGiang đều đặt\ \ mỗi tỉnh một quan Đốc học coi việc học chính trong \r\ntinh. Các tỉnh từ Quảng\ \ Trị, Quảng Bình, Hà Tĩnh, Nghệ An, \r\nThanh Hoá, Ninh Bình, Nam Định, Hà Nội,\ \ Hưng Yên, Hải Dương, \r\nSơn Tây, Bắc Ninh cũng đều đật chức Đốc học. Tinh nào\ \ khuyết \r\nchức Đốc học thì đặt Thự đốc học tạm quyền đốc học một thời gian\ \ \r\nđổ phụ trách, đôn đốc việc học trong tỉnh.\r\nCác tỉnh Khánh Hoà, Bình Thuận,\ \ Hà Tiên, Quảng Yên, Hưng \r\nHoá, Tuyên Quang, Thái Nguyên, Lạng Sơn, Cao Bằng,\ \ do số học \r\nsinh ít nên đến cuối thời Thiệu Trị (1847) vẫn chưa đặt chức Đốc\ \ học.\r\nTheo lệ Nhà nước chế cấp ấn quan phòng giao cho Đốc học lo \r\nviệc\ \ học chính trong địa hạt của tinh sờ tại, trong đó có việc xây \r\ndựng trường\ \ sở ở tinh, phù, hoặc huyện, châu; sắp xếp các thày \r\ngiáo và tuyển chọn học\ \ sinh vào học ở các trường. Những công \r\nviệc licn quun đén việc học đểu có\ \ sự phối hựp giữa quan Đốc hục \r\nvới các viên giữ chức Giáo thụ ở các phủ và\ \ Huấn đạo ờ các huyện, \r\nchâu. Một bộ máy giáo dục được tổ chức chặt chẽ theo\ \ ngành dọc \r\ntừ tinh đến phủ, huyện, châu; tổng (ở tổng có Tổng giáo) để theo\ \ \r\ndõi, đôn đốc việc giảng dạy và học tập, đã góp phần đẩy mạnh hom \r\nviệc\ \ giáo dục ở những triều vua Nguyễn nửa đầu thế kỳ XIX. Những \r\nthành tích của\ \ giáo dục bấy giờ biểu hiện rõ nhất ở việc Nhà nước \r\ncứ 3 năm lại mở một kỳ\ \ thi Hương ờ một số tinh thuộc Bác Kỳ (Nam \r\nĐịnh, Hài Dương, Thăng Long);\ \ Nghệ An; kinh đô Huế; Trung Kỳ" - "Trước tình hình thế giới và trong nước ngày càng khẩn trương, ngày 28 - I - 1941,\r\ \nlãnh tụ Nguyễn Ái Quốc về nước triệu tập Hội nghị lần thứ 8 Ban Chấp hành\r\n\ Trung ương Đảng Cộng sản Đông Dương. Hội nghị họp tại Pác Bó (Cao Bằng) từ\r\n\ ngày 10 đến ngày 19 - 5 - 1941.\r\nHội nghị chủ †rương trước hết phởi giỏi phóng\ \ cho được cóc dôn tộc\r\nĐông Dương ro khỏi éch Phớp - Nhột. Hội nghị quyết định\ \ tiếp tục tạm\r\ngóc khổu hiệu “Đónh đổ địa chủ, chia ruộng đốt cho dôn còy”\ \ thay bằng\r\ncóc khổu hiệu “Tịch thu ruộng đốt của đế quốc vò Việt gian chia\ \ cho dên\r\ncòy nghèo, giởm †ô, giỏm tức, chia lợi ruộng công”, tiến tới thực\ \ hiện\r\n“Người còy có ruộng”. Hội nghị chủ trương †hònh lộp Việt Nơm độc lập\r\ \nđồng minh (gọi tốt lò Việt Minh) bao gồm céc †ổ chức quồn chúng, lốy\r\ntên\ \ lò Hội Cứu quốc nhồm : “Liên hiệp hết thỏy cóc giới đồng bèo yêu\r\nnước, không\ \ phôn biệt giòu nghèo, giò trẻ, gới trai, không phôn biệt tôn\r\ngiáo vò xu hướng\ \ chính trị, đặng cùng nhau mưu cuộc dôn tộc giỏi phóng\r\nvò sinh tồn” °°,\r\n\ \r\nMặt trận Việt Minh chính thức thành lập ngày 19 - 5 - 1941. Chỉ sau một thời\r\ \ngian ngắn, tổ chức này đã có uy tín và ảnh hưởng sâu rộng trong nhân dân. Sau\ \ Hội\r\nnghị Trung ương, lãnh tụ Nguyễn Ái Quốc đã gửi thư kêu gọi đồng bào cả\ \ nước\r\nđoàn kết thống nhất đánh đuổi Pháp - Nhật." - "\"Chính sự ngày một đổ nát, đói kém xảy ra luôn luôn. Nhân dân cùng\r\nquân,\ \ khốn khổ, giặc cướp nổi lên ở nhiễu nơi\".\r\n(Khâm định Việt sử thông giám\ \ cương mục)\r\n\r\nỞ Nghệ An, Thanh Hoá, Ninh Bình,... dân nghèo nổi dậy đấu\ \ tranh. Trong\r\ntình hình đó, một số thế lực phong kiến ở các địa phương lại\ \ đánh giết lẫn\r\nnhau, quấy phá nhân dân và chống lại triều đình. Nhà Lý phải\ \ dựa vào thế lực\r\nhọ Trần để chống lại các lực lượng nổi loạn nên đã tạo điều\ \ kiện và thời cơ cho\r\nhọ Trần buộc Chiêu Hoàng (vua cuối cùng của nhà Lý) phải\ \ nhường ngôi cho\r\nTrần Cảnh vào tháng 12, năm Ất Dậu (đâu năm 1226).\r\n\r\n\ (1) Việc thổ mộc : việc làm nhà cửa, chùa, đền, đào sông, hồ..." - source_sentence: Thiệu Trị đã xử lý trường hợp của Lý Văn Phức và việc người Pháp bắt giữ thuyền quân đi tuần biển của Việt Nam ra sao? sentences: - "hóa; thuế độc quyền; thué điền thổ...\r\nTheo những con số thống kê chính thức\ \ thì các loại thuế trên \r\nđều tăng lên đáng kể, khoảng từ ba đến hơn ba lần\ \ vào năm 1945 \r\n(số dự thu) so với năm 1939 (số thực thu) như sau:\r\nBảng\ \ 29: Thu nhập từ một sổ loại thuế ở Đông Dương \r\ntrong các năm 1939 và 19453\r\ \nĐom vị: nghìn đồng\r\nThuế 1939 1945\r\nThuế tiêu thụ và vận chuyển hàng hoá\ \ 20.655.000 58.265.000\r\nThuế muối, rượu, thuốc phiện, diêm, pháo,\r\nthuốc\ \ lá\r\n24.694.000 87.000.000\r\nThuế điền thổ, trước bạ 11.821.000 28.625.000\r\ \nvề thuốc phiện, do việc nhập khẩu bị ngừng, Pháp khuyến khích \r\nnhân dân thượng\ \ du trồng loại cây này nên số thuốc phiện sản xuất \r\nđược ngày một tăng: năm\ \ 1940: 7.560kg; nãm 1941: 17.344kg; năm\r\n1. Annuaire statistique de V Union\ \ f,rariỊaise Outre- mer 1939-1946, tr. K -\r\n90-93.\r\n2, 3. Annuaire statistique\ \ de runion firanẹaise Outre - mer 1939-1946, tr.\r\nK-90.\r\n552" - "Chương I. Chính sách thuộc địa của Pháp..\r\nbộ đồng bào các dân tộc thiểu số.\ \ về phương diện này, chính quyền \r\nthuộc địa còn muốn đi xa hơn là cố định\ \ đồng bào vào một không \r\ngian nhất định, rồi đưa họ đến với chế độ sở hữu\ \ ruộng đất - chế độ \r\nsở hữu tập thể và ấn định cho họ một chế độ thuế khóa.\r\ \nNhư vậy, “chính sách thâm nhập” có xuất phát điểm là chính \r\nsách “chia đế\ \ trf' và mục tiêu là tách các dân tộc thiểu số ra khỏi \r\ndân tộc Kinh, dùng\ \ dân tộc nọ chống lại dân tộc kia và nhằm một \r\nmục đích cao hơn là từ chinh\ \ phục, khuất phục về chính trị để tiến \r\nsang khai thác, bóc lột về đất đai,\ \ nhân công và thuế khóa của các \r\nđồng bào.\r\n7. Một số “cải cách” xã hội\ \ khác liên quan đến nông dân và\r\ncông nhân\r\nLiên quan đến nông dân, trong\ \ bài diễn văn về Tinh hình Đông\r\nDương và tuyên bo cải cách vào tháng 9/19301,\ \ Pierre Pasquier nêu \r\nra những vấn đề như: thi hành luật điền thổ, giúp nông\ \ dân Nam Kỳ \r\nthế chấp ruộng đất để vay tín dụng ngân hàng; dẫn thủy nhập điền,\ \ \r\nlàm thuỷ lợi để tăng diện tích canh tác, cải tiến kỹ thuật trồng trọt; \r\ \ngiúp nông dân thăng tién về sờ hữu ruộng đất (từ người không có \r\nđất lên\ \ tiểu điền chủ); mở rộng việc nhượng đất, khẩn hoang ở \r\nnhững vùng rừng núi\ \ ở Bắc và Trung Kỳ cũng như ở phía tây và \r\nnam Nam Kỳ; quy định lại chế độ\ \ lĩnh canh để \"hạn ché bớt sự bóc\r\nlột cùa địa chù đoi với tá điền”.\r\nTriển\ \ khai những “cải cách” này, Pierre Pasquier cho tiếp tục \r\nxây dựng các công\ \ trình thuỷ nông, rồi thành lập Hội đồng Khẩn" - "theo vài mươi người, đeo gươm, đeo súng, đến thẳng ngay công \r\nquán, đưa ra\ \ một lá thư của nước Pháp bằng chữ Hán, lời lẽ ngang \r\nngược. Lý Văn Phức không\ \ nhận thư, Lạp Biệt Nhĩ quát to doạ nạt, \r\nđể lại thư xuống ghế rồi đi. Lý\ \ Văn Phức và Nguyễn Đình Tân bàn \r\nvới nhau rằng: \"Nhận lấy thư là có tội,\ \ mà đốt thư đi cũng có tội, \r\nkhông gì bằng cho chạy trạm về đệ tâu lên\".\ \ Lý Văn Phức về Kinh,\r\n1. Thực lục, tập VI, sđd, tr. 301.\r\n492\r\nChương\ \ VII. Quan hệ đối ngoại\r\nThiệu Trị giận là làm mất quốc thể, sai vệ cẩm y đóng\ \ gông đem \r\ngiam ở Tà đãi lậu, bắt giải chức, giao cho đình thần bàn.\r\nKhi\ \ ấy, bọn Pháp ngày thường lên bờ, ngông nghênh đi lại các \r\nnơi giao tiếp với\ \ dân đi đạo. Những thuyền quân đi tuần biển bị \r\nchúng bắt giữ lại ở cừa biển\ \ và cướp lấy buồm thuyền và dây buộc \r\nthuyền cùa 5 chiếc thuyền bọc đồng ở\ \ Kinh phái đi Nam (Kim \r\nƯng, Phấn Bằng, Linh Phượng, Thọ Hạc, Vân Bằng) đậu\ \ ở vụng \r\nTrà Sơn, đối diện vói chiến thuyền Pháp.\r\nViệc báo lên, Thiệu Trị\ \ sai ngay Đô thống Hữu quân Mai Công \r\nNgôn, Tham tri Bộ Hộ Đào Trí Phú đem\ \ biền binh 3 vệ Vũ lâm, Hổ \r\noai, Hùng nhuệ đến Quảng Nam cùng với lực lượng\ \ thủy, bộ tại \r\nchỗ tổ chức bố phòng. Thiệu Trị truyền chi căn dặn Mai Công\ \ \r\nNgôn và Đào Trí Phú rằng: \"Người Tây dương nếu đã sợ uy, thu \r\nhình,\ \ thì ta không nên tự động thủ trước; nếu chúng sinh chuyện \r\ntrước, thì đốc\ \ sức thành đài cùng biền binh các hiệu thuyền và \r\nthuyền đồng do Kinh phái\ \ đi, ngoài hợp, trong ứng, lập tức đánh" - source_sentence: Gia Cát Lượng đã giúp ai trong việc quản lý nước Thục? sentences: - "phải trông coi mọi việc, giúp Thành Vương đến lúc trưởng thành. \r\n4\r\n Hoắc\ \ Quang giữ chức Đại tư mã tướng quân, phò Hán Chiêu Đế lúc lên ngôi mới 9 tuổi.\ \ \r\n5\r\n Gia Cát Lượng tức Khổng Minh, là thừa tướng của Chiêu Đế Lưu Bị nước\ \ Thục đời Tam Quốc. Lưu Bị chết, con là Lưu Thiện nối \r\nngôi, tức Thục Hậu\ \ chúa, mọi việc nước, việc quân đều phải trông cậy vào Gia Cát Lượng. \r\n6\r\ \n Tô Hiến Thành là Thái úy triều Lý Cao Tông, nhận di mệnh Cao Tông phò vua nhỏ\ \ là Long Cán lên nối ngôi mới 3 tuổi. \r\n7\r\n Tứ phụ: nghĩa là bốn viên đại\ \ thần giúp vua khi mới lên ngôi. \r\n8\r\n Chỉ Thuận Tông. \r\n9\r\n Xích chủy:\ \ nghĩa là mõm đỏ, miệng đỏ, hay đỏ mỏ. Xích chủy hầu là loài đỏ mỏ ám chỉ Lê\ \ Quý Ly. \r\n10 Bạch kê: nghĩa là gà trắng. Nghệ Tông sinh năm Tân Dậu, tức năm\ \ gà. Tân thuộc hành kim, loài kim sắc trắng. Vì thế \"bạch kê\" \r\nám chỉ Nghệ\ \ Tông. \r\n11 Chữ vương? ở trong lòng chữ khẩu? là chữ \"quốc\"?. \r\n12 Theo\ \ tục nhà Trần, hằng năm vào ngày mồng 4 tháng 4, vua hội họp bề tôi làm lễ tuyên\ \ thệ ở đền Đồng Cổ. (Xem bản kỷ, quyển \r\n5, Kiến Trung năm thứ 3, 1277). \r\ \n13 Chỉ Quý Ly. \r\n288 Đại Việt Sử Ký Toàn Thư - Bản Kỷ - Quyển VIII \r\nQuý\ \ Ly bỏ mũ, rập đầu khóc lóc từ tạ, chỉ trời vạch đất thề rằng: \r\n\"Nếu thần\ \ không biết dốc lòng trung, hết sức giúp Quan gia để truyền đến con cháu về sau\ \ thì \r\ntrời sẽ ghét bỏ thần\". \r\nQuý Ly lại nói: \"Lúc Linh Đức Vương làm\ \ điều thất đức, nếu không nhờ oai linh bệ hạ thì thần đã" - "éo, xênh xang lạ hom cả\", và gánh xiếc của BẮc thành trổ tài dịp Đại \r\nkhánh\ \ \"Ngũ tuần\" của vua: \"4 đứa leo dây, đứa trẻ lộn dây, đứa trẻ \r\nmúa trên\ \ bàn tay 2 đứa\".\r\nNhững định chế về tổ chức và hoạt động nghệ thuật của nhà\ \ \r\nNguyễn đã có tác dụng quan ữọng kích thích các loại hình vãn nghệ \r\ndân\ \ gian phát triển cả về số lượng lẫn chất lượng. Trong các đợt biểu \r\ndiễn ở\ \ Kinh đô, trước yêu cầu thưởng lãm nghiêm ngặt và cao hơn \r\nđịa phương, các\ \ nhà viết kịch bản. đạo diễn, diễn viên phải trau dồi để \r\nnâng cao năng lực\ \ sáng tác, dàn dựng và kỹ năng biểu diễn.\r\n2. Nghệ thuật dân gian\r\nSinh hoạt\ \ văn nghệ dân gian trong các làng quê cũng phát triển. \r\nỞ Bắc Kỳ, Bắc Trung\ \ Kỳ, hát ả đào rất phổ biến. Bên cạnh đó là \r\ncác thể loại dân ca: hát Xoan\ \ ở Phú Thọ, Quan họ Bắc Ninh, hát \r\nSli, Then ở Lạng Sơn, hát Ví dặm, Phường\ \ vải ở Nghệ An, Hà \r\nTĩnh. Ở các tinh trung du và đồng bằng Bắc Bộ, Thanh Hóa,\ \ chèo \r\nsân đình mang tính trào lộng nở rộ. Thể loại trò hài, xiếc ở Bắc Kỳ\ \ \r\ncũng thu hút đông đảo khán giả.\r\n639" - "Tây. Ngoài cơ sờ đúc súng cũ của tiên triều, năm 1825 vua Minh \r\nMệnh mờ thêm\ \ sáu xưởng nữa. vốn cần cù và ham học hỏi sáng \r\ntạo, những người thợ quân\ \ giới đã được \"thứ súng tay nạp thuốc nổ \r\nmạnh theo kiểu Tây dương\". Vào\ \ những năm cuối triều Minh \r\nM ệnh, họ đã đúc 15 cỗ đại pháo X ung tiêu băng\ \ đồng và hai cỗ \r\nsúng lớn Chấn hải, loại đại pháo lợi hại trong thủy chiến\ \ phương \r\nTây. Sau đó, lại xuất xưởng tiếp 30 cỗ Chấn hải. Năm 1829, quản \r\ \nkho Hải Dương là Tôn Thất Thiện cùng với 100 lính Chấn cơ chế \r\nra cối gỗ\ \ chạy bàng sức nước ở khe suối để giã, luyện thuốc súng. \r\nDụng cụ này là xe\ \ \"Thủy hỏa ký tế\", và những năm sau được phổ \r\ncập trong quân ngũ. Từ vũ\ \ khí phương Tây, người Đại Nam đã tự \r\ntìm hiểu từng chi tiết để chế tạo thước\ \ đo ngắm bắn, thước kiểm tra \r\nthuốc súng. Trong bảy năm ờ ngôi, vua Thiệu\ \ Trị đúc 9 cỗ súng \r\nbàng đồng hiệu là \"Thần uy phục viễn đại tướng quân\"\ , cỗ to nhất \r\nlà 10.706 cân, cỗ nhỏ nhất là 10.222 cân, tổng cộng là 93.829\ \ cân.\r\n649\r\nLỊCH SỬ VIỆT NAM - TẬP 5\r\nVà ba cỗ súng hiệu \"Bảo Đại định\ \ công an dân hòa chúng thượng \r\ntướng quân\", mỗi cỗ trên 14.500 cân, tổng\ \ cộng là 43.620 cân1.\r\nĐe tạo điều kiện cho quân thủy học tập, bộ Công cấp\ \ cho họ la \r\nbàn, thước đo nước, đồng hồ cát xem giờ của phương Tây. v ề khoa\ \ \r\nmục bắn súng thì lính thủy phải tập bắn súng điểu sang và đại bác. \r\n\ Minh Mệnh yêu cầu Hiệp biện Đại học sĩ lãnh Thượng thư bộ Binh \r\nTrương Đăng\ \ Quế đọc kỹ các sách và bản đồ thủy chiến \"Tây" model-index: - name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base results: - task: type: information-retrieval name: Information Retrieval dataset: name: gte multilingual base 768 type: gte_multilingual_base_768 metrics: - type: cosine_accuracy@1 value: 0.3972602739726027 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.6333333333333333 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.7132420091324201 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7817351598173516 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.3972602739726027 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.21111111111111108 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.142648401826484 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.07817351598173515 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.3972602739726027 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.6333333333333333 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.7132420091324201 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.7817351598173516 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5921213055171655 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5309868087265359 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.537969151887342 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: gte multilingual base 512 type: gte_multilingual_base_512 metrics: - type: cosine_accuracy@1 value: 0.38767123287671235 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.6310502283105023 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.7095890410958904 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7821917808219178 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.38767123287671235 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.21035007610350073 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.14191780821917807 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.07821917808219177 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.38767123287671235 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.6310502283105023 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.7095890410958904 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.7821917808219178 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5879636635574841 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.525339204174821 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.5318727014135456 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: gte multilingual base 256 type: gte_multilingual_base_256 metrics: - type: cosine_accuracy@1 value: 0.3771689497716895 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.6146118721461187 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6872146118721462 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7662100456621005 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.3771689497716895 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.20487062404870623 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.13744292237442923 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.07662100456621006 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.3771689497716895 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.6146118721461187 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.6872146118721462 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.7662100456621005 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5736037026704126 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5116503587736474 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.5189035063838257 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: gte multilingual base 128 type: gte_multilingual_base_128 metrics: - type: cosine_accuracy@1 value: 0.36118721461187214 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.582648401826484 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6502283105022831 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7342465753424657 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.36118721461187214 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1942161339421613 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1300456621004566 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.07342465753424657 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.36118721461187214 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.582648401826484 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.6502283105022831 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.7342465753424657 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5465887777560341 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.4866068710589268 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.49427672079491064 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: gte multilingual base 64 type: gte_multilingual_base_64 metrics: - type: cosine_accuracy@1 value: 0.3082191780821918 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5146118721461187 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.5863013698630137 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.6621004566210046 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.3082191780821918 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.17153729071537288 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.11726027397260275 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06621004566210045 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.3082191780821918 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5146118721461187 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5863013698630137 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6621004566210046 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.4843188931282978 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.4275081539465107 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.4370689716929827 name: Cosine Map@100 --- # SentenceTransformer based on Alibaba-NLP/gte-multilingual-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) <!-- at revision ca1791e0bcc104f6db161f27de1340241b13c5a4 --> - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - csv <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("minhtuan7akp/gte-base-vietnamese-finetune-matryoshka") # Run inference sentences = [ 'Gia Cát Lượng đã giúp ai trong việc quản lý nước Thục?', 'phải trông coi mọi việc, giúp Thành Vương đến lúc trưởng thành. \r\n4\r\n Hoắc Quang giữ chức Đại tư mã tướng quân, phò Hán Chiêu Đế lúc lên ngôi mới 9 tuổi. \r\n5\r\n Gia Cát Lượng tức Khổng Minh, là thừa tướng của Chiêu Đế Lưu Bị nước Thục đời Tam Quốc. Lưu Bị chết, con là Lưu Thiện nối \r\nngôi, tức Thục Hậu chúa, mọi việc nước, việc quân đều phải trông cậy vào Gia Cát Lượng. \r\n6\r\n Tô Hiến Thành là Thái úy triều Lý Cao Tông, nhận di mệnh Cao Tông phò vua nhỏ là Long Cán lên nối ngôi mới 3 tuổi. \r\n7\r\n Tứ phụ: nghĩa là bốn viên đại thần giúp vua khi mới lên ngôi. \r\n8\r\n Chỉ Thuận Tông. \r\n9\r\n Xích chủy: nghĩa là mõm đỏ, miệng đỏ, hay đỏ mỏ. Xích chủy hầu là loài đỏ mỏ ám chỉ Lê Quý Ly. \r\n10 Bạch kê: nghĩa là gà trắng. Nghệ Tông sinh năm Tân Dậu, tức năm gà. Tân thuộc hành kim, loài kim sắc trắng. Vì thế "bạch kê" \r\nám chỉ Nghệ Tông. \r\n11 Chữ vương? ở trong lòng chữ khẩu? là chữ "quốc"?. \r\n12 Theo tục nhà Trần, hằng năm vào ngày mồng 4 tháng 4, vua hội họp bề tôi làm lễ tuyên thệ ở đền Đồng Cổ. (Xem bản kỷ, quyển \r\n5, Kiến Trung năm thứ 3, 1277). \r\n13 Chỉ Quý Ly. \r\n288 Đại Việt Sử Ký Toàn Thư - Bản Kỷ - Quyển VIII \r\nQuý Ly bỏ mũ, rập đầu khóc lóc từ tạ, chỉ trời vạch đất thề rằng: \r\n"Nếu thần không biết dốc lòng trung, hết sức giúp Quan gia để truyền đến con cháu về sau thì \r\ntrời sẽ ghét bỏ thần". \r\nQuý Ly lại nói: "Lúc Linh Đức Vương làm điều thất đức, nếu không nhờ oai linh bệ hạ thì thần đã', 'Tây. Ngoài cơ sờ đúc súng cũ của tiên triều, năm 1825 vua Minh \r\nMệnh mờ thêm sáu xưởng nữa. vốn cần cù và ham học hỏi sáng \r\ntạo, những người thợ quân giới đã được "thứ súng tay nạp thuốc nổ \r\nmạnh theo kiểu Tây dương". Vào những năm cuối triều Minh \r\nM ệnh, họ đã đúc 15 cỗ đại pháo X ung tiêu băng đồng và hai cỗ \r\nsúng lớn Chấn hải, loại đại pháo lợi hại trong thủy chiến phương \r\nTây. Sau đó, lại xuất xưởng tiếp 30 cỗ Chấn hải. Năm 1829, quản \r\nkho Hải Dương là Tôn Thất Thiện cùng với 100 lính Chấn cơ chế \r\nra cối gỗ chạy bàng sức nước ở khe suối để giã, luyện thuốc súng. \r\nDụng cụ này là xe "Thủy hỏa ký tế", và những năm sau được phổ \r\ncập trong quân ngũ. Từ vũ khí phương Tây, người Đại Nam đã tự \r\ntìm hiểu từng chi tiết để chế tạo thước đo ngắm bắn, thước kiểm tra \r\nthuốc súng. Trong bảy năm ờ ngôi, vua Thiệu Trị đúc 9 cỗ súng \r\nbàng đồng hiệu là "Thần uy phục viễn đại tướng quân", cỗ to nhất \r\nlà 10.706 cân, cỗ nhỏ nhất là 10.222 cân, tổng cộng là 93.829 cân.\r\n649\r\nLỊCH SỬ VIỆT NAM - TẬP 5\r\nVà ba cỗ súng hiệu "Bảo Đại định công an dân hòa chúng thượng \r\ntướng quân", mỗi cỗ trên 14.500 cân, tổng cộng là 43.620 cân1.\r\nĐe tạo điều kiện cho quân thủy học tập, bộ Công cấp cho họ la \r\nbàn, thước đo nước, đồng hồ cát xem giờ của phương Tây. v ề khoa \r\nmục bắn súng thì lính thủy phải tập bắn súng điểu sang và đại bác. \r\nMinh Mệnh yêu cầu Hiệp biện Đại học sĩ lãnh Thượng thư bộ Binh \r\nTrương Đăng Quế đọc kỹ các sách và bản đồ thủy chiến "Tây', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Datasets: `gte_multilingual_base_768`, `gte_multilingual_base_512`, `gte_multilingual_base_256`, `gte_multilingual_base_128` and `gte_multilingual_base_64` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | gte_multilingual_base_768 | gte_multilingual_base_512 | gte_multilingual_base_256 | gte_multilingual_base_128 | gte_multilingual_base_64 | |:--------------------|:--------------------------|:--------------------------|:--------------------------|:--------------------------|:-------------------------| | cosine_accuracy@1 | 0.3973 | 0.3877 | 0.3772 | 0.3612 | 0.3082 | | cosine_accuracy@3 | 0.6333 | 0.6311 | 0.6146 | 0.5826 | 0.5146 | | cosine_accuracy@5 | 0.7132 | 0.7096 | 0.6872 | 0.6502 | 0.5863 | | cosine_accuracy@10 | 0.7817 | 0.7822 | 0.7662 | 0.7342 | 0.6621 | | cosine_precision@1 | 0.3973 | 0.3877 | 0.3772 | 0.3612 | 0.3082 | | cosine_precision@3 | 0.2111 | 0.2104 | 0.2049 | 0.1942 | 0.1715 | | cosine_precision@5 | 0.1426 | 0.1419 | 0.1374 | 0.13 | 0.1173 | | cosine_precision@10 | 0.0782 | 0.0782 | 0.0766 | 0.0734 | 0.0662 | | cosine_recall@1 | 0.3973 | 0.3877 | 0.3772 | 0.3612 | 0.3082 | | cosine_recall@3 | 0.6333 | 0.6311 | 0.6146 | 0.5826 | 0.5146 | | cosine_recall@5 | 0.7132 | 0.7096 | 0.6872 | 0.6502 | 0.5863 | | cosine_recall@10 | 0.7817 | 0.7822 | 0.7662 | 0.7342 | 0.6621 | | **cosine_ndcg@10** | **0.5921** | **0.588** | **0.5736** | **0.5466** | **0.4843** | | cosine_mrr@10 | 0.531 | 0.5253 | 0.5117 | 0.4866 | 0.4275 | | cosine_map@100 | 0.538 | 0.5319 | 0.5189 | 0.4943 | 0.4371 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### csv * Dataset: csv * Size: 21,892 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 9 tokens</li><li>mean: 26.95 tokens</li><li>max: 103 tokens</li></ul> | <ul><li>min: 25 tokens</li><li>mean: 373.94 tokens</li><li>max: 596 tokens</li></ul> | * Samples: | anchor | positive | |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Tính chất kiến trúc của đình làng triều Mạc được thể hiện qua những đặc điểm gì, như số gian, hình dạng, nội thất và cách bố trí không gian trong công trình?</code> | <code>Đình làng là công trình kiến trúc công cộng được dựng nên <br>băng sự đóng góp của cải và công sức của cả cộng đồng làng xã. <br>Ngoài chức năng là trụ sở hành chính của cả làng, ngôi đình còn là <br>trung tâm sinh hoạt văn hóa làng xã, là nơi diễn ra các nghi lễ trọng <br>đại trong dịp tế lễ thần Thành hoàng làng và tô chức hội hè hăng <br>năm. Có thê nói, ngôi đình làng là nơi hội tụ sức mạnh của cả cộng <br>đồng và là biểu trưng đặc sắc nhất của văn hóa làng xã. <br> <br>Trong các ngôi đình triều Mạc, Thân thành hoàng có lý lịch <br>xuất thân khá phong phú. Tản Viên sơn thánh là vị thần có ảnh <br>hưởng lớn ở xứ Đoài được thờ phụng ở đình Tây Đăng, Thanh Lũng <br>và nhiều làng xã khác. Thần Cao Sơn, Quý Minh tương truyền là <br>tướng tâm phúc của Hùng Vương được thờ ở đình làng Lỗ Hạnh. <br>Dân làng Lỗ Hạnh còn thờ cả Phương Dung công chúa... Từ thế <br>kỷ XYVI và các thế kỷ tiếp sau, Thần thành hoàng làng trở thành <br>vị vua tỉnh thần ở các làng xã, tín ngưỡng thờ cúng Thân thành <br>hoàng càng trở nên phong phú thê hiện qua lễ...</code> | | <code>Nguyễn Khắc Nhu có vai trò gì trong khởi nghĩa toàn khu vực miền núi Bắc Kỳ của Việt Nam Quốc dân Đảng vào năm 1930?</code> | <code>bị nổ do bất cẩn. Do đó công việc bị phát hiện. Hai người phụ trách <br>cơ quan chế bom là Đỗ Cương và Quản Trác trốn thoát. Nhiều binh <br>lính và dân thường bị bắt. Công việc bạo động của Xứ Nhu không <br>thành. Đúng lúc này Việt Nam Quốc dân Đảng vừa thành lập, cử <br>người tới mời Xứ Nhu và Việt Nam Dân quốc gia nhập Việt Nam <br>Quốc dân Đảng. Hầu hết các đồng chí của Xứ Nhu trở thành đảng <br>viên của Việt Nam Quốc dân Đảng ở vùng Bắc Ninh, Bắc Giang. <br>Do đó, Việt Nam Quốc dân Đảng mạnh lên về số lượng1. Cùng với <br>việc phát triển đảng viên ở Bẳc Ninh, Bắc Giang, Việt Nam Quốc <br>dân Đảng còn thiết lập nhiều cơ sở ở các tỉnh Thái Bình, Hải Dương, <br>1. Nguyễn Khắc Nhu tức Xứ Nhu (1882-1930), người làng Song Khê, huyện <br>Yên Dũng, tinh Bắc Giang. Với lòng yêu nuớc và ý chí chống Pháp, <br>ông dự tính thành lập một tổ chức hoạt động công khai nhăm đào tạo <br>tài năng cho đất nước lấy tên là "Hội Quốc dân dục tài”. Việc này <br>không thành công, ông lại lập tổ chức bí mật nhăm bạo động lật đổ ách <br>áp b...</code> | | <code>Giá gạo tháng 3-1950 ở Liên khu IV là bao nhiêu đồng/tạ và có chênh lệch gì so với giá gạo ở Liên khu III và Liên khu Việt Bắc?</code> | <code>ngày càng tăng nhanh, nhất là ở Việt Bắc. Giá gạo tăng mạnh <br>nhất, giá thực phẩm cũng tăng dần theo giá gạo. Giá các mặt hàng <br>kỹ nghệ tăng chậm hơn. Giá hàng ngoại hóa hầu như không tăng <br>vỉ trong vùng Pháp chiếm đóng, hàng ngoại hóa tính bằng tiền <br>Đông Dương không tăng, hom nữa nhân dân cũng ít tiêu thụ hàng <br>ngoại hóa vì bị cấm. <br>1. Viện Kinh tế học, Kinh tế Việt Nam từ Cách mạng Tháng Tám đến..., Sách <br>đã dẫn, tr. 238. <br>2. Chuơng trình và báo cáo của Bộ Kinh tế về tình hình hoạt động năm 1950. <br>Trung tâm lưu trữ quốc gia in, phông Phủ Thủ tướng, Hồ sơ số 1914. <br>488 <br>Chương VI. Việt Nam dân chủ cộng hòa xây dựng.. <br>Giá gạo trong những tháng đầu năm 1950 so với cuối năm 1949 <br>có thay đổi, Liên khu IV (Thanh Hóa) giá tăng lên 154%; Liên khu <br>III (Hà Đông - Hà Nam) giá tăng lên 153%; Liên khu Việt Bắc <br>(Thái Nguyên) giá tăng lên 800%. <br>Giá gạo ở Thái Nguyên từ 1.625 đồng/tạ lên 13.000 đồng/tạ <br>(tăng 800%); ờ Phú Thọ từ 2.650 đồng/tạ lên 7.500 đồng/tạ (tăng <br>283%). Mặt khác, ...</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Evaluation Dataset #### csv * Dataset: csv * Size: 21,892 evaluation samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 10 tokens</li><li>mean: 26.56 tokens</li><li>max: 108 tokens</li></ul> | <ul><li>min: 24 tokens</li><li>mean: 369.01 tokens</li><li>max: 559 tokens</li></ul> | * Samples: | anchor | positive | |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Nguyễn Hoàng đã thực hiện những hành động gì để dần dần tách khỏi sự ràng buộc của họ Trịnh sau khi trở lại Thuận Quảng vào năm 1600, và những hành động này đã ảnh hưởng như thế nào đến mối quan hệ giữa hai dòng họ?</code> | <code>thẳng đối với họ Nguyễn. Trịnh Tùng đã lấy danh nghĩa vua Lê sai <br>sứ giả là Thiêm đô ngự sử Lê Nghĩa Trạch đem sắc vào phủ dụ <br>Nguyễn Hoàng và vẫn cho ở lại trấn thủ, hằng năm nộp thuế như <br>cũ. Cùng với sắc của vua Lê, Trịnh Tùng có gửi thư kèm theo <br>Chương ĩ. Sự phân liệt Đàng Trong - Đàng Ngoài... <br>1, Toàn thư. quyển 17, tập IV, Sđd, tr. 200. <br>2, Đại Nam thực lục, Tiền biên, quyển 1, tập I, Sđd, tr. 34. <br>3, Đại Nam thực lục, Tiển biên, quyển 1, tập I, Sđd, tr. 35. <br>39 <br>LỊCH SỬ VIỆT NAM - TẬP 4 <br>"khuyên giữ việc thuế cống". Nguyễn Hoàng sai sứ giả đáp lễ tạ on <br>vua Lê và gửi thư cho Trịnh Tùng hẹn kết nghĩa thông gia, đem con <br>gái là Ngọc Tú gả cho Trịnh Tráng (con Trịnh Tùng) lấy danh <br>nghĩa hôn nhân để duy trì mối quan hệ bề ngoài giao hảo giữa hai <br>dòng họ vốn có sẵn một mối thù địch. <br>- Chính sách cùa họ Nguyễn từ khi Nguyễn Hoàng trở lại <br>Thuận Quảng <br>Năm 1600, Nguyễn Hoàng ròi được khỏi đất Bẳc trở về Thuận <br>Quảng bắt đầu thực hiện một chính sách cai trị mói, dần dần tác...</code> | | <code>Báo cáo của Ủy ban Kháng chiến hành chính Hà Nội về hoạt động giáo dục bù nhìn và tình hình các giáo sư trường Chu Văn An có nội dung gì?</code> | <code>Tài liệu tham khảo <br>21. Báo cáo sô' 2 BC/I ngày 12-11-1949 và Báo cáo sô' 463 <br>BC/DB ngày 25-12-1949 của Ty Công an H à Nội. Trung <br>tâm Lưu trữ Quốc gia III, phông Phủ Thủ tướng, Hồ sơ <br>SỐ921. <br>28. Báo “Le song” ngày 11-2-1949. Trung tâm Lưu trữ Quốc <br>gia III, phông Phủ Thủ tướng, Hồ sơ sô' 2002. <br>29. Báo cáo của u ỷ ban Kháng chiến hành chính Hà Nội vê <br>hoạt động giáo dục bù nhìn và tình hình các giáo sư <br>trường Chu Văn An. Trung tâm Lưu trữ Quốc gia III, <br>phông Phủ Thủ tướng, Hồ sơ số 979. <br>30. Báo cáo của Tổng Giám đốc Việt N am Công an vụ sô' <br>122/NCB3 ngày 1-4-1951. Trung tâm Lưu trữ Quốic gia <br>III, phông Phủ Thủ tướng, Hồ sơ sô' 979. <br>31. Báo cáo thành tích về cống tác công an trong 8 năm kháng <br>chiến (1946-1954) của Bộ Công an. Trung tâm Lưu trữ <br>Quốc gia III, phông Phủ Thủ tướng, Hồ sơ sô' 927. <br>32. Báo cáo một năm kháng chiến (12-1946 đến 12-1947) của <br>UBKCHC Khu 12. Trung tâm Lưu trữ Quốc gia III, phông <br>Phủ Thủ tướng, Hồ sơ sô" 2000. <br>33. Báo cáo thành tích quăn sự trong 8 n...</code> | | <code>Đặc điểm dân số của nước ta ảnh hưởng đến các ngành dịch vụ như thế nào và đòi hỏi những ngành dịch vụ nào cần được ưu tiên phát triển trong quá trình đô thị hóa?</code> | <code>— Trong các thành phố lớn thường hình thành các trung tâm giao dịch, <br>thương mại. Đó là nơi tập trung các ngân hàng, các văn phòng đại diện <br>của các công ti, các siêu thị hay các tổ hợp thương mại, dịch vụ lớn... <br>Ở các thành phố lớn trên thế giới, thường dễ nhận thấy các trung tâm <br>thương mại này do sự tập trung các ngôi nhà cao tầng, chọc trời. Một <br>thành phố có thể có trung tâm thương mại chính và một số trung tâm <br>thương mại nhỏ hơn, kết quả của sự phát triển đô thị. <br> <br>— Ở nước ta, các thành phố, thị xã thường có khu hành chính (phân <br>“đô”) và khu buôn bán, dịch vụ (phân “thị'). Ở Hà Nội, Thành phố <br>Hồ Chí Minh các trung tâm giao dịch, thương mại của thành phố đang <br>được hình thành rõ nét. <br> <br>CÂU HỎI VÀ BÀI TẬP <br> <br>174 <br> <br>1. Cho biết đặc điểm dân số của nước ta (đông, tăng còn tương đối <br>nhanh, mức sống đang nâng lên và đô thị hoá đang phát triển với <br>tốc độ nhanh hơn) có ảnh hưởng đến các ngành dịch vụ như thế <br>nào ? Các đặc điểm đó đòi hỏi những ngành dịch vụ nào cần được <br>ưu tiê...</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 6 - `per_device_eval_batch_size`: 6 - `learning_rate`: 3e-06 - `num_train_epochs`: 2 - `warmup_ratio`: 0.05 - `bf16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 6 - `per_device_eval_batch_size`: 6 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 3e-06 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 2 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.05 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | gte_multilingual_base_768_cosine_ndcg@10 | gte_multilingual_base_512_cosine_ndcg@10 | gte_multilingual_base_256_cosine_ndcg@10 | gte_multilingual_base_128_cosine_ndcg@10 | gte_multilingual_base_64_cosine_ndcg@10 | |:------:|:----:|:-------------:|:---------------:|:----------------------------------------:|:----------------------------------------:|:----------------------------------------:|:----------------------------------------:|:---------------------------------------:| | 0.0305 | 100 | 1.1057 | 0.7163 | 0.5609 | 0.5532 | 0.5375 | 0.4939 | 0.4168 | | 0.0609 | 200 | 0.7976 | 0.5554 | 0.5724 | 0.5696 | 0.5491 | 0.5068 | 0.4351 | | 0.0914 | 300 | 0.6724 | 0.4082 | 0.5819 | 0.5778 | 0.5592 | 0.5177 | 0.4453 | | 0.1218 | 400 | 0.4439 | 0.3058 | 0.5868 | 0.5832 | 0.5643 | 0.5231 | 0.4558 | | 0.1523 | 500 | 0.3544 | 0.2573 | 0.5873 | 0.5836 | 0.5631 | 0.5264 | 0.4597 | | 0.1827 | 600 | 0.3483 | 0.2358 | 0.5897 | 0.5856 | 0.5690 | 0.5309 | 0.4679 | | 0.2132 | 700 | 0.4737 | 0.2248 | 0.5917 | 0.5883 | 0.5767 | 0.5350 | 0.4747 | | 0.2436 | 800 | 0.3216 | 0.2193 | 0.5899 | 0.5853 | 0.5712 | 0.5330 | 0.4734 | | 0.2741 | 900 | 0.3239 | 0.2109 | 0.5918 | 0.5883 | 0.5719 | 0.5344 | 0.4712 | | 0.3045 | 1000 | 0.3111 | 0.2065 | 0.5882 | 0.5856 | 0.5708 | 0.5331 | 0.4751 | | 0.3350 | 1100 | 0.3516 | 0.2024 | 0.5889 | 0.5854 | 0.5714 | 0.5352 | 0.4760 | | 0.3654 | 1200 | 0.3344 | 0.2033 | 0.5860 | 0.5832 | 0.5687 | 0.5339 | 0.4764 | | 0.3959 | 1300 | 0.3161 | 0.1907 | 0.5920 | 0.5898 | 0.5718 | 0.5369 | 0.4756 | | 0.4263 | 1400 | 0.3094 | 0.1905 | 0.5948 | 0.5915 | 0.5723 | 0.5374 | 0.4774 | | 0.4568 | 1500 | 0.2981 | 0.1859 | 0.5924 | 0.5919 | 0.5736 | 0.5370 | 0.4755 | | 0.4872 | 1600 | 0.3332 | 0.1860 | 0.5877 | 0.5881 | 0.5697 | 0.5361 | 0.4760 | | 0.5177 | 1700 | 0.259 | 0.1877 | 0.5811 | 0.5820 | 0.5683 | 0.5343 | 0.4779 | | 0.5481 | 1800 | 0.282 | 0.1924 | 0.5788 | 0.5811 | 0.5664 | 0.5337 | 0.4804 | | 0.5786 | 1900 | 0.2739 | 0.1943 | 0.5803 | 0.5803 | 0.5685 | 0.5383 | 0.4823 | | 0.6090 | 2000 | 0.2049 | 0.1893 | 0.5856 | 0.5826 | 0.5680 | 0.5380 | 0.4794 | | 0.6395 | 2100 | 0.3545 | 0.1780 | 0.5920 | 0.5885 | 0.5717 | 0.5393 | 0.4743 | | 0.6699 | 2200 | 0.3008 | 0.1769 | 0.5919 | 0.5879 | 0.5732 | 0.5392 | 0.4755 | | 0.7004 | 2300 | 0.3561 | 0.1764 | 0.5909 | 0.5883 | 0.5735 | 0.5392 | 0.4777 | | 0.7308 | 2400 | 0.4883 | 0.1705 | 0.5977 | 0.5922 | 0.5777 | 0.5451 | 0.4797 | | 0.7613 | 2500 | 0.235 | 0.1665 | 0.5966 | 0.5928 | 0.5799 | 0.5434 | 0.4805 | | 0.7917 | 2600 | 0.3415 | 0.1636 | 0.5960 | 0.5910 | 0.5780 | 0.5444 | 0.4815 | | 0.8222 | 2700 | 0.2424 | 0.1637 | 0.5936 | 0.5917 | 0.5758 | 0.5455 | 0.4821 | | 0.8526 | 2800 | 0.1937 | 0.1635 | 0.5961 | 0.5896 | 0.5790 | 0.5446 | 0.4841 | | 0.8831 | 2900 | 0.1986 | 0.1620 | 0.5922 | 0.5884 | 0.5770 | 0.5428 | 0.4834 | | 0.9135 | 3000 | 0.2009 | 0.1587 | 0.5963 | 0.5921 | 0.5793 | 0.5438 | 0.4820 | | 0.9440 | 3100 | 0.221 | 0.1568 | 0.5964 | 0.5945 | 0.5810 | 0.5465 | 0.4824 | | 0.9744 | 3200 | 0.1847 | 0.1592 | 0.5933 | 0.5913 | 0.5766 | 0.5440 | 0.4808 | | 1.0049 | 3300 | 0.224 | 0.1629 | 0.5906 | 0.5882 | 0.5746 | 0.5410 | 0.4816 | | 1.0353 | 3400 | 0.3356 | 0.1624 | 0.5884 | 0.5870 | 0.5728 | 0.5412 | 0.4795 | | 1.0658 | 3500 | 0.2286 | 0.1624 | 0.5891 | 0.5864 | 0.5750 | 0.5419 | 0.4799 | | 1.0962 | 3600 | 0.2176 | 0.1591 | 0.5933 | 0.5896 | 0.5772 | 0.5429 | 0.4824 | | 1.1267 | 3700 | 0.1376 | 0.1592 | 0.5923 | 0.5884 | 0.5733 | 0.5415 | 0.4814 | | 1.1571 | 3800 | 0.1222 | 0.1593 | 0.5918 | 0.5895 | 0.5737 | 0.5423 | 0.4828 | | 1.1876 | 3900 | 0.2303 | 0.1600 | 0.5919 | 0.5847 | 0.5722 | 0.5423 | 0.4827 | | 1.2180 | 4000 | 0.1984 | 0.1590 | 0.5920 | 0.5867 | 0.5742 | 0.5437 | 0.4858 | | 1.2485 | 4100 | 0.1488 | 0.1596 | 0.5910 | 0.5850 | 0.5734 | 0.5402 | 0.4867 | | 1.2789 | 4200 | 0.188 | 0.1597 | 0.5903 | 0.5843 | 0.5727 | 0.5401 | 0.4839 | | 1.3094 | 4300 | 0.1507 | 0.1572 | 0.5884 | 0.5836 | 0.5717 | 0.5401 | 0.4848 | | 1.3398 | 4400 | 0.2171 | 0.1585 | 0.5874 | 0.5833 | 0.5707 | 0.5408 | 0.4832 | | 1.3703 | 4500 | 0.1938 | 0.1584 | 0.5885 | 0.5836 | 0.5706 | 0.5400 | 0.4836 | | 1.4007 | 4600 | 0.1793 | 0.1566 | 0.5875 | 0.5834 | 0.5720 | 0.5409 | 0.4813 | | 1.4312 | 4700 | 0.2104 | 0.1557 | 0.5898 | 0.5844 | 0.5727 | 0.5423 | 0.4815 | | 1.4616 | 4800 | 0.1473 | 0.1562 | 0.5889 | 0.5854 | 0.5705 | 0.5413 | 0.4830 | | 1.4921 | 4900 | 0.2356 | 0.1559 | 0.5878 | 0.5836 | 0.5708 | 0.5415 | 0.4834 | | 1.5225 | 5000 | 0.1418 | 0.1565 | 0.5861 | 0.5835 | 0.5688 | 0.5413 | 0.4819 | | 1.5530 | 5100 | 0.176 | 0.1572 | 0.5865 | 0.5820 | 0.5686 | 0.5407 | 0.4824 | | 1.5834 | 5200 | 0.1911 | 0.1574 | 0.5859 | 0.5825 | 0.5688 | 0.5420 | 0.4824 | | 1.6139 | 5300 | 0.1382 | 0.1562 | 0.5870 | 0.5826 | 0.5697 | 0.5423 | 0.4841 | | 1.6443 | 5400 | 0.1825 | 0.1528 | 0.5880 | 0.5851 | 0.5714 | 0.5433 | 0.4830 | | 1.6748 | 5500 | 0.2709 | 0.1524 | 0.5897 | 0.5858 | 0.5716 | 0.5430 | 0.4831 | | 1.7052 | 5600 | 0.1992 | 0.1523 | 0.5900 | 0.5859 | 0.5727 | 0.5435 | 0.4827 | | 1.7357 | 5700 | 0.326 | 0.1506 | 0.5910 | 0.5873 | 0.5736 | 0.5456 | 0.4842 | | 1.7661 | 5800 | 0.1698 | 0.1495 | 0.5907 | 0.5865 | 0.5739 | 0.5443 | 0.4842 | | 1.7966 | 5900 | 0.2013 | 0.1489 | 0.5916 | 0.5889 | 0.5738 | 0.5457 | 0.4826 | | 1.8270 | 6000 | 0.1371 | 0.1484 | 0.5912 | 0.5883 | 0.5739 | 0.5454 | 0.4840 | | 1.8575 | 6100 | 0.1351 | 0.1483 | 0.5917 | 0.5886 | 0.5735 | 0.5456 | 0.4844 | | 1.8879 | 6200 | 0.1678 | 0.1486 | 0.5925 | 0.5878 | 0.5733 | 0.5450 | 0.4840 | | 1.9184 | 6300 | 0.1154 | 0.1483 | 0.5915 | 0.5874 | 0.5742 | 0.5461 | 0.4847 | | 1.9488 | 6400 | 0.1576 | 0.1482 | 0.5913 | 0.5880 | 0.5743 | 0.5469 | 0.4833 | | 1.9793 | 6500 | 0.1609 | 0.1478 | 0.5921 | 0.5880 | 0.5736 | 0.5466 | 0.4843 | ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.3.1 - Transformers: 4.49.0 - PyTorch: 2.5.1 - Accelerate: 1.2.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
[ "TEXT_CLASSIFICATION" ]
[ "CHIA" ]
Non_BioNLP
# SentenceTransformer based on Alibaba-NLP/gte-multilingual-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) <!-- at revision ca1791e0bcc104f6db161f27de1340241b13c5a4 --> - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - csv <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("minhtuan7akp/gte-base-vietnamese-finetune-matryoshka") # Run inference sentences = [ 'Gia Cát Lượng đã giúp ai trong việc quản lý nước Thục?', 'phải trông coi mọi việc, giúp Thành Vương đến lúc trưởng thành. \r\n4\r\n Hoắc Quang giữ chức Đại tư mã tướng quân, phò Hán Chiêu Đế lúc lên ngôi mới 9 tuổi. \r\n5\r\n Gia Cát Lượng tức Khổng Minh, là thừa tướng của Chiêu Đế Lưu Bị nước Thục đời Tam Quốc. Lưu Bị chết, con là Lưu Thiện nối \r\nngôi, tức Thục Hậu chúa, mọi việc nước, việc quân đều phải trông cậy vào Gia Cát Lượng. \r\n6\r\n Tô Hiến Thành là Thái úy triều Lý Cao Tông, nhận di mệnh Cao Tông phò vua nhỏ là Long Cán lên nối ngôi mới 3 tuổi. \r\n7\r\n Tứ phụ: nghĩa là bốn viên đại thần giúp vua khi mới lên ngôi. \r\n8\r\n Chỉ Thuận Tông. \r\n9\r\n Xích chủy: nghĩa là mõm đỏ, miệng đỏ, hay đỏ mỏ. Xích chủy hầu là loài đỏ mỏ ám chỉ Lê Quý Ly. \r\n10 Bạch kê: nghĩa là gà trắng. Nghệ Tông sinh năm Tân Dậu, tức năm gà. Tân thuộc hành kim, loài kim sắc trắng. Vì thế "bạch kê" \r\nám chỉ Nghệ Tông. \r\n11 Chữ vương? ở trong lòng chữ khẩu? là chữ "quốc"?. \r\n12 Theo tục nhà Trần, hằng năm vào ngày mồng 4 tháng 4, vua hội họp bề tôi làm lễ tuyên thệ ở đền Đồng Cổ. (Xem bản kỷ, quyển \r\n5, Kiến Trung năm thứ 3, 1277). \r\n13 Chỉ Quý Ly. \r\n288 Đại Việt Sử Ký Toàn Thư - Bản Kỷ - Quyển VIII \r\nQuý Ly bỏ mũ, rập đầu khóc lóc từ tạ, chỉ trời vạch đất thề rằng: \r\n"Nếu thần không biết dốc lòng trung, hết sức giúp Quan gia để truyền đến con cháu về sau thì \r\ntrời sẽ ghét bỏ thần". \r\nQuý Ly lại nói: "Lúc Linh Đức Vương làm điều thất đức, nếu không nhờ oai linh bệ hạ thì thần đã', 'Tây. Ngoài cơ sờ đúc súng cũ của tiên triều, năm 1825 vua Minh \r\nMệnh mờ thêm sáu xưởng nữa. vốn cần cù và ham học hỏi sáng \r\ntạo, những người thợ quân giới đã được "thứ súng tay nạp thuốc nổ \r\nmạnh theo kiểu Tây dương". Vào những năm cuối triều Minh \r\nM ệnh, họ đã đúc 15 cỗ đại pháo X ung tiêu băng đồng và hai cỗ \r\nsúng lớn Chấn hải, loại đại pháo lợi hại trong thủy chiến phương \r\nTây. Sau đó, lại xuất xưởng tiếp 30 cỗ Chấn hải. Năm 1829, quản \r\nkho Hải Dương là Tôn Thất Thiện cùng với 100 lính Chấn cơ chế \r\nra cối gỗ chạy bàng sức nước ở khe suối để giã, luyện thuốc súng. \r\nDụng cụ này là xe "Thủy hỏa ký tế", và những năm sau được phổ \r\ncập trong quân ngũ. Từ vũ khí phương Tây, người Đại Nam đã tự \r\ntìm hiểu từng chi tiết để chế tạo thước đo ngắm bắn, thước kiểm tra \r\nthuốc súng. Trong bảy năm ờ ngôi, vua Thiệu Trị đúc 9 cỗ súng \r\nbàng đồng hiệu là "Thần uy phục viễn đại tướng quân", cỗ to nhất \r\nlà 10.706 cân, cỗ nhỏ nhất là 10.222 cân, tổng cộng là 93.829 cân.\r\n649\r\nLỊCH SỬ VIỆT NAM - TẬP 5\r\nVà ba cỗ súng hiệu "Bảo Đại định công an dân hòa chúng thượng \r\ntướng quân", mỗi cỗ trên 14.500 cân, tổng cộng là 43.620 cân1.\r\nĐe tạo điều kiện cho quân thủy học tập, bộ Công cấp cho họ la \r\nbàn, thước đo nước, đồng hồ cát xem giờ của phương Tây. v ề khoa \r\nmục bắn súng thì lính thủy phải tập bắn súng điểu sang và đại bác. \r\nMinh Mệnh yêu cầu Hiệp biện Đại học sĩ lãnh Thượng thư bộ Binh \r\nTrương Đăng Quế đọc kỹ các sách và bản đồ thủy chiến "Tây', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Datasets: `gte_multilingual_base_768`, `gte_multilingual_base_512`, `gte_multilingual_base_256`, `gte_multilingual_base_128` and `gte_multilingual_base_64` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | gte_multilingual_base_768 | gte_multilingual_base_512 | gte_multilingual_base_256 | gte_multilingual_base_128 | gte_multilingual_base_64 | |:--------------------|:--------------------------|:--------------------------|:--------------------------|:--------------------------|:-------------------------| | cosine_accuracy@1 | 0.3973 | 0.3877 | 0.3772 | 0.3612 | 0.3082 | | cosine_accuracy@3 | 0.6333 | 0.6311 | 0.6146 | 0.5826 | 0.5146 | | cosine_accuracy@5 | 0.7132 | 0.7096 | 0.6872 | 0.6502 | 0.5863 | | cosine_accuracy@10 | 0.7817 | 0.7822 | 0.7662 | 0.7342 | 0.6621 | | cosine_precision@1 | 0.3973 | 0.3877 | 0.3772 | 0.3612 | 0.3082 | | cosine_precision@3 | 0.2111 | 0.2104 | 0.2049 | 0.1942 | 0.1715 | | cosine_precision@5 | 0.1426 | 0.1419 | 0.1374 | 0.13 | 0.1173 | | cosine_precision@10 | 0.0782 | 0.0782 | 0.0766 | 0.0734 | 0.0662 | | cosine_recall@1 | 0.3973 | 0.3877 | 0.3772 | 0.3612 | 0.3082 | | cosine_recall@3 | 0.6333 | 0.6311 | 0.6146 | 0.5826 | 0.5146 | | cosine_recall@5 | 0.7132 | 0.7096 | 0.6872 | 0.6502 | 0.5863 | | cosine_recall@10 | 0.7817 | 0.7822 | 0.7662 | 0.7342 | 0.6621 | | **cosine_ndcg@10** | **0.5921** | **0.588** | **0.5736** | **0.5466** | **0.4843** | | cosine_mrr@10 | 0.531 | 0.5253 | 0.5117 | 0.4866 | 0.4275 | | cosine_map@100 | 0.538 | 0.5319 | 0.5189 | 0.4943 | 0.4371 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### csv * Dataset: csv * Size: 21,892 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 9 tokens</li><li>mean: 26.95 tokens</li><li>max: 103 tokens</li></ul> | <ul><li>min: 25 tokens</li><li>mean: 373.94 tokens</li><li>max: 596 tokens</li></ul> | * Samples: | anchor | positive | |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Tính chất kiến trúc của đình làng triều Mạc được thể hiện qua những đặc điểm gì, như số gian, hình dạng, nội thất và cách bố trí không gian trong công trình?</code> | <code>Đình làng là công trình kiến trúc công cộng được dựng nên <br>băng sự đóng góp của cải và công sức của cả cộng đồng làng xã. <br>Ngoài chức năng là trụ sở hành chính của cả làng, ngôi đình còn là <br>trung tâm sinh hoạt văn hóa làng xã, là nơi diễn ra các nghi lễ trọng <br>đại trong dịp tế lễ thần Thành hoàng làng và tô chức hội hè hăng <br>năm. Có thê nói, ngôi đình làng là nơi hội tụ sức mạnh của cả cộng <br>đồng và là biểu trưng đặc sắc nhất của văn hóa làng xã. <br> <br>Trong các ngôi đình triều Mạc, Thân thành hoàng có lý lịch <br>xuất thân khá phong phú. Tản Viên sơn thánh là vị thần có ảnh <br>hưởng lớn ở xứ Đoài được thờ phụng ở đình Tây Đăng, Thanh Lũng <br>và nhiều làng xã khác. Thần Cao Sơn, Quý Minh tương truyền là <br>tướng tâm phúc của Hùng Vương được thờ ở đình làng Lỗ Hạnh. <br>Dân làng Lỗ Hạnh còn thờ cả Phương Dung công chúa... Từ thế <br>kỷ XYVI và các thế kỷ tiếp sau, Thần thành hoàng làng trở thành <br>vị vua tỉnh thần ở các làng xã, tín ngưỡng thờ cúng Thân thành <br>hoàng càng trở nên phong phú thê hiện qua lễ...</code> | | <code>Nguyễn Khắc Nhu có vai trò gì trong khởi nghĩa toàn khu vực miền núi Bắc Kỳ của Việt Nam Quốc dân Đảng vào năm 1930?</code> | <code>bị nổ do bất cẩn. Do đó công việc bị phát hiện. Hai người phụ trách <br>cơ quan chế bom là Đỗ Cương và Quản Trác trốn thoát. Nhiều binh <br>lính và dân thường bị bắt. Công việc bạo động của Xứ Nhu không <br>thành. Đúng lúc này Việt Nam Quốc dân Đảng vừa thành lập, cử <br>người tới mời Xứ Nhu và Việt Nam Dân quốc gia nhập Việt Nam <br>Quốc dân Đảng. Hầu hết các đồng chí của Xứ Nhu trở thành đảng <br>viên của Việt Nam Quốc dân Đảng ở vùng Bắc Ninh, Bắc Giang. <br>Do đó, Việt Nam Quốc dân Đảng mạnh lên về số lượng1. Cùng với <br>việc phát triển đảng viên ở Bẳc Ninh, Bắc Giang, Việt Nam Quốc <br>dân Đảng còn thiết lập nhiều cơ sở ở các tỉnh Thái Bình, Hải Dương, <br>1. Nguyễn Khắc Nhu tức Xứ Nhu (1882-1930), người làng Song Khê, huyện <br>Yên Dũng, tinh Bắc Giang. Với lòng yêu nuớc và ý chí chống Pháp, <br>ông dự tính thành lập một tổ chức hoạt động công khai nhăm đào tạo <br>tài năng cho đất nước lấy tên là "Hội Quốc dân dục tài”. Việc này <br>không thành công, ông lại lập tổ chức bí mật nhăm bạo động lật đổ ách <br>áp b...</code> | | <code>Giá gạo tháng 3-1950 ở Liên khu IV là bao nhiêu đồng/tạ và có chênh lệch gì so với giá gạo ở Liên khu III và Liên khu Việt Bắc?</code> | <code>ngày càng tăng nhanh, nhất là ở Việt Bắc. Giá gạo tăng mạnh <br>nhất, giá thực phẩm cũng tăng dần theo giá gạo. Giá các mặt hàng <br>kỹ nghệ tăng chậm hơn. Giá hàng ngoại hóa hầu như không tăng <br>vỉ trong vùng Pháp chiếm đóng, hàng ngoại hóa tính bằng tiền <br>Đông Dương không tăng, hom nữa nhân dân cũng ít tiêu thụ hàng <br>ngoại hóa vì bị cấm. <br>1. Viện Kinh tế học, Kinh tế Việt Nam từ Cách mạng Tháng Tám đến..., Sách <br>đã dẫn, tr. 238. <br>2. Chuơng trình và báo cáo của Bộ Kinh tế về tình hình hoạt động năm 1950. <br>Trung tâm lưu trữ quốc gia in, phông Phủ Thủ tướng, Hồ sơ số 1914. <br>488 <br>Chương VI. Việt Nam dân chủ cộng hòa xây dựng.. <br>Giá gạo trong những tháng đầu năm 1950 so với cuối năm 1949 <br>có thay đổi, Liên khu IV (Thanh Hóa) giá tăng lên 154%; Liên khu <br>III (Hà Đông - Hà Nam) giá tăng lên 153%; Liên khu Việt Bắc <br>(Thái Nguyên) giá tăng lên 800%. <br>Giá gạo ở Thái Nguyên từ 1.625 đồng/tạ lên 13.000 đồng/tạ <br>(tăng 800%); ờ Phú Thọ từ 2.650 đồng/tạ lên 7.500 đồng/tạ (tăng <br>283%). Mặt khác, ...</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Evaluation Dataset #### csv * Dataset: csv * Size: 21,892 evaluation samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 10 tokens</li><li>mean: 26.56 tokens</li><li>max: 108 tokens</li></ul> | <ul><li>min: 24 tokens</li><li>mean: 369.01 tokens</li><li>max: 559 tokens</li></ul> | * Samples: | anchor | positive | |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Nguyễn Hoàng đã thực hiện những hành động gì để dần dần tách khỏi sự ràng buộc của họ Trịnh sau khi trở lại Thuận Quảng vào năm 1600, và những hành động này đã ảnh hưởng như thế nào đến mối quan hệ giữa hai dòng họ?</code> | <code>thẳng đối với họ Nguyễn. Trịnh Tùng đã lấy danh nghĩa vua Lê sai <br>sứ giả là Thiêm đô ngự sử Lê Nghĩa Trạch đem sắc vào phủ dụ <br>Nguyễn Hoàng và vẫn cho ở lại trấn thủ, hằng năm nộp thuế như <br>cũ. Cùng với sắc của vua Lê, Trịnh Tùng có gửi thư kèm theo <br>Chương ĩ. Sự phân liệt Đàng Trong - Đàng Ngoài... <br>1, Toàn thư. quyển 17, tập IV, Sđd, tr. 200. <br>2, Đại Nam thực lục, Tiền biên, quyển 1, tập I, Sđd, tr. 34. <br>3, Đại Nam thực lục, Tiển biên, quyển 1, tập I, Sđd, tr. 35. <br>39 <br>LỊCH SỬ VIỆT NAM - TẬP 4 <br>"khuyên giữ việc thuế cống". Nguyễn Hoàng sai sứ giả đáp lễ tạ on <br>vua Lê và gửi thư cho Trịnh Tùng hẹn kết nghĩa thông gia, đem con <br>gái là Ngọc Tú gả cho Trịnh Tráng (con Trịnh Tùng) lấy danh <br>nghĩa hôn nhân để duy trì mối quan hệ bề ngoài giao hảo giữa hai <br>dòng họ vốn có sẵn một mối thù địch. <br>- Chính sách cùa họ Nguyễn từ khi Nguyễn Hoàng trở lại <br>Thuận Quảng <br>Năm 1600, Nguyễn Hoàng ròi được khỏi đất Bẳc trở về Thuận <br>Quảng bắt đầu thực hiện một chính sách cai trị mói, dần dần tác...</code> | | <code>Báo cáo của Ủy ban Kháng chiến hành chính Hà Nội về hoạt động giáo dục bù nhìn và tình hình các giáo sư trường Chu Văn An có nội dung gì?</code> | <code>Tài liệu tham khảo <br>21. Báo cáo sô' 2 BC/I ngày 12-11-1949 và Báo cáo sô' 463 <br>BC/DB ngày 25-12-1949 của Ty Công an H à Nội. Trung <br>tâm Lưu trữ Quốc gia III, phông Phủ Thủ tướng, Hồ sơ <br>SỐ921. <br>28. Báo “Le song” ngày 11-2-1949. Trung tâm Lưu trữ Quốc <br>gia III, phông Phủ Thủ tướng, Hồ sơ sô' 2002. <br>29. Báo cáo của u ỷ ban Kháng chiến hành chính Hà Nội vê <br>hoạt động giáo dục bù nhìn và tình hình các giáo sư <br>trường Chu Văn An. Trung tâm Lưu trữ Quốc gia III, <br>phông Phủ Thủ tướng, Hồ sơ số 979. <br>30. Báo cáo của Tổng Giám đốc Việt N am Công an vụ sô' <br>122/NCB3 ngày 1-4-1951. Trung tâm Lưu trữ Quốic gia <br>III, phông Phủ Thủ tướng, Hồ sơ sô' 979. <br>31. Báo cáo thành tích về cống tác công an trong 8 năm kháng <br>chiến (1946-1954) của Bộ Công an. Trung tâm Lưu trữ <br>Quốc gia III, phông Phủ Thủ tướng, Hồ sơ sô' 927. <br>32. Báo cáo một năm kháng chiến (12-1946 đến 12-1947) của <br>UBKCHC Khu 12. Trung tâm Lưu trữ Quốc gia III, phông <br>Phủ Thủ tướng, Hồ sơ sô" 2000. <br>33. Báo cáo thành tích quăn sự trong 8 n...</code> | | <code>Đặc điểm dân số của nước ta ảnh hưởng đến các ngành dịch vụ như thế nào và đòi hỏi những ngành dịch vụ nào cần được ưu tiên phát triển trong quá trình đô thị hóa?</code> | <code>— Trong các thành phố lớn thường hình thành các trung tâm giao dịch, <br>thương mại. Đó là nơi tập trung các ngân hàng, các văn phòng đại diện <br>của các công ti, các siêu thị hay các tổ hợp thương mại, dịch vụ lớn... <br>Ở các thành phố lớn trên thế giới, thường dễ nhận thấy các trung tâm <br>thương mại này do sự tập trung các ngôi nhà cao tầng, chọc trời. Một <br>thành phố có thể có trung tâm thương mại chính và một số trung tâm <br>thương mại nhỏ hơn, kết quả của sự phát triển đô thị. <br> <br>— Ở nước ta, các thành phố, thị xã thường có khu hành chính (phân <br>“đô”) và khu buôn bán, dịch vụ (phân “thị'). Ở Hà Nội, Thành phố <br>Hồ Chí Minh các trung tâm giao dịch, thương mại của thành phố đang <br>được hình thành rõ nét. <br> <br>CÂU HỎI VÀ BÀI TẬP <br> <br>174 <br> <br>1. Cho biết đặc điểm dân số của nước ta (đông, tăng còn tương đối <br>nhanh, mức sống đang nâng lên và đô thị hoá đang phát triển với <br>tốc độ nhanh hơn) có ảnh hưởng đến các ngành dịch vụ như thế <br>nào ? Các đặc điểm đó đòi hỏi những ngành dịch vụ nào cần được <br>ưu tiê...</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 6 - `per_device_eval_batch_size`: 6 - `learning_rate`: 3e-06 - `num_train_epochs`: 2 - `warmup_ratio`: 0.05 - `bf16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 6 - `per_device_eval_batch_size`: 6 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 3e-06 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 2 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.05 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | gte_multilingual_base_768_cosine_ndcg@10 | gte_multilingual_base_512_cosine_ndcg@10 | gte_multilingual_base_256_cosine_ndcg@10 | gte_multilingual_base_128_cosine_ndcg@10 | gte_multilingual_base_64_cosine_ndcg@10 | |:------:|:----:|:-------------:|:---------------:|:----------------------------------------:|:----------------------------------------:|:----------------------------------------:|:----------------------------------------:|:---------------------------------------:| | 0.0305 | 100 | 1.1057 | 0.7163 | 0.5609 | 0.5532 | 0.5375 | 0.4939 | 0.4168 | | 0.0609 | 200 | 0.7976 | 0.5554 | 0.5724 | 0.5696 | 0.5491 | 0.5068 | 0.4351 | | 0.0914 | 300 | 0.6724 | 0.4082 | 0.5819 | 0.5778 | 0.5592 | 0.5177 | 0.4453 | | 0.1218 | 400 | 0.4439 | 0.3058 | 0.5868 | 0.5832 | 0.5643 | 0.5231 | 0.4558 | | 0.1523 | 500 | 0.3544 | 0.2573 | 0.5873 | 0.5836 | 0.5631 | 0.5264 | 0.4597 | | 0.1827 | 600 | 0.3483 | 0.2358 | 0.5897 | 0.5856 | 0.5690 | 0.5309 | 0.4679 | | 0.2132 | 700 | 0.4737 | 0.2248 | 0.5917 | 0.5883 | 0.5767 | 0.5350 | 0.4747 | | 0.2436 | 800 | 0.3216 | 0.2193 | 0.5899 | 0.5853 | 0.5712 | 0.5330 | 0.4734 | | 0.2741 | 900 | 0.3239 | 0.2109 | 0.5918 | 0.5883 | 0.5719 | 0.5344 | 0.4712 | | 0.3045 | 1000 | 0.3111 | 0.2065 | 0.5882 | 0.5856 | 0.5708 | 0.5331 | 0.4751 | | 0.3350 | 1100 | 0.3516 | 0.2024 | 0.5889 | 0.5854 | 0.5714 | 0.5352 | 0.4760 | | 0.3654 | 1200 | 0.3344 | 0.2033 | 0.5860 | 0.5832 | 0.5687 | 0.5339 | 0.4764 | | 0.3959 | 1300 | 0.3161 | 0.1907 | 0.5920 | 0.5898 | 0.5718 | 0.5369 | 0.4756 | | 0.4263 | 1400 | 0.3094 | 0.1905 | 0.5948 | 0.5915 | 0.5723 | 0.5374 | 0.4774 | | 0.4568 | 1500 | 0.2981 | 0.1859 | 0.5924 | 0.5919 | 0.5736 | 0.5370 | 0.4755 | | 0.4872 | 1600 | 0.3332 | 0.1860 | 0.5877 | 0.5881 | 0.5697 | 0.5361 | 0.4760 | | 0.5177 | 1700 | 0.259 | 0.1877 | 0.5811 | 0.5820 | 0.5683 | 0.5343 | 0.4779 | | 0.5481 | 1800 | 0.282 | 0.1924 | 0.5788 | 0.5811 | 0.5664 | 0.5337 | 0.4804 | | 0.5786 | 1900 | 0.2739 | 0.1943 | 0.5803 | 0.5803 | 0.5685 | 0.5383 | 0.4823 | | 0.6090 | 2000 | 0.2049 | 0.1893 | 0.5856 | 0.5826 | 0.5680 | 0.5380 | 0.4794 | | 0.6395 | 2100 | 0.3545 | 0.1780 | 0.5920 | 0.5885 | 0.5717 | 0.5393 | 0.4743 | | 0.6699 | 2200 | 0.3008 | 0.1769 | 0.5919 | 0.5879 | 0.5732 | 0.5392 | 0.4755 | | 0.7004 | 2300 | 0.3561 | 0.1764 | 0.5909 | 0.5883 | 0.5735 | 0.5392 | 0.4777 | | 0.7308 | 2400 | 0.4883 | 0.1705 | 0.5977 | 0.5922 | 0.5777 | 0.5451 | 0.4797 | | 0.7613 | 2500 | 0.235 | 0.1665 | 0.5966 | 0.5928 | 0.5799 | 0.5434 | 0.4805 | | 0.7917 | 2600 | 0.3415 | 0.1636 | 0.5960 | 0.5910 | 0.5780 | 0.5444 | 0.4815 | | 0.8222 | 2700 | 0.2424 | 0.1637 | 0.5936 | 0.5917 | 0.5758 | 0.5455 | 0.4821 | | 0.8526 | 2800 | 0.1937 | 0.1635 | 0.5961 | 0.5896 | 0.5790 | 0.5446 | 0.4841 | | 0.8831 | 2900 | 0.1986 | 0.1620 | 0.5922 | 0.5884 | 0.5770 | 0.5428 | 0.4834 | | 0.9135 | 3000 | 0.2009 | 0.1587 | 0.5963 | 0.5921 | 0.5793 | 0.5438 | 0.4820 | | 0.9440 | 3100 | 0.221 | 0.1568 | 0.5964 | 0.5945 | 0.5810 | 0.5465 | 0.4824 | | 0.9744 | 3200 | 0.1847 | 0.1592 | 0.5933 | 0.5913 | 0.5766 | 0.5440 | 0.4808 | | 1.0049 | 3300 | 0.224 | 0.1629 | 0.5906 | 0.5882 | 0.5746 | 0.5410 | 0.4816 | | 1.0353 | 3400 | 0.3356 | 0.1624 | 0.5884 | 0.5870 | 0.5728 | 0.5412 | 0.4795 | | 1.0658 | 3500 | 0.2286 | 0.1624 | 0.5891 | 0.5864 | 0.5750 | 0.5419 | 0.4799 | | 1.0962 | 3600 | 0.2176 | 0.1591 | 0.5933 | 0.5896 | 0.5772 | 0.5429 | 0.4824 | | 1.1267 | 3700 | 0.1376 | 0.1592 | 0.5923 | 0.5884 | 0.5733 | 0.5415 | 0.4814 | | 1.1571 | 3800 | 0.1222 | 0.1593 | 0.5918 | 0.5895 | 0.5737 | 0.5423 | 0.4828 | | 1.1876 | 3900 | 0.2303 | 0.1600 | 0.5919 | 0.5847 | 0.5722 | 0.5423 | 0.4827 | | 1.2180 | 4000 | 0.1984 | 0.1590 | 0.5920 | 0.5867 | 0.5742 | 0.5437 | 0.4858 | | 1.2485 | 4100 | 0.1488 | 0.1596 | 0.5910 | 0.5850 | 0.5734 | 0.5402 | 0.4867 | | 1.2789 | 4200 | 0.188 | 0.1597 | 0.5903 | 0.5843 | 0.5727 | 0.5401 | 0.4839 | | 1.3094 | 4300 | 0.1507 | 0.1572 | 0.5884 | 0.5836 | 0.5717 | 0.5401 | 0.4848 | | 1.3398 | 4400 | 0.2171 | 0.1585 | 0.5874 | 0.5833 | 0.5707 | 0.5408 | 0.4832 | | 1.3703 | 4500 | 0.1938 | 0.1584 | 0.5885 | 0.5836 | 0.5706 | 0.5400 | 0.4836 | | 1.4007 | 4600 | 0.1793 | 0.1566 | 0.5875 | 0.5834 | 0.5720 | 0.5409 | 0.4813 | | 1.4312 | 4700 | 0.2104 | 0.1557 | 0.5898 | 0.5844 | 0.5727 | 0.5423 | 0.4815 | | 1.4616 | 4800 | 0.1473 | 0.1562 | 0.5889 | 0.5854 | 0.5705 | 0.5413 | 0.4830 | | 1.4921 | 4900 | 0.2356 | 0.1559 | 0.5878 | 0.5836 | 0.5708 | 0.5415 | 0.4834 | | 1.5225 | 5000 | 0.1418 | 0.1565 | 0.5861 | 0.5835 | 0.5688 | 0.5413 | 0.4819 | | 1.5530 | 5100 | 0.176 | 0.1572 | 0.5865 | 0.5820 | 0.5686 | 0.5407 | 0.4824 | | 1.5834 | 5200 | 0.1911 | 0.1574 | 0.5859 | 0.5825 | 0.5688 | 0.5420 | 0.4824 | | 1.6139 | 5300 | 0.1382 | 0.1562 | 0.5870 | 0.5826 | 0.5697 | 0.5423 | 0.4841 | | 1.6443 | 5400 | 0.1825 | 0.1528 | 0.5880 | 0.5851 | 0.5714 | 0.5433 | 0.4830 | | 1.6748 | 5500 | 0.2709 | 0.1524 | 0.5897 | 0.5858 | 0.5716 | 0.5430 | 0.4831 | | 1.7052 | 5600 | 0.1992 | 0.1523 | 0.5900 | 0.5859 | 0.5727 | 0.5435 | 0.4827 | | 1.7357 | 5700 | 0.326 | 0.1506 | 0.5910 | 0.5873 | 0.5736 | 0.5456 | 0.4842 | | 1.7661 | 5800 | 0.1698 | 0.1495 | 0.5907 | 0.5865 | 0.5739 | 0.5443 | 0.4842 | | 1.7966 | 5900 | 0.2013 | 0.1489 | 0.5916 | 0.5889 | 0.5738 | 0.5457 | 0.4826 | | 1.8270 | 6000 | 0.1371 | 0.1484 | 0.5912 | 0.5883 | 0.5739 | 0.5454 | 0.4840 | | 1.8575 | 6100 | 0.1351 | 0.1483 | 0.5917 | 0.5886 | 0.5735 | 0.5456 | 0.4844 | | 1.8879 | 6200 | 0.1678 | 0.1486 | 0.5925 | 0.5878 | 0.5733 | 0.5450 | 0.4840 | | 1.9184 | 6300 | 0.1154 | 0.1483 | 0.5915 | 0.5874 | 0.5742 | 0.5461 | 0.4847 | | 1.9488 | 6400 | 0.1576 | 0.1482 | 0.5913 | 0.5880 | 0.5743 | 0.5469 | 0.4833 | | 1.9793 | 6500 | 0.1609 | 0.1478 | 0.5921 | 0.5880 | 0.5736 | 0.5466 | 0.4843 | ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.3.1 - Transformers: 4.49.0 - PyTorch: 2.5.1 - Accelerate: 1.2.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
{"base_model": "Alibaba-NLP/gte-multilingual-base", "library_name": "sentence-transformers", "metrics": ["cosine_accuracy@1", "cosine_accuracy@3", "cosine_accuracy@5", "cosine_accuracy@10", "cosine_precision@1", "cosine_precision@3", "cosine_precision@5", "cosine_precision@10", "cosine_recall@1", "cosine_recall@3", "cosine_recall@5", "cosine_recall@10", "cosine_ndcg@10", "cosine_mrr@10", "cosine_map@100"], "pipeline_tag": "sentence-similarity", "tags": ["sentence-transformers", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:21892", "loss:MatryoshkaLoss", "loss:MultipleNegativesRankingLoss"], "widget": [{"source_sentence": "Sự khác biệt giữa các thời đại trong nghệ thuật trang trí rồng được thể hiện như thế nào qua các thời Hùng Vương, Lý, Trần, Hồ, Lê, Mạc, Nguyễn?", "sentences": ["Tài liệu tham khảo\r\n323. Nguyễn Quang Ngọc, “Mấy nhận xét về kết cấu kinh tế của \r\nmột số làng thương nghiệp ờ vùng đồng bằng Bắc Bộ thế kỳ \r\nXVIII-XIX”, Tạp chí Nghiên cứu Lịch sứ, số 5 (218), 1984.\r\n324. Nguyễn Quang Ngọc, Phan Đại Doãn, “Mấy ý kiến về hoạt \r\nđộng thương nghiệp ở nông thôn đồng bằng Bắc Bộ thế kỷ \r\nXVIII-XIX (hiện tượng và bản chất)”, Tạp chí Nghiên cứu\r\nLịch sử, số 5 (224), 1985.\r\n325. Nguyễn Quang Ngọc, “Thêm vài ý kiến về Tam Điệp”, Tạp \r\nchí Nghiên cứu Lịch sử, số 1 (244), 1989.\r\n326. Nguyễn Quang Ngọc, về một số làng buôn ở Đồng bàng Bắc \r\nBộ thế kỳ XVIII-XIX, Hội Sừ học Việt Nam, 1993.\r\n327. Nguyễn Quang Ngọc, Vũ Văn Quân, “Tư liệu về nguồn gốc \r\nchức năng và hoạt động cùa đội Hoàng Sa”, Tạp chí Khoa\r\nhọc xã hội, Đại học Quốc gia, t.XIV, số 3, 1998, ư. 10-20.\r\n328. Nguyễn Quang Ngọc, “Bảo vệ chủ quyền ưên Biển Đông: \r\nmột hoạt động nổi bật của vương triều Tây Sơn”, Tạp chí \r\nLịch sử quân sự, số 1, 1999, tr. 15-18.\r\n329. Nguyễn Quang Ngọc (Chủ biên), Tiến trình lịch sứ Việt Nam,\r\nNxb. Giáo dục, Hà Nội, 2001.\r\n330. Nguyền Quân, Phan cẩm Thượng, Mỹ thuật cùa người Việt,\r\nNxb. Mỹ thuật. Hà Nội. 1989.\r\n331. Nguyễn Tài Thư (Chủ biên), Lịch sử tư tưởng Việt Nam, 2\r\ntập, Nxb. Khoa học xã hội, Hà Nội, 1993.\r\n332. Nguyễn Tài Thư, Nho học và Nho học ớ Việt Nam: Một số lý\r\nluận và thực tiễn, Nxb. Khoa học xã hội, Hà Nội, 1997.\r\n333. Nguyễn Tưòmg Phượng, Binh chế Việt Nam qua các thời đại,\r\nNgày Mai, 1950.", "Ba Thục, Kinh Sở, Ngô Việt…). Kết thúc cuộc \"Hán Sở tranh hùng\", nhà Hán\r\nđã thống nhất đất nước Trung Hoa từ bắc xuống nam (tiền bắc hậu nam) và phát\r\ntriển đất nước theo một trật tự ngược lại: tiền nam hậu bắc\".\r\nCó thể hình dung cơ cấu của văn hóa Trung Hoa như sau: \r\nVĂN HOÁ\r\nTRUNG\r\nHOA\r\n=\r\nVăn hoá lưu vực sông Hoàng Hà\r\n+\r\nVăn hoá nông\r\nnghiệp lúa nước\r\nĐông Nam Á\r\nVăn hoá du\r\nmục Tây Bắc +\r\nVăn hoá nông\r\nnghiệp khối Trung\r\nNguyên\r\nMối liên hệ và sự tác động qua lại giữa văn hóa Việt Nam với Trung Hoa,\r\ngiữa văn hóa phương Bắc cổ đại với văn hóa phương Nam cổ đại (trong đó có\r\nvăn hóa Nam – Á - Bách Việt) có thể trình bày trong bảng 1.5.\r\nVĂN HOÁ\r\nP.BẮC CỔ ĐẠI\r\nVĂN HOÁ PHƯƠNG NAM (= Đ.N.Á cổ đại)\r\nVăn hoá Nam-Á (Bách Việt)\r\nVăn hóa vùng lưu\r\nvực sông Hoàng\r\nHà\r\nVăn hóa vùng lưu\r\nvực sông Dương\r\nTử\r\nVăn hóa vùng lưu\r\nvực s. Hồng, s.\r\nMã\r\nVăn hóa miền\r\nTrung và đồng\r\nbằng s. Mê Kông\r\nVĂN HOÁ TRUNG HOA VĂN HOÁ VIỆT NAM\r\nBảng 1.5: Quan hệ cội nguồn giữa văn hóa Việt Nam và Trung Hoa\r\nBài 3: TIẾN TRÌNH VĂN HÓA VIỆT NAM\r\nTiến trình văn hóa Việt Nam có thể chia thành 6 giai đoạn: văn hóa tiền\r\nsử, văn hóa Văn Lang - Âu Lạc, văn hóa thời chống Bắc thuộc, văn hóa Đại\r\nViệt, văn hóa Đại Nam và văn hóa hiện đại. Sáu giai đoạn này tạo thành ba lớp:\r\nlớp văn hóa bản địa, lớp văn hóa giao lưu với Trung Hoa và khu vực, lớp văn\r\nhóa giao lưu với phương Tây.\r\n3.1. Lớp văn hóa bản địa\r\n28\r\nDownloaded by Tu?n ?ào Minh ([email protected])\r\nlOMoARcPSD|49704028", "trái), và hình bán nguyệt (đôi dưới, phải). Trước mắt ta là sự hòa hợp tuyệt vời\r\ncủa cái động (vật nhau) trong thế tĩnh của ba hình hình học với những cạnh đáy\r\nvững vàng cho thấy sự ngang sức ngang tài của các chàng trai; sự vận động liên\r\ntục của cơ bắp như dừng lại. Hai người chờ vật được khuôn lại trong hai hình\r\nchữ nhật đứng tạo nên cảm giác co ro bất tận trong cái rét của lễ hội đầu xuân.\r\n4.1.3. Thủ pháp mô hình hóa đã tạo nên một nền nghệ thuật trang trí và\r\nnhiều mô hình mang tính triết lí sâu sắc.\r\nBộ Tứ Linh (Hình 4.20a) với long (rồng) biểu trưng cho uy là nam tính; li\r\n(= long mã) hoặc lân (kì lân, con vật tưởng tượng đầu sư tử, mình nai, đuôi trâu,\r\n131\r\nDownloaded by Tu?n ?ào Minh ([email protected])\r\nlOMoARcPSD|49704028\r\năn cỏ, rất hiền lành - hình 4.20b) biểu trưng cho ước vọng thái bình, quy (rùa)\r\nhiểu tượng cho sự sống lâu và phượng (phụng) biểu tượng cho nữ tính. Rồng -\r\nPhượng biểu tượng cho hạnh phúc lứa đôi (ở Trung Hoa hiên tượng này là\r\n“loan-phượng”: loan là con đực, phượng là con cái). Đồ án trang trí RỒNG phổ\r\nbiến đến mức phản ánh những đặc trưng cửa từng thời đại. Rồng thời Hùng\r\nvương, thời Lí, Trần, Hồ, Lê, Mạc, Nguyễn – mỗi thời có những nét đặc thù\r\nriêng tương ứng với thời đại của mình.\r\nTứ linh cộng thêm ngư-phúc-hạc-hổ thì thành BÁT VẬT. Ngư (Cá) gắn\r\nvới truyền thuyết \"cá hóa rồng\" biểu tượng cho sự thành đạt. Chữ phúc là “sự tốt\r\nlành, may mắn” đồng âm và viết gần giống với chữ bức nghĩa là \"con dơi\", vì"]}, {"source_sentence": "Nhiệm vụ quan trọng nhất của các nước công nghiệp chủ nghĩa châu Âu và Nhật Bản sau chiến tranh thế giới thứ hai là gì?", "sentences": ["Dupuis phái tự mình hành động. Tháng 10-1872, Dupuis đi Hương \r\nCảng và Thượng Hải mua pháo thuyền và đạn dược, mộ quân lính,\r\n1. Đó là các cuộc thám hiểm cùa phái đoàn Doudard de Lagrée và Francis \r\nGamier vào những năm từ 1866 đến 1870.\r\n2. Nguyễn Phan Quang (1949), Việt Nam thế ky XIX (1802-1884), Nxb. \r\nThành phố Hồ Chí Minh, tr. 321.\r\n159\r\nLỊCH SỪ VIỆT NAM - TẬP 6\r\nrồi đến tháng 11 năm đó thì kéo nhau về Bắc Kỳ. Cùng lúc đó, bọn \r\nthực dân hiếu chiến ở Nam Kỳ cũng lợi dụng việc triều đình Huế \r\nyêu cầu đưa ra Bắc tiễu trừ giặc biển để phái tàu chiến ra tiếp tay \r\ncho Dupuis. Cậy có lực lượng mạnh, Dupuis buộc Kinh lược sứ Lê \r\nTuấn trong vòng hai tuần phải xin triều đình Huế cho phép hắn \r\nđược mượn đường đi lên Vân Nam. Nhung hạn 2 tuần chưa hết và \r\ngiấy phép cũng chưa có mà Dupuis đã nổ súng, rồi tự tiện kéo đoàn \r\ntàu vào Cửa cấm (Hải Phòng) ngược sông Hồng lên Hà Nội (ngày \r\n22-12-1872). Theo sử nhà Nguyễn thì ngày 2-12-1872, Dupuis “từ\r\nHài Dương đi đen Bắc Ninh, Hà Nội, các quan tình và quân thứ 2-\r\n3 lần biện bác ngăn trở không cho đi, nhưng chúng không nghe\r\nTrong khoảng thời gian từ năm 1872 đến năm 1873, Dupuis đã ỷ \r\nthế quân Pháp và triều đình nhà Thanh, trắng trợn xâm phạm chủ \r\nquyền Việt Nam, liên tiếp gây ra nhiều vụ khiêu khích, cướp phá \r\nđối với nhân dân dọc hai bờ sông, tấn công các đồn bốt của triều \r\nđình nhà Nguyễn.\r\nTrước hành động ngang ngược cùa Dupuis, quân dân Hà Nội \r\nmặc dù chưa có lệnh triều đình nhung vẫn tích cực đề phòng. Lệnh", "hội loài người nói chung hay cùa một quốc gia, một dân tộc nói \r\nriêng. Nghiên cứu lịch sử là nhằm tìm hiểu những sự kiện xảy ra \r\ntrong quá khứ để từ đó rút ra các bài học kinh nghiệm cho hiện tại \r\nvà tương lai. Nghiên cứu và biên soạn lịch sừ, vì vậy, trở thành một \r\nyêu cầu bức thiết của mọi quốc gia, dân tộc. Phạm Công Trứ, nhà \r\nchính trị danh tiếng, nhà sử học sống ở thế kỳ XVII, trong bài Tựa\r\nsách Đại Việt sử ký bản kỷ tục biên viết: \"Vì sao mà làm quốc sử?\r\nVĩ sử chù yếu là để ghi chép sự việc. Có chinh trị cùa một đời tất\r\nphải có sử của một đời. Mà ngòi bút chép sử giữ nghị luận rất\r\nnghiêm, ca ngợi đời thịnh trị thì sáng tỏ ngang với mặt trời, mặt\r\ntrăng, lên án kẻ loạn tặc thì gay gắt nhu sương thu lạnh buốt,\r\nngười thiện biết có thể bắt chước, người ác biết có thể tự răn, quan\r\nhệ đến việc chính trị không phải là không nhiều. Cho nên làm sử là\r\ncốt để cho được như thế\"'.\r\nViệt Nam là một dân tộc có lịch sử lâu đời. Việt Nam cũng là \r\nmột dân tộc yêu sử và có rất nhiều người ham thích tìm tòi, nghiên \r\ncứu và biên soạn lịch sử. Đã có nhiều công trình lịch sử được công \r\nbố, không chi do các cơ quan, tổ chức chuyên nghiên cứu biên \r\nsoạn, mà còn do cá nhân người yêu sử thực hiện... Điều này vừa có \r\nmặt tích cực, lại cỏ mặt tiêu cực. Tích cực vì sẽ góp phần giúp nhân \r\ndân hiểu thêm về lịch sử nước nhà, nhưng cũng chứa đựng yếu tố \r\ntiêu cực là dễ dẫn tới những hiểu biết phiến diện, sai lầm về lịch \r\nsử... đôi khi đồng nhất truyền thuyết với lịch sử?", "LỊCH SỪ VIỆT NAM - TẬP 11\r\ngiầu mạnh hcm nhờ chiến tranh. Những nước bại trận như Đức, Ý, \r\nNhật thì kiệt quệ. Song dù thắng hay bại, sự kết thúc chiến tranh đặt \r\ncho mỗi nước những yêu cầu cấp bách cần giải quyết, tạo nên \r\nnhững đặc trưng kinh tế - xã hội ở nhóm nước này.\r\nSau chiến tranh thế giới, những nưóc công nghiệp chủ nghĩa \r\nchâu Âu và Nhật Bản đều bị chiến tranh tàn phá nặng nề. Nhiệm vụ \r\nquan trọng của họ ỉà hàn gắn vết thương chiến tranh, khôi phục \r\nkinh tế, ổn định đời sống xã hội. Đối với Mỹ, nhiệm vụ chủ yếu là \r\nphải chuyển hướng vận hành kinh tế từ một nền kinh tế phục vụ \r\nquân sự thời chiến sang nền kinh tế thời bình.\r\nNhừng nét cơ bản của tình hình thế giới nêu trên đã tác động \r\nđến hầu hết các khu vực trên thế giới, đặc biệt là khu vực Châu Á \r\nvà Đông Nam Á, tạo điều kiện thuận lợi cho cuộc đấu tranh giải \r\nphóng của các dân tộc Đông Dương. Từ đầu những năm 1950, tình \r\nhình cách mạng ba nước Đông Dương chuyển biến nhanh chóng. \r\nVới cuộc đi thăm Trung Quốc, Liên Xô của Chủ tịch Hồ Chí Minh \r\nđầu năm 1950 và việc các nước xã hội chủ nghĩa công nhận và đặt \r\nquan hệ ngoại giao với Chính phủ Việt Nam Dân chủ Cộng hòa là \r\nmột thắng lợi ngoại giao vô cùng quan trọng. Thắng lợi về ngoại \r\ngiao này đã chấm dứt thời kỳ chiến đấu đom độc, hầu như bị cách ly \r\nvới bên ngoài và từ đó tiếp nhận được sự đồng tình về chính trị và \r\nsự viện trợ về vật chất.\r\nVới sự giúp đỡ của Liên Xô, Trung Quốc và các nước xã hội"]}, {"source_sentence": "Chức năng của quan Đốc học trong việc quản lý giáo dục ở các tỉnh là gì?", "sentences": ["Định, Phú Yên, Biên Hoà, Gia Định, Vĩnh Long, Định Tường, An \r\nGiang đều đặt mỗi tỉnh một quan Đốc học coi việc học chính trong \r\ntinh. Các tỉnh từ Quảng Trị, Quảng Bình, Hà Tĩnh, Nghệ An, \r\nThanh Hoá, Ninh Bình, Nam Định, Hà Nội, Hưng Yên, Hải Dương, \r\nSơn Tây, Bắc Ninh cũng đều đật chức Đốc học. Tinh nào khuyết \r\nchức Đốc học thì đặt Thự đốc học tạm quyền đốc học một thời gian \r\nđổ phụ trách, đôn đốc việc học trong tỉnh.\r\nCác tỉnh Khánh Hoà, Bình Thuận, Hà Tiên, Quảng Yên, Hưng \r\nHoá, Tuyên Quang, Thái Nguyên, Lạng Sơn, Cao Bằng, do số học \r\nsinh ít nên đến cuối thời Thiệu Trị (1847) vẫn chưa đặt chức Đốc học.\r\nTheo lệ Nhà nước chế cấp ấn quan phòng giao cho Đốc học lo \r\nviệc học chính trong địa hạt của tinh sờ tại, trong đó có việc xây \r\ndựng trường sở ở tinh, phù, hoặc huyện, châu; sắp xếp các thày \r\ngiáo và tuyển chọn học sinh vào học ở các trường. Những công \r\nviệc licn quun đén việc học đểu có sự phối hựp giữa quan Đốc hục \r\nvới các viên giữ chức Giáo thụ ở các phủ và Huấn đạo ờ các huyện, \r\nchâu. Một bộ máy giáo dục được tổ chức chặt chẽ theo ngành dọc \r\ntừ tinh đến phủ, huyện, châu; tổng (ở tổng có Tổng giáo) để theo \r\ndõi, đôn đốc việc giảng dạy và học tập, đã góp phần đẩy mạnh hom \r\nviệc giáo dục ở những triều vua Nguyễn nửa đầu thế kỳ XIX. Những \r\nthành tích của giáo dục bấy giờ biểu hiện rõ nhất ở việc Nhà nước \r\ncứ 3 năm lại mở một kỳ thi Hương ờ một số tinh thuộc Bác Kỳ (Nam \r\nĐịnh, Hài Dương, Thăng Long); Nghệ An; kinh đô Huế; Trung Kỳ", "Trước tình hình thế giới và trong nước ngày càng khẩn trương, ngày 28 - I - 1941,\r\nlãnh tụ Nguyễn Ái Quốc về nước triệu tập Hội nghị lần thứ 8 Ban Chấp hành\r\nTrung ương Đảng Cộng sản Đông Dương. Hội nghị họp tại Pác Bó (Cao Bằng) từ\r\nngày 10 đến ngày 19 - 5 - 1941.\r\nHội nghị chủ †rương trước hết phởi giỏi phóng cho được cóc dôn tộc\r\nĐông Dương ro khỏi éch Phớp - Nhột. Hội nghị quyết định tiếp tục tạm\r\ngóc khổu hiệu “Đónh đổ địa chủ, chia ruộng đốt cho dôn còy” thay bằng\r\ncóc khổu hiệu “Tịch thu ruộng đốt của đế quốc vò Việt gian chia cho dên\r\ncòy nghèo, giởm †ô, giỏm tức, chia lợi ruộng công”, tiến tới thực hiện\r\n“Người còy có ruộng”. Hội nghị chủ trương †hònh lộp Việt Nơm độc lập\r\nđồng minh (gọi tốt lò Việt Minh) bao gồm céc †ổ chức quồn chúng, lốy\r\ntên lò Hội Cứu quốc nhồm : “Liên hiệp hết thỏy cóc giới đồng bèo yêu\r\nnước, không phôn biệt giòu nghèo, giò trẻ, gới trai, không phôn biệt tôn\r\ngiáo vò xu hướng chính trị, đặng cùng nhau mưu cuộc dôn tộc giỏi phóng\r\nvò sinh tồn” °°,\r\n\r\nMặt trận Việt Minh chính thức thành lập ngày 19 - 5 - 1941. Chỉ sau một thời\r\ngian ngắn, tổ chức này đã có uy tín và ảnh hưởng sâu rộng trong nhân dân. Sau Hội\r\nnghị Trung ương, lãnh tụ Nguyễn Ái Quốc đã gửi thư kêu gọi đồng bào cả nước\r\nđoàn kết thống nhất đánh đuổi Pháp - Nhật.", "\"Chính sự ngày một đổ nát, đói kém xảy ra luôn luôn. Nhân dân cùng\r\nquân, khốn khổ, giặc cướp nổi lên ở nhiễu nơi\".\r\n(Khâm định Việt sử thông giám cương mục)\r\n\r\nỞ Nghệ An, Thanh Hoá, Ninh Bình,... dân nghèo nổi dậy đấu tranh. Trong\r\ntình hình đó, một số thế lực phong kiến ở các địa phương lại đánh giết lẫn\r\nnhau, quấy phá nhân dân và chống lại triều đình. Nhà Lý phải dựa vào thế lực\r\nhọ Trần để chống lại các lực lượng nổi loạn nên đã tạo điều kiện và thời cơ cho\r\nhọ Trần buộc Chiêu Hoàng (vua cuối cùng của nhà Lý) phải nhường ngôi cho\r\nTrần Cảnh vào tháng 12, năm Ất Dậu (đâu năm 1226).\r\n\r\n(1) Việc thổ mộc : việc làm nhà cửa, chùa, đền, đào sông, hồ..."]}, {"source_sentence": "Thiệu Trị đã xử lý trường hợp của Lý Văn Phức và việc người Pháp bắt giữ thuyền quân đi tuần biển của Việt Nam ra sao?", "sentences": ["hóa; thuế độc quyền; thué điền thổ...\r\nTheo những con số thống kê chính thức thì các loại thuế trên \r\nđều tăng lên đáng kể, khoảng từ ba đến hơn ba lần vào năm 1945 \r\n(số dự thu) so với năm 1939 (số thực thu) như sau:\r\nBảng 29: Thu nhập từ một sổ loại thuế ở Đông Dương \r\ntrong các năm 1939 và 19453\r\nĐom vị: nghìn đồng\r\nThuế 1939 1945\r\nThuế tiêu thụ và vận chuyển hàng hoá 20.655.000 58.265.000\r\nThuế muối, rượu, thuốc phiện, diêm, pháo,\r\nthuốc lá\r\n24.694.000 87.000.000\r\nThuế điền thổ, trước bạ 11.821.000 28.625.000\r\nvề thuốc phiện, do việc nhập khẩu bị ngừng, Pháp khuyến khích \r\nnhân dân thượng du trồng loại cây này nên số thuốc phiện sản xuất \r\nđược ngày một tăng: năm 1940: 7.560kg; nãm 1941: 17.344kg; năm\r\n1. Annuaire statistique de V Union f,rariỊaise Outre- mer 1939-1946, tr. K -\r\n90-93.\r\n2, 3. Annuaire statistique de runion firanẹaise Outre - mer 1939-1946, tr.\r\nK-90.\r\n552", "Chương I. Chính sách thuộc địa của Pháp..\r\nbộ đồng bào các dân tộc thiểu số. về phương diện này, chính quyền \r\nthuộc địa còn muốn đi xa hơn là cố định đồng bào vào một không \r\ngian nhất định, rồi đưa họ đến với chế độ sở hữu ruộng đất - chế độ \r\nsở hữu tập thể và ấn định cho họ một chế độ thuế khóa.\r\nNhư vậy, “chính sách thâm nhập” có xuất phát điểm là chính \r\nsách “chia đế trf' và mục tiêu là tách các dân tộc thiểu số ra khỏi \r\ndân tộc Kinh, dùng dân tộc nọ chống lại dân tộc kia và nhằm một \r\nmục đích cao hơn là từ chinh phục, khuất phục về chính trị để tiến \r\nsang khai thác, bóc lột về đất đai, nhân công và thuế khóa của các \r\nđồng bào.\r\n7. Một số “cải cách” xã hội khác liên quan đến nông dân và\r\ncông nhân\r\nLiên quan đến nông dân, trong bài diễn văn về Tinh hình Đông\r\nDương và tuyên bo cải cách vào tháng 9/19301, Pierre Pasquier nêu \r\nra những vấn đề như: thi hành luật điền thổ, giúp nông dân Nam Kỳ \r\nthế chấp ruộng đất để vay tín dụng ngân hàng; dẫn thủy nhập điền, \r\nlàm thuỷ lợi để tăng diện tích canh tác, cải tiến kỹ thuật trồng trọt; \r\ngiúp nông dân thăng tién về sờ hữu ruộng đất (từ người không có \r\nđất lên tiểu điền chủ); mở rộng việc nhượng đất, khẩn hoang ở \r\nnhững vùng rừng núi ở Bắc và Trung Kỳ cũng như ở phía tây và \r\nnam Nam Kỳ; quy định lại chế độ lĩnh canh để \"hạn ché bớt sự bóc\r\nlột cùa địa chù đoi với tá điền”.\r\nTriển khai những “cải cách” này, Pierre Pasquier cho tiếp tục \r\nxây dựng các công trình thuỷ nông, rồi thành lập Hội đồng Khẩn", "theo vài mươi người, đeo gươm, đeo súng, đến thẳng ngay công \r\nquán, đưa ra một lá thư của nước Pháp bằng chữ Hán, lời lẽ ngang \r\nngược. Lý Văn Phức không nhận thư, Lạp Biệt Nhĩ quát to doạ nạt, \r\nđể lại thư xuống ghế rồi đi. Lý Văn Phức và Nguyễn Đình Tân bàn \r\nvới nhau rằng: \"Nhận lấy thư là có tội, mà đốt thư đi cũng có tội, \r\nkhông gì bằng cho chạy trạm về đệ tâu lên\". Lý Văn Phức về Kinh,\r\n1. Thực lục, tập VI, sđd, tr. 301.\r\n492\r\nChương VII. Quan hệ đối ngoại\r\nThiệu Trị giận là làm mất quốc thể, sai vệ cẩm y đóng gông đem \r\ngiam ở Tà đãi lậu, bắt giải chức, giao cho đình thần bàn.\r\nKhi ấy, bọn Pháp ngày thường lên bờ, ngông nghênh đi lại các \r\nnơi giao tiếp với dân đi đạo. Những thuyền quân đi tuần biển bị \r\nchúng bắt giữ lại ở cừa biển và cướp lấy buồm thuyền và dây buộc \r\nthuyền cùa 5 chiếc thuyền bọc đồng ở Kinh phái đi Nam (Kim \r\nƯng, Phấn Bằng, Linh Phượng, Thọ Hạc, Vân Bằng) đậu ở vụng \r\nTrà Sơn, đối diện vói chiến thuyền Pháp.\r\nViệc báo lên, Thiệu Trị sai ngay Đô thống Hữu quân Mai Công \r\nNgôn, Tham tri Bộ Hộ Đào Trí Phú đem biền binh 3 vệ Vũ lâm, Hổ \r\noai, Hùng nhuệ đến Quảng Nam cùng với lực lượng thủy, bộ tại \r\nchỗ tổ chức bố phòng. Thiệu Trị truyền chi căn dặn Mai Công \r\nNgôn và Đào Trí Phú rằng: \"Người Tây dương nếu đã sợ uy, thu \r\nhình, thì ta không nên tự động thủ trước; nếu chúng sinh chuyện \r\ntrước, thì đốc sức thành đài cùng biền binh các hiệu thuyền và \r\nthuyền đồng do Kinh phái đi, ngoài hợp, trong ứng, lập tức đánh"]}, {"source_sentence": "Gia Cát Lượng đã giúp ai trong việc quản lý nước Thục?", "sentences": ["phải trông coi mọi việc, giúp Thành Vương đến lúc trưởng thành. \r\n4\r\n Hoắc Quang giữ chức Đại tư mã tướng quân, phò Hán Chiêu Đế lúc lên ngôi mới 9 tuổi. \r\n5\r\n Gia Cát Lượng tức Khổng Minh, là thừa tướng của Chiêu Đế Lưu Bị nước Thục đời Tam Quốc. Lưu Bị chết, con là Lưu Thiện nối \r\nngôi, tức Thục Hậu chúa, mọi việc nước, việc quân đều phải trông cậy vào Gia Cát Lượng. \r\n6\r\n Tô Hiến Thành là Thái úy triều Lý Cao Tông, nhận di mệnh Cao Tông phò vua nhỏ là Long Cán lên nối ngôi mới 3 tuổi. \r\n7\r\n Tứ phụ: nghĩa là bốn viên đại thần giúp vua khi mới lên ngôi. \r\n8\r\n Chỉ Thuận Tông. \r\n9\r\n Xích chủy: nghĩa là mõm đỏ, miệng đỏ, hay đỏ mỏ. Xích chủy hầu là loài đỏ mỏ ám chỉ Lê Quý Ly. \r\n10 Bạch kê: nghĩa là gà trắng. Nghệ Tông sinh năm Tân Dậu, tức năm gà. Tân thuộc hành kim, loài kim sắc trắng. Vì thế \"bạch kê\" \r\nám chỉ Nghệ Tông. \r\n11 Chữ vương? ở trong lòng chữ khẩu? là chữ \"quốc\"?. \r\n12 Theo tục nhà Trần, hằng năm vào ngày mồng 4 tháng 4, vua hội họp bề tôi làm lễ tuyên thệ ở đền Đồng Cổ. (Xem bản kỷ, quyển \r\n5, Kiến Trung năm thứ 3, 1277). \r\n13 Chỉ Quý Ly. \r\n288 Đại Việt Sử Ký Toàn Thư - Bản Kỷ - Quyển VIII \r\nQuý Ly bỏ mũ, rập đầu khóc lóc từ tạ, chỉ trời vạch đất thề rằng: \r\n\"Nếu thần không biết dốc lòng trung, hết sức giúp Quan gia để truyền đến con cháu về sau thì \r\ntrời sẽ ghét bỏ thần\". \r\nQuý Ly lại nói: \"Lúc Linh Đức Vương làm điều thất đức, nếu không nhờ oai linh bệ hạ thì thần đã", "éo, xênh xang lạ hom cả\", và gánh xiếc của BẮc thành trổ tài dịp Đại \r\nkhánh \"Ngũ tuần\" của vua: \"4 đứa leo dây, đứa trẻ lộn dây, đứa trẻ \r\nmúa trên bàn tay 2 đứa\".\r\nNhững định chế về tổ chức và hoạt động nghệ thuật của nhà \r\nNguyễn đã có tác dụng quan ữọng kích thích các loại hình vãn nghệ \r\ndân gian phát triển cả về số lượng lẫn chất lượng. Trong các đợt biểu \r\ndiễn ở Kinh đô, trước yêu cầu thưởng lãm nghiêm ngặt và cao hơn \r\nđịa phương, các nhà viết kịch bản. đạo diễn, diễn viên phải trau dồi để \r\nnâng cao năng lực sáng tác, dàn dựng và kỹ năng biểu diễn.\r\n2. Nghệ thuật dân gian\r\nSinh hoạt văn nghệ dân gian trong các làng quê cũng phát triển. \r\nỞ Bắc Kỳ, Bắc Trung Kỳ, hát ả đào rất phổ biến. Bên cạnh đó là \r\ncác thể loại dân ca: hát Xoan ở Phú Thọ, Quan họ Bắc Ninh, hát \r\nSli, Then ở Lạng Sơn, hát Ví dặm, Phường vải ở Nghệ An, Hà \r\nTĩnh. Ở các tinh trung du và đồng bằng Bắc Bộ, Thanh Hóa, chèo \r\nsân đình mang tính trào lộng nở rộ. Thể loại trò hài, xiếc ở Bắc Kỳ \r\ncũng thu hút đông đảo khán giả.\r\n639", "Tây. Ngoài cơ sờ đúc súng cũ của tiên triều, năm 1825 vua Minh \r\nMệnh mờ thêm sáu xưởng nữa. vốn cần cù và ham học hỏi sáng \r\ntạo, những người thợ quân giới đã được \"thứ súng tay nạp thuốc nổ \r\nmạnh theo kiểu Tây dương\". Vào những năm cuối triều Minh \r\nM ệnh, họ đã đúc 15 cỗ đại pháo X ung tiêu băng đồng và hai cỗ \r\nsúng lớn Chấn hải, loại đại pháo lợi hại trong thủy chiến phương \r\nTây. Sau đó, lại xuất xưởng tiếp 30 cỗ Chấn hải. Năm 1829, quản \r\nkho Hải Dương là Tôn Thất Thiện cùng với 100 lính Chấn cơ chế \r\nra cối gỗ chạy bàng sức nước ở khe suối để giã, luyện thuốc súng. \r\nDụng cụ này là xe \"Thủy hỏa ký tế\", và những năm sau được phổ \r\ncập trong quân ngũ. Từ vũ khí phương Tây, người Đại Nam đã tự \r\ntìm hiểu từng chi tiết để chế tạo thước đo ngắm bắn, thước kiểm tra \r\nthuốc súng. Trong bảy năm ờ ngôi, vua Thiệu Trị đúc 9 cỗ súng \r\nbàng đồng hiệu là \"Thần uy phục viễn đại tướng quân\", cỗ to nhất \r\nlà 10.706 cân, cỗ nhỏ nhất là 10.222 cân, tổng cộng là 93.829 cân.\r\n649\r\nLỊCH SỬ VIỆT NAM - TẬP 5\r\nVà ba cỗ súng hiệu \"Bảo Đại định công an dân hòa chúng thượng \r\ntướng quân\", mỗi cỗ trên 14.500 cân, tổng cộng là 43.620 cân1.\r\nĐe tạo điều kiện cho quân thủy học tập, bộ Công cấp cho họ la \r\nbàn, thước đo nước, đồng hồ cát xem giờ của phương Tây. v ề khoa \r\nmục bắn súng thì lính thủy phải tập bắn súng điểu sang và đại bác. \r\nMinh Mệnh yêu cầu Hiệp biện Đại học sĩ lãnh Thượng thư bộ Binh \r\nTrương Đăng Quế đọc kỹ các sách và bản đồ thủy chiến \"Tây"]}], "model-index": [{"name": "SentenceTransformer based on Alibaba-NLP/gte-multilingual-base", "results": [{"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "gte multilingual base 768", "type": "gte_multilingual_base_768"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.3972602739726027, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.6333333333333333, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.7132420091324201, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.7817351598173516, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.3972602739726027, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.21111111111111108, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.142648401826484, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.07817351598173515, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.3972602739726027, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.6333333333333333, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.7132420091324201, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.7817351598173516, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.5921213055171655, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.5309868087265359, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.537969151887342, "name": "Cosine Map@100"}]}, {"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "gte multilingual base 512", "type": "gte_multilingual_base_512"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.38767123287671235, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.6310502283105023, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.7095890410958904, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.7821917808219178, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.38767123287671235, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.21035007610350073, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.14191780821917807, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.07821917808219177, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.38767123287671235, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.6310502283105023, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.7095890410958904, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.7821917808219178, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.5879636635574841, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.525339204174821, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.5318727014135456, "name": "Cosine Map@100"}]}, {"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "gte multilingual base 256", "type": "gte_multilingual_base_256"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.3771689497716895, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.6146118721461187, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.6872146118721462, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.7662100456621005, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.3771689497716895, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.20487062404870623, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.13744292237442923, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.07662100456621006, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.3771689497716895, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.6146118721461187, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.6872146118721462, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.7662100456621005, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.5736037026704126, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.5116503587736474, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.5189035063838257, "name": "Cosine Map@100"}]}, {"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "gte multilingual base 128", "type": "gte_multilingual_base_128"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.36118721461187214, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.582648401826484, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.6502283105022831, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.7342465753424657, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.36118721461187214, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.1942161339421613, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.1300456621004566, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.07342465753424657, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.36118721461187214, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.582648401826484, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.6502283105022831, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.7342465753424657, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.5465887777560341, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.4866068710589268, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.49427672079491064, "name": "Cosine Map@100"}]}, {"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "gte multilingual base 64", "type": "gte_multilingual_base_64"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.3082191780821918, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.5146118721461187, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.5863013698630137, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.6621004566210046, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.3082191780821918, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.17153729071537288, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.11726027397260275, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.06621004566210045, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.3082191780821918, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.5146118721461187, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.5863013698630137, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.6621004566210046, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.4843188931282978, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.4275081539465107, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.4370689716929827, "name": "Cosine Map@100"}]}]}]}
legaltextai/modernbert-embed-ft-const-legal-matryoshka
legaltextai
sentence-similarity
[ "sentence-transformers", "safetensors", "modernbert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:842", "loss:MatryoshkaLoss", "loss:MultipleNegativesRankingLoss", "en", "arxiv:1908.10084", "arxiv:2205.13147", "arxiv:1705.00652", "base_model:nomic-ai/modernbert-embed-base", "base_model:finetune:nomic-ai/modernbert-embed-base", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2025-02-17T00:05:31
2025-02-17T00:06:03
29
1
--- base_model: nomic-ai/modernbert-embed-base language: - en library_name: sentence-transformers license: apache-2.0 metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:842 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: Discuss the implications of the Insular Cases on the application of the Citizenship Clause to American Samoa, particularly in distinguishing between incorporated and unincorporated territories. What are the practical concerns associated with this distinction? sentences: - 'To the extent jus soli is adopted into the Fourteenth Amendment, the concept of allegiance is manifested by the Citizenship Clause’s mandate that birthright citizens not merely be born within the territorial boundaries of the United States but also “subject to the jurisdiction thereof…” [citations omitted]    Appellants would find any allegiance requirement of no moment because, as non-citizen nationals, American Samoans already “owe[ ] permanent allegiance to the United States.”[citations omitted] Yet, within the context of the Citizenship Clause, “[t]he evident meaning of the[ ] ... words [“subject to the jurisdiction thereof”] is, not merely subject in some respect or degree to the jurisdiction of the United States, but completely subject to their political jurisdiction, and owing them direct and immediate allegiance.” **375 [citations omitted] *306  It was on this basis that the Supreme Court declined to extend constitutional birthright citizenship to Native American tribes. [citations omitted]…Even assuming a background context grounded in principles of jus soli, we are skeptical the framers plainly intended to extend birthright citizenship to distinct, significantly self-governing political territories within the United States’s sphere of sovereignty—even where, as is the case with American Samoa, ultimate governance remains statutorily vested with the United States Government. [citations omitted] III Analysis of the Citizenship Clause’s application to American Samoa would be incomplete absent invocation of the sometimes contentious Insular Cases, where the Supreme Court “addressed whether the Constitution, by its own force, applies in any territory that is not a State.” [citations omitted]   “The doctrine of ‘territorial incorporation’ announced in the Insular Cases distinguishes between incorporated territories, which are intended for statehood from the time of acquisition and in which the entire Constitution applies ex proprio vigore, and unincorporated territories [such as American Samoa], which are not intended for statehood and in which only [certain] fundamental constitutional rights apply by their own force.”[citations omitted].   Appellants and Amici contend the Insular Cases have no application because the Citizenship Clause textually defines its own scope.[citations omitted].   Amici Curiae suggest territorial incorporation doctrine should not be expanded to the Citizenship Clause because the doctrine rests on anachronistic views of race and imperialism. But the Court has continued to invoke the Insular framework when dealing with questions of territorial and extraterritorial application. [citations omitted] Although some aspects of the Insular Cases’ analysis may now be deemed politically incorrect, the framework remains both applicable and of pragmatic use in assessing the applicability of rights to unincorporated territories. [citations omitted]   As the Supreme Court…emphasized, the “common thread uniting the Insular Cases ... [is that] questions of extraterritoriality turn on objective factors and practical concerns, not formalism.” [citations omitted] While “fundamental limitations in favor of personal rights” remain guaranteed to persons born in the unincorporated territories, [citations omitted], the Insular framework recognizes the difficulties that frequently inure when “determin[ing] [whether a] particular provision of the Constitution is applicable,” absent inquiry into the impractical or anomalous. [citations omitted] A  American citizenship “is one of the most valuable rights in the world today.” [citations omitted] “The freedoms and opportunities secured by United States citizenship long have been treasured by persons fortunate enough to be born with them, and are yearned for by countless less fortunate.” [citations omitted]. Accordingly, even if the Insular framework is applicable, Appellants cite to a bevy of cases to argue citizenship is a fundamental right. [citations omitted] But those cases do not arise in the territorial context. Such decisions do not reflect the Court’s considered judgment as to the existence of a fundamental right to citizenship for persons born in the United States’ unincorporated **377 *308 territories. [citations omitted].7    “Fundamental” has a distinct and narrow meaning in the context of territorial rights. It is not sufficient that a right be considered fundamentally important in a colloquial sense or even that a right be “necessary to [the] [ ]American regime of ordered liberty.” [citations omitted]. Under the Insular framework the designation of fundamental extends only to the narrow category of rights and “principles which are the basis of all free government.” [citations omitted]   In this manner the Insular Cases distinguish as universally fundamental those rights so basic as to be integral to free and fair society.' - '633, 649 (concurring opinion). An innkeeper or common carrier has always been allowed to'' exclude drunks, criminals and'' diseased persons, but only because the public’s interest in protecting his and his guests’ health and property outweighs its interest in providing accommodations for this small group of travelers. As a general rule, innkeepers and carriers cannot refuse their services on account of race; though the rule developed in this country that they can provide “separate but equal” facilities. And for a period of our history even,this Court upheld state laws giving sanction to such a rule. Compare Plessy v. Ferguson, 163 U. S. 537, with Gayle v. Browder, 352 U. S. 903, affirming, 142 F. Supp. 707. But surely Shelley v. Kraemer, supra, and Barrows v. Jackson, supra, show that the day has passed when an innkeeper, carrier, housing developer, or retailer can draw a• racial'' line, refuse service to some on account of color, and obtain the aid of a State in enforcing his personal bias by sending outlawed customers to prison or exacting fines from them. Business, such as this restaurant, is still private property. '' Yet there is hardly any private enterprise that does not feel the pinch of some public regulation — from price control, to health and fire inspection, to zoning, to safety measures, to minimum wages and working conditions, to unemployment insurance. When the doors of a business are open to the public, they must be open to all regardless of race if apartheid is not to become engrained in our public places. It cannot by reason of the Equal Protection Clause become so engrained with the aid of state courts, state legislatures, or state police. II. There is even greater reason to bar a State through its judiciary from throwing its weight on the side of racial discrimination in the present case, because we deal here with a place of public accommodation under license from, the State. This is the idea I expressed in Garner v. Louisiana, 368 U. S. 157, where another owner of a restaurant refused service to a customer because he was a Negro. That view is not novel; it.stems from the dissent of the first Mr. Justice Harlan in the Civil Rights Cases, 109 U. S. 3, 58-59: “In every material sense applicable to the practical enforcement of the Fourteenth Amendment, railroad corporations, keepers of inns, and managers of places of public amusement are agents or instrumentalities of the State, because they are charged with duties to the public, and are amenable, in respect of their duties and functions, to governmental regulation. It seems to me that, within the principle settled in Ex parte Virginia, a denial, by these instrumentalities of the State, to the citizen, because of his race, of that equality of civil rights secured to him by law, is a denial by the State, within the meaning of the Fourteenth Amendment. If it be not, then that race is left, in respect of the civil rights in question, practically at the mercy of corporations and individuals wielding power under the States.” The nexus between the State and the private enterprise may be control, as in the case of a state agency. Pennsylvania v. Board of Trusts, 353 U. S. 230. Or the nexus may be one of numerous other devices. “State support of segregated schools through any arrangement, management, funds, or property cannot be squared” with the Equal Protection Clause. Cooper v. Aaron, 358 U. S. 1, 19. Cf. Hampton v. Jacksonville, 304 F. 2d 320. A state-assisted enterprise serving the public does not escape its constitutional duty to serve all customers irrespective of race, even though its actual operation is in the hands of a lessee. Burton v. Wilmington Parking Authority, 365 U. S. 715. Cf. Boynton v. Virginia, 364 U. S. 454. State licensing and surveillance.of a business serving the public also brings its service into the public domain. This restaurant needs a permit from Louisiana to operate; and during the existence of the license the State has broad powers of visitation and control. This restaurant is thus an instrumentality of the State since the State charges it with duties to the public and supervises its performance. The State''s interest in and activity with regard to its restaurants extends far beyond any mere income-producing licensing requirement.' - 'Among other things, courts at this second step have sometimes considered whether an employee’s speech interests are outweighed by “ ‘the interest of the State, as an employer, in promoting the efficiency of the public services it performs through its employees.’ ” Id., at 417, 126 S.Ct. 1951 *2424 (quoting Pickering, 391 U.S. at 568, 88 S.Ct. 1731).   Both sides ask us to employ at least certain aspects of this Pickering–Garcetti framework to resolve Mr. Kennedy’s free speech claim. They share additional common ground too. They agree that Mr. Kennedy’s speech implicates a matter of public concern. See App. to Pet. for Cert. 183; Brief for Respondent 44. They also appear to accept, at least for argument’s sake, that Mr. Kennedy’s speech does not raise questions of academic freedom that may or may not involve “additional” First Amendment “interests” beyond those captured by this framework. Garcetti, 547 U.S. at 425, 126 S.Ct. 1951; see also Keyishian v. Board of Regents of Univ. of State of N. Y., 385 U.S. 589, 603, 87 S.Ct. 675, 17 L.Ed.2d 629 (1967); Brief for Petitioner 26, n. 2. At the first step of the Pickering–Garcetti inquiry, the parties’ disagreement thus turns out to center on one question alone: Did Mr. Kennedy offer his prayers in his capacity as a private citizen, or did they amount to government speech attributable to the District?   Our cases offer some helpful guidance for resolving this question. In Garcetti, the Court concluded that a prosecutor’s internal memorandum to a supervisor was made “pursuant to [his] official duties,” and thus ineligible for First Amendment protection. 547 U.S. at 421, 126 S.Ct. 1951. In reaching this conclusion, the Court relied on the fact that the prosecutor’s speech “fulfill[ed] a responsibility to advise his supervisor about how best to proceed with a pending case.” Ibid. In other words, the prosecutor’s memorandum was government speech because it was speech the government “itself ha[d] commissioned or created” and speech the employee was expected to deliver in the course of carrying out his job. Id., at 422, 126 S.Ct. 1951.   By contrast, in Lane a public employer sought to terminate an employee after he testified at a criminal trial about matters involving his government employment. 573 U.S. at 233, 134 S.Ct. 2369. The Court held that the employee’s speech was protected by the First Amendment. Id., at 231, 134 S.Ct. 2369. In doing so, the Court held that the fact the speech touched on matters related to public employment was not enough to render it government speech. Id., at 239–240, 134 S.Ct. 2369. Instead, the Court explained, the “critical question ... is whether the speech at issue is itself ordinarily within the scope of an employee’s duties.” Id., at 240, 134 S.Ct. 2369. It is an inquiry this Court has said should be undertaken “practical[ly],” rather than with a blinkered focus on the terms of some formal and capacious written job description. Garcetti, 547 U.S. at 424, 126 S.Ct. 1951. To proceed otherwise would be to allow public employers to use “excessively broad job descriptions” to subvert the Constitution’s protections. Ibid.   Applying these lessons here, it seems clear to us that Mr. Kennedy has demonstrated that his speech was private speech, not government speech. When Mr. Kennedy uttered the three prayers that resulted in his suspension, he was not engaged in speech “ordinarily within the scope” of his duties as a coach. Lane, 573 U.S. at 240, 134 S.Ct. 2369. He did not speak pursuant to government policy. He was not seeking to convey a government-created message. He was not instructing players, discussing strategy, encouraging better on-field performance, or engaged in any other speech the District paid him to produce as a coach. See Part I–B, supra. Simply put: Mr. Kennedy’s prayers did not “ow[e their] existence” to Mr. Kennedy’s responsibilities as a public employee.' - source_sentence: Discuss the implications of the Thirteenth Amendment as it relates to Congress's power to enact laws against private racial discrimination in property transactions. How does the text support the assertion that Congress's authority extends beyond state action? sentences: - '––––, ––––, 142 S.Ct. 1539, 1545, ––– L.Ed.2d –––– (2022) (THOMAS, J., concurring) (internal quotation*2301 marks omitted). Either way, the Due Process Clause at most guarantees process. It does not, as the Court’s substantive due process cases suppose, “forbi[d] the government to infringe certain ‘fundamental’ liberty interests at all, no matter what process is provided.” Reno v. Flores, 507 U.S. 292, 302, 113 S.Ct. 1439, 123 L.Ed.2d 1 (1993); see also, e.g.,Collins v. Harker Heights, 503 U.S. 115, 125, 112 S.Ct. 1061, 117 L.Ed.2d 261 (1992).   As I have previously explained, “substantive due process” is an oxymoron that “lack[s] any basis in the Constitution.” Johnson, 576 U.S. at 607–608, 135 S.Ct. 2551 (opinion of THOMAS, J.); see also, e.g.,Vaello Madero, 596 U.S., at ––––, 142 S.Ct., at 1545 (THOMAS, J., concurring) (“[T]ext and history provide little support for modern substantive due process doctrine”). “The notion that a constitutional provision that guarantees only ‘process’ before a person is deprived of life, liberty, or property could define the substance of those rights strains credulity for even the most casual user of words.” McDonald v. Chicago, 561 U.S. 742, 811, 130 S.Ct. 3020, 177 L.Ed.2d 894 (2010) (THOMAS, J., concurring in part and concurring in judgment); see also United States v. Carlton, 512 U.S. 26, 40, 114 S.Ct. 2018, 129 L.Ed.2d 22 (1994) (Scalia, J., concurring in judgment). The resolution of this case is thus straightforward. Because the Due Process Clause does not secure any substantive rights, it does not secure a right to abortion.   The Court today declines to disturb substantive due process jurisprudence generally or the doctrine’s application in other, specific contexts. Cases like Griswold v. Connecticut, 381 U.S. 479, 85 S.Ct. 1678, 14 L.Ed.2d 510 (1965) (right of married persons to obtain contraceptives)*; Lawrence v. Texas, 539 U.S. 558, 123 S.Ct. 2472, 156 L.Ed.2d 508 (2003) (right to engage in private, consensual sexual acts); and Obergefell v. Hodges, 576 U.S. 644, 135 S.Ct. 2584, 192 L.Ed.2d 609 (2015) (right to same-sex marriage), are not at issue. The Court’s abortion cases are unique, see ante, at 2257 – 2258, 2277 – 2278, 2280 – 2281, and no party has asked us to decide “whether our entire Fourteenth Amendment jurisprudence must be preserved or revised,” McDonald, 561 U.S. at 813, 130 S.Ct. 3020 (opinion of THOMAS, J.). Thus, I agree that “[n]othing in [the Court’s] opinion should be understood to cast doubt on precedents that do not concern abortion.” Ante, at 2277 – 2278.   For that reason, in future cases, we should reconsider all of this Court’s substantive due process precedents, including Griswold, Lawrence, and Obergefell. Because any substantive due process decision is “demonstrably erroneous,” Ramos v.Louisiana, 590 U.S. ––––, ––––, 140 S.Ct. 1390, 1424, 206 L.Ed.2d 583 (2020) (THOMAS, J., concurring in judgment), we have a duty to “correct the error” established in those precedents, Gamble v. United States, 587 U.S. ––––, ––––, 139 S.Ct. 1960, 1984-1985, 204 L.Ed.2d 322 (2019) (THOMAS, J., concurring).' - 'On October 21, the superintendent further observed to a state official that “[t]he issue is quickly changing as it has shifted from leading prayer with student athletes, to a coaches [sic] right to conduct” his own prayer “on the 50 yard line.” Id., at 88.   On October 23, shortly before that evening’s game, the District wrote Mr. Kennedy again. It expressed “appreciation” for his “efforts to comply” with the District’s directives, including avoiding “on-the-job prayer with players in the ... football program, both in the locker room prior to games as well as on the field immediately following games.” Id., at 90. The letter also admitted that, during Mr. Kennedy’s recent October 16 postgame prayer, his students were otherwise engaged and not praying with him, and that his prayer was “fleeting.” Id., at 90, 93. Still, the District explained that a “reasonable observer” could think government endorsement of religion had occurred when a “District employee, on the field only by virtue of his employment with the District, still on duty” engaged in “overtly religious conduct.” Id., at 91, 93. The District thus made clear that the only option it would offer Mr. Kennedy was to allow him to pray after a game in a “private location” behind closed doors and “not observable to students or the public.” Id., at 93–94.   After the October 23 game ended, Mr. Kennedy knelt at the 50-yard line, where “no one joined him,” and bowed his head for a “brief, quiet prayer.” 991 F.3d at 1019; App. 173, 236–239. The superintendent informed the District’s board that this prayer “moved closer to what we want,” but nevertheless remained “unconstitutional.” Id., at 96. After the final relevant football game on October 26, Mr. Kennedy again knelt alone to offer a brief prayer as the players engaged in postgame traditions. 443 F.Supp.3d 1223, 1231 (W.D. Wash. 2020); App. to Pet. for Cert. 182. While he was praying, other adults gathered around him on the field. See 443 F.Supp.3d at 1231; App. 97. Later, Mr. Kennedy rejoined his players for a postgame talk, after they had finished singing the school fight song. 443 F.Supp.3d at 1231; App. 103.     C Shortly after the October 26 game, the District placed Mr. Kennedy on paid administrative *2419 leave and prohibited him from “participat[ing], in any capacity, in ... football program activities.” Ibid. In a letter explaining the reasons for this disciplinary action, the superintendent criticized Mr. Kennedy for engaging in “public and demonstrative religious conduct while still on duty as an assistant coach” by offering a prayer following the games on October 16, 23, and 26. Id., at 102. The letter did not allege that Mr. Kennedy performed these prayers with students, and it acknowledged that his prayers took place while students were engaged in unrelated postgame activities. Id., at 103. Additionally, the letter faulted Mr. Kennedy for not being willing to pray behind closed doors. Id., at 102.   In an October 28 Q&A document provided to the public, the District admitted that it possessed “no evidence that students have been directly coerced to pray with Kennedy.” Id., at 105. The Q&A also acknowledged that Mr. Kennedy “ha[d] complied” with the District’s instruction to refrain from his “prior practices of leading players in a pre-game prayer in the locker room or leading players in a post-game prayer immediately following games.” Ibid. But the Q&A asserted that the District could not allow Mr. Kennedy to “engage in a public religious display.” Id., at 105, 107, 110. Otherwise, the District would “violat[e] the ... Establishment Clause” because “reasonable ... students and attendees” might perceive the “district [as] endors[ing] ... religion.” Id., at 105.   While Mr. Kennedy received “uniformly positive evaluations” every other year of his coaching career, after the 2015 season ended in November, the District gave him a poor performance evaluation. Kennedy v. Bremerton School Dist., 869 F.3d 813, 820 (C.A.9 2017).' - 'Nor was the scope of the 1866 Act altered when it was re-enacted in 1870, some two years after the ratification of the Fourteenth Amendment.71 It is quite true that some members of Congress supported the Fourteenth Amendment “in order to eliminate doubt as to the constitutional validity of the Civil Rights Act as applied to the States.” Hurd v. Hodge, 334 U.S. 24, 32—33, 68 S.Ct. 847, 852. But it certainly does not follow that the adoption of the Fourteenth Amendment or the subsequent readoption of the Civil Rights Act were meant somehow to limit its application to state action. The legislative history furnishes not the slightest factual basis for any such speculation, and the conditions prevailing in 1870 make it highly implausible. For by that time most, if not all, of the former Confederate States, then under the control of “reconstructed” legislatures, had formally repudiated racial discrimination, and the focus of congressional concern had clearly shifted from hostile statutes to the activities of groups like the Ku Klux Klan, operating wholly outside the law.72    **2202 *437 Against this background, it would obviously make no sense to assume, without any historical support whatever, that Congress made a silent decision in 1870 to exempt private discrimination from the operation of the Civil Rights Act of 1866.73 “The cardinal rule is that repeals by implication are not favored.” Posadas v. National City Bank, 296 U.S. 497, 503, 56 S.Ct. 349, 352, 80 L.Ed. 351. All Congress said in 1870 was that the 1866 law “is hereby re-enacted.” That is all Congress meant.    As we said in a somewhat different setting two Terms ago, “We think that history leaves no doubt that, if we are to give (the law) the scope that its origins dictate, we must accord it a sweep as broad as its language.” United States v. Price, 383 U.S. 787, 801, 86 S.Ct. 1152, 1160. “We are not at liberty to seek ingenious analytical instruments,” ibid., to carve from s 1982 an exception for private conduct—even though its application to such conduct in the present context is without established precedent. And, as the Attorney General of the United States said at the oral argument of this case, “The fact that the statute lay partially dormant for many years cannot be held to diminish its force today.”       V. The remaining question is whether Congress has power under the Constitution to do what s 1982 purports to do: to prohibit all racial discrimination, private and public, in the sale and rental of property. Our starting point is the Thirteenth Amendment, for it was pursuant *438 to that constitutional provision that Congress originally enacted what is now s 1982. The Amendment consists of two parts. Section 1 states: “Neither slavery nor involuntary servitude, except as a punishment for crime whereby the party shall have been duly convicted, shall exist within the United States, or any place subject to their jurisdiction.” Section 2 provides: “Congress shall have power to enforce this article by appropriate legislation.”  As its text reveals, the Thirteenth Amendment “is not a mere prohibition of state laws establishing or upholding slavery, but an absolute declaration that slavery or involuntary servitude shall not exist in any part of the United States.” Civil Rights Cases, 109 U.S. 3, 20, 3 S.Ct. 18, 28, 27 L.Ed. 835. It has never been doubted, therefore, “that the power vested in Congress to enforce the article by appropriate legislation,” ibid., includes the power to enact laws “direct and primary, operating upon the acts of individuals, whether sanctioned by state legislation or not.” Id., at 23, 3 S.Ct., at 30.74    Thus, the fact that s 1982 operates upon the unofficial acts of private individuals, whether or not sanctioned by state law, presents no constitutional problem. If Congress has power **2203 under the Thirteenth Amendment to eradicate conditions that prevent Negroes from buying and renting property because of their race or color, then no federal statute calculated to achieve that objective *439 can be thought to exceed the constitutional power of Congress simply because it reaches beyond state action to regulate the conduct of private individuals. The constitutional question in this case, therefore, comes to this: Does the authority of Congress to enforce the Thirteenth Amendment “by appropriate legislation” include the power to eliminate all racial barriers to the acquisition of real and personal property? We think the answer to that question is plainly yes.' - source_sentence: According to the statute referenced in the context, what is the standard for establishing the requisite injury necessary for obtaining an injunction under 17 U.S.C. § 1203(b)(1)? sentences: - 'Post-Trial Mem. at 27-28. [263] The statute expressly authorizes injunctions to prevent or restrain violations, 17 U.S.C. § 1203(b)(1), thus demonstrating that the requisite injury need only be threatened. [264] Def. Post-Trial Mem. at 28. [265] Id. at 28-29. [266] See, e.g., Ex. AYZ (Hunt Dep.) at 94-104. [267] Id. 30. [268] Ex. 113. [269] Defendants'' argument would lack merit even if there were credible proof that other circumvention devices actually exist and produce results comparable to DeCSS. The available movies must have been decrypted with DeCSS or something else. As far as this record discloses, any such device or technology would violate the DMCA for the same reasons as does DeCSS. In consequence, this case comes within the principle of Summers v. Tice, 33 Cal.2d 80, 199 P.2d 1 (1948). Where, as here, two or more persons take substantially identical wrongful actions, one and only one of which had to be the source of the plaintiffs'' injury, and it is equally likely that one inflicted the injury as the other, the burden of proof on causation shifts to the defendants, each of which is liable absent proof that its action did not cause the injury. See 4 Fowler V. Harper & Fleming James, Jr., THE LAW OF TORTS §§ 101-04 (2d ed.1996). Defendants'' efforts to avoid the consequences of this common sense principle are unpersuasive. They argue, for example, that plaintiffs may not invoke the theory unless they join as defendants everyone who may have contributed to the injury. Def. Post-Trial Mem. at 32 n. 18 (citing Ex. UZ). It would be difficult to imagine a more nonsensical requirement in the context of this case. Where, as here, harm is done by dissemination of information over the Internet, probably by a substantial number of people all over the world, defendants'' proposed rule would foreclose judicial relief anywhere because joinder of all plainly would be impossible in any one place, and technology does not permit identification of which wrongdoer''s posting or product led to which pirated copy of a copyrighted work. [270] 17 U.S.C. § 1203(b)(1). [271] See, e.g., S.E.C. v. Unique Financial Concepts, Inc., 196 F.3d 1195, 1199 n. 2 (11th Cir.1999) (injunction under Section 20(b) of the Securities Act of 1933, 15 U.S.C. § 77t(b), which permits an injunction "upon a proper showing," requires "a reasonable likelihood that the wrong will be repeated"); Commodity Futures Trading Com''n v. Hunt, 591 F.2d 1211, 1220 (7th Cir.1979) (same under Commodity Exchange Act, 7 U.S.C. § 13a-1(b)); S.E.C. v. Bausch & Lomb Inc., 565 F.2d 8, 18 (2d Cir.1977) (reasonable likelihood of future violations required under § 21(d) of Securities Exchange Act of 1934, 15 U.S.C. § 78u(d), which permits an injunction "upon a proper showing" where person "engaged or ... about to engage in" violation of statute). [272] See, e.g., Rondeau v. Mosinee Paper Corp., 422 U.S. 49, 57, 95 S.Ct. 2069, 45 L.Ed.2d 12 (1975) (injunctive relief in private action under § 13(d) of the Securities Exchange Act of 1934, 15 U.S.C. § 78m(d), as added by the Williams Act, requires a showing of irreparable harm and inadequacy of legal remedies). [273] Tough Traveler, Ltd. v. Outbound Prods., 60 F.3d 964, 967-68 (2d Cir.1995) (trademark); Fisher-Price, Inc. v. Well-Made Toy Mfg. Corp., 25 F.3d 119, 124 (2d Cir.1994) (copyright). [274] See, e.g., Northwestern Nat''l Ins. Co.' - 'Indeed, were we to accept Maine’s argument, our decision in Espinoza would be rendered essentially meaningless. By Maine’s logic, Montana could have obtained the same result that we held violated the First Amendment simply by redefining its tax credit for sponsors of generally available scholarships as limited to “tuition payments for the rough equivalent of a Montana public education”—meaning a secular education. But our holding in Espinoza turned on the substance of free exercise protections, not on the presence or absence of magic words. That holding applies fully whether the prohibited discrimination is in an express provision like § 2951(2) or in a party’s reconceptualization of the public benefit.   Maine may provide a strictly secular education in its public schools. But BCS and Temple Academy—like numerous other recipients of Maine tuition assistance payments—are not public schools. In order to provide an education to children who live in certain parts of its far-flung State, Maine has decided not to operate schools of its own, but instead to offer tuition assistance that parents may direct to the public or private schools of their choice. Maine’s administration of that benefit is subject to the free exercise principles governing any such public benefit program—including the prohibition on denying the benefit based on a recipient’s religious exercise.   The dissents are wrong to say that under our decision today Maine “must” fund religious education. Post, at 2006 (BREYER, J., dissenting). Maine chose to allow some parents to direct state tuition payments to private schools; that decision was not “forced upon” it. Post, at 2014 (SOTOMAYOR, J., dissenting). The State retains a number of options: it could expand the reach of its public school system, increase the availability of transportation, provide some combination of tutoring, remote learning, and partial attendance, or even operate boarding schools of its own. As we held in Espinoza, a “State need not subsidize private education. But once a State decides to do so, it cannot disqualify some private schools solely because they are religious.” 591 U. S., at ––––, 140 S.Ct., at 2261.     B The Court of Appeals also attempted to distinguish this case from Trinity Lutheran and Espinoza on the ground that the funding restrictions in those cases were “solely status-based religious discrimination,” while the challenged provision here “imposes a use-based restriction.” 979 F.3d at 35, 37–38...   In Trinity Lutheran, the Missouri Constitution banned the use of public funds in aid of “any church, sect or denomination of religion.” [citation omitted]. We noted that the case involved “express discrimination based on religious identity,” which was sufficient unto the day in deciding it, and that our opinion did “not address religious uses of funding.” [citation omitted]   So too in Espinoza, the discrimination at issue was described by the Montana Supreme Court as a prohibition on aiding “schools controlled by churches,” and we *2001 analyzed the issue in terms of “religious status and not religious use.” [citation omitted] Foreshadowing Maine’s argument here, Montana argued that its case was different from Trinity Lutheran’s because it involved not playground resurfacing, but general funds that “could be used for religious ends by some recipients, particularly schools that believe faith should ‘permeate[ ]’ everything they do.” [citation omitted] We explained, however, that the strict scrutiny triggered by status-based discrimination could not be avoided by arguing that “one of its goals or effects [was] preventing religious organizations from putting aid to religious uses.” [citation omitted]  And we noted that nothing in our analysis was “meant to suggest that we agree[d] with [Montana] that some lesser degree of scrutiny applies to discrimination against religious uses of government aid.” [citation omitted]   Maine’s argument, however—along with the decision below and Justice BREYER’s dissent—is premised on precisely such a distinction. [citations omitted]   That premise, however, misreads our precedents. In Trinity Lutheran and Espinoza, we held that the Free Exercise Clause forbids discrimination on the basis of religious status. But those decisions never suggested that use-based discrimination is any less offensive to the Free Exercise Clause. This case illustrates why.' - '429 Supreme Court of the United States. SAMUEL M. CLYATT v. UNITED STATES. No. 235. | Argued December 13, 14, 1904. | Decided March 13, 1905. Synopsis ON WRIT of Certiorari to the United States Circuit Court of Appeals for the Fifth Circuit, bringing up for review a judgment of the Circuit Court for the Northern District of Florida, convicting defendant of returning certain specified persons to a condition of peonage, which judgment had been taken to the Circuit Court of Appeals by a writ of error to the Circuit Court. Reversed and the cause remanded for a new trial.   **429 Statement by Mr. Justice Brewer: Considers the constitutionality of Sections 1990 and 5526, Rev. Stat. (U. S. Comp. Stat. 1901, pp. 1266, 3715),  [Anti-Peonage Act] *215 Mr. Justice Brewer delivered the opinion of the court:   …What is peonage? It may be defined as a status or condition of compulsory service, based upon the indebtedness of the peon to the master. The basal fact is indebtedness. As said by Judge Benedict, delivering the opinion in Jaremillo v. Romero, 1 N. M. 190, 194: ‘One fact existed universally: all were indebted to their masters. This was the cord by which they seemed bound to their master’s service.’ Upon this is based a condition of compulsory service. Peonage is sometimes classified as voluntary or involuntary; but this implies simply a difference in the mode of origin, but none in the character of the servitude. The one exists where the debtor voluntarily contracts to enter the service of his creditor. The other is forced upon the debtor by some provision of law. But peonage, however created, is compulsory service,—involuntary servitude. The peon can release himself therefrom, it is true, by the payment of the debt, but otherwise the service is enforced. A clear distinction exists between peonage and the voluntary performance of labor or rendering of services in payment of a debt. In the latter case the debtor, though contracting to pay his indebtedness by labor or service, and subject, like any other contractor, to an action for damages for breach of that contract, can elect at any time to break it, and no law or force compels *216 performance or a continuance of the service. We need not stop to consider any possible limits or exceptional cases, such as the service of a sailor…or the obligations of a child to its parents, or of an apprentice to his master, or the power of the legislature to make unlawful, and punish criminally, an abandonment by an employee of his post of labor in any extreme cases. That which is contemplated by the statute is compulsory service to secure the payment of a debt. Is this legislation within the power of Congress? It may be conceded, as a general proposition, that the ordinary relations of individual to individual are subject to the control of the states, and are not intrusted to the general government; but the 13th Amendment, adopted as an outcome of the Civil War, reads: ‘Sec. 1. Neither slavery nor involuntary servitude, except as a punishment for crime whereof the party shall have been duly convicted, shall exist within the United States, or any place subject to their jurisdiction. ‘Sec. 2. Congress shall have power to enforce this article by appropriate legislation.’ This amendment denounces a status or condition, irrespective of the manner or authority by which it is created. The prohibitions of the 14th and 15th Amendments are largely upon the acts of the states; but the 13th Amendment names no party or authority, but simply forbids slavery and involuntary servitude, grants to Congress power to enforce this prohibition by appropriate legislation. The differences between the 13th and subsequent amendments [can be described as follows:] This amendment, as well as the 14th, is undoubtedly self-executing without any ancillary legislation, so far as its terms are applicable to any existing state of circumstances. By its own unaided force and effect it abolished slavery, and *217 established universal freedom. Still, legislation may be necessary and proper to meet all the various cases and circumstances to be affected by it, and to prescribe proper modes of redress for its violation in letter or spirit. And such legislation may be primary and direct in its character; for the amendment is not a mere prohibition of state laws establishing or upholding slavery, but an absolute declaration that slavery or involuntary servitude shall not exist in any part of the United States. . . .' - source_sentence: How does the standard for applying the Second Amendment, as outlined in the context, compare to the protection of other constitutional rights, such as the freedom of speech in the First Amendment? sentences: - 'Eventually, HCC moved to dismiss the complaint. The District Court granted the motion, concluding that Mr. Wilson lacked standing under Article III. On appeal, a panel of the Fifth Circuit reversed, holding that Mr. Wilson had standing and that his complaint stated a viable First Amendment claim. [citation omitted]   The Fifth Circuit’s merits analysis proceeded in two steps. First, the court concluded that a verbal “reprimand against an elected official for speech addressing a matter of public concern is an actionable First Amendment claim under § 1983.” [citation omitted] Next, the court reasoned that the Board’s imposition of other punishments—such as limiting Mr. Wilson’s eligibility for officer positions and his access to certain funds—did “not violate his First Amendment rights” because Mr. Wilson did not have an “entitlement” to those privileges. [citation omitted] In sum, the court held that Mr. Wilson’s § 1983 action could proceed, but only as to the Board’s unadorned censure resolution. HCC’s request for rehearing en banc failed by an equally divided vote. [citation omitted].   In time, HCC filed a petition for certiorari in this Court. It asked us to review the Fifth Circuit’s judgment that Mr. Wilson may pursue a First Amendment claim based on a purely verbal censure. Last year, we agreed to take up that question. [citation omitted] But as merits briefing unfolded, Mr. Wilson did not just seek to defend the Fifth Circuit’s judgment; he also sought to challenge it in part. Specifically, he argued that the Fifth Circuit erred to the extent that it upheld the Board’s nonverbal punishments as consistent with the First Amendment. Generally, however, when a respondent in this Court seeks to alter a lower court’s judgment, he must file and we must grant a cross-petition for review. [citation omitted] Mr. Wilson filed no such petition in this case. As a result, we decline to take up his *1259 challenge to the Fifth Circuit’s judgment, and the only question before us remains the narrow one on which we granted certiorari: Does Mr. Wilson possess an actionable First Amendment claim arising from the Board’s purely verbal censure?     II A The First Amendment prohibits laws “abridging the freedom of speech.” One obvious implication of that rule is that the government usually may not impose prior restraints on speech. [citation omitted] But other implications follow too. Relevant here, no one before us questions that, “[a]s a general matter,” the First Amendment prohibits government officials from subjecting individuals to “retaliatory actions” after the fact for having engaged in protected speech. [citations omitted] Mr. Wilson argues that the Board’s censure resolution represents exactly that kind of impermissible retaliatory action.   Almost immediately, however, this submission confronts a challenge. When faced with a dispute about the Constitution’s meaning or application, “[l]ong settled and established practice is a consideration of great weight.” [citation omitted] Often, “a regular course of practice” can illuminate or “liquidate” our founding document’s “terms & phrases.” [citations omitted] That principle poses a problem for Mr. Wilson because elected bodies in this country have long exercised the power to censure their members. In fact, no one before us has cited any evidence suggesting that a purely verbal censure analogous to Mr. Wilson’s has ever been widely considered offensive to the First Amendment.   As early as colonial times, the power of assemblies in this country to censure their members was “more or less assumed.” [citation omitted] It seems, too, that assemblies often exercised the power to censure members for views they expressed and actions they took “both within and without the legislature.” [citations omitted]   The parties supply little reason to think the First Amendment was designed or commonly understood to upend this practice…     If anything, censures [of public officials] have proven more common yet at the state and local level…According to HCC and undisputed by Mr. Wilson, it seems elected bodies in this country issued no fewer than 20 censures in August 2020 alone. [citation omitted]   If this longstanding practice does not “put at rest” the question of the Constitution’s meaning for the dispute before us, it surely leaves a “considerable impression.” [citation omitted] On Mr. Wilson’s telling and under the Fifth Circuit’s holding, a purely verbal censure by an elected assembly of one of its own members may offend the First Amendment.' - '[citation omitted]   We assessed the lawfulness of that handgun ban by scrutinizing whether it comported with history and tradition. Although we noted that the ban “would fail constitutional muster” “[u]nder any of the standards of scrutiny that we have applied to enumerated constitutional rights,”…we did not engage in means-end scrutiny when resolving the constitutional question. Instead, we focused on the historically unprecedented nature of the District’s ban, observing that “[f]ew laws in the history of our Nation have come close to [that] severe restriction.” [citation omitted] Likewise, when one of the dissents attempted to justify the District’s prohibition with “founding-era historical precedent,” including “various restrictive laws in the colonial period,” we addressed each purported analogue and concluded that they were either irrelevant or “d[id] not remotely burden the right of self-defense as much as an absolute ban on handguns.” [citations omitted] Thus, our earlier historical analysis sufficed to show that the Second Amendment did not countenance a “complete prohibition” on the use of “the most popular weapon chosen by Americans for self-defense in the home.” [citation omitted]     2 As the foregoing shows, Heller’s methodology centered on constitutional text and *2129 history. Whether it came to defining the character of the right (individual or militia dependent), suggesting the outer limits of the right, or assessing the constitutionality of a particular regulation, Heller relied on text and history. It did not invoke any means-end test such as strict or intermediate scrutiny.   Moreover, Heller and McDonald expressly rejected the application of any “judge-empowering ‘interest-balancing inquiry’ that ‘asks whether the statute burdens a protected interest in a way or to an extent that is out of proportion to the statute’s salutary effects upon other important governmental interests.’ ” [citations omitted] We declined to engage in means-end scrutiny because “[t]he very enumeration of the right takes out of the hands of government—even the Third Branch of Government—the power to decide on a case-by-case basis whether the right is really worth insisting upon.” [citation omitted] We then concluded: “A constitutional guarantee subject to future judges’ assessments of its usefulness is no constitutional guarantee at all.” [citation omitted]   Not only did Heller decline to engage in means-end scrutiny generally, but it also specifically ruled out the intermediate-scrutiny test that respondents and the United States now urge us to adopt. Dissenting in Heller, Justice BREYER’s proposed standard—“ask[ing] whether [a] statute burdens a protected interest in a way or to an extent that is out of proportion to the statute’s salutary effects upon other important governmental interests,” …—simply expressed a classic formulation of intermediate scrutiny in a slightly different way. [ci8tations omitted] In fact, Justice BREYER all but admitted that his Heller dissent advocated for intermediate scrutiny by repeatedly invoking a quintessential intermediate-scrutiny precedent. [citations omitted]Thus, when Heller expressly rejected that dissent’s “interest-balancing inquiry,” [citation omitted] it necessarily rejected intermediate scrutiny.5   In sum, the Courts of Appeals’ second step is inconsistent with Heller’s historical approach and its rejection of means-end scrutiny. We reiterate that the standard for applying the Second Amendment is as follows: When the Second Amendment’s plain text covers an individual’s *2130 conduct, the Constitution presumptively protects that conduct. The government must then justify its regulation by demonstrating that it is consistent with the Nation’s historical tradition of firearm regulation. Only then may a court conclude that the individual’s conduct falls outside the Second Amendment’s “unqualified command.” [citation omitted]     C This Second Amendment standard accords with how we protect other constitutional rights. [One example is] the freedom of speech in the First Amendment, to which Heller repeatedly compared the right to keep and bear arms. [citation omitted] In that context, “[w]hen the Government restricts speech, the Government bears the burden of proving the constitutionality of its actions.” [citations omitted] In some cases, that burden includes showing whether the expressive conduct falls outside of the category of protected speech. [citation omitted] And to carry that burden, the government must generally point to historical evidence about the reach of the First Amendment’s protections.' - 'Roe and Casey thought that one-sided view misguided. In some sense, that is the difference in a nutshell between our precedents and the majority opinion. The constitutional regime we have lived in for the last 50 years recognized competing interests, and sought a balance between them. The constitutional regime we enter today erases the woman’s interest and recognizes only the State’s (or the Federal Government’s).       B The majority makes this change based on a single question: Did the reproductive right recognized in Roe and Casey exist in “1868, the year when the Fourteenth Amendment was ratified”? Ante, at 2252 – 2253. The majority says (and with this much we agree) that the answer to this question is no: In 1868, there was no nationwide right to end a pregnancy, and no thought that the Fourteenth Amendment provided one.   Of course, the majority opinion refers as well to some later and earlier history. On the one side of 1868, it goes back as far as the 13th (the 13th!) century. See ante, at 2249, 142 S.Ct. 2111. But that turns out to be wheel-spinning. First, it is not clear what relevance *2324 such early history should have, even to the majority. See New York State Rifle & Pistol Assn., Inc. v.Bruen, 597 U.S. ––––, ––––, 142 S.Ct. 2111, 2136, ––– L.Ed.2d –––– (2022) (“Historical evidence that long predates [ratification] may not illuminate the scope of the right”). If the early history obviously supported abortion rights, the majority would no doubt say that only the views of the Fourteenth Amendment’s ratifiers are germane. See ibid. (It is “better not to go too far back into antiquity,” except if olden “law survived to become our Founders’ law”). Second—and embarrassingly for the majority—early law in fact does provide some support for abortion rights. Common-law authorities did not treat abortion as a crime before “quickening”—the point when the fetus moved in the womb.2 And early American law followed the common-law rule.3 So the criminal law of that early time might be taken as roughly consonant with Roe’s and Casey’s different treatment of early and late abortions. Better, then, to move forward in time. On the other side of 1868, the majority occasionally notes that many States barred abortion up to the time of Roe. See ante, at 2253, 2260, 142 S.Ct. 2111. That is convenient for the majority, but it is window dressing. As the same majority (plus one) just informed us, “post-ratification adoption or acceptance of laws that are inconsistent with the original meaning of the constitutional text obviously cannot overcome or alter that text.” New York State Rifle & Pistol Assn., Inc., 597 U.S., at –––– – ––––, 142 S.Ct., at 2137. Had the pre-Roe liberalization of abortion laws occurred more quickly and more widely in the 20th century, the majority would say (once again) that only the ratifiers’ views are germane.   The majority’s core legal postulate, then, is that we in the 21st century must read the Fourteenth Amendment just as its ratifiers did. And that is indeed what the majority emphasizes over and over again. See ante, at 2267 (“[T]he most important historical fact [is] how the States regulated abortion when the Fourteenth Amendment was adopted”); see also ante, at 2242 – 2243, 2248 – 2249, and n. 24, 23, 25, 28. If the ratifiers did not understand something as central to freedom, then neither can we. Or said more particularly: If those people did not understand reproductive rights as part of the guarantee of liberty conferred in the Fourteenth Amendment, then those rights do not exist.   As an initial matter, note a mistake in the just preceding sentence. We referred there to the “people” who ratified the Fourteenth Amendment: What rights did those “people” have in their heads at the time? But, of course, “people” did not ratify the Fourteenth Amendment. Men did. So it is perhaps not so surprising that the ratifiers were not perfectly attuned to the importance of reproductive rights for women’s liberty, or for their capacity to participate as equal members of our Nation.' - source_sentence: Based on the court's ruling, what are the implications of Title VII regarding discrimination against employees based on their transgender status or failure to conform to sex stereotypes? sentences: - 'Thus, even if we agreed with the Funeral Home that Rost''s religious exercise would be substantially burdened by enforcing Title VII in this case, we would nevertheless REVERSE the district court''s grant of summary judgment to the Funeral Home and hold instead that requiring the Funeral Home to comply with Title VII constitutes the least restrictive means of furthering the government''s compelling interest in eradicating discrimination against Stephens on the basis of sex. Thus, even assuming Rost''s religious exercise is substantially burdened by the EEOC''s enforcement action in this case, we GRANT summary judgment to the EEOC on the Funeral Home''s RFRA defense on this alternative ground.   [ … ] [ … ]   III. CONCLUSION Discrimination against employees, either because of their failure to conform to sex stereotypes or their transgender and transitioning status, is illegal under Title VII. The unrefuted facts show that the Funeral Home fired Stephens because she refused to abide by her employer''s stereotypical conception of her sex, and therefore the EEOC is entitled to summary judgment as to its unlawful-termination claim. RFRA provides the Funeral Home with no relief because continuing to employ Stephens would not, as a matter of law, substantially burden Rost''s religious exercise, and even if it did, the EEOC has shown that enforcing Title VII here is the least restrictive means of furthering its compelling interest in combating and eradicating sex discrimination. We therefore REVERSE the district court''s grant of summary judgment in favor of the Funeral Home and GRANT summary judgment to the EEOC on its unlawful-termination claim. We also REVERSE the district court''s grant of summary judgment on the EEOC''s discriminatory-clothing-allowance claim, as the district court erred in failing to consider the EEOC''s claim on the merits. We REMAND this case to the district court for further proceedings consistent with this opinion. [1] We refer to Stephens using female pronouns, in accordance with the preference she has expressed through her briefing to this court. [2] All facts drawn from Def.''s Statement of Facts (R. 55) are undisputed. See R. 64 (Pl.''s Counter Statement of Disputed Facts) (Page ID #2066-88). [3] See also Appellee Br. at 16 ("It is a helpful exercise to think about Price Waterhouse and imagine that there was a dress code imposed which obligated Ms. Hopkins to wear a skirt while her male colleagues were obliged to wear pants. Had she simply been fired for wearing pants rather than a skirt, the case would have ended there — both sexes would have been equally burdened by the requirement to comply with their respective sex-specific standard. But what the firm could not do was fire her for being aggressive or macho when it was tolerating or rewarding the behavior among men — and when it did, it relied on a stereotype to treat her disparately from the men in the firm."). [4] Moreover, discrimination because of a person''s transgender, intersex, or sexually indeterminate status is no less actionable than discrimination because of a person''s identification with two religions, an unorthodox religion, or no religion at all. And "religious identity" can be just as fluid, variable, and difficult to define as "gender identity"; after all, both have "a deeply personal, internal genesis that lacks a fixed external referent." Sue Landsittel, Strange Bedfellows? Sex, Religion, and Transgender Identity Under Title VII, 104 NW. U. L. REV. 1147, 1172 (2010) (advocating for "[t]he application of tests for religious identity to the problem of gender identity [because it] produces a more realistic, and therefore more appropriate, authentication framework than the current reliance on medical diagnoses and conformity with the gender binary"). [5] On the other hand, there is also evidence that Stephens was fired only because of her nonconforming appearance and behavior at work, and not because of her transgender identity. See R. 53-6 (Rost Dep.' - 'Such laws would furnish the readiest means of compulsion. The 13th *244 Amendment prohibits involuntary servitude except as punishment for crime. But the exception, allowing full latitude for the enforcement of penal laws, does not destroy the prohibition. It does not permit slavery or involuntary servitude to be established or maintained through the operation of the criminal law by making it a crime to refuse to submit to the one or to render the service which would constitute the other. The state may impose involuntary servitude as a punishment for crime, but it may not compel one man to labor for another in payment of a debt, by punishing him as a criminal if he does not perform the service or pay the debt. If the statute in this case had authorized the employing company to seize the debtor, and hold him to the service until he paid the $15, or had furnished the equivalent in labor, its invalidity would not be questioned. It would be equally clear that the state could not authorize its constabulary to prevent the servant from escaping, and to force him to work out his debt. But the state could not avail itself of the sanction of the criminal law to supply the compulsion any more than it could use or authorize the use of physical force. ‘In contemplation of the law, the compulsion to such service by the fear of punishment under a criminal statute is more powerful than any guard which the employer could station.’ Ex parte Hollman, 79 S. C. 22, 21 L.R.A.(N.S.) 249, 60 S. E. p. 24, 14 A. & E. Ann. Cas. 1109. **153 What the state may not do directly it may not do indirectly. If it cannot punish the servant as a criminal for the mere failure or refusal to serve without paying his debt, it is not permitted to accomplish the same result by creating a statutory presumption which, upon proof of no other fact, exposes him to conviction and punishment. Without imputing any actual motive to oppress, we must consider the natural operation of the statute here in question (Henderson v. New York [Henderson v. Wickham] 92 U. S. p. 268, 23 L. ed. 547), and it is apparent that it furnishes a convenient instrument for the coercion *245 which the Constitution and the act of Congress forbid; an instrument of compulsion peculiarly effective as against the poor and the ignorant, its most likely victims. There is no more important concern than to safeguard the freedom of labor upon which alone can enduring prosperity be based. The provision designed to secure it would soon become a barren form if it were possible to establish a statutory presumption of this sort, and to hold over the heads of laborers the threat of punishment for crime, under the name of fraud, but merely upon evidence of failure to work out their debts. The act of Congress deprives of effect all legislative measures of any state through which, directly or indirectly, the prohibited thing, to wit, compulsory service to secure the payment of a debt, may be established or maintained; and we conclude that § 4730, as amended, of the Code of Alabama, in so far as it makes the refusal or failure to perform the act or service, without refunding the money or paying for the property prima facie evidence of the commission received of the crime which the section defines, is in conflict with the 13th Amendment, and the legislation authorized by that Amendment, and is therefore invalid. In this view it is unnecessary to consider the contentions which have been made under the 14th Amendment… Reversed and cause remanded for further proceedings not inconsistent with this opinion. Mr. Justice Holmes, dissenting [omitted]                 2.3 Jones v. Alfred H. Mayer Co.   88 S.Ct. 2186 Supreme Court of the United States Joseph Lee JONES et ux., Petitioners, v. ALFRED H. MAYER CO. et al. No. 645. | Argued April 1 and 2, 1968. | Decided June 17, 1968. Synopsis Action to recover damages and for injunctive relief because of refusal of defendants to sell home in private subdivision to plaintiffs solely because of race. The United States District Court for the Eastern District of Missouri, 255 F.Supp. 115, dismissed complaint, and plaintiffs appealed. The Court of Appeals for the Eighth Circuit, 379 F.2d 33, affirmed, and certiorari was granted. The United States Supreme Court, Mr.' - '[citation omitted]   *1994 The program imposes no geographic limitation: Parents may direct tuition payments to schools inside or outside the State, or even in foreign countries. [citation omitted] In schools that qualify for the program because they are accredited, teachers need not be certified by the State,…and Maine’s curricular requirements do not apply…Single-sex schools are eligible. [citation omitted]   Prior to 1981, parents could also direct the tuition assistance payments to religious schools. Indeed, in the 1979–1980 school year, over 200 Maine students opted to attend such schools through the tuition assistance program. App. 72. In 1981, however, Maine imposed a new requirement that any school receiving tuition assistance payments must be “a nonsectarian school in accordance with the First Amendment of the United States Constitution.” [citation omitted] That provision was enacted in response to an opinion by the Maine attorney general taking the position that public funding of private religious schools violated the Establishment Clause of the First Amendment. We subsequently held, however, that a benefit program under which private citizens “direct government aid to religious schools wholly as a result of their own genuine and independent private choice” does not offend the Establishment Clause. [citation omitted] Following our decision in Zelman, the Maine Legislature considered a proposed bill to repeal the “nonsectarian” requirement, but rejected it. App. 100, 108.   The “nonsectarian” requirement for participation in Maine’s tuition assistance program remains in effect today. The Department has stated that, in administering this requirement, it “considers a sectarian school to be one that is associated with a particular faith or belief system and which, in addition to teaching academic subjects, promotes the faith or belief system with which it is associated and/or presents the material taught through the lens of this faith.” [citation omitted] “The Department’s focus is on what the school teaches through its curriculum and related activities, and how the material is presented.” …“[A]ffiliation or association with a church or religious institution is one potential indicator of a sectarian school,” but “it is not dispositive.”     B This case concerns two families that live in SAUs that neither maintain their own secondary schools nor contract with any nearby secondary school. App. 70, 71. Petitioners David and Amy Carson reside in Glenburn, Maine. Id., at 74. When this litigation commenced, the Carsons’ daughter attended high school at Bangor Christian Schools (BCS), which was founded in 1970 as a ministry of Bangor Baptist Church. Id., at 74, 80. The Carsons sent their daughter to BCS because of the school’s high academic standards and because the school’s Christian worldview aligns with their sincerely held religious beliefs. Id., at 74. Given that BCS is a “sectarian” school that cannot qualify for tuition assistance payments under Maine’s program, id., at 80, the Carsons paid the tuition for their daughter to attend BCS themselves, id., at 74.   Petitioners Troy and Angela Nelson live in Palermo, Maine. Id., at 78. When this litigation commenced, the Nelsons’ daughter attended high school at Erskine Academy, a secular private school, and their son attended middle school at Temple Academy, a “sectarian” school affiliated with *1995 Centerpoint Community Church. Id., at 78, 90, 91. The Nelsons sent their son to Temple Academy because they believed it offered him a high-quality education that aligned with their sincerely held religious beliefs. Id., at 78. While they wished to send their daughter to Temple Academy too, they could not afford to pay the cost of the Academy’s tuition for both of their children. Id., at 79.   BCS and Temple Academy are both accredited by the New England Association of Schools and Colleges (NEASC), and the Department considers each school a “private school approved for attendance purposes” under the State’s compulsory attendance requirement. Id., at 80, 90. Yet because neither school qualifies as “nonsectarian,” neither is eligible to receive tuition payments under Maine’s tuition assistance program. Id., at 80, 90. Absent the “nonsectarian” requirement, the Carsons and the Nelsons would have asked their respective SAUs to pay the tuition to send their children to BCS and Temple Academy, respectively. Id., at 79.   In 2018, petitioners brought suit against the commissioner of the Maine Department of Education. Id., at 11–12.' model-index: - name: ModernBERT Embed base LegalTextAI Matryoshka results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.4838709677419355 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.6989247311827957 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.7956989247311828 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9247311827956989 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.4838709677419355 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.37992831541218625 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.2838709677419354 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.17204301075268813 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.21774193548387094 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.4883512544802867 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5882616487455197 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.7087813620071685 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5864023588218451 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5962578938385393 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.49158210371757605 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.4838709677419355 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7204301075268817 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.7849462365591398 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9032258064516129 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.4838709677419355 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.3870967741935483 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.286021505376344 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.1677419354838709 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.22311827956989244 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5026881720430108 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5936379928315412 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6944444444444444 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5845266760205443 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5949906127325485 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.4986982754839258 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.45161290322580644 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.6881720430107527 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.7956989247311828 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8817204301075269 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.45161290322580644 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.36559139784946226 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.27956989247311825 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.16559139784946234 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.20878136200716843 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.471774193548387 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5806451612903226 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6854838709677419 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5650385704476973 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5673792456050522 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.47608804104449853 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.44086021505376344 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.6451612903225806 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.7634408602150538 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8387096774193549 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.44086021505376344 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.3548387096774194 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.27311827956989243 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.15591397849462363 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.1872759856630824 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.44534050179211476 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5725806451612904 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.654121863799283 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5356361930824536 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5453490356716165 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.45106439048323554 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.3978494623655914 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.6021505376344086 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.7096774193548387 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8064516129032258 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.3978494623655914 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.34050179211469533 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.26021505376344084 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.153763440860215 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.1586021505376344 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.4059139784946236 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5259856630824372 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6164874551971326 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5019311887697538 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5081626557433011 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.4181782323905875 name: Cosine Map@100 --- # ModernBERT Embed base LegalTextAI Matryoshka This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) <!-- at revision d556a88e332558790b210f7bdbe87da2fa94a8d8 --> - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("legaltextai/modernbert-embed-ft-const-legal-matryoshka") # Run inference sentences = [ "Based on the court's ruling, what are the implications of Title VII regarding discrimination against employees based on their transgender status or failure to conform to sex stereotypes?", 'Thus, even if we\xa0agreed with the Funeral Home that Rost\'s religious exercise would be substantially burdened by enforcing Title VII in this case, we would nevertheless REVERSE the district court\'s grant of summary judgment to the Funeral Home and hold instead that requiring the Funeral Home to comply with Title VII constitutes the least restrictive means of furthering the government\'s compelling interest in eradicating discrimination against Stephens on the basis of sex. Thus, even assuming Rost\'s religious exercise is substantially burdened by the EEOC\'s enforcement action in this case, we GRANT summary judgment to the EEOC on the Funeral Home\'s RFRA defense on this alternative ground.\n\n\xa0\n\n[ … ]\n\n[ … ]\n\n\xa0\n\nIII. CONCLUSION\n\nDiscrimination against employees, either because of their failure to conform to sex stereotypes or their transgender and transitioning status, is illegal under Title VII. The unrefuted facts show that the Funeral Home fired Stephens because she refused to abide by her employer\'s stereotypical conception of her sex, and therefore the EEOC is entitled to summary judgment as to its unlawful-termination claim. RFRA provides the Funeral Home with no relief because continuing to employ Stephens would not, as a matter of law, substantially burden Rost\'s religious exercise, and even if it did, the EEOC has shown that enforcing Title VII here is the least restrictive means of furthering its compelling interest in combating and eradicating sex discrimination. We therefore REVERSE the district court\'s grant of summary judgment in favor of the Funeral Home and GRANT summary judgment to the EEOC on its unlawful-termination claim. We also REVERSE the district court\'s grant of summary judgment on the EEOC\'s discriminatory-clothing-allowance claim, as the district court erred in failing to consider the EEOC\'s claim on the merits. We REMAND this case to the district court for further proceedings consistent with this opinion.\n\n[1]\xa0We refer to Stephens using female pronouns, in accordance with the preference she has expressed through her briefing to this court.\n\n[2]\xa0All facts drawn from Def.\'s Statement of Facts (R. 55) are undisputed.\xa0See\xa0R. 64 (Pl.\'s Counter Statement of Disputed Facts) (Page ID #2066-88).\n\n[3]\xa0See also\xa0Appellee Br. at 16 ("It is a helpful exercise to think about\xa0Price Waterhouse\xa0and imagine that there was a dress code imposed which obligated Ms. Hopkins to wear a skirt while her male colleagues were obliged to wear pants. Had she simply been fired for wearing pants rather than a skirt, the case would have ended there — both sexes would have been equally burdened by the requirement to comply with their respective sex-specific standard. But what the firm could not do was fire her for being aggressive or macho when it was tolerating or rewarding the behavior among men — and when it did, it relied on a stereotype to treat her disparately from the men in the firm.").\n\n[4]\xa0Moreover, discrimination because of a person\'s transgender, intersex, or sexually indeterminate status is no less actionable than discrimination because of a person\'s identification with two religions, an unorthodox religion, or no religion at all. And "religious identity" can be just as fluid, variable, and difficult to define as "gender identity"; after all, both have "a deeply personal, internal genesis that lacks a fixed external referent." Sue Landsittel,\xa0Strange Bedfellows? Sex, Religion, and Transgender Identity Under Title VII,\xa0104 NW. U. L. REV. 1147, 1172 (2010) (advocating for "[t]he application of tests for religious identity to the problem of gender identity [because it] produces a more realistic, and therefore more appropriate, authentication framework than the current reliance on medical diagnoses and conformity with the gender binary").\n\n[5]\xa0On the other hand, there is also evidence that Stephens was fired only because of her nonconforming appearance and behavior at work, and not because of her transgender identity.\xa0See\xa0R. 53-6 (Rost Dep.', '[citation omitted]\n\n\xa0\n\n*1994 The program imposes no geographic limitation: Parents may direct tuition payments to schools inside or outside the State, or even in foreign countries. [citation omitted] In schools that qualify for the program because they are accredited, teachers need not be certified by the State,…and Maine’s curricular requirements do not apply…Single-sex schools are eligible. [citation omitted]\n\n\xa0\n\nPrior to 1981, parents could also direct the tuition assistance payments to religious schools. Indeed, in the 1979–1980 school year, over 200 Maine students opted to attend such schools through the tuition assistance program. App. 72. In 1981, however, Maine imposed a new requirement that any school receiving tuition assistance payments must be “a nonsectarian school in accordance with the First Amendment of the United States Constitution.” [citation omitted] That provision was enacted in response to an opinion by the Maine attorney general taking the position that public funding of private religious schools violated the Establishment Clause of the First Amendment. We subsequently held, however, that a benefit program under which private citizens “direct government aid to religious schools wholly as a result of their own genuine and independent private choice” does not offend the Establishment Clause. [citation omitted] Following our decision in Zelman, the Maine Legislature considered a proposed bill to repeal the “nonsectarian” requirement, but rejected it. App. 100, 108.\n\n\xa0\n\nThe “nonsectarian” requirement for participation in Maine’s tuition assistance program remains in effect today. The Department has stated that, in administering this requirement, it “considers a sectarian school to be one that is associated with a particular faith or belief system and which, in addition to teaching academic subjects, promotes the faith or belief system with which it is associated and/or presents the material taught through the lens of this faith.” [citation omitted] “The Department’s focus is on what the school teaches through its curriculum and related activities, and how the material is presented.” …“[A]ffiliation or association with a church or religious institution is one potential indicator of a sectarian school,” but “it is not dispositive.”\n\n\xa0\n\n\xa0\n\nB\n\nThis case concerns two families that live in SAUs that neither maintain their own secondary schools nor contract with any nearby secondary school. App. 70, 71. Petitioners David and Amy Carson reside in Glenburn, Maine. Id., at 74. When this litigation commenced, the Carsons’ daughter attended high school at Bangor Christian Schools (BCS), which was founded in 1970 as a ministry of Bangor Baptist Church. Id., at 74, 80. The Carsons sent their daughter to BCS because of the school’s high academic standards and because the school’s Christian worldview aligns with their sincerely held religious beliefs. Id., at 74. Given that BCS is a “sectarian” school that cannot qualify for tuition assistance payments under Maine’s program, id., at 80, the Carsons paid the tuition for their daughter to attend BCS themselves, id., at 74.\n\n\xa0\n\nPetitioners Troy and Angela Nelson live in Palermo, Maine. Id., at 78. When this litigation commenced, the Nelsons’ daughter attended high school at Erskine Academy, a secular private school, and their son attended middle school at Temple Academy, a “sectarian” school affiliated with *1995 Centerpoint Community Church. Id., at 78, 90, 91. The Nelsons sent their son to Temple Academy because they believed it offered him a high-quality education that aligned with their sincerely held religious beliefs. Id., at 78. While they wished to send their daughter to Temple Academy too, they could not afford to pay the cost of the Academy’s tuition for both of their children. Id., at 79.\n\n\xa0\n\nBCS and Temple Academy are both accredited by the New England Association of Schools and Colleges (NEASC), and the Department considers each school a “private school approved for attendance purposes” under the State’s compulsory attendance requirement. Id., at 80, 90. Yet because neither school qualifies as “nonsectarian,” neither is eligible to receive tuition payments under Maine’s tuition assistance program. Id., at 80, 90. Absent the “nonsectarian” requirement, the Carsons and the Nelsons would have asked their respective SAUs to pay the tuition to send their children to BCS and Temple Academy, respectively. Id., at 79.\n\n\xa0\n\nIn 2018, petitioners brought suit against the commissioner of the Maine Department of Education. Id., at 11–12.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 | |:--------------------|:-----------|:-----------|:----------|:-----------|:-----------| | cosine_accuracy@1 | 0.4839 | 0.4839 | 0.4516 | 0.4409 | 0.3978 | | cosine_accuracy@3 | 0.6989 | 0.7204 | 0.6882 | 0.6452 | 0.6022 | | cosine_accuracy@5 | 0.7957 | 0.7849 | 0.7957 | 0.7634 | 0.7097 | | cosine_accuracy@10 | 0.9247 | 0.9032 | 0.8817 | 0.8387 | 0.8065 | | cosine_precision@1 | 0.4839 | 0.4839 | 0.4516 | 0.4409 | 0.3978 | | cosine_precision@3 | 0.3799 | 0.3871 | 0.3656 | 0.3548 | 0.3405 | | cosine_precision@5 | 0.2839 | 0.286 | 0.2796 | 0.2731 | 0.2602 | | cosine_precision@10 | 0.172 | 0.1677 | 0.1656 | 0.1559 | 0.1538 | | cosine_recall@1 | 0.2177 | 0.2231 | 0.2088 | 0.1873 | 0.1586 | | cosine_recall@3 | 0.4884 | 0.5027 | 0.4718 | 0.4453 | 0.4059 | | cosine_recall@5 | 0.5883 | 0.5936 | 0.5806 | 0.5726 | 0.526 | | cosine_recall@10 | 0.7088 | 0.6944 | 0.6855 | 0.6541 | 0.6165 | | **cosine_ndcg@10** | **0.5864** | **0.5845** | **0.565** | **0.5356** | **0.5019** | | cosine_mrr@10 | 0.5963 | 0.595 | 0.5674 | 0.5453 | 0.5082 | | cosine_map@100 | 0.4916 | 0.4987 | 0.4761 | 0.4511 | 0.4182 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### json * Dataset: json * Size: 842 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 842 samples: | | anchor | positive | |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 24 tokens</li><li>mean: 42.46 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 236 tokens</li><li>mean: 962.01 tokens</li><li>max: 1056 tokens</li></ul> | * Samples: | anchor | positive | |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Based on the court's ruling, under what circumstances can a college student be held accountable for off-campus speech, and how does this relate to the standards of professionalism in a professional school setting?</code> | <code>A serious question raised by Keefe in this case is whether the First Amendment protected his unprofessional speech from academic disadvantage because it was made in- on-line, off-campus Facebook postings. On appeal, Keefe framed this contention categorically, arguing that a college student may not be punished for off-campus speech unless it is speech that is unprotected by the First Amendment, such as obscenity. We reject this categorical contention. A student may demonstrate an unacceptable lack of professionalism off campus, as well as in the classroom, and by speech as well as conduct. See Yoder v. Univ. of Louisville, 526 Fed-Appx. 537, 545-46 (6th Cir.), cert. denied, — U.S. -, 134 S.Ct. 790, 187 L.Ed.2d 594 (2013); Tatro v. Univ. of Minn., 816 N.W.2d 509, 521 (Minn. 2012). Therefore, college administrators and educators in a professional school have discretion to require compliance with recognized standards of the profession, both on and off campus, “so long as their actions are ...</code> | | <code>Describe the two-step framework that Courts of Appeals have developed for analyzing Second Amendment challenges. What are the implications of the Supreme Court's decision to reject this framework in favor of a historical tradition-based approach?</code> | <code>Petitioners sued respondents for declaratory and injunctive relief under…42 U.S.C. § 1983, alleging that respondents violated their Second and Fourteenth Amendment rights by denying their unrestricted-license applications on the basis that they had failed to show “proper cause,” i.e., had failed to demonstrate a unique need for self-defense.<br><br> <br><br>The District Court dismissed petitioners’ complaint and the Court of Appeals affirmed. [citation omitted] Both courts relied on [a] Court of Appeals’ prior decision…which had sustained New York’s proper-cause standard, holding that the requirement was “substantially related to the achievement of an important governmental interest.” [citation omitted]<br><br> <br><br>We granted certiorari to decide whether New York’s denial of petitioners’ license applications violated the Constitution. [citation omitted]<br><br> <br><br> <br><br>II<br><br>In Heller and McDonald, we held that the Second and Fourteenth Amendments protect an individual right to keep and bear arms for self-defense. ...</code> | | <code>Discuss the implications of the California Alien Land Law as it pertains to the rights of American citizens, specifically in the case of Fred Oyama. How does the law affect his privileges as a citizen, and what constitutional protections are being challenged?</code> | <code>269<br><br>Supreme Court of the United States<br><br>OYAMA et al.<br><br>v.<br><br>STATE OF CALIFORNIA.<br><br>No. 44.<br><br>|<br><br>Argued Oct. 22, 1947.<br><br>|<br><br>Decided Jan. 19, 1948.<br><br>Opinion<br><br>*635 Mr. Chief Justice VINSON delivered the opinion of the Court.<br><br>Petitioners challenge the constitutionality of California’s Alien Land Law1 as it has been applied in this case to effect an escheat of two small parcels of agricultural land.2 One of the petitioners is Fred Oyama, a minor American citizen in whose name title was taken. The other is his father and guardian, Kajiro Oyama, a Japanese citizen not eligible for naturalization,3 who paid the purchase price.<br><br>Petitioners press three attacks on the Alien Land Law as it has been applied in this case: first, that it deprives Fred Oyama of the equal protection of the laws and of his privileges as an American citizen; secondly, that it denies Kajiro Oyama equal protection of the laws; and, thirdly, that it contravenes the due process clause by sanctioning a taking of property after ...</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 32 - `learning_rate`: 2e-05 - `num_train_epochs`: 4 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `bf16`: True - `tf32`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 32 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 | |:----------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:| | 0.6038 | 1 | 0.5604 | 0.5631 | 0.5303 | 0.4907 | 0.4335 | | 1.6038 | 2 | 0.5836 | 0.5758 | 0.5715 | 0.5180 | 0.4846 | | 2.6038 | 3 | 0.5768 | 0.5841 | 0.5652 | 0.5296 | 0.4940 | | **3.6038** | **4** | **0.5864** | **0.5845** | **0.565** | **0.5356** | **0.5019** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.4.1 - Transformers: 4.48.3 - PyTorch: 2.6.0+cu124 - Accelerate: 1.3.0 - Datasets: 3.3.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
[ "TEXT_CLASSIFICATION" ]
[ "BEAR", "CAS" ]
Non_BioNLP
# ModernBERT Embed base LegalTextAI Matryoshka This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) <!-- at revision d556a88e332558790b210f7bdbe87da2fa94a8d8 --> - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("legaltextai/modernbert-embed-ft-const-legal-matryoshka") # Run inference sentences = [ "Based on the court's ruling, what are the implications of Title VII regarding discrimination against employees based on their transgender status or failure to conform to sex stereotypes?", 'Thus, even if we\xa0agreed with the Funeral Home that Rost\'s religious exercise would be substantially burdened by enforcing Title VII in this case, we would nevertheless REVERSE the district court\'s grant of summary judgment to the Funeral Home and hold instead that requiring the Funeral Home to comply with Title VII constitutes the least restrictive means of furthering the government\'s compelling interest in eradicating discrimination against Stephens on the basis of sex. Thus, even assuming Rost\'s religious exercise is substantially burdened by the EEOC\'s enforcement action in this case, we GRANT summary judgment to the EEOC on the Funeral Home\'s RFRA defense on this alternative ground.\n\n\xa0\n\n[ … ]\n\n[ … ]\n\n\xa0\n\nIII. CONCLUSION\n\nDiscrimination against employees, either because of their failure to conform to sex stereotypes or their transgender and transitioning status, is illegal under Title VII. The unrefuted facts show that the Funeral Home fired Stephens because she refused to abide by her employer\'s stereotypical conception of her sex, and therefore the EEOC is entitled to summary judgment as to its unlawful-termination claim. RFRA provides the Funeral Home with no relief because continuing to employ Stephens would not, as a matter of law, substantially burden Rost\'s religious exercise, and even if it did, the EEOC has shown that enforcing Title VII here is the least restrictive means of furthering its compelling interest in combating and eradicating sex discrimination. We therefore REVERSE the district court\'s grant of summary judgment in favor of the Funeral Home and GRANT summary judgment to the EEOC on its unlawful-termination claim. We also REVERSE the district court\'s grant of summary judgment on the EEOC\'s discriminatory-clothing-allowance claim, as the district court erred in failing to consider the EEOC\'s claim on the merits. We REMAND this case to the district court for further proceedings consistent with this opinion.\n\n[1]\xa0We refer to Stephens using female pronouns, in accordance with the preference she has expressed through her briefing to this court.\n\n[2]\xa0All facts drawn from Def.\'s Statement of Facts (R. 55) are undisputed.\xa0See\xa0R. 64 (Pl.\'s Counter Statement of Disputed Facts) (Page ID #2066-88).\n\n[3]\xa0See also\xa0Appellee Br. at 16 ("It is a helpful exercise to think about\xa0Price Waterhouse\xa0and imagine that there was a dress code imposed which obligated Ms. Hopkins to wear a skirt while her male colleagues were obliged to wear pants. Had she simply been fired for wearing pants rather than a skirt, the case would have ended there — both sexes would have been equally burdened by the requirement to comply with their respective sex-specific standard. But what the firm could not do was fire her for being aggressive or macho when it was tolerating or rewarding the behavior among men — and when it did, it relied on a stereotype to treat her disparately from the men in the firm.").\n\n[4]\xa0Moreover, discrimination because of a person\'s transgender, intersex, or sexually indeterminate status is no less actionable than discrimination because of a person\'s identification with two religions, an unorthodox religion, or no religion at all. And "religious identity" can be just as fluid, variable, and difficult to define as "gender identity"; after all, both have "a deeply personal, internal genesis that lacks a fixed external referent." Sue Landsittel,\xa0Strange Bedfellows? Sex, Religion, and Transgender Identity Under Title VII,\xa0104 NW. U. L. REV. 1147, 1172 (2010) (advocating for "[t]he application of tests for religious identity to the problem of gender identity [because it] produces a more realistic, and therefore more appropriate, authentication framework than the current reliance on medical diagnoses and conformity with the gender binary").\n\n[5]\xa0On the other hand, there is also evidence that Stephens was fired only because of her nonconforming appearance and behavior at work, and not because of her transgender identity.\xa0See\xa0R. 53-6 (Rost Dep.', '[citation omitted]\n\n\xa0\n\n*1994 The program imposes no geographic limitation: Parents may direct tuition payments to schools inside or outside the State, or even in foreign countries. [citation omitted] In schools that qualify for the program because they are accredited, teachers need not be certified by the State,…and Maine’s curricular requirements do not apply…Single-sex schools are eligible. [citation omitted]\n\n\xa0\n\nPrior to 1981, parents could also direct the tuition assistance payments to religious schools. Indeed, in the 1979–1980 school year, over 200 Maine students opted to attend such schools through the tuition assistance program. App. 72. In 1981, however, Maine imposed a new requirement that any school receiving tuition assistance payments must be “a nonsectarian school in accordance with the First Amendment of the United States Constitution.” [citation omitted] That provision was enacted in response to an opinion by the Maine attorney general taking the position that public funding of private religious schools violated the Establishment Clause of the First Amendment. We subsequently held, however, that a benefit program under which private citizens “direct government aid to religious schools wholly as a result of their own genuine and independent private choice” does not offend the Establishment Clause. [citation omitted] Following our decision in Zelman, the Maine Legislature considered a proposed bill to repeal the “nonsectarian” requirement, but rejected it. App. 100, 108.\n\n\xa0\n\nThe “nonsectarian” requirement for participation in Maine’s tuition assistance program remains in effect today. The Department has stated that, in administering this requirement, it “considers a sectarian school to be one that is associated with a particular faith or belief system and which, in addition to teaching academic subjects, promotes the faith or belief system with which it is associated and/or presents the material taught through the lens of this faith.” [citation omitted] “The Department’s focus is on what the school teaches through its curriculum and related activities, and how the material is presented.” …“[A]ffiliation or association with a church or religious institution is one potential indicator of a sectarian school,” but “it is not dispositive.”\n\n\xa0\n\n\xa0\n\nB\n\nThis case concerns two families that live in SAUs that neither maintain their own secondary schools nor contract with any nearby secondary school. App. 70, 71. Petitioners David and Amy Carson reside in Glenburn, Maine. Id., at 74. When this litigation commenced, the Carsons’ daughter attended high school at Bangor Christian Schools (BCS), which was founded in 1970 as a ministry of Bangor Baptist Church. Id., at 74, 80. The Carsons sent their daughter to BCS because of the school’s high academic standards and because the school’s Christian worldview aligns with their sincerely held religious beliefs. Id., at 74. Given that BCS is a “sectarian” school that cannot qualify for tuition assistance payments under Maine’s program, id., at 80, the Carsons paid the tuition for their daughter to attend BCS themselves, id., at 74.\n\n\xa0\n\nPetitioners Troy and Angela Nelson live in Palermo, Maine. Id., at 78. When this litigation commenced, the Nelsons’ daughter attended high school at Erskine Academy, a secular private school, and their son attended middle school at Temple Academy, a “sectarian” school affiliated with *1995 Centerpoint Community Church. Id., at 78, 90, 91. The Nelsons sent their son to Temple Academy because they believed it offered him a high-quality education that aligned with their sincerely held religious beliefs. Id., at 78. While they wished to send their daughter to Temple Academy too, they could not afford to pay the cost of the Academy’s tuition for both of their children. Id., at 79.\n\n\xa0\n\nBCS and Temple Academy are both accredited by the New England Association of Schools and Colleges (NEASC), and the Department considers each school a “private school approved for attendance purposes” under the State’s compulsory attendance requirement. Id., at 80, 90. Yet because neither school qualifies as “nonsectarian,” neither is eligible to receive tuition payments under Maine’s tuition assistance program. Id., at 80, 90. Absent the “nonsectarian” requirement, the Carsons and the Nelsons would have asked their respective SAUs to pay the tuition to send their children to BCS and Temple Academy, respectively. Id., at 79.\n\n\xa0\n\nIn 2018, petitioners brought suit against the commissioner of the Maine Department of Education. Id., at 11–12.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 | |:--------------------|:-----------|:-----------|:----------|:-----------|:-----------| | cosine_accuracy@1 | 0.4839 | 0.4839 | 0.4516 | 0.4409 | 0.3978 | | cosine_accuracy@3 | 0.6989 | 0.7204 | 0.6882 | 0.6452 | 0.6022 | | cosine_accuracy@5 | 0.7957 | 0.7849 | 0.7957 | 0.7634 | 0.7097 | | cosine_accuracy@10 | 0.9247 | 0.9032 | 0.8817 | 0.8387 | 0.8065 | | cosine_precision@1 | 0.4839 | 0.4839 | 0.4516 | 0.4409 | 0.3978 | | cosine_precision@3 | 0.3799 | 0.3871 | 0.3656 | 0.3548 | 0.3405 | | cosine_precision@5 | 0.2839 | 0.286 | 0.2796 | 0.2731 | 0.2602 | | cosine_precision@10 | 0.172 | 0.1677 | 0.1656 | 0.1559 | 0.1538 | | cosine_recall@1 | 0.2177 | 0.2231 | 0.2088 | 0.1873 | 0.1586 | | cosine_recall@3 | 0.4884 | 0.5027 | 0.4718 | 0.4453 | 0.4059 | | cosine_recall@5 | 0.5883 | 0.5936 | 0.5806 | 0.5726 | 0.526 | | cosine_recall@10 | 0.7088 | 0.6944 | 0.6855 | 0.6541 | 0.6165 | | **cosine_ndcg@10** | **0.5864** | **0.5845** | **0.565** | **0.5356** | **0.5019** | | cosine_mrr@10 | 0.5963 | 0.595 | 0.5674 | 0.5453 | 0.5082 | | cosine_map@100 | 0.4916 | 0.4987 | 0.4761 | 0.4511 | 0.4182 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### json * Dataset: json * Size: 842 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 842 samples: | | anchor | positive | |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 24 tokens</li><li>mean: 42.46 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 236 tokens</li><li>mean: 962.01 tokens</li><li>max: 1056 tokens</li></ul> | * Samples: | anchor | positive | |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Based on the court's ruling, under what circumstances can a college student be held accountable for off-campus speech, and how does this relate to the standards of professionalism in a professional school setting?</code> | <code>A serious question raised by Keefe in this case is whether the First Amendment protected his unprofessional speech from academic disadvantage because it was made in- on-line, off-campus Facebook postings. On appeal, Keefe framed this contention categorically, arguing that a college student may not be punished for off-campus speech unless it is speech that is unprotected by the First Amendment, such as obscenity. We reject this categorical contention. A student may demonstrate an unacceptable lack of professionalism off campus, as well as in the classroom, and by speech as well as conduct. See Yoder v. Univ. of Louisville, 526 Fed-Appx. 537, 545-46 (6th Cir.), cert. denied, — U.S. -, 134 S.Ct. 790, 187 L.Ed.2d 594 (2013); Tatro v. Univ. of Minn., 816 N.W.2d 509, 521 (Minn. 2012). Therefore, college administrators and educators in a professional school have discretion to require compliance with recognized standards of the profession, both on and off campus, “so long as their actions are ...</code> | | <code>Describe the two-step framework that Courts of Appeals have developed for analyzing Second Amendment challenges. What are the implications of the Supreme Court's decision to reject this framework in favor of a historical tradition-based approach?</code> | <code>Petitioners sued respondents for declaratory and injunctive relief under…42 U.S.C. § 1983, alleging that respondents violated their Second and Fourteenth Amendment rights by denying their unrestricted-license applications on the basis that they had failed to show “proper cause,” i.e., had failed to demonstrate a unique need for self-defense.<br><br> <br><br>The District Court dismissed petitioners’ complaint and the Court of Appeals affirmed. [citation omitted] Both courts relied on [a] Court of Appeals’ prior decision…which had sustained New York’s proper-cause standard, holding that the requirement was “substantially related to the achievement of an important governmental interest.” [citation omitted]<br><br> <br><br>We granted certiorari to decide whether New York’s denial of petitioners’ license applications violated the Constitution. [citation omitted]<br><br> <br><br> <br><br>II<br><br>In Heller and McDonald, we held that the Second and Fourteenth Amendments protect an individual right to keep and bear arms for self-defense. ...</code> | | <code>Discuss the implications of the California Alien Land Law as it pertains to the rights of American citizens, specifically in the case of Fred Oyama. How does the law affect his privileges as a citizen, and what constitutional protections are being challenged?</code> | <code>269<br><br>Supreme Court of the United States<br><br>OYAMA et al.<br><br>v.<br><br>STATE OF CALIFORNIA.<br><br>No. 44.<br><br>|<br><br>Argued Oct. 22, 1947.<br><br>|<br><br>Decided Jan. 19, 1948.<br><br>Opinion<br><br>*635 Mr. Chief Justice VINSON delivered the opinion of the Court.<br><br>Petitioners challenge the constitutionality of California’s Alien Land Law1 as it has been applied in this case to effect an escheat of two small parcels of agricultural land.2 One of the petitioners is Fred Oyama, a minor American citizen in whose name title was taken. The other is his father and guardian, Kajiro Oyama, a Japanese citizen not eligible for naturalization,3 who paid the purchase price.<br><br>Petitioners press three attacks on the Alien Land Law as it has been applied in this case: first, that it deprives Fred Oyama of the equal protection of the laws and of his privileges as an American citizen; secondly, that it denies Kajiro Oyama equal protection of the laws; and, thirdly, that it contravenes the due process clause by sanctioning a taking of property after ...</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 32 - `learning_rate`: 2e-05 - `num_train_epochs`: 4 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `bf16`: True - `tf32`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 32 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 | |:----------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:| | 0.6038 | 1 | 0.5604 | 0.5631 | 0.5303 | 0.4907 | 0.4335 | | 1.6038 | 2 | 0.5836 | 0.5758 | 0.5715 | 0.5180 | 0.4846 | | 2.6038 | 3 | 0.5768 | 0.5841 | 0.5652 | 0.5296 | 0.4940 | | **3.6038** | **4** | **0.5864** | **0.5845** | **0.565** | **0.5356** | **0.5019** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.4.1 - Transformers: 4.48.3 - PyTorch: 2.6.0+cu124 - Accelerate: 1.3.0 - Datasets: 3.3.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
{"base_model": "nomic-ai/modernbert-embed-base", "language": ["en"], "library_name": "sentence-transformers", "license": "apache-2.0", "metrics": ["cosine_accuracy@1", "cosine_accuracy@3", "cosine_accuracy@5", "cosine_accuracy@10", "cosine_precision@1", "cosine_precision@3", "cosine_precision@5", "cosine_precision@10", "cosine_recall@1", "cosine_recall@3", "cosine_recall@5", "cosine_recall@10", "cosine_ndcg@10", "cosine_mrr@10", "cosine_map@100"], "pipeline_tag": "sentence-similarity", "tags": ["sentence-transformers", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:842", "loss:MatryoshkaLoss", "loss:MultipleNegativesRankingLoss"], "widget": [{"source_sentence": "Discuss the implications of the Insular Cases on the application of the Citizenship Clause to American Samoa, particularly in distinguishing between incorporated and unincorporated territories. What are the practical concerns associated with this distinction?", "sentences": ["To the extent jus soli is adopted into the Fourteenth Amendment, the concept of allegiance is manifested by the Citizenship Clause’s mandate that birthright citizens not merely be born within the territorial boundaries of the United States but also “subject to the jurisdiction thereof…” [citations omitted]\n\n \n\n Appellants would find any allegiance requirement of no moment because, as non-citizen nationals, American Samoans already “owe[ ] permanent allegiance to the United States.”[citations omitted] Yet, within the context of the Citizenship Clause, “[t]he evident meaning of the[ ] ... words [“subject to the jurisdiction thereof”] is, not merely subject in some respect or degree to the jurisdiction of the United States, but completely subject to their political jurisdiction, and owing them direct and immediate allegiance.” **375 [citations omitted] *306  It was on this basis that the Supreme Court declined to extend constitutional birthright citizenship to Native American tribes. [citations omitted]…Even assuming a background context grounded in principles of jus soli, we are skeptical the framers plainly intended to extend birthright citizenship to distinct, significantly self-governing political territories within the United States’s sphere of sovereignty—even where, as is the case with American Samoa, ultimate governance remains statutorily vested with the United States Government. [citations omitted]\n\nIII\n\nAnalysis of the Citizenship Clause’s application to American Samoa would be incomplete absent invocation of the sometimes contentious Insular Cases, where the Supreme Court “addressed whether the Constitution, by its own force, applies in any territory that is not a State.” [citations omitted]\n\n \n\n“The doctrine of ‘territorial incorporation’ announced in the Insular Cases distinguishes between incorporated territories, which are intended for statehood from the time of acquisition and in which the entire Constitution applies ex proprio vigore, and unincorporated territories [such as American Samoa], which are not intended for statehood and in which only [certain] fundamental constitutional rights apply by their own force.”[citations omitted].\n\n \n\nAppellants and Amici contend the Insular Cases have no application because the Citizenship Clause textually defines its own scope.[citations omitted].\n\n \n\nAmici Curiae suggest territorial incorporation doctrine should not be expanded to the Citizenship Clause because the doctrine rests on anachronistic views of race and imperialism. But the Court has continued to invoke the Insular framework when dealing with questions of territorial and extraterritorial application. [citations omitted] Although some aspects of the Insular Cases’ analysis may now be deemed politically incorrect, the framework remains both applicable and of pragmatic use in assessing the applicability of rights to unincorporated territories. [citations omitted]\n\n \n\nAs the Supreme Court…emphasized, the “common thread uniting the Insular Cases ... [is that] questions of extraterritoriality turn on objective factors and practical concerns, not formalism.” [citations omitted] While “fundamental limitations in favor of personal rights” remain guaranteed to persons born in the unincorporated territories, [citations omitted], the Insular framework recognizes the difficulties that frequently inure when “determin[ing] [whether a] particular provision of the Constitution is applicable,” absent inquiry into the impractical or anomalous. [citations omitted]\n\nA\n\n American citizenship “is one of the most valuable rights in the world today.” [citations omitted] “The freedoms and opportunities secured by United States citizenship long have been treasured by persons fortunate enough to be born with them, and are yearned for by countless less fortunate.” [citations omitted]. Accordingly, even if the Insular framework is applicable, Appellants cite to a bevy of cases to argue citizenship is a fundamental right. [citations omitted] But those cases do not arise in the territorial context. Such decisions do not reflect the Court’s considered judgment as to the existence of a fundamental right to citizenship for persons born in the United States’ unincorporated **377 *308 territories. [citations omitted].7\n\n \n\n “Fundamental” has a distinct and narrow meaning in the context of territorial rights. It is not sufficient that a right be considered fundamentally important in a colloquial sense or even that a right be “necessary to [the] [ ]American regime of ordered liberty.” [citations omitted]. Under the Insular framework the designation of fundamental extends only to the narrow category of rights and “principles which are the basis of all free government.” [citations omitted]\n\n \n\nIn this manner the Insular Cases distinguish as universally fundamental those rights so basic as to be integral to free and fair society.", "633, 649 (concurring opinion).\n\nAn innkeeper or common carrier has always been allowed to' exclude drunks, criminals and' diseased persons, but only because the public’s interest in protecting his and his guests’ health and property outweighs its interest in providing accommodations for this small group of travelers. As a general rule, innkeepers and carriers cannot refuse their services on account of race; though the rule developed in this country that they can provide “separate but equal” facilities. And for a period of our history even,this Court upheld state laws giving sanction to such a rule. Compare Plessy v. Ferguson, 163 U. S. 537, with Gayle v. Browder, 352 U. S. 903, affirming, 142 F. Supp. 707. But surely Shelley v. Kraemer, supra, and Barrows v. Jackson, supra, show that the day has passed when an innkeeper, carrier, housing developer, or retailer can draw a• racial' line, refuse service to some on account of color, and obtain the aid of a State in enforcing his personal bias by sending outlawed customers to prison or exacting fines from them.\n\nBusiness, such as this restaurant, is still private property. ' Yet there is hardly any private enterprise that does not feel the pinch of some public regulation — from price control, to health and fire inspection, to zoning, to safety measures, to minimum wages and working conditions, to unemployment insurance. When the doors of a business are open to the public, they must be open to all regardless of race if apartheid is not to become engrained in our public places. It cannot by reason of the Equal Protection Clause become so engrained with the aid of state courts, state legislatures, or state police.\n\nII.\n\nThere is even greater reason to bar a State through its judiciary from throwing its weight on the side of racial discrimination in the present case, because we deal here with a place of public accommodation under license from, the State. This is the idea I expressed in Garner v. Louisiana, 368 U. S. 157, where another owner of a restaurant refused service to a customer because he was a Negro. That view is not novel; it.stems from the dissent of the first Mr. Justice Harlan in the Civil Rights Cases, 109 U. S. 3, 58-59:\n\n“In every material sense applicable to the practical enforcement of the Fourteenth Amendment, railroad corporations, keepers of inns, and managers of places of public amusement are agents or instrumentalities of the State, because they are charged with duties to the public, and are amenable, in respect of their duties and functions, to governmental regulation. It seems to me that, within the principle settled in Ex parte Virginia, a denial, by these instrumentalities of the State, to the citizen, because of his race, of that equality of civil rights secured to him by law, is a denial by the State, within the meaning of the Fourteenth Amendment. If it be not, then that race is left, in respect of the civil rights in question, practically at the mercy of corporations and individuals wielding power under the States.”\n\nThe nexus between the State and the private enterprise may be control, as in the case of a state agency. Pennsylvania v. Board of Trusts, 353 U. S. 230. Or the nexus may be one of numerous other devices. “State support of segregated schools through any arrangement, management, funds, or property cannot be squared” with the Equal Protection Clause. Cooper v. Aaron, 358 U. S. 1, 19. Cf. Hampton v. Jacksonville, 304 F. 2d 320. A state-assisted enterprise serving the public does not escape its constitutional duty to serve all customers irrespective of race, even though its actual operation is in the hands of a lessee. Burton v. Wilmington Parking Authority, 365 U. S. 715. Cf. Boynton v. Virginia, 364 U. S. 454. State licensing and surveillance.of a business serving the public also brings its service into the public domain. This restaurant needs a permit from Louisiana to operate; and during the existence of the license the State has broad powers of visitation and control. This restaurant is thus an instrumentality of the State since the State charges it with duties to the public and supervises its performance. The State's interest in and activity with regard to its restaurants extends far beyond any mere income-producing licensing requirement.", "Among other things, courts at this second step have sometimes considered whether an employee’s speech interests are outweighed by “ ‘the interest of the State, as an employer, in promoting the efficiency of the public services it performs through its employees.’ ” Id., at 417, 126 S.Ct. 1951 *2424 (quoting Pickering, 391 U.S. at 568, 88 S.Ct. 1731).\n\n \n\nBoth sides ask us to employ at least certain aspects of this Pickering–Garcetti framework to resolve Mr. Kennedy’s free speech claim. They share additional common ground too. They agree that Mr. Kennedy’s speech implicates a matter of public concern. See App. to Pet. for Cert. 183; Brief for Respondent 44. They also appear to accept, at least for argument’s sake, that Mr. Kennedy’s speech does not raise questions of academic freedom that may or may not involve “additional” First Amendment “interests” beyond those captured by this framework. Garcetti, 547 U.S. at 425, 126 S.Ct. 1951; see also Keyishian v. Board of Regents of Univ. of State of N. Y., 385 U.S. 589, 603, 87 S.Ct. 675, 17 L.Ed.2d 629 (1967); Brief for Petitioner 26, n. 2. At the first step of the Pickering–Garcetti inquiry, the parties’ disagreement thus turns out to center on one question alone: Did Mr. Kennedy offer his prayers in his capacity as a private citizen, or did they amount to government speech attributable to the District?\n\n \n\nOur cases offer some helpful guidance for resolving this question. In Garcetti, the Court concluded that a prosecutor’s internal memorandum to a supervisor was made “pursuant to [his] official duties,” and thus ineligible for First Amendment protection. 547 U.S. at 421, 126 S.Ct. 1951. In reaching this conclusion, the Court relied on the fact that the prosecutor’s speech “fulfill[ed] a responsibility to advise his supervisor about how best to proceed with a pending case.” Ibid. In other words, the prosecutor’s memorandum was government speech because it was speech the government “itself ha[d] commissioned or created” and speech the employee was expected to deliver in the course of carrying out his job. Id., at 422, 126 S.Ct. 1951.\n\n \n\nBy contrast, in Lane a public employer sought to terminate an employee after he testified at a criminal trial about matters involving his government employment. 573 U.S. at 233, 134 S.Ct. 2369. The Court held that the employee’s speech was protected by the First Amendment. Id., at 231, 134 S.Ct. 2369. In doing so, the Court held that the fact the speech touched on matters related to public employment was not enough to render it government speech. Id., at 239–240, 134 S.Ct. 2369. Instead, the Court explained, the “critical question ... is whether the speech at issue is itself ordinarily within the scope of an employee’s duties.” Id., at 240, 134 S.Ct. 2369. It is an inquiry this Court has said should be undertaken “practical[ly],” rather than with a blinkered focus on the terms of some formal and capacious written job description. Garcetti, 547 U.S. at 424, 126 S.Ct. 1951. To proceed otherwise would be to allow public employers to use “excessively broad job descriptions” to subvert the Constitution’s protections. Ibid.\n\n \n\nApplying these lessons here, it seems clear to us that Mr. Kennedy has demonstrated that his speech was private speech, not government speech. When Mr. Kennedy uttered the three prayers that resulted in his suspension, he was not engaged in speech “ordinarily within the scope” of his duties as a coach. Lane, 573 U.S. at 240, 134 S.Ct. 2369. He did not speak pursuant to government policy. He was not seeking to convey a government-created message. He was not instructing players, discussing strategy, encouraging better on-field performance, or engaged in any other speech the District paid him to produce as a coach. See Part I–B, supra. Simply put: Mr. Kennedy’s prayers did not “ow[e their] existence” to Mr. Kennedy’s responsibilities as a public employee."]}, {"source_sentence": "Discuss the implications of the Thirteenth Amendment as it relates to Congress's power to enact laws against private racial discrimination in property transactions. How does the text support the assertion that Congress's authority extends beyond state action?", "sentences": ["––––, ––––, 142 S.Ct. 1539, 1545, ––– L.Ed.2d –––– (2022) (THOMAS, J., concurring) (internal quotation*2301 marks omitted). Either way, the Due Process Clause at most guarantees process. It does not, as the Court’s substantive due process cases suppose, “forbi[d] the government to infringe certain ‘fundamental’ liberty interests at all, no matter what process is provided.” Reno v. Flores, 507 U.S. 292, 302, 113 S.Ct. 1439, 123 L.Ed.2d 1 (1993); see also, e.g.,Collins v. Harker Heights, 503 U.S. 115, 125, 112 S.Ct. 1061, 117 L.Ed.2d 261 (1992).\n\n \n\nAs I have previously explained, “substantive due process” is an oxymoron that “lack[s] any basis in the Constitution.” Johnson, 576 U.S. at 607–608, 135 S.Ct. 2551 (opinion of THOMAS, J.); see also, e.g.,Vaello Madero, 596 U.S., at ––––, 142 S.Ct., at 1545 (THOMAS, J., concurring) (“[T]ext and history provide little support for modern substantive due process doctrine”). “The notion that a constitutional provision that guarantees only ‘process’ before a person is deprived of life, liberty, or property could define the substance of those rights strains credulity for even the most casual user of words.” McDonald v. Chicago, 561 U.S. 742, 811, 130 S.Ct. 3020, 177 L.Ed.2d 894 (2010) (THOMAS, J., concurring in part and concurring in judgment); see also United States v. Carlton, 512 U.S. 26, 40, 114 S.Ct. 2018, 129 L.Ed.2d 22 (1994) (Scalia, J., concurring in judgment). The resolution of this case is thus straightforward. Because the Due Process Clause does not secure any substantive rights, it does not secure a right to abortion.\n\n \n\nThe Court today declines to disturb substantive due process jurisprudence generally or the doctrine’s application in other, specific contexts. Cases like Griswold v. Connecticut, 381 U.S. 479, 85 S.Ct. 1678, 14 L.Ed.2d 510 (1965) (right of married persons to obtain contraceptives)*; Lawrence v. Texas, 539 U.S. 558, 123 S.Ct. 2472, 156 L.Ed.2d 508 (2003) (right to engage in private, consensual sexual acts); and Obergefell v. Hodges, 576 U.S. 644, 135 S.Ct. 2584, 192 L.Ed.2d 609 (2015) (right to same-sex marriage), are not at issue. The Court’s abortion cases are unique, see ante, at 2257 – 2258, 2277 – 2278, 2280 – 2281, and no party has asked us to decide “whether our entire Fourteenth Amendment jurisprudence must be preserved or revised,” McDonald, 561 U.S. at 813, 130 S.Ct. 3020 (opinion of THOMAS, J.). Thus, I agree that “[n]othing in [the Court’s] opinion should be understood to cast doubt on precedents that do not concern abortion.” Ante, at 2277 – 2278.\n\n \n\nFor that reason, in future cases, we should reconsider all of this Court’s substantive due process precedents, including Griswold, Lawrence, and Obergefell. Because any substantive due process decision is “demonstrably erroneous,” Ramos v.Louisiana, 590 U.S. ––––, ––––, 140 S.Ct. 1390, 1424, 206 L.Ed.2d 583 (2020) (THOMAS, J., concurring in judgment), we have a duty to “correct the error” established in those precedents, Gamble v. United States, 587 U.S. ––––, ––––, 139 S.Ct. 1960, 1984-1985, 204 L.Ed.2d 322 (2019) (THOMAS, J., concurring).", "On October 21, the superintendent further observed to a state official that “[t]he issue is quickly changing as it has shifted from leading prayer with student athletes, to a coaches [sic] right to conduct” his own prayer “on the 50 yard line.” Id., at 88.\n\n \n\nOn October 23, shortly before that evening’s game, the District wrote Mr. Kennedy again. It expressed “appreciation” for his “efforts to comply” with the District’s directives, including avoiding “on-the-job prayer with players in the ... football program, both in the locker room prior to games as well as on the field immediately following games.” Id., at 90. The letter also admitted that, during Mr. Kennedy’s recent October 16 postgame prayer, his students were otherwise engaged and not praying with him, and that his prayer was “fleeting.” Id., at 90, 93. Still, the District explained that a “reasonable observer” could think government endorsement of religion had occurred when a “District employee, on the field only by virtue of his employment with the District, still on duty” engaged in “overtly religious conduct.” Id., at 91, 93. The District thus made clear that the only option it would offer Mr. Kennedy was to allow him to pray after a game in a “private location” behind closed doors and “not observable to students or the public.” Id., at 93–94.\n\n \n\nAfter the October 23 game ended, Mr. Kennedy knelt at the 50-yard line, where “no one joined him,” and bowed his head for a “brief, quiet prayer.” 991 F.3d at 1019; App. 173, 236–239. The superintendent informed the District’s board that this prayer “moved closer to what we want,” but nevertheless remained “unconstitutional.” Id., at 96. After the final relevant football game on October 26, Mr. Kennedy again knelt alone to offer a brief prayer as the players engaged in postgame traditions. 443 F.Supp.3d 1223, 1231 (W.D. Wash. 2020); App. to Pet. for Cert. 182. While he was praying, other adults gathered around him on the field. See 443 F.Supp.3d at 1231; App. 97. Later, Mr. Kennedy rejoined his players for a postgame talk, after they had finished singing the school fight song. 443 F.Supp.3d at 1231; App. 103.\n\n \n\n \n\nC\n\nShortly after the October 26 game, the District placed Mr. Kennedy on paid administrative *2419 leave and prohibited him from “participat[ing], in any capacity, in ... football program activities.” Ibid. In a letter explaining the reasons for this disciplinary action, the superintendent criticized Mr. Kennedy for engaging in “public and demonstrative religious conduct while still on duty as an assistant coach” by offering a prayer following the games on October 16, 23, and 26. Id., at 102. The letter did not allege that Mr. Kennedy performed these prayers with students, and it acknowledged that his prayers took place while students were engaged in unrelated postgame activities. Id., at 103. Additionally, the letter faulted Mr. Kennedy for not being willing to pray behind closed doors. Id., at 102.\n\n \n\nIn an October 28 Q&A document provided to the public, the District admitted that it possessed “no evidence that students have been directly coerced to pray with Kennedy.” Id., at 105. The Q&A also acknowledged that Mr. Kennedy “ha[d] complied” with the District’s instruction to refrain from his “prior practices of leading players in a pre-game prayer in the locker room or leading players in a post-game prayer immediately following games.” Ibid. But the Q&A asserted that the District could not allow Mr. Kennedy to “engage in a public religious display.” Id., at 105, 107, 110. Otherwise, the District would “violat[e] the ... Establishment Clause” because “reasonable ... students and attendees” might perceive the “district [as] endors[ing] ... religion.” Id., at 105.\n\n \n\nWhile Mr. Kennedy received “uniformly positive evaluations” every other year of his coaching career, after the 2015 season ended in November, the District gave him a poor performance evaluation. Kennedy v. Bremerton School Dist., 869 F.3d 813, 820 (C.A.9 2017).", "Nor was the scope of the 1866 Act altered when it was re-enacted in 1870, some two years after the ratification of the Fourteenth Amendment.71 It is quite true that some members of Congress supported the Fourteenth Amendment “in order to eliminate doubt as to the constitutional validity of the Civil Rights Act as applied to the States.” Hurd v. Hodge, 334 U.S. 24, 32—33, 68 S.Ct. 847, 852. But it certainly does not follow that the adoption of the Fourteenth Amendment or the subsequent readoption of the Civil Rights Act were meant somehow to limit its application to state action. The legislative history furnishes not the slightest factual basis for any such speculation, and the conditions prevailing in 1870 make it highly implausible. For by that time most, if not all, of the former Confederate States, then under the control of “reconstructed” legislatures, had formally repudiated racial discrimination, and the focus of congressional concern had clearly shifted from hostile statutes to the activities of groups like the Ku Klux Klan, operating wholly outside the law.72\n\n \n\n **2202 *437 Against this background, it would obviously make no sense to assume, without any historical support whatever, that Congress made a silent decision in 1870 to exempt private discrimination from the operation of the Civil Rights Act of 1866.73 “The cardinal rule is that repeals by implication are not favored.” Posadas v. National City Bank, 296 U.S. 497, 503, 56 S.Ct. 349, 352, 80 L.Ed. 351. All Congress said in 1870 was that the 1866 law “is hereby re-enacted.” That is all Congress meant.\n\n \n\n As we said in a somewhat different setting two Terms ago, “We think that history leaves no doubt that, if we are to give (the law) the scope that its origins dictate, we must accord it a sweep as broad as its language.” United States v. Price, 383 U.S. 787, 801, 86 S.Ct. 1152, 1160. “We are not at liberty to seek ingenious analytical instruments,” ibid., to carve from s 1982 an exception for private conduct—even though its application to such conduct in the present context is without established precedent. And, as the Attorney General of the United States said at the oral argument of this case, “The fact that the statute lay partially dormant for many years cannot be held to diminish its force today.”\n\n \n\n \n\n \n\nV.\n\nThe remaining question is whether Congress has power under the Constitution to do what s 1982 purports to do: to prohibit all racial discrimination, private and public, in the sale and rental of property. Our starting point is the Thirteenth Amendment, for it was pursuant *438 to that constitutional provision that Congress originally enacted what is now s 1982. The Amendment consists of two parts. Section 1 states:\n\n“Neither slavery nor involuntary servitude, except as a punishment for crime whereby the party shall have been duly convicted, shall exist within the United States, or any place subject to their jurisdiction.”\n\nSection 2 provides:\n\n“Congress shall have power to enforce this article by appropriate legislation.”\n\n As its text reveals, the Thirteenth Amendment “is not a mere prohibition of state laws establishing or upholding slavery, but an absolute declaration that slavery or involuntary servitude shall not exist in any part of the United States.” Civil Rights Cases, 109 U.S. 3, 20, 3 S.Ct. 18, 28, 27 L.Ed. 835. It has never been doubted, therefore, “that the power vested in Congress to enforce the article by appropriate legislation,” ibid., includes the power to enact laws “direct and primary, operating upon the acts of individuals, whether sanctioned by state legislation or not.” Id., at 23, 3 S.Ct., at 30.74\n\n \n\n Thus, the fact that s 1982 operates upon the unofficial acts of private individuals, whether or not sanctioned by state law, presents no constitutional problem. If Congress has power **2203 under the Thirteenth Amendment to eradicate conditions that prevent Negroes from buying and renting property because of their race or color, then no federal statute calculated to achieve that objective *439 can be thought to exceed the constitutional power of Congress simply because it reaches beyond state action to regulate the conduct of private individuals. The constitutional question in this case, therefore, comes to this: Does the authority of Congress to enforce the Thirteenth Amendment “by appropriate legislation” include the power to eliminate all racial barriers to the acquisition of real and personal property? We think the answer to that question is plainly yes."]}, {"source_sentence": "According to the statute referenced in the context, what is the standard for establishing the requisite injury necessary for obtaining an injunction under 17 U.S.C. § 1203(b)(1)?", "sentences": ["Post-Trial Mem. at 27-28.\n\n[263] The statute expressly authorizes injunctions to prevent or restrain violations, 17 U.S.C. § 1203(b)(1), thus demonstrating that the requisite injury need only be threatened.\n\n[264] Def. Post-Trial Mem. at 28.\n\n[265] Id. at 28-29.\n\n[266] See, e.g., Ex. AYZ (Hunt Dep.) at 94-104.\n\n[267] Id. 30.\n\n[268] Ex. 113.\n\n[269] Defendants' argument would lack merit even if there were credible proof that other circumvention devices actually exist and produce results comparable to DeCSS. The available movies must have been decrypted with DeCSS or something else. As far as this record discloses, any such device or technology would violate the DMCA for the same reasons as does DeCSS. In consequence, this case comes within the principle of Summers v. Tice, 33 Cal.2d 80, 199 P.2d 1 (1948). Where, as here, two or more persons take substantially identical wrongful actions, one and only one of which had to be the source of the plaintiffs' injury, and it is equally likely that one inflicted the injury as the other, the burden of proof on causation shifts to the defendants, each of which is liable absent proof that its action did not cause the injury. See 4 Fowler V. Harper & Fleming James, Jr., THE LAW OF TORTS §§ 101-04 (2d ed.1996).\n\nDefendants' efforts to avoid the consequences of this common sense principle are unpersuasive. They argue, for example, that plaintiffs may not invoke the theory unless they join as defendants everyone who may have contributed to the injury. Def. Post-Trial Mem. at 32 n. 18 (citing Ex. UZ). It would be difficult to imagine a more nonsensical requirement in the context of this case. Where, as here, harm is done by dissemination of information over the Internet, probably by a substantial number of people all over the world, defendants' proposed rule would foreclose judicial relief anywhere because joinder of all plainly would be impossible in any one place, and technology does not permit identification of which wrongdoer's posting or product led to which pirated copy of a copyrighted work.\n\n[270] 17 U.S.C. § 1203(b)(1).\n\n[271] See, e.g., S.E.C. v. Unique Financial Concepts, Inc., 196 F.3d 1195, 1199 n. 2 (11th Cir.1999) (injunction under Section 20(b) of the Securities Act of 1933, 15 U.S.C. § 77t(b), which permits an injunction \"upon a proper showing,\" requires \"a reasonable likelihood that the wrong will be repeated\"); Commodity Futures Trading Com'n v. Hunt, 591 F.2d 1211, 1220 (7th Cir.1979) (same under Commodity Exchange Act, 7 U.S.C. § 13a-1(b)); S.E.C. v. Bausch & Lomb Inc., 565 F.2d 8, 18 (2d Cir.1977) (reasonable likelihood of future violations required under § 21(d) of Securities Exchange Act of 1934, 15 U.S.C. § 78u(d), which permits an injunction \"upon a proper showing\" where person \"engaged or ... about to engage in\" violation of statute).\n\n[272] See, e.g., Rondeau v. Mosinee Paper Corp., 422 U.S. 49, 57, 95 S.Ct. 2069, 45 L.Ed.2d 12 (1975) (injunctive relief in private action under § 13(d) of the Securities Exchange Act of 1934, 15 U.S.C. § 78m(d), as added by the Williams Act, requires a showing of irreparable harm and inadequacy of legal remedies).\n\n[273] Tough Traveler, Ltd. v. Outbound Prods., 60 F.3d 964, 967-68 (2d Cir.1995) (trademark); Fisher-Price, Inc. v. Well-Made Toy Mfg. Corp., 25 F.3d 119, 124 (2d Cir.1994) (copyright).\n\n[274] See, e.g., Northwestern Nat'l Ins. Co.", "Indeed, were we to accept Maine’s argument, our decision in Espinoza would be rendered essentially meaningless. By Maine’s logic, Montana could have obtained the same result that we held violated the First Amendment simply by redefining its tax credit for sponsors of generally available scholarships as limited to “tuition payments for the rough equivalent of a Montana public education”—meaning a secular education. But our holding in Espinoza turned on the substance of free exercise protections, not on the presence or absence of magic words. That holding applies fully whether the prohibited discrimination is in an express provision like § 2951(2) or in a party’s reconceptualization of the public benefit.\n\n \n\nMaine may provide a strictly secular education in its public schools. But BCS and Temple Academy—like numerous other recipients of Maine tuition assistance payments—are not public schools. In order to provide an education to children who live in certain parts of its far-flung State, Maine has decided not to operate schools of its own, but instead to offer tuition assistance that parents may direct to the public or private schools of their choice. Maine’s administration of that benefit is subject to the free exercise principles governing any such public benefit program—including the prohibition on denying the benefit based on a recipient’s religious exercise.\n\n \n\nThe dissents are wrong to say that under our decision today Maine “must” fund religious education. Post, at 2006 (BREYER, J., dissenting). Maine chose to allow some parents to direct state tuition payments to private schools; that decision was not “forced upon” it. Post, at 2014 (SOTOMAYOR, J., dissenting). The State retains a number of options: it could expand the reach of its public school system, increase the availability of transportation, provide some combination of tutoring, remote learning, and partial attendance, or even operate boarding schools of its own. As we held in Espinoza, a “State need not subsidize private education. But once a State decides to do so, it cannot disqualify some private schools solely because they are religious.” 591 U. S., at ––––, 140 S.Ct., at 2261.\n\n \n\n \n\nB\n\nThe Court of Appeals also attempted to distinguish this case from Trinity Lutheran and Espinoza on the ground that the funding restrictions in those cases were “solely status-based religious discrimination,” while the challenged provision here “imposes a use-based restriction.” 979 F.3d at 35, 37–38...\n\n \n\nIn Trinity Lutheran, the Missouri Constitution banned the use of public funds in aid of “any church, sect or denomination of religion.” [citation omitted]. We noted that the case involved “express discrimination based on religious identity,” which was sufficient unto the day in deciding it, and that our opinion did “not address religious uses of funding.” [citation omitted]\n\n \n\nSo too in Espinoza, the discrimination at issue was described by the Montana Supreme Court as a prohibition on aiding “schools controlled by churches,” and we *2001 analyzed the issue in terms of “religious status and not religious use.” [citation omitted] Foreshadowing Maine’s argument here, Montana argued that its case was different from Trinity Lutheran’s because it involved not playground resurfacing, but general funds that “could be used for religious ends by some recipients, particularly schools that believe faith should ‘permeate[ ]’ everything they do.” [citation omitted] We explained, however, that the strict scrutiny triggered by status-based discrimination could not be avoided by arguing that “one of its goals or effects [was] preventing religious organizations from putting aid to religious uses.” [citation omitted]  And we noted that nothing in our analysis was “meant to suggest that we agree[d] with [Montana] that some lesser degree of scrutiny applies to discrimination against religious uses of government aid.” [citation omitted]\n\n \n\nMaine’s argument, however—along with the decision below and Justice BREYER’s dissent—is premised on precisely such a distinction. [citations omitted]\n\n \n\nThat premise, however, misreads our precedents. In Trinity Lutheran and Espinoza, we held that the Free Exercise Clause forbids discrimination on the basis of religious status. But those decisions never suggested that use-based discrimination is any less offensive to the Free Exercise Clause. This case illustrates why.", "429\n\nSupreme Court of the United States.\n\nSAMUEL M. CLYATT\n\nv.\n\nUNITED STATES.\n\nNo. 235.\n\n|\n\nArgued December 13, 14, 1904.\n\n|\n\nDecided March 13, 1905.\n\nSynopsis\n\nON WRIT of Certiorari to the United States Circuit Court of Appeals for the Fifth Circuit, bringing up for review a judgment of the Circuit Court for the Northern District of Florida, convicting defendant of returning certain specified persons to a condition of peonage, which judgment had been taken to the Circuit Court of Appeals by a writ of error to the Circuit Court. Reversed and the cause remanded for a new trial.\n\n \n\n**429 Statement by Mr. Justice Brewer:\n\nConsiders the constitutionality of Sections 1990 and 5526, Rev. Stat. (U. S. Comp. Stat. 1901, pp. 1266, 3715),  [Anti-Peonage Act]\n\n*215 Mr. Justice Brewer delivered the opinion of the court:\n\n \n\n…What is peonage? It may be defined as a status or condition of compulsory service, based upon the indebtedness of the peon to the master. The basal fact is indebtedness. As said by Judge Benedict, delivering the opinion in Jaremillo v. Romero, 1 N. M. 190, 194: ‘One fact existed universally: all were indebted to their masters. This was the cord by which they seemed bound to their master’s service.’ Upon this is based a condition of compulsory service. Peonage is sometimes classified as voluntary or involuntary; but this implies simply a difference in the mode of origin, but none in the character of the servitude. The one exists where the debtor voluntarily contracts to enter the service of his creditor. The other is forced upon the debtor by some provision of law. But peonage, however created, is compulsory service,—involuntary servitude. The peon can release himself therefrom, it is true, by the payment of the debt, but otherwise the service is enforced. A clear distinction exists between peonage and the voluntary performance of labor or rendering of services in payment of a debt. In the latter case the debtor, though contracting to pay his indebtedness by labor or service, and subject, like any other contractor, to an action for damages for breach of that contract, can elect at any time to break it, and no law or force compels *216 performance or a continuance of the service. We need not stop to consider any possible limits or exceptional cases, such as the service of a sailor…or the obligations of a child to its parents, or of an apprentice to his master, or the power of the legislature to make unlawful, and punish criminally, an abandonment by an employee of his post of labor in any extreme cases. That which is contemplated by the statute is compulsory service to secure the payment of a debt. Is this legislation within the power of Congress? It may be conceded, as a general proposition, that the ordinary relations of individual to individual are subject to the control of the states, and are not intrusted to the general government; but the 13th Amendment, adopted as an outcome of the Civil War, reads:\n\n‘Sec. 1. Neither slavery nor involuntary servitude, except as a punishment for crime whereof the party shall have been duly convicted, shall exist within the United States, or any place subject to their jurisdiction.\n\n‘Sec. 2. Congress shall have power to enforce this article by appropriate legislation.’\n\nThis amendment denounces a status or condition, irrespective of the manner or authority by which it is created. The prohibitions of the 14th and 15th Amendments are largely upon the acts of the states; but the 13th Amendment names no party or authority, but simply forbids slavery and involuntary servitude, grants to Congress power to enforce this prohibition by appropriate legislation. The differences between the 13th and subsequent amendments [can be described as follows:]\n\nThis amendment, as well as the 14th, is undoubtedly self-executing without any ancillary legislation, so far as its terms are applicable to any existing state of circumstances. By its own unaided force and effect it abolished slavery, and *217 established universal freedom. Still, legislation may be necessary and proper to meet all the various cases and circumstances to be affected by it, and to prescribe proper modes of redress for its violation in letter or spirit. And such legislation may be primary and direct in its character; for the amendment is not a mere prohibition of state laws establishing or upholding slavery, but an absolute declaration that slavery or involuntary servitude shall not exist in any part of the United States. . . ."]}, {"source_sentence": "How does the standard for applying the Second Amendment, as outlined in the context, compare to the protection of other constitutional rights, such as the freedom of speech in the First Amendment?", "sentences": ["Eventually, HCC moved to dismiss the complaint. The District Court granted the motion, concluding that Mr. Wilson lacked standing under Article III. On appeal, a panel of the Fifth Circuit reversed, holding that Mr. Wilson had standing and that his complaint stated a viable First Amendment claim. [citation omitted]\n\n \n\nThe Fifth Circuit’s merits analysis proceeded in two steps. First, the court concluded that a verbal “reprimand against an elected official for speech addressing a matter of public concern is an actionable First Amendment claim under § 1983.” [citation omitted] Next, the court reasoned that the Board’s imposition of other punishments—such as limiting Mr. Wilson’s eligibility for officer positions and his access to certain funds—did “not violate his First Amendment rights” because Mr. Wilson did not have an “entitlement” to those privileges. [citation omitted] In sum, the court held that Mr. Wilson’s § 1983 action could proceed, but only as to the Board’s unadorned censure resolution. HCC’s request for rehearing en banc failed by an equally divided vote. [citation omitted].\n\n \n\nIn time, HCC filed a petition for certiorari in this Court. It asked us to review the Fifth Circuit’s judgment that Mr. Wilson may pursue a First Amendment claim based on a purely verbal censure. Last year, we agreed to take up that question. [citation omitted] But as merits briefing unfolded, Mr. Wilson did not just seek to defend the Fifth Circuit’s judgment; he also sought to challenge it in part. Specifically, he argued that the Fifth Circuit erred to the extent that it upheld the Board’s nonverbal punishments as consistent with the First Amendment. Generally, however, when a respondent in this Court seeks to alter a lower court’s judgment, he must file and we must grant a cross-petition for review. [citation omitted] Mr. Wilson filed no such petition in this case. As a result, we decline to take up his *1259 challenge to the Fifth Circuit’s judgment, and the only question before us remains the narrow one on which we granted certiorari: Does Mr. Wilson possess an actionable First Amendment claim arising from the Board’s purely verbal censure?\n\n \n\n \n\nII\n\nA\n\nThe First Amendment prohibits laws “abridging the freedom of speech.” One obvious implication of that rule is that the government usually may not impose prior restraints on speech. [citation omitted] But other implications follow too. Relevant here, no one before us questions that, “[a]s a general matter,” the First Amendment prohibits government officials from subjecting individuals to “retaliatory actions” after the fact for having engaged in protected speech. [citations omitted] Mr. Wilson argues that the Board’s censure resolution represents exactly that kind of impermissible retaliatory action.\n\n \n\nAlmost immediately, however, this submission confronts a challenge. When faced with a dispute about the Constitution’s meaning or application, “[l]ong settled and established practice is a consideration of great weight.” [citation omitted] Often, “a regular course of practice” can illuminate or “liquidate” our founding document’s “terms & phrases.” [citations omitted] That principle poses a problem for Mr. Wilson because elected bodies in this country have long exercised the power to censure their members. In fact, no one before us has cited any evidence suggesting that a purely verbal censure analogous to Mr. Wilson’s has ever been widely considered offensive to the First Amendment.\n\n \n\nAs early as colonial times, the power of assemblies in this country to censure their members was “more or less assumed.” [citation omitted] It seems, too, that assemblies often exercised the power to censure members for views they expressed and actions they took “both within and without the legislature.” [citations omitted]\n\n \n\nThe parties supply little reason to think the First Amendment was designed or commonly understood to upend this practice…\n\n \n\n \n\nIf anything, censures [of public officials] have proven more common yet at the state and local level…According to HCC and undisputed by Mr. Wilson, it seems elected bodies in this country issued no fewer than 20 censures in August 2020 alone. [citation omitted]\n\n \n\nIf this longstanding practice does not “put at rest” the question of the Constitution’s meaning for the dispute before us, it surely leaves a “considerable impression.” [citation omitted] On Mr. Wilson’s telling and under the Fifth Circuit’s holding, a purely verbal censure by an elected assembly of one of its own members may offend the First Amendment.", "[citation omitted]\n\n \n\nWe assessed the lawfulness of that handgun ban by scrutinizing whether it comported with history and tradition. Although we noted that the ban “would fail constitutional muster” “[u]nder any of the standards of scrutiny that we have applied to enumerated constitutional rights,”…we did not engage in means-end scrutiny when resolving the constitutional question. Instead, we focused on the historically unprecedented nature of the District’s ban, observing that “[f]ew laws in the history of our Nation have come close to [that] severe restriction.” [citation omitted] Likewise, when one of the dissents attempted to justify the District’s prohibition with “founding-era historical precedent,” including “various restrictive laws in the colonial period,” we addressed each purported analogue and concluded that they were either irrelevant or “d[id] not remotely burden the right of self-defense as much as an absolute ban on handguns.” [citations omitted] Thus, our earlier historical analysis sufficed to show that the Second Amendment did not countenance a “complete prohibition” on the use of “the most popular weapon chosen by Americans for self-defense in the home.” [citation omitted]\n\n \n\n \n\n2\n\nAs the foregoing shows, Heller’s methodology centered on constitutional text and *2129 history. Whether it came to defining the character of the right (individual or militia dependent), suggesting the outer limits of the right, or assessing the constitutionality of a particular regulation, Heller relied on text and history. It did not invoke any means-end test such as strict or intermediate scrutiny.\n\n \n\nMoreover, Heller and McDonald expressly rejected the application of any “judge-empowering ‘interest-balancing inquiry’ that ‘asks whether the statute burdens a protected interest in a way or to an extent that is out of proportion to the statute’s salutary effects upon other important governmental interests.’ ” [citations omitted] We declined to engage in means-end scrutiny because “[t]he very enumeration of the right takes out of the hands of government—even the Third Branch of Government—the power to decide on a case-by-case basis whether the right is really worth insisting upon.” [citation omitted] We then concluded: “A constitutional guarantee subject to future judges’ assessments of its usefulness is no constitutional guarantee at all.” [citation omitted]\n\n \n\nNot only did Heller decline to engage in means-end scrutiny generally, but it also specifically ruled out the intermediate-scrutiny test that respondents and the United States now urge us to adopt. Dissenting in Heller, Justice BREYER’s proposed standard—“ask[ing] whether [a] statute burdens a protected interest in a way or to an extent that is out of proportion to the statute’s salutary effects upon other important governmental interests,” …—simply expressed a classic formulation of intermediate scrutiny in a slightly different way. [ci8tations omitted] In fact, Justice BREYER all but admitted that his Heller dissent advocated for intermediate scrutiny by repeatedly invoking a quintessential intermediate-scrutiny precedent. [citations omitted]Thus, when Heller expressly rejected that dissent’s “interest-balancing inquiry,” [citation omitted] it necessarily rejected intermediate scrutiny.5\n\n \n\nIn sum, the Courts of Appeals’ second step is inconsistent with Heller’s historical approach and its rejection of means-end scrutiny. We reiterate that the standard for applying the Second Amendment is as follows: When the Second Amendment’s plain text covers an individual’s *2130 conduct, the Constitution presumptively protects that conduct. The government must then justify its regulation by demonstrating that it is consistent with the Nation’s historical tradition of firearm regulation. Only then may a court conclude that the individual’s conduct falls outside the Second Amendment’s “unqualified command.” [citation omitted]\n\n \n\n \n\nC\n\nThis Second Amendment standard accords with how we protect other constitutional rights. [One example is] the freedom of speech in the First Amendment, to which Heller repeatedly compared the right to keep and bear arms. [citation omitted] In that context, “[w]hen the Government restricts speech, the Government bears the burden of proving the constitutionality of its actions.” [citations omitted] In some cases, that burden includes showing whether the expressive conduct falls outside of the category of protected speech. [citation omitted] And to carry that burden, the government must generally point to historical evidence about the reach of the First Amendment’s protections.", "Roe and Casey thought that one-sided view misguided. In some sense, that is the difference in a nutshell between our precedents and the majority opinion. The constitutional regime we have lived in for the last 50 years recognized competing interests, and sought a balance between them. The constitutional regime we enter today erases the woman’s interest and recognizes only the State’s (or the Federal Government’s).\n\n \n\n \n\n \n\nB\n\nThe majority makes this change based on a single question: Did the reproductive right recognized in Roe and Casey exist in “1868, the year when the Fourteenth Amendment was ratified”? Ante, at 2252 – 2253. The majority says (and with this much we agree) that the answer to this question is no: In 1868, there was no nationwide right to end a pregnancy, and no thought that the Fourteenth Amendment provided one.\n\n \n\nOf course, the majority opinion refers as well to some later and earlier history. On the one side of 1868, it goes back as far as the 13th (the 13th!) century. See ante, at 2249, 142 S.Ct. 2111. But that turns out to be wheel-spinning. First, it is not clear what relevance *2324 such early history should have, even to the majority. See New York State Rifle & Pistol Assn., Inc. v.Bruen, 597 U.S. ––––, ––––, 142 S.Ct. 2111, 2136, ––– L.Ed.2d –––– (2022) (“Historical evidence that long predates [ratification] may not illuminate the scope of the right”). If the early history obviously supported abortion rights, the majority would no doubt say that only the views of the Fourteenth Amendment’s ratifiers are germane. See ibid. (It is “better not to go too far back into antiquity,” except if olden “law survived to become our Founders’ law”). Second—and embarrassingly for the majority—early law in fact does provide some support for abortion rights. Common-law authorities did not treat abortion as a crime before “quickening”—the point when the fetus moved in the womb.2 And early American law followed the common-law rule.3 So the criminal law of that early time might be taken as roughly consonant with Roe’s and Casey’s different treatment of early and late abortions. Better, then, to move forward in time. On the other side of 1868, the majority occasionally notes that many States barred abortion up to the time of Roe. See ante, at 2253, 2260, 142 S.Ct. 2111. That is convenient for the majority, but it is window dressing. As the same majority (plus one) just informed us, “post-ratification adoption or acceptance of laws that are inconsistent with the original meaning of the constitutional text obviously cannot overcome or alter that text.” New York State Rifle & Pistol Assn., Inc., 597 U.S., at –––– – ––––, 142 S.Ct., at 2137. Had the pre-Roe liberalization of abortion laws occurred more quickly and more widely in the 20th century, the majority would say (once again) that only the ratifiers’ views are germane.\n\n \n\nThe majority’s core legal postulate, then, is that we in the 21st century must read the Fourteenth Amendment just as its ratifiers did. And that is indeed what the majority emphasizes over and over again. See ante, at 2267 (“[T]he most important historical fact [is] how the States regulated abortion when the Fourteenth Amendment was adopted”); see also ante, at 2242 – 2243, 2248 – 2249, and n. 24, 23, 25, 28. If the ratifiers did not understand something as central to freedom, then neither can we. Or said more particularly: If those people did not understand reproductive rights as part of the guarantee of liberty conferred in the Fourteenth Amendment, then those rights do not exist.\n\n \n\nAs an initial matter, note a mistake in the just preceding sentence. We referred there to the “people” who ratified the Fourteenth Amendment: What rights did those “people” have in their heads at the time? But, of course, “people” did not ratify the Fourteenth Amendment. Men did. So it is perhaps not so surprising that the ratifiers were not perfectly attuned to the importance of reproductive rights for women’s liberty, or for their capacity to participate as equal members of our Nation."]}, {"source_sentence": "Based on the court's ruling, what are the implications of Title VII regarding discrimination against employees based on their transgender status or failure to conform to sex stereotypes?", "sentences": ["Thus, even if we agreed with the Funeral Home that Rost's religious exercise would be substantially burdened by enforcing Title VII in this case, we would nevertheless REVERSE the district court's grant of summary judgment to the Funeral Home and hold instead that requiring the Funeral Home to comply with Title VII constitutes the least restrictive means of furthering the government's compelling interest in eradicating discrimination against Stephens on the basis of sex. Thus, even assuming Rost's religious exercise is substantially burdened by the EEOC's enforcement action in this case, we GRANT summary judgment to the EEOC on the Funeral Home's RFRA defense on this alternative ground.\n\n \n\n[ … ]\n\n[ … ]\n\n \n\nIII. CONCLUSION\n\nDiscrimination against employees, either because of their failure to conform to sex stereotypes or their transgender and transitioning status, is illegal under Title VII. The unrefuted facts show that the Funeral Home fired Stephens because she refused to abide by her employer's stereotypical conception of her sex, and therefore the EEOC is entitled to summary judgment as to its unlawful-termination claim. RFRA provides the Funeral Home with no relief because continuing to employ Stephens would not, as a matter of law, substantially burden Rost's religious exercise, and even if it did, the EEOC has shown that enforcing Title VII here is the least restrictive means of furthering its compelling interest in combating and eradicating sex discrimination. We therefore REVERSE the district court's grant of summary judgment in favor of the Funeral Home and GRANT summary judgment to the EEOC on its unlawful-termination claim. We also REVERSE the district court's grant of summary judgment on the EEOC's discriminatory-clothing-allowance claim, as the district court erred in failing to consider the EEOC's claim on the merits. We REMAND this case to the district court for further proceedings consistent with this opinion.\n\n[1] We refer to Stephens using female pronouns, in accordance with the preference she has expressed through her briefing to this court.\n\n[2] All facts drawn from Def.'s Statement of Facts (R. 55) are undisputed. See R. 64 (Pl.'s Counter Statement of Disputed Facts) (Page ID #2066-88).\n\n[3] See also Appellee Br. at 16 (\"It is a helpful exercise to think about Price Waterhouse and imagine that there was a dress code imposed which obligated Ms. Hopkins to wear a skirt while her male colleagues were obliged to wear pants. Had she simply been fired for wearing pants rather than a skirt, the case would have ended there — both sexes would have been equally burdened by the requirement to comply with their respective sex-specific standard. But what the firm could not do was fire her for being aggressive or macho when it was tolerating or rewarding the behavior among men — and when it did, it relied on a stereotype to treat her disparately from the men in the firm.\").\n\n[4] Moreover, discrimination because of a person's transgender, intersex, or sexually indeterminate status is no less actionable than discrimination because of a person's identification with two religions, an unorthodox religion, or no religion at all. And \"religious identity\" can be just as fluid, variable, and difficult to define as \"gender identity\"; after all, both have \"a deeply personal, internal genesis that lacks a fixed external referent.\" Sue Landsittel, Strange Bedfellows? Sex, Religion, and Transgender Identity Under Title VII, 104 NW. U. L. REV. 1147, 1172 (2010) (advocating for \"[t]he application of tests for religious identity to the problem of gender identity [because it] produces a more realistic, and therefore more appropriate, authentication framework than the current reliance on medical diagnoses and conformity with the gender binary\").\n\n[5] On the other hand, there is also evidence that Stephens was fired only because of her nonconforming appearance and behavior at work, and not because of her transgender identity. See R. 53-6 (Rost Dep.", "Such laws would furnish the readiest means of compulsion. The 13th *244 Amendment prohibits involuntary servitude except as punishment for crime. But the exception, allowing full latitude for the enforcement of penal laws, does not destroy the prohibition. It does not permit slavery or involuntary servitude to be established or maintained through the operation of the criminal law by making it a crime to refuse to submit to the one or to render the service which would constitute the other. The state may impose involuntary servitude as a punishment for crime, but it may not compel one man to labor for another in payment of a debt, by punishing him as a criminal if he does not perform the service or pay the debt.\n\nIf the statute in this case had authorized the employing company to seize the debtor, and hold him to the service until he paid the $15, or had furnished the equivalent in labor, its invalidity would not be questioned. It would be equally clear that the state could not authorize its constabulary to prevent the servant from escaping, and to force him to work out his debt. But the state could not avail itself of the sanction of the criminal law to supply the compulsion any more than it could use or authorize the use of physical force. ‘In contemplation of the law, the compulsion to such service by the fear of punishment under a criminal statute is more powerful than any guard which the employer could station.’ Ex parte Hollman, 79 S. C. 22, 21 L.R.A.(N.S.) 249, 60 S. E. p. 24, 14 A. & E. Ann. Cas. 1109.\n\n**153 What the state may not do directly it may not do indirectly. If it cannot punish the servant as a criminal for the mere failure or refusal to serve without paying his debt, it is not permitted to accomplish the same result by creating a statutory presumption which, upon proof of no other fact, exposes him to conviction and punishment. Without imputing any actual motive to oppress, we must consider the natural operation of the statute here in question (Henderson v. New York [Henderson v. Wickham] 92 U. S. p. 268, 23 L. ed. 547), and it is apparent that it furnishes a convenient instrument for the coercion *245 which the Constitution and the act of Congress forbid; an instrument of compulsion peculiarly effective as against the poor and the ignorant, its most likely victims. There is no more important concern than to safeguard the freedom of labor upon which alone can enduring prosperity be based. The provision designed to secure it would soon become a barren form if it were possible to establish a statutory presumption of this sort, and to hold over the heads of laborers the threat of punishment for crime, under the name of fraud, but merely upon evidence of failure to work out their debts. The act of Congress deprives of effect all legislative measures of any state through which, directly or indirectly, the prohibited thing, to wit, compulsory service to secure the payment of a debt, may be established or maintained; and we conclude that § 4730, as amended, of the Code of Alabama, in so far as it makes the refusal or failure to perform the act or service, without refunding the money or paying for the property prima facie evidence of the commission received of the crime which the section defines, is in conflict with the 13th Amendment, and the legislation authorized by that Amendment, and is therefore invalid.\n\nIn this view it is unnecessary to consider the contentions which have been made under the 14th Amendment…\n\nReversed and cause remanded for further proceedings not inconsistent with this opinion.\n\nMr. Justice Holmes, dissenting [omitted]\n\n \n\n \n\n \n\n \n\n \n\n \n\n \n\n \n\n2.3\n\nJones v. Alfred H. Mayer Co.\n\n \n\n88 S.Ct. 2186\n\nSupreme Court of the United States\n\nJoseph Lee JONES et ux., Petitioners,\n\nv.\n\nALFRED H. MAYER CO. et al.\n\nNo. 645.\n\n|\n\nArgued April 1 and 2, 1968.\n\n|\n\nDecided June 17, 1968.\n\nSynopsis\n\nAction to recover damages and for injunctive relief because of refusal of defendants to sell home in private subdivision to plaintiffs solely because of race. The United States District Court for the Eastern District of Missouri, 255 F.Supp. 115, dismissed complaint, and plaintiffs appealed. The Court of Appeals for the Eighth Circuit, 379 F.2d 33, affirmed, and certiorari was granted. The United States Supreme Court, Mr.", "[citation omitted]\n\n \n\n*1994 The program imposes no geographic limitation: Parents may direct tuition payments to schools inside or outside the State, or even in foreign countries. [citation omitted] In schools that qualify for the program because they are accredited, teachers need not be certified by the State,…and Maine’s curricular requirements do not apply…Single-sex schools are eligible. [citation omitted]\n\n \n\nPrior to 1981, parents could also direct the tuition assistance payments to religious schools. Indeed, in the 1979–1980 school year, over 200 Maine students opted to attend such schools through the tuition assistance program. App. 72. In 1981, however, Maine imposed a new requirement that any school receiving tuition assistance payments must be “a nonsectarian school in accordance with the First Amendment of the United States Constitution.” [citation omitted] That provision was enacted in response to an opinion by the Maine attorney general taking the position that public funding of private religious schools violated the Establishment Clause of the First Amendment. We subsequently held, however, that a benefit program under which private citizens “direct government aid to religious schools wholly as a result of their own genuine and independent private choice” does not offend the Establishment Clause. [citation omitted] Following our decision in Zelman, the Maine Legislature considered a proposed bill to repeal the “nonsectarian” requirement, but rejected it. App. 100, 108.\n\n \n\nThe “nonsectarian” requirement for participation in Maine’s tuition assistance program remains in effect today. The Department has stated that, in administering this requirement, it “considers a sectarian school to be one that is associated with a particular faith or belief system and which, in addition to teaching academic subjects, promotes the faith or belief system with which it is associated and/or presents the material taught through the lens of this faith.” [citation omitted] “The Department’s focus is on what the school teaches through its curriculum and related activities, and how the material is presented.” …“[A]ffiliation or association with a church or religious institution is one potential indicator of a sectarian school,” but “it is not dispositive.”\n\n \n\n \n\nB\n\nThis case concerns two families that live in SAUs that neither maintain their own secondary schools nor contract with any nearby secondary school. App. 70, 71. Petitioners David and Amy Carson reside in Glenburn, Maine. Id., at 74. When this litigation commenced, the Carsons’ daughter attended high school at Bangor Christian Schools (BCS), which was founded in 1970 as a ministry of Bangor Baptist Church. Id., at 74, 80. The Carsons sent their daughter to BCS because of the school’s high academic standards and because the school’s Christian worldview aligns with their sincerely held religious beliefs. Id., at 74. Given that BCS is a “sectarian” school that cannot qualify for tuition assistance payments under Maine’s program, id., at 80, the Carsons paid the tuition for their daughter to attend BCS themselves, id., at 74.\n\n \n\nPetitioners Troy and Angela Nelson live in Palermo, Maine. Id., at 78. When this litigation commenced, the Nelsons’ daughter attended high school at Erskine Academy, a secular private school, and their son attended middle school at Temple Academy, a “sectarian” school affiliated with *1995 Centerpoint Community Church. Id., at 78, 90, 91. The Nelsons sent their son to Temple Academy because they believed it offered him a high-quality education that aligned with their sincerely held religious beliefs. Id., at 78. While they wished to send their daughter to Temple Academy too, they could not afford to pay the cost of the Academy’s tuition for both of their children. Id., at 79.\n\n \n\nBCS and Temple Academy are both accredited by the New England Association of Schools and Colleges (NEASC), and the Department considers each school a “private school approved for attendance purposes” under the State’s compulsory attendance requirement. Id., at 80, 90. Yet because neither school qualifies as “nonsectarian,” neither is eligible to receive tuition payments under Maine’s tuition assistance program. Id., at 80, 90. Absent the “nonsectarian” requirement, the Carsons and the Nelsons would have asked their respective SAUs to pay the tuition to send their children to BCS and Temple Academy, respectively. Id., at 79.\n\n \n\nIn 2018, petitioners brought suit against the commissioner of the Maine Department of Education. Id., at 11–12."]}], "model-index": [{"name": "ModernBERT Embed base LegalTextAI Matryoshka", "results": [{"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "dim 768", "type": "dim_768"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.4838709677419355, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.6989247311827957, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.7956989247311828, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.9247311827956989, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.4838709677419355, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.37992831541218625, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.2838709677419354, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.17204301075268813, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.21774193548387094, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.4883512544802867, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.5882616487455197, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.7087813620071685, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.5864023588218451, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.5962578938385393, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.49158210371757605, "name": "Cosine Map@100"}]}, {"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "dim 512", "type": "dim_512"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.4838709677419355, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.7204301075268817, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.7849462365591398, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.9032258064516129, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.4838709677419355, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.3870967741935483, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.286021505376344, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.1677419354838709, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.22311827956989244, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.5026881720430108, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.5936379928315412, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.6944444444444444, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.5845266760205443, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.5949906127325485, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.4986982754839258, "name": "Cosine Map@100"}]}, {"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "dim 256", "type": "dim_256"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.45161290322580644, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.6881720430107527, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.7956989247311828, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.8817204301075269, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.45161290322580644, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.36559139784946226, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.27956989247311825, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.16559139784946234, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.20878136200716843, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.471774193548387, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.5806451612903226, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.6854838709677419, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.5650385704476973, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.5673792456050522, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.47608804104449853, "name": "Cosine Map@100"}]}, {"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "dim 128", "type": "dim_128"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.44086021505376344, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.6451612903225806, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.7634408602150538, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.8387096774193549, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.44086021505376344, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.3548387096774194, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.27311827956989243, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.15591397849462363, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.1872759856630824, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.44534050179211476, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.5725806451612904, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.654121863799283, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.5356361930824536, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.5453490356716165, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.45106439048323554, "name": "Cosine Map@100"}]}, {"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "dim 64", "type": "dim_64"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.3978494623655914, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.6021505376344086, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.7096774193548387, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.8064516129032258, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.3978494623655914, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.34050179211469533, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.26021505376344084, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.153763440860215, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.1586021505376344, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.4059139784946236, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.5259856630824372, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.6164874551971326, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.5019311887697538, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.5081626557433011, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.4181782323905875, "name": "Cosine Map@100"}]}]}]}
croissantllm/base_35k
croissantllm
text2text-generation
[ "transformers", "pytorch", "llama", "text-generation", "legal", "code", "text-generation-inference", "art", "text2text-generation", "fr", "en", "dataset:cerebras/SlimPajama-627B", "dataset:uonlp/CulturaX", "dataset:pg19", "dataset:bigcode/starcoderdata", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-01-18T13:40:48
2024-02-01T15:56:38
5
0
--- datasets: - cerebras/SlimPajama-627B - uonlp/CulturaX - pg19 - bigcode/starcoderdata language: - fr - en license: mit pipeline_tag: text2text-generation tags: - legal - code - text-generation-inference - art --- # CroissantLLM - Base (35k steps) This model is part of the CroissantLLM initiative, and corresponds to the checkpoint after 35k steps (0.55 T) tokens. To play with the final model, we recommend using the Chat version: https://huggingface.co/croissantllm/CroissantLLMChat-v0.1. ## Abstract We introduce CroissantLLM, a 1.3B language model pretrained on a set of 3T English and French tokens, to bring to the research and industrial community a high-performance, fully open-sourced bilingual model that runs swiftly on consumer-grade local hardware. To that end, we pioneer the approach of training an intrinsically bilingual model with a 1:1 English-to-French pretraining data ratio, a custom tokenizer, and bilingual finetuning datasets. We release the training dataset, notably containing a French split with manually curated, high-quality, and varied data sources. To assess performance outside of English, we craft a novel benchmark, FrenchBench, consisting of an array of classification and generation tasks, covering various orthogonal aspects of model performance in the French Language. Additionally, rooted in transparency and to foster further Large Language Model research, we release codebases, and dozens of checkpoints across various model sizes, training data distributions, and training steps, as well as fine-tuned Chat models, and strong translation models. We evaluate our model through the FMTI framework, and validate 81% of the transparency criteria, far beyond the scores of even most open initiatives. This work enriches the NLP landscape, breaking away from previous English-centric work in order to strengthen our understanding of multilinguality in language models. ## Citation Our work can be cited as: ```bash Coming soon ``` ## Usage This model is a base model, that is, it is not finetuned for Chat function and works best with few-shot prompting strategies. ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "croissantllm/base_35k" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") inputs = tokenizer("I am so tired I could sleep right now. -> Je suis si fatigué que je pourrais m'endormir maintenant. He is heading to the market. -> Il va au marché. We are running on the beach. ->", return_tensors="pt").to(model.device) tokens = model.generate(**inputs, max_length=100, do_sample=True, top_p=0.95, top_k=60, temperature=0.5) print(tokenizer.decode(tokens[0])) # remove bos token inputs = tokenizer("Capitales: France -> Paris, Italie -> Rome, Allemagne -> Berlin, Espagne ->", return_tensors="pt", add_special_tokens=True).to(model.device) tokens = model.generate(**inputs, max_length=100, do_sample=True, top_p=0.95, top_k=60) print(tokenizer.decode(tokens[0])) ```
[ "TRANSLATION" ]
[ "CRAFT" ]
Non_BioNLP
# CroissantLLM - Base (35k steps) This model is part of the CroissantLLM initiative, and corresponds to the checkpoint after 35k steps (0.55 T) tokens. To play with the final model, we recommend using the Chat version: https://huggingface.co/croissantllm/CroissantLLMChat-v0.1. ## Abstract We introduce CroissantLLM, a 1.3B language model pretrained on a set of 3T English and French tokens, to bring to the research and industrial community a high-performance, fully open-sourced bilingual model that runs swiftly on consumer-grade local hardware. To that end, we pioneer the approach of training an intrinsically bilingual model with a 1:1 English-to-French pretraining data ratio, a custom tokenizer, and bilingual finetuning datasets. We release the training dataset, notably containing a French split with manually curated, high-quality, and varied data sources. To assess performance outside of English, we craft a novel benchmark, FrenchBench, consisting of an array of classification and generation tasks, covering various orthogonal aspects of model performance in the French Language. Additionally, rooted in transparency and to foster further Large Language Model research, we release codebases, and dozens of checkpoints across various model sizes, training data distributions, and training steps, as well as fine-tuned Chat models, and strong translation models. We evaluate our model through the FMTI framework, and validate 81% of the transparency criteria, far beyond the scores of even most open initiatives. This work enriches the NLP landscape, breaking away from previous English-centric work in order to strengthen our understanding of multilinguality in language models. ## Citation Our work can be cited as: ```bash Coming soon ``` ## Usage This model is a base model, that is, it is not finetuned for Chat function and works best with few-shot prompting strategies. ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "croissantllm/base_35k" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") inputs = tokenizer("I am so tired I could sleep right now. -> Je suis si fatigué que je pourrais m'endormir maintenant. He is heading to the market. -> Il va au marché. We are running on the beach. ->", return_tensors="pt").to(model.device) tokens = model.generate(**inputs, max_length=100, do_sample=True, top_p=0.95, top_k=60, temperature=0.5) print(tokenizer.decode(tokens[0])) # remove bos token inputs = tokenizer("Capitales: France -> Paris, Italie -> Rome, Allemagne -> Berlin, Espagne ->", return_tensors="pt", add_special_tokens=True).to(model.device) tokens = model.generate(**inputs, max_length=100, do_sample=True, top_p=0.95, top_k=60) print(tokenizer.decode(tokens[0])) ```
{"datasets": ["cerebras/SlimPajama-627B", "uonlp/CulturaX", "pg19", "bigcode/starcoderdata"], "language": ["fr", "en"], "license": "mit", "pipeline_tag": "text2text-generation", "tags": ["legal", "code", "text-generation-inference", "art"]}
serdarcaglar/roberta-base-biomedical-es
serdarcaglar
fill-mask
[ "transformers", "pytorch", "safetensors", "roberta", "fill-mask", "es", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-09-09T13:27:39
2023-09-19T21:09:48
46
1
--- language: - es --- language: - es tags: - biomedical - spanish metrics: - ppl # Biomedical language model for Spanish ## Table of contents <details> <summary>Click to expand</summary> - [Model description](#model-description) - [Intended uses and limitations](#intended-use) - [How to use](#how-to-use) - [Limitations and bias](#limitations-and-bias) - [Training](#training) - [Tokenization and model pretraining](#Tokenization-pretraining) - [Training corpora and preprocessing](#training-corpora-preprocessing) - [Evaluation](#evaluation) - [Additional information](#additional-information) - [Author](#author) - [Contact information](#contact-information) - [Copyright](#copyright) - [Licensing information](#licensing-information) - [Funding](#funding) - [Disclaimer](#disclaimer) </details> ## Model description Biomedical pretrained language model for Spanish. ## Intended uses and limitations The model is ready-to-use only for masked language modelling to perform the Fill Mask task (try the inference API or read the next section). However, it is intended to be fine-tuned on downstream tasks such as Named Entity Recognition or Text Classification. ## How to use ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("serdarcaglar/roberta-base-biomedical-es") model = AutoModelForMaskedLM.from_pretrained("serdarcaglar/roberta-base-biomedical-es") from transformers import pipeline unmasker = pipeline('fill-mask', model="serdarcaglar/roberta-base-biomedical-es") unmasker("El único antecedente personal a reseñar era la <mask> arterial.") ``` ``` ``` ## Training ### Tokenization and model pretraining This model is a [RoBERTa-based](https://github.com/pytorch/fairseq/tree/master/examples/roberta) model trained on a **biomedical** corpus in Spanish collected from several sources - medprocner - codiesp - emea - wmt19 - wmt16 - wmt22 - scielo - ibecs - elrc datsets The training corpus has been tokenized using a byte version of [Byte-Pair Encoding (BPE)](https://github.com/openai/gpt-2) used in the original [RoBERTA](https://github.com/pytorch/fairseq/tree/master/examples/roberta) model with a vocabulary size of 52,000 tokens. The pretraining consists of a masked language model training at the subword level following the approach employed for the RoBERTa base model with the same hyperparameters as in the original work. ### Training corpora and preprocessing The training corpus is composed of several biomedical corpora in Spanish, collected from publicly available corpora and crawlers. To obtain a high-quality training corpus, a cleaning pipeline with the following operations has been applied: - data parsing in different formats - sentence splitting - language detection - filtering of ill-formed sentences - deduplication of repetitive contents - keep the original document boundaries Finally, the corpora are concatenated and further global deduplication among the corpora have been applied. ## Evaluation The model has been evaluated on the Named Entity Recognition (NER) using the following datasets: Perplexity: 3.09 Please share the results you get in the NER task using this model. I can add them here. ## Additional information ### Author Serdar ÇAĞLAR ### Contact information Linkedin: <https://www.linkedin.com/in/serdarildercaglar/> For further information, send an email to <[email protected]> ### Licensing information [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ### Disclaimer <details> <summary>Click to expand</summary> The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and other undesirable distortions. When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence. In no event shall the owner of the models be liable for any results arising from the use made by third parties of these models. Bu havuzda yayınlanan modeller genel bir amaca yöneliktir ve üçüncü tarafların kullanımına açıktır. Bu modellerde önyargı ve diğer istenmeyen çarpıklıklar olabilir. Üçüncü taraflar, bu modellerden herhangi birini kullanarak (veya bu modellere dayalı sistemleri kullanarak) diğer taraflara sistem ve/veya hizmet sağladıklarında veya modellerin kullanıcısı olduklarında, bunların kullanımından kaynaklanan riskleri azaltmanın ve her durumda Yapay Zeka kullanımına ilişkin düzenlemeler de dahil olmak üzere geçerli düzenlemelere uymanın kendi sorumluluklarında olduğunu unutmamalıdırlar. Modellerin sahibi hiçbir durumda bu modellerin üçüncü şahıslar tarafından kullanımından kaynaklanan sonuçlardan sorumlu tutulamaz. Los modelos publicados en este repositorio tienen una finalidad generalista y están a disposición de terceros. Estos modelos pueden tener sesgos y otras distorsiones indeseables. Cuando terceras partes, desplieguen o proporcionen sistemas y/o servicios a otras partes utilizando cualquiera de estos modelos (o utilizando sistemas basados en estos modelos) o se conviertan en usuarios de los modelos, deben tener en cuenta que es su responsabilidad mitigar los riesgos derivados de su uso y, en todo caso, cumplir con la normativa aplicable, incluida la normativa relativa al uso de Inteligencia Artificial. En ningún caso el propietario de los modelos será responsable de los resultados derivados del uso que terceros hagan de los mismos. </details>
[ "NAMED_ENTITY_RECOGNITION", "TEXT_CLASSIFICATION" ]
[ "CODIESP", "SCIELO" ]
BioNLP
language: - es tags: - biomedical - spanish metrics: - ppl # Biomedical language model for Spanish ## Table of contents <details> <summary>Click to expand</summary> - [Model description](#model-description) - [Intended uses and limitations](#intended-use) - [How to use](#how-to-use) - [Limitations and bias](#limitations-and-bias) - [Training](#training) - [Tokenization and model pretraining](#Tokenization-pretraining) - [Training corpora and preprocessing](#training-corpora-preprocessing) - [Evaluation](#evaluation) - [Additional information](#additional-information) - [Author](#author) - [Contact information](#contact-information) - [Copyright](#copyright) - [Licensing information](#licensing-information) - [Funding](#funding) - [Disclaimer](#disclaimer) </details> ## Model description Biomedical pretrained language model for Spanish. ## Intended uses and limitations The model is ready-to-use only for masked language modelling to perform the Fill Mask task (try the inference API or read the next section). However, it is intended to be fine-tuned on downstream tasks such as Named Entity Recognition or Text Classification. ## How to use ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("serdarcaglar/roberta-base-biomedical-es") model = AutoModelForMaskedLM.from_pretrained("serdarcaglar/roberta-base-biomedical-es") from transformers import pipeline unmasker = pipeline('fill-mask', model="serdarcaglar/roberta-base-biomedical-es") unmasker("El único antecedente personal a reseñar era la <mask> arterial.") ``` ``` ``` ## Training ### Tokenization and model pretraining This model is a [RoBERTa-based](https://github.com/pytorch/fairseq/tree/master/examples/roberta) model trained on a **biomedical** corpus in Spanish collected from several sources - medprocner - codiesp - emea - wmt19 - wmt16 - wmt22 - scielo - ibecs - elrc datsets The training corpus has been tokenized using a byte version of [Byte-Pair Encoding (BPE)](https://github.com/openai/gpt-2) used in the original [RoBERTA](https://github.com/pytorch/fairseq/tree/master/examples/roberta) model with a vocabulary size of 52,000 tokens. The pretraining consists of a masked language model training at the subword level following the approach employed for the RoBERTa base model with the same hyperparameters as in the original work. ### Training corpora and preprocessing The training corpus is composed of several biomedical corpora in Spanish, collected from publicly available corpora and crawlers. To obtain a high-quality training corpus, a cleaning pipeline with the following operations has been applied: - data parsing in different formats - sentence splitting - language detection - filtering of ill-formed sentences - deduplication of repetitive contents - keep the original document boundaries Finally, the corpora are concatenated and further global deduplication among the corpora have been applied. ## Evaluation The model has been evaluated on the Named Entity Recognition (NER) using the following datasets: Perplexity: 3.09 Please share the results you get in the NER task using this model. I can add them here. ## Additional information ### Author Serdar ÇAĞLAR ### Contact information Linkedin: <https://www.linkedin.com/in/serdarildercaglar/> For further information, send an email to <[email protected]> ### Licensing information [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ### Disclaimer <details> <summary>Click to expand</summary> The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and other undesirable distortions. When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence. In no event shall the owner of the models be liable for any results arising from the use made by third parties of these models. Bu havuzda yayınlanan modeller genel bir amaca yöneliktir ve üçüncü tarafların kullanımına açıktır. Bu modellerde önyargı ve diğer istenmeyen çarpıklıklar olabilir. Üçüncü taraflar, bu modellerden herhangi birini kullanarak (veya bu modellere dayalı sistemleri kullanarak) diğer taraflara sistem ve/veya hizmet sağladıklarında veya modellerin kullanıcısı olduklarında, bunların kullanımından kaynaklanan riskleri azaltmanın ve her durumda Yapay Zeka kullanımına ilişkin düzenlemeler de dahil olmak üzere geçerli düzenlemelere uymanın kendi sorumluluklarında olduğunu unutmamalıdırlar. Modellerin sahibi hiçbir durumda bu modellerin üçüncü şahıslar tarafından kullanımından kaynaklanan sonuçlardan sorumlu tutulamaz. Los modelos publicados en este repositorio tienen una finalidad generalista y están a disposición de terceros. Estos modelos pueden tener sesgos y otras distorsiones indeseables. Cuando terceras partes, desplieguen o proporcionen sistemas y/o servicios a otras partes utilizando cualquiera de estos modelos (o utilizando sistemas basados en estos modelos) o se conviertan en usuarios de los modelos, deben tener en cuenta que es su responsabilidad mitigar los riesgos derivados de su uso y, en todo caso, cumplir con la normativa aplicable, incluida la normativa relativa al uso de Inteligencia Artificial. En ningún caso el propietario de los modelos será responsable de los resultados derivados del uso que terceros hagan de los mismos. </details>
{"language": ["es"]}
sultan/BioM-ALBERT-xxlarge-PMC
sultan
fill-mask
[ "transformers", "pytorch", "albert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05
2023-11-04T23:06:21
534
4
--- {} --- # BioM-Transformers: Building Large Biomedical Language Models with BERT, ALBERT and ELECTRA # Abstract The impact of design choices on the performance of biomedical language models recently has been a subject for investigation. In this paper, we empirically study biomedical domain adaptation with large transformer models using different design choices. We evaluate the performance of our pretrained models against other existing biomedical language models in the literature. Our results show that we achieve state-of-the-art results on several biomedical domain tasks despite using similar or less computational cost compared to other models in the literature. Our findings highlight the significant effect of design choices on improving the performance of biomedical language models. # Model Description This model was pre-trained on PMC full article for further 64k steps with a batch size of 8192, where we initiate our weights from our model BioM-ALBERT-xxlarge. Thus, the total training steps for this model is 264k+64K=328K steps. The model is very large due to the number of hidden layer size (4096). In order to help researchers with limited resources to fine-tune larger models, we created an example with PyTorch XLA. PyTorch XLA (https://github.com/pytorch/xla) is a library that allows you to use PyTorch on TPU units, which is provided for free by Google Colab and Kaggle. Follow this example to work with PyTorch/XLA [Link](https://github.com/salrowili/BioM-Transformers/blob/main/examples/Fine_Tuning_Biomedical_Models_on_Text_Classification_Task_With_HuggingFace_Transformers_and_PyTorch_XLA.ipynb). In this example we achieve 80.74 micro F1 score on ChemProt task with BioM-ALBERTxxlarge . Fine-tuning takes 43 minutes for 5 epochs . Check our GitHub repo at https://github.com/salrowili/BioM-Transformers for TensorFlow and GluonNLP checkpoints. We also updated this repo with a couple of examples on how to fine-tune LMs on text classification and questions answering tasks such as ChemProt, SQuAD, and BioASQ. # Colab Notebook Examples BioM-ELECTRA-LARGE on NER and ChemProt Task [![Open In Colab][COLAB]](https://colab.research.google.com/github/salrowili/BioM-Transformers/blob/main/examples/Example_of_NER_and_ChemProt_Task_on_TPU.ipynb) BioM-ELECTRA-Large on SQuAD2.0 and BioASQ7B Factoid tasks [![Open In Colab][COLAB]](https://colab.research.google.com/github/salrowili/BioM-Transformers/blob/main/examples/Example_of_SQuAD2_0_and_BioASQ7B_tasks_with_BioM_ELECTRA_Large_on_TPU.ipynb) BioM-ALBERT-xxlarge on SQuAD2.0 and BioASQ7B Factoid tasks [![Open In Colab][COLAB]](https://colab.research.google.com/github/salrowili/BioM-Transformers/blob/main/examples/Example_of_SQuAD2_0_and_BioASQ7B_tasks_with_BioM_ALBERT_xxlarge_on_TPU.ipynb) Text Classification Task With HuggingFace Transformers and PyTorchXLA on Free TPU [![Open In Colab][COLAB]](https://colab.research.google.com/github/salrowili/BioM-Transformers/blob/main/examples/Fine_Tuning_Biomedical_Models_on_Text_Classification_Task_With_HuggingFace_Transformers_and_PyTorch_XLA.ipynb) Reproducing our BLURB results with JAX [![Open In Colab][COLAB]](https://colab.research.google.com/github/salrowili/BioM-Transformers/blob/main/examples/BLURB_LeaderBoard_with_TPU_VM.ipynb) Finetunning BioM-Transformers with Jax/Flax on TPUv3-8 with free Kaggle resource [![Open In Colab][COLAB]](https://www.kaggle.com/code/sultanalrowili/biom-transoformers-with-flax-on-tpu-with-kaggle) [COLAB]: https://colab.research.google.com/assets/colab-badge.svg # Acknowledgment We would like to acknowledge the support we have from Tensorflow Research Cloud (TFRC) team to grant us access to TPUv3 units. # Citation ```bibtex @inproceedings{alrowili-shanker-2021-biom, title = "{B}io{M}-Transformers: Building Large Biomedical Language Models with {BERT}, {ALBERT} and {ELECTRA}", author = "Alrowili, Sultan and Shanker, Vijay", booktitle = "Proceedings of the 20th Workshop on Biomedical Language Processing", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.bionlp-1.24", pages = "221--227", abstract = "The impact of design choices on the performance of biomedical language models recently has been a subject for investigation. In this paper, we empirically study biomedical domain adaptation with large transformer models using different design choices. We evaluate the performance of our pretrained models against other existing biomedical language models in the literature. Our results show that we achieve state-of-the-art results on several biomedical domain tasks despite using similar or less computational cost compared to other models in the literature. Our findings highlight the significant effect of design choices on improving the performance of biomedical language models.", } ```
[ "TEXT_CLASSIFICATION" ]
[ "BLURB", "CHEMPROT" ]
BioNLP
# BioM-Transformers: Building Large Biomedical Language Models with BERT, ALBERT and ELECTRA # Abstract The impact of design choices on the performance of biomedical language models recently has been a subject for investigation. In this paper, we empirically study biomedical domain adaptation with large transformer models using different design choices. We evaluate the performance of our pretrained models against other existing biomedical language models in the literature. Our results show that we achieve state-of-the-art results on several biomedical domain tasks despite using similar or less computational cost compared to other models in the literature. Our findings highlight the significant effect of design choices on improving the performance of biomedical language models. # Model Description This model was pre-trained on PMC full article for further 64k steps with a batch size of 8192, where we initiate our weights from our model BioM-ALBERT-xxlarge. Thus, the total training steps for this model is 264k+64K=328K steps. The model is very large due to the number of hidden layer size (4096). In order to help researchers with limited resources to fine-tune larger models, we created an example with PyTorch XLA. PyTorch XLA (https://github.com/pytorch/xla) is a library that allows you to use PyTorch on TPU units, which is provided for free by Google Colab and Kaggle. Follow this example to work with PyTorch/XLA [Link](https://github.com/salrowili/BioM-Transformers/blob/main/examples/Fine_Tuning_Biomedical_Models_on_Text_Classification_Task_With_HuggingFace_Transformers_and_PyTorch_XLA.ipynb). In this example we achieve 80.74 micro F1 score on ChemProt task with BioM-ALBERTxxlarge . Fine-tuning takes 43 minutes for 5 epochs . Check our GitHub repo at https://github.com/salrowili/BioM-Transformers for TensorFlow and GluonNLP checkpoints. We also updated this repo with a couple of examples on how to fine-tune LMs on text classification and questions answering tasks such as ChemProt, SQuAD, and BioASQ. # Colab Notebook Examples BioM-ELECTRA-LARGE on NER and ChemProt Task [![Open In Colab][COLAB]](https://colab.research.google.com/github/salrowili/BioM-Transformers/blob/main/examples/Example_of_NER_and_ChemProt_Task_on_TPU.ipynb) BioM-ELECTRA-Large on SQuAD2.0 and BioASQ7B Factoid tasks [![Open In Colab][COLAB]](https://colab.research.google.com/github/salrowili/BioM-Transformers/blob/main/examples/Example_of_SQuAD2_0_and_BioASQ7B_tasks_with_BioM_ELECTRA_Large_on_TPU.ipynb) BioM-ALBERT-xxlarge on SQuAD2.0 and BioASQ7B Factoid tasks [![Open In Colab][COLAB]](https://colab.research.google.com/github/salrowili/BioM-Transformers/blob/main/examples/Example_of_SQuAD2_0_and_BioASQ7B_tasks_with_BioM_ALBERT_xxlarge_on_TPU.ipynb) Text Classification Task With HuggingFace Transformers and PyTorchXLA on Free TPU [![Open In Colab][COLAB]](https://colab.research.google.com/github/salrowili/BioM-Transformers/blob/main/examples/Fine_Tuning_Biomedical_Models_on_Text_Classification_Task_With_HuggingFace_Transformers_and_PyTorch_XLA.ipynb) Reproducing our BLURB results with JAX [![Open In Colab][COLAB]](https://colab.research.google.com/github/salrowili/BioM-Transformers/blob/main/examples/BLURB_LeaderBoard_with_TPU_VM.ipynb) Finetunning BioM-Transformers with Jax/Flax on TPUv3-8 with free Kaggle resource [![Open In Colab][COLAB]](https://www.kaggle.com/code/sultanalrowili/biom-transoformers-with-flax-on-tpu-with-kaggle) [COLAB]: https://colab.research.google.com/assets/colab-badge.svg # Acknowledgment We would like to acknowledge the support we have from Tensorflow Research Cloud (TFRC) team to grant us access to TPUv3 units. # Citation ```bibtex @inproceedings{alrowili-shanker-2021-biom, title = "{B}io{M}-Transformers: Building Large Biomedical Language Models with {BERT}, {ALBERT} and {ELECTRA}", author = "Alrowili, Sultan and Shanker, Vijay", booktitle = "Proceedings of the 20th Workshop on Biomedical Language Processing", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.bionlp-1.24", pages = "221--227", abstract = "The impact of design choices on the performance of biomedical language models recently has been a subject for investigation. In this paper, we empirically study biomedical domain adaptation with large transformer models using different design choices. We evaluate the performance of our pretrained models against other existing biomedical language models in the literature. Our results show that we achieve state-of-the-art results on several biomedical domain tasks despite using similar or less computational cost compared to other models in the literature. Our findings highlight the significant effect of design choices on improving the performance of biomedical language models.", } ```
{}
clinicalnlplab/me-llama
clinicalnlplab
null
[ "transformers", "medical", "health", "llama", "llama2", "en", "dataset:togethercomputer/RedPajama-Data-1T", "dataset:bigbio/med_qa", "arxiv:2402.12749", "license:llama2", "endpoints_compatible", "region:us" ]
2024-06-10T04:02:12
2024-06-10T04:14:29
0
12
--- datasets: - togethercomputer/RedPajama-Data-1T - bigbio/med_qa language: - en library_name: transformers license: llama2 tags: - medical - health - llama - llama2 --- # Me-LLaMA ## Model Overview The Me-LLaMA model consists of two foundation models: Me-LLaMA 13B and Me-LLaMA 70B, along with their chat-enhanced counterparts, Me-LLaMA 13B-chat and Me-LLaMA 70B-chat. These models are designed for superior chat and instruction-following capabilities. The Me-LLaMA 13B and 70B were continually pretrained from the base LLaMA 2 13B and 70B models with the addition of biomedical, clinical, and general domain data. The chat versions were further instruction-tuned using comprehensive medical instruction tuning data. ## Pretraining and Data Me-LLaMA was developed through continual pre-training and instruction tuning of LLaMA2, incorporating 129B tokens and 214K instruction tuning samples from general, biomedical, and clinical domains. The pretraining data consists of biomedical literature, clinical notes, and general domain data in a 15:1:4 ratio, sourced from: - **Biomedical:** PubMed Central and PubMed Abstracts (Pile dataset) - **Clinical:** De-identified free-text clinical notes from MIMIC III, MIMIC-IV, and MIMIC-CXR - **General Domain:** Subset from the RedPajama dataset The instruction tuning dataset includes: - **General Domain:** Alpaca, Dolly, and ShareGPT datasets - **Biomedical:** HealthCareMagic, Icliniq, MedInstruct, Medical Flash Cards, MEDIQA, MedicationQA, LiveQA, WikiDocPatient, Guideline QA, Pubmed Central, Pubmed, UMLS Knowledge graph - **Clinical:** MIMIC-III and MIMIC-IV ## Evaluation Me-LLaMA was evaluated on 12 datasets across different tasks: - **QA:** PubMedQA, MedQA, MedMCQA, EmrQA - **NER:** 2010 i2b2 - **Relation Extraction:** 2013 DDI - **Classification:** HoC, MTSample - **Text Summarization:** PubMed, MIMIC-CXR - **NLI:** BioNLI, MedNLI ### Performance - **Me-LLaMA 13B:** Surpassed PMC-LLaMA 13B on 11/12 datasets and LLaMA2 13B on 10/12 datasets, with competitive performance against larger models like LLaMA2 70B and Meditron 70B on 8/12 datasets. - **Me-LLaMA 70B:** Outperformed LLaMA2 70B and Meditron 70B on 9/12 datasets. - **Zero-shot setting:** Outperformed ChatGPT on 5/8 datasets without privacy concerns, and on 1/8 against GPT-4. - **Task-specific instruction tuning:** Surpassed ChatGPT on 7/8 and GPT-4 on 5/8 datasets. Despite having significantly fewer parameters (13B/70B vs. 175B+ for ChatGPT and GPT-4), Me-LLaMA models demonstrated impressive performance and strong abilities in supervised and in-context learning across various medical tasks. ## Model Details Included in this repository are four models: 1. **Me-LLaMA 13B:** Continually pretrained from LLaMA 2 13B. 2. **Me-LLaMA 70B:** Continually pretrained from LLaMA 2 70B. 3. **Me-LLaMA 13B-chat:** Further instruction-tuned from Me-LLaMA 13B using a variety of general, biomedical, and clinical datasets. 4. **Me-LLaMA 70B-chat:** Further instruction-tuned from Me-LLaMA 70B using a variety of general, biomedical, and clinical datasets. Each model contains several files, which are standard with the transformers library: - **config.json:** Information about the model - **model-x-of-y.safetensors:** Model weights - **generation_config.json:** Settings for text generation - **special_tokens_map.json:** Special tokens used in training - **tokenizer.json:** Mapping from indices to tokens - **tokenizer_config.json:** Configuration file for the tokenizer ## Usage For more details and to access the models, please visit the [Me-LLaMA repository on PhysioNet](https://physionet.org/content/me-llama/1.0.0/). For more technical details, please visit [our paper on arXiv](https://arxiv.org/abs/2402.12749).
[ "RELATION_EXTRACTION", "SUMMARIZATION" ]
[ "MEDNLI", "MEDQA", "PUBMEDQA" ]
BioNLP
# Me-LLaMA ## Model Overview The Me-LLaMA model consists of two foundation models: Me-LLaMA 13B and Me-LLaMA 70B, along with their chat-enhanced counterparts, Me-LLaMA 13B-chat and Me-LLaMA 70B-chat. These models are designed for superior chat and instruction-following capabilities. The Me-LLaMA 13B and 70B were continually pretrained from the base LLaMA 2 13B and 70B models with the addition of biomedical, clinical, and general domain data. The chat versions were further instruction-tuned using comprehensive medical instruction tuning data. ## Pretraining and Data Me-LLaMA was developed through continual pre-training and instruction tuning of LLaMA2, incorporating 129B tokens and 214K instruction tuning samples from general, biomedical, and clinical domains. The pretraining data consists of biomedical literature, clinical notes, and general domain data in a 15:1:4 ratio, sourced from: - **Biomedical:** PubMed Central and PubMed Abstracts (Pile dataset) - **Clinical:** De-identified free-text clinical notes from MIMIC III, MIMIC-IV, and MIMIC-CXR - **General Domain:** Subset from the RedPajama dataset The instruction tuning dataset includes: - **General Domain:** Alpaca, Dolly, and ShareGPT datasets - **Biomedical:** HealthCareMagic, Icliniq, MedInstruct, Medical Flash Cards, MEDIQA, MedicationQA, LiveQA, WikiDocPatient, Guideline QA, Pubmed Central, Pubmed, UMLS Knowledge graph - **Clinical:** MIMIC-III and MIMIC-IV ## Evaluation Me-LLaMA was evaluated on 12 datasets across different tasks: - **QA:** PubMedQA, MedQA, MedMCQA, EmrQA - **NER:** 2010 i2b2 - **Relation Extraction:** 2013 DDI - **Classification:** HoC, MTSample - **Text Summarization:** PubMed, MIMIC-CXR - **NLI:** BioNLI, MedNLI ### Performance - **Me-LLaMA 13B:** Surpassed PMC-LLaMA 13B on 11/12 datasets and LLaMA2 13B on 10/12 datasets, with competitive performance against larger models like LLaMA2 70B and Meditron 70B on 8/12 datasets. - **Me-LLaMA 70B:** Outperformed LLaMA2 70B and Meditron 70B on 9/12 datasets. - **Zero-shot setting:** Outperformed ChatGPT on 5/8 datasets without privacy concerns, and on 1/8 against GPT-4. - **Task-specific instruction tuning:** Surpassed ChatGPT on 7/8 and GPT-4 on 5/8 datasets. Despite having significantly fewer parameters (13B/70B vs. 175B+ for ChatGPT and GPT-4), Me-LLaMA models demonstrated impressive performance and strong abilities in supervised and in-context learning across various medical tasks. ## Model Details Included in this repository are four models: 1. **Me-LLaMA 13B:** Continually pretrained from LLaMA 2 13B. 2. **Me-LLaMA 70B:** Continually pretrained from LLaMA 2 70B. 3. **Me-LLaMA 13B-chat:** Further instruction-tuned from Me-LLaMA 13B using a variety of general, biomedical, and clinical datasets. 4. **Me-LLaMA 70B-chat:** Further instruction-tuned from Me-LLaMA 70B using a variety of general, biomedical, and clinical datasets. Each model contains several files, which are standard with the transformers library: - **config.json:** Information about the model - **model-x-of-y.safetensors:** Model weights - **generation_config.json:** Settings for text generation - **special_tokens_map.json:** Special tokens used in training - **tokenizer.json:** Mapping from indices to tokens - **tokenizer_config.json:** Configuration file for the tokenizer ## Usage For more details and to access the models, please visit the [Me-LLaMA repository on PhysioNet](https://physionet.org/content/me-llama/1.0.0/). For more technical details, please visit [our paper on arXiv](https://arxiv.org/abs/2402.12749).
{"datasets": ["togethercomputer/RedPajama-Data-1T", "bigbio/med_qa"], "language": ["en"], "library_name": "transformers", "license": "llama2", "tags": ["medical", "health", "llama", "llama2"]}
raghavlight/TDTE
raghavlight
null
[ "safetensors", "mteb", "model-index", "region:us" ]
2024-06-13T00:41:23
2024-06-13T02:52:26
0
3
--- tags: - mteb model-index: - name: 0523_mistralv2_sum3echo512_bbcc_8_16_16 results: - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: mteb/amazon_counterfactual config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 79.65671641791045 - type: ap value: 44.24063991266868 - type: f1 value: 73.91766997954294 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification type: mteb/amazon_polarity config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 94.480125 - type: ap value: 92.21829806116952 - type: f1 value: 94.47801150800291 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: mteb/amazon_reviews_multi config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 48.157999999999994 - type: f1 value: 47.11858175135973 - task: type: Retrieval dataset: name: MTEB ArguAna type: mteb/arguana config: default split: test revision: c22ab2a51041ffd869aaddef7af8d8215647e41a metrics: - type: map_at_1 value: 31.935000000000002 - type: map_at_10 value: 49.482 - type: map_at_100 value: 49.482 - type: map_at_1000 value: 49.482 - type: map_at_20 value: 49.482 - type: map_at_3 value: 44.464 - type: map_at_5 value: 47.569 - type: mrr_at_1 value: 33.001000000000005 - type: mrr_at_10 value: 49.989 - type: mrr_at_100 value: 49.989 - type: mrr_at_1000 value: 49.989 - type: mrr_at_20 value: 49.989 - type: mrr_at_3 value: 44.903 - type: mrr_at_5 value: 48.054 - type: ndcg_at_1 value: 31.935000000000002 - type: ndcg_at_10 value: 58.819 - type: ndcg_at_100 value: 58.819 - type: ndcg_at_1000 value: 58.819 - type: ndcg_at_20 value: 58.819 - type: ndcg_at_3 value: 48.620000000000005 - type: ndcg_at_5 value: 54.230000000000004 - type: precision_at_1 value: 31.935000000000002 - type: precision_at_10 value: 8.841000000000001 - type: precision_at_100 value: 0.8840000000000001 - type: precision_at_1000 value: 0.08800000000000001 - type: precision_at_20 value: 4.42 - type: precision_at_3 value: 20.223 - type: precision_at_5 value: 14.865 - type: recall_at_1 value: 31.935000000000002 - type: recall_at_10 value: 88.407 - type: recall_at_100 value: 88.407 - type: recall_at_1000 value: 88.407 - type: recall_at_20 value: 88.407 - type: recall_at_3 value: 60.669 - type: recall_at_5 value: 74.324 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P type: mteb/arxiv-clustering-p2p config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 48.7848435754835 - type: v_measures value: - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - 0.4921178407713082 - 0.4900811693910433 - 0.5035743243257481 - 0.49769690824686913 - 0.484482240428649 - 0.48877156706650865 - 0.4917783921004695 - 0.490848646915023 - 0.49292827306716547 - 0.4667863103804292 - 0.5663892295430093 - 0.5668130433770879 - 0.5621288042146693 - 0.5658463909906998 - 0.5669889138453401 - 0.5678202745454832 - 0.5686559823111067 - 0.5672351018082963 - 0.554891045405333 - 0.5661694307954689 - 0.5309350425293812 - 0.2938608518329288 - 0.4844129096095996 - 0.4282763304977941 - 0.3635291849887843 - 0.2962076070268785 - 0.30324674572414795 - 0.24299400753636727 - 0.34506718232232675 - 1.0 - 0.28276775680196714 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S type: mteb/arxiv-clustering-s2s config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 46.10665257880071 - type: v_measures value: - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - 0.4791303592299426 - 0.47312049608032497 - 0.4855223164775998 - 0.4571429771751102 - 0.4762861002816672 - 0.48218700555188587 - 0.4774159340612887 - 0.4706669107168955 - 0.4817074105941521 - 0.46122831822845595 - 0.5323998509009684 - 0.5366144743504581 - 0.5350659892124341 - 0.5348097376189661 - 0.5361859305887842 - 0.5401424740226736 - 0.5386301513493418 - 0.536195294071538 - 0.5307019767098927 - 0.529430500641798 - 0.48993023034390504 - 0.24840671183096288 - 0.41882293476660615 - 0.3892318610333167 - 0.325751283253651 - 0.24324245195504823 - 0.2853604795144245 - 0.23061705991870918 - 0.31166614557038164 - 1.0 - 0.2554489333770363 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions type: mteb/askubuntudupquestions-reranking config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 66.7285956124022 - type: mrr value: 79.72233214615486 - task: type: STS dataset: name: MTEB BIOSSES type: mteb/biosses-sts config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 88.73245869702066 - type: cos_sim_spearman value: 87.28451895745819 - type: euclidean_pearson value: 86.44569617089661 - type: euclidean_spearman value: 86.7236628044763 - type: manhattan_pearson value: 86.50853979799092 - type: manhattan_spearman value: 86.75920578302187 - task: type: Classification dataset: name: MTEB Banking77Classification type: mteb/banking77 config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 88.91233766233766 - type: f1 value: 88.86315189747688 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P type: mteb/biorxiv-clustering-p2p config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 38.7850808112868 - type: v_measures value: - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - 0.387862617887449 - 0.38352827892371627 - 0.371265066952095 - 0.3774981384705982 - 0.37131831220293676 - 0.39149988570912153 - 0.38703497665413544 - 0.40930675826264357 - 0.3910216974623904 - 0.4081723486035933 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S type: mteb/biorxiv-clustering-s2s config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 37.37318034700008 - type: v_measures value: - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - 0.36845423004088185 - 0.38992061254062366 - 0.3717948730004672 - 0.36026627188254456 - 0.3669860108798917 - 0.36731355824516293 - 0.375291529012098 - 0.38550090432534534 - 0.36577228218454805 - 0.38601776258844467 - task: type: Retrieval dataset: name: MTEB CQADupstackAndroidRetrieval type: mteb/cqadupstack-android config: default split: test revision: f46a197baaae43b4f621051089b82a364682dfeb metrics: - type: map_at_1 value: 39.232 - type: map_at_10 value: 53.04299999999999 - type: map_at_100 value: 53.04299999999999 - type: map_at_1000 value: 53.04299999999999 - type: map_at_20 value: 53.04299999999999 - type: map_at_3 value: 48.588 - type: map_at_5 value: 51.17699999999999 - type: mrr_at_1 value: 49.356 - type: mrr_at_10 value: 59.550000000000004 - type: mrr_at_100 value: 59.550000000000004 - type: mrr_at_1000 value: 59.550000000000004 - type: mrr_at_20 value: 59.550000000000004 - type: mrr_at_3 value: 56.986000000000004 - type: mrr_at_5 value: 58.638999999999996 - type: ndcg_at_1 value: 49.356 - type: ndcg_at_10 value: 60.156 - type: ndcg_at_100 value: 59.714999999999996 - type: ndcg_at_1000 value: 59.699000000000005 - type: ndcg_at_20 value: 59.831 - type: ndcg_at_3 value: 54.75299999999999 - type: ndcg_at_5 value: 57.443999999999996 - type: precision_at_1 value: 49.356 - type: precision_at_10 value: 11.86 - type: precision_at_100 value: 1.1860000000000002 - type: precision_at_1000 value: 0.11900000000000001 - type: precision_at_20 value: 5.93 - type: precision_at_3 value: 26.895999999999997 - type: precision_at_5 value: 19.570999999999998 - type: recall_at_1 value: 39.232 - type: recall_at_10 value: 72.98400000000001 - type: recall_at_100 value: 72.98400000000001 - type: recall_at_1000 value: 72.98400000000001 - type: recall_at_20 value: 72.98400000000001 - type: recall_at_3 value: 56.213 - type: recall_at_5 value: 64.318 - task: type: Retrieval dataset: name: MTEB CQADupstackEnglishRetrieval type: mteb/cqadupstack-english config: default split: test revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 metrics: - type: map_at_1 value: 37.157000000000004 - type: map_at_10 value: 49.512 - type: map_at_100 value: 49.512 - type: map_at_1000 value: 49.512 - type: map_at_20 value: 49.512 - type: map_at_3 value: 46.099000000000004 - type: map_at_5 value: 48.061 - type: mrr_at_1 value: 47.516000000000005 - type: mrr_at_10 value: 55.803999999999995 - type: mrr_at_100 value: 55.803999999999995 - type: mrr_at_1000 value: 55.803999999999995 - type: mrr_at_20 value: 55.803999999999995 - type: mrr_at_3 value: 53.885000000000005 - type: mrr_at_5 value: 54.967999999999996 - type: ndcg_at_1 value: 47.516000000000005 - type: ndcg_at_10 value: 55.386 - type: ndcg_at_100 value: 54.952 - type: ndcg_at_1000 value: 54.952 - type: ndcg_at_20 value: 55.07300000000001 - type: ndcg_at_3 value: 51.458000000000006 - type: ndcg_at_5 value: 53.189 - type: precision_at_1 value: 47.516000000000005 - type: precision_at_10 value: 10.567 - type: precision_at_100 value: 1.057 - type: precision_at_1000 value: 0.106 - type: precision_at_20 value: 5.283 - type: precision_at_3 value: 25.393 - type: precision_at_5 value: 17.656 - type: recall_at_1 value: 37.157000000000004 - type: recall_at_10 value: 65.026 - type: recall_at_100 value: 65.026 - type: recall_at_1000 value: 65.026 - type: recall_at_20 value: 65.026 - type: recall_at_3 value: 52.36300000000001 - type: recall_at_5 value: 57.989999999999995 - task: type: Retrieval dataset: name: MTEB CQADupstackGamingRetrieval type: mteb/cqadupstack-gaming config: default split: test revision: 4885aa143210c98657558c04aaf3dc47cfb54340 metrics: - type: map_at_1 value: 48.522999999999996 - type: map_at_10 value: 62.844 - type: map_at_100 value: 62.844 - type: map_at_1000 value: 62.844 - type: map_at_20 value: 62.844 - type: map_at_3 value: 59.150999999999996 - type: map_at_5 value: 61.403 - type: mrr_at_1 value: 55.925000000000004 - type: mrr_at_10 value: 66.113 - type: mrr_at_100 value: 66.113 - type: mrr_at_1000 value: 66.113 - type: mrr_at_20 value: 66.113 - type: mrr_at_3 value: 63.783 - type: mrr_at_5 value: 65.212 - type: ndcg_at_1 value: 55.925000000000004 - type: ndcg_at_10 value: 68.869 - type: ndcg_at_100 value: 68.774 - type: ndcg_at_1000 value: 68.774 - type: ndcg_at_20 value: 68.777 - type: ndcg_at_3 value: 63.31400000000001 - type: ndcg_at_5 value: 66.247 - type: precision_at_1 value: 55.925000000000004 - type: precision_at_10 value: 10.997 - type: precision_at_100 value: 1.0999999999999999 - type: precision_at_1000 value: 0.11 - type: precision_at_20 value: 5.498 - type: precision_at_3 value: 28.359 - type: precision_at_5 value: 19.386 - type: recall_at_1 value: 48.522999999999996 - type: recall_at_10 value: 83.045 - type: recall_at_100 value: 83.045 - type: recall_at_1000 value: 83.045 - type: recall_at_20 value: 83.045 - type: recall_at_3 value: 68.449 - type: recall_at_5 value: 75.62100000000001 - task: type: Retrieval dataset: name: MTEB CQADupstackGisRetrieval type: mteb/cqadupstack-gis config: default split: test revision: 5003b3064772da1887988e05400cf3806fe491f2 metrics: - type: map_at_1 value: 30.726 - type: map_at_10 value: 40.433 - type: map_at_100 value: 40.433 - type: map_at_1000 value: 40.433 - type: map_at_20 value: 40.433 - type: map_at_3 value: 37.135 - type: map_at_5 value: 39.17 - type: mrr_at_1 value: 33.672000000000004 - type: mrr_at_10 value: 42.836 - type: mrr_at_100 value: 42.836 - type: mrr_at_1000 value: 42.836 - type: mrr_at_20 value: 42.836 - type: mrr_at_3 value: 39.755 - type: mrr_at_5 value: 41.631 - type: ndcg_at_1 value: 33.672000000000004 - type: ndcg_at_10 value: 46.092 - type: ndcg_at_100 value: 46.092 - type: ndcg_at_1000 value: 46.092 - type: ndcg_at_20 value: 46.092 - type: ndcg_at_3 value: 39.797 - type: ndcg_at_5 value: 43.171 - type: precision_at_1 value: 33.672000000000004 - type: precision_at_10 value: 7.073 - type: precision_at_100 value: 0.707 - type: precision_at_1000 value: 0.07100000000000001 - type: precision_at_20 value: 3.537 - type: precision_at_3 value: 16.648 - type: precision_at_5 value: 11.91 - type: recall_at_1 value: 30.726 - type: recall_at_10 value: 61.24000000000001 - type: recall_at_100 value: 61.24000000000001 - type: recall_at_1000 value: 61.24000000000001 - type: recall_at_20 value: 61.24000000000001 - type: recall_at_3 value: 44.557 - type: recall_at_5 value: 52.608999999999995 - task: type: Retrieval dataset: name: MTEB CQADupstackMathematicaRetrieval type: mteb/cqadupstack-mathematica config: default split: test revision: 90fceea13679c63fe563ded68f3b6f06e50061de metrics: - type: map_at_1 value: 21.554000000000002 - type: map_at_10 value: 31.508000000000003 - type: map_at_100 value: 31.508000000000003 - type: map_at_1000 value: 31.508000000000003 - type: map_at_20 value: 31.508000000000003 - type: map_at_3 value: 28.225 - type: map_at_5 value: 30.043 - type: mrr_at_1 value: 27.114 - type: mrr_at_10 value: 36.631 - type: mrr_at_100 value: 36.631 - type: mrr_at_1000 value: 36.631 - type: mrr_at_20 value: 36.631 - type: mrr_at_3 value: 34.059 - type: mrr_at_5 value: 35.601 - type: ndcg_at_1 value: 27.114 - type: ndcg_at_10 value: 37.592999999999996 - type: ndcg_at_100 value: 37.588 - type: ndcg_at_1000 value: 37.588 - type: ndcg_at_20 value: 37.588 - type: ndcg_at_3 value: 32.038 - type: ndcg_at_5 value: 34.689 - type: precision_at_1 value: 27.114 - type: precision_at_10 value: 7.090000000000001 - type: precision_at_100 value: 0.709 - type: precision_at_1000 value: 0.07100000000000001 - type: precision_at_20 value: 3.5450000000000004 - type: precision_at_3 value: 15.506 - type: precision_at_5 value: 11.393 - type: recall_at_1 value: 21.554000000000002 - type: recall_at_10 value: 50.879 - type: recall_at_100 value: 50.879 - type: recall_at_1000 value: 50.879 - type: recall_at_20 value: 50.879 - type: recall_at_3 value: 35.827999999999996 - type: recall_at_5 value: 42.476 - task: type: Retrieval dataset: name: MTEB CQADupstackPhysicsRetrieval type: mteb/cqadupstack-physics config: default split: test revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 metrics: - type: map_at_1 value: 35.36 - type: map_at_10 value: 48.483 - type: map_at_100 value: 48.483 - type: map_at_1000 value: 48.483 - type: map_at_20 value: 48.483 - type: map_at_3 value: 44.639 - type: map_at_5 value: 46.698 - type: mrr_at_1 value: 43.985 - type: mrr_at_10 value: 54.039 - type: mrr_at_100 value: 54.039 - type: mrr_at_1000 value: 54.039 - type: mrr_at_20 value: 54.039 - type: mrr_at_3 value: 51.54 - type: mrr_at_5 value: 52.859 - type: ndcg_at_1 value: 43.985 - type: ndcg_at_10 value: 55.069 - type: ndcg_at_100 value: 54.967 - type: ndcg_at_1000 value: 54.967 - type: ndcg_at_20 value: 54.996 - type: ndcg_at_3 value: 49.544 - type: ndcg_at_5 value: 51.932 - type: precision_at_1 value: 43.985 - type: precision_at_10 value: 10.202 - type: precision_at_100 value: 1.02 - type: precision_at_1000 value: 0.10200000000000001 - type: precision_at_20 value: 5.101 - type: precision_at_3 value: 23.933 - type: precision_at_5 value: 16.901 - type: recall_at_1 value: 35.36 - type: recall_at_10 value: 68.806 - type: recall_at_100 value: 68.806 - type: recall_at_1000 value: 68.806 - type: recall_at_20 value: 68.806 - type: recall_at_3 value: 52.714000000000006 - type: recall_at_5 value: 59.168 - task: type: Retrieval dataset: name: MTEB CQADupstackProgrammersRetrieval type: mteb/cqadupstack-programmers config: default split: test revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 metrics: - type: map_at_1 value: 32.431 - type: map_at_10 value: 45.421 - type: map_at_100 value: 45.421 - type: map_at_1000 value: 45.421 - type: map_at_20 value: 45.421 - type: map_at_3 value: 41.82 - type: map_at_5 value: 43.692 - type: mrr_at_1 value: 41.096 - type: mrr_at_10 value: 51.293 - type: mrr_at_100 value: 51.293 - type: mrr_at_1000 value: 51.293 - type: mrr_at_20 value: 51.293 - type: mrr_at_3 value: 49.049 - type: mrr_at_5 value: 50.327 - type: ndcg_at_1 value: 41.096 - type: ndcg_at_10 value: 52.032999999999994 - type: ndcg_at_100 value: 51.903 - type: ndcg_at_1000 value: 51.897999999999996 - type: ndcg_at_20 value: 51.942 - type: ndcg_at_3 value: 47.024 - type: ndcg_at_5 value: 49.071 - type: precision_at_1 value: 41.096 - type: precision_at_10 value: 9.725999999999999 - type: precision_at_100 value: 0.9730000000000001 - type: precision_at_1000 value: 0.097 - type: precision_at_20 value: 4.8629999999999995 - type: precision_at_3 value: 23.097 - type: precision_at_5 value: 16.096 - type: recall_at_1 value: 32.431 - type: recall_at_10 value: 65.42999999999999 - type: recall_at_100 value: 65.42999999999999 - type: recall_at_1000 value: 65.42999999999999 - type: recall_at_20 value: 65.42999999999999 - type: recall_at_3 value: 50.856 - type: recall_at_5 value: 56.846 - task: type: Retrieval dataset: name: MTEB CQADupstackRetrieval type: mteb/cqadupstack config: default split: test revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 metrics: - type: map_at_1 value: 32.074749999999995 - type: map_at_10 value: 43.474 - type: map_at_100 value: 43.474 - type: map_at_1000 value: 43.474 - type: map_at_20 value: 43.474 - type: map_at_3 value: 40.10458333333333 - type: map_at_5 value: 42.010749999999994 - type: mrr_at_1 value: 38.60425 - type: mrr_at_10 value: 48.05550000000001 - type: mrr_at_100 value: 48.05550000000001 - type: mrr_at_1000 value: 48.05550000000001 - type: mrr_at_20 value: 48.05550000000001 - type: mrr_at_3 value: 45.58083333333334 - type: mrr_at_5 value: 47.04750000000001 - type: ndcg_at_1 value: 38.60425 - type: ndcg_at_10 value: 49.51958333333334 - type: ndcg_at_100 value: 49.3385 - type: ndcg_at_1000 value: 49.33491666666667 - type: ndcg_at_20 value: 49.393 - type: ndcg_at_3 value: 44.32699999999999 - type: ndcg_at_5 value: 46.81008333333333 - type: precision_at_1 value: 38.60425 - type: precision_at_10 value: 8.800666666666668 - type: precision_at_100 value: 0.8800833333333334 - type: precision_at_1000 value: 0.08808333333333335 - type: precision_at_20 value: 4.400333333333334 - type: precision_at_3 value: 20.723166666666664 - type: precision_at_5 value: 14.65683333333333 - type: recall_at_1 value: 32.074749999999995 - type: recall_at_10 value: 62.5025 - type: recall_at_100 value: 62.5025 - type: recall_at_1000 value: 62.5025 - type: recall_at_20 value: 62.5025 - type: recall_at_3 value: 47.81091666666667 - type: recall_at_5 value: 54.38974999999999 - task: type: Retrieval dataset: name: MTEB CQADupstackStatsRetrieval type: mteb/cqadupstack-stats config: default split: test revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a metrics: - type: map_at_1 value: 28.758 - type: map_at_10 value: 37.633 - type: map_at_100 value: 37.633 - type: map_at_1000 value: 37.633 - type: map_at_20 value: 37.633 - type: map_at_3 value: 34.865 - type: map_at_5 value: 36.437999999999995 - type: mrr_at_1 value: 32.208999999999996 - type: mrr_at_10 value: 40.598 - type: mrr_at_100 value: 40.598 - type: mrr_at_1000 value: 40.598 - type: mrr_at_20 value: 40.598 - type: mrr_at_3 value: 37.935 - type: mrr_at_5 value: 39.476 - type: ndcg_at_1 value: 32.208999999999996 - type: ndcg_at_10 value: 42.798 - type: ndcg_at_100 value: 42.768 - type: ndcg_at_1000 value: 42.768 - type: ndcg_at_20 value: 42.768 - type: ndcg_at_3 value: 37.651 - type: ndcg_at_5 value: 40.172999999999995 - type: precision_at_1 value: 32.208999999999996 - type: precision_at_10 value: 6.84 - type: precision_at_100 value: 0.6839999999999999 - type: precision_at_1000 value: 0.068 - type: precision_at_20 value: 3.42 - type: precision_at_3 value: 16.258 - type: precision_at_5 value: 11.472 - type: recall_at_1 value: 28.758 - type: recall_at_10 value: 55.55799999999999 - type: recall_at_100 value: 55.55799999999999 - type: recall_at_1000 value: 55.55799999999999 - type: recall_at_20 value: 55.55799999999999 - type: recall_at_3 value: 41.488 - type: recall_at_5 value: 47.659 - task: type: Retrieval dataset: name: MTEB CQADupstackTexRetrieval type: mteb/cqadupstack-tex config: default split: test revision: 46989137a86843e03a6195de44b09deda022eec7 metrics: - type: map_at_1 value: 21.088 - type: map_at_10 value: 30.297 - type: map_at_100 value: 30.297 - type: map_at_1000 value: 30.297 - type: map_at_20 value: 30.297 - type: map_at_3 value: 27.376 - type: map_at_5 value: 29.064 - type: mrr_at_1 value: 26.358999999999998 - type: mrr_at_10 value: 34.996 - type: mrr_at_100 value: 34.996 - type: mrr_at_1000 value: 34.996 - type: mrr_at_20 value: 34.996 - type: mrr_at_3 value: 32.467 - type: mrr_at_5 value: 33.944 - type: ndcg_at_1 value: 26.358999999999998 - type: ndcg_at_10 value: 35.851 - type: ndcg_at_100 value: 35.731 - type: ndcg_at_1000 value: 35.729 - type: ndcg_at_20 value: 35.77 - type: ndcg_at_3 value: 30.97 - type: ndcg_at_5 value: 33.312000000000005 - type: precision_at_1 value: 26.358999999999998 - type: precision_at_10 value: 6.641 - type: precision_at_100 value: 0.664 - type: precision_at_1000 value: 0.066 - type: precision_at_20 value: 3.321 - type: precision_at_3 value: 14.923 - type: precision_at_5 value: 10.86 - type: recall_at_1 value: 21.088 - type: recall_at_10 value: 47.818 - type: recall_at_100 value: 47.818 - type: recall_at_1000 value: 47.818 - type: recall_at_20 value: 47.818 - type: recall_at_3 value: 33.815 - type: recall_at_5 value: 39.973 - task: type: Retrieval dataset: name: MTEB CQADupstackUnixRetrieval type: mteb/cqadupstack-unix config: default split: test revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 metrics: - type: map_at_1 value: 33.579 - type: map_at_10 value: 44.875 - type: map_at_100 value: 44.875 - type: map_at_1000 value: 44.875 - type: map_at_20 value: 44.875 - type: map_at_3 value: 41.64 - type: map_at_5 value: 43.433 - type: mrr_at_1 value: 40.111999999999995 - type: mrr_at_10 value: 49.586999999999996 - type: mrr_at_100 value: 49.586999999999996 - type: mrr_at_1000 value: 49.586999999999996 - type: mrr_at_20 value: 49.586999999999996 - type: mrr_at_3 value: 47.233000000000004 - type: mrr_at_5 value: 48.613 - type: ndcg_at_1 value: 40.111999999999995 - type: ndcg_at_10 value: 50.836000000000006 - type: ndcg_at_100 value: 50.822 - type: ndcg_at_1000 value: 50.822 - type: ndcg_at_20 value: 50.822 - type: ndcg_at_3 value: 45.737 - type: ndcg_at_5 value: 48.081 - type: precision_at_1 value: 40.111999999999995 - type: precision_at_10 value: 8.674999999999999 - type: precision_at_100 value: 0.868 - type: precision_at_1000 value: 0.087 - type: precision_at_20 value: 4.338 - type: precision_at_3 value: 21.02 - type: precision_at_5 value: 14.682999999999998 - type: recall_at_1 value: 33.579 - type: recall_at_10 value: 64.02600000000001 - type: recall_at_100 value: 64.02600000000001 - type: recall_at_1000 value: 64.02600000000001 - type: recall_at_20 value: 64.02600000000001 - type: recall_at_3 value: 49.788 - type: recall_at_5 value: 55.931 - task: type: Retrieval dataset: name: MTEB CQADupstackWebmastersRetrieval type: mteb/cqadupstack-webmasters config: default split: test revision: 160c094312a0e1facb97e55eeddb698c0abe3571 metrics: - type: map_at_1 value: 31.497999999999998 - type: map_at_10 value: 43.456 - type: map_at_100 value: 43.456 - type: map_at_1000 value: 43.456 - type: map_at_20 value: 43.456 - type: map_at_3 value: 40.125 - type: map_at_5 value: 41.829 - type: mrr_at_1 value: 38.735 - type: mrr_at_10 value: 48.756 - type: mrr_at_100 value: 48.756 - type: mrr_at_1000 value: 48.756 - type: mrr_at_20 value: 48.756 - type: mrr_at_3 value: 46.113 - type: mrr_at_5 value: 47.684 - type: ndcg_at_1 value: 38.735 - type: ndcg_at_10 value: 50.241 - type: ndcg_at_100 value: 49.458 - type: ndcg_at_1000 value: 49.437999999999995 - type: ndcg_at_20 value: 49.756 - type: ndcg_at_3 value: 45.14 - type: ndcg_at_5 value: 47.406 - type: precision_at_1 value: 38.735 - type: precision_at_10 value: 9.763 - type: precision_at_100 value: 0.976 - type: precision_at_1000 value: 0.098 - type: precision_at_20 value: 4.881 - type: precision_at_3 value: 21.673000000000002 - type: precision_at_5 value: 15.455 - type: recall_at_1 value: 31.497999999999998 - type: recall_at_10 value: 62.568999999999996 - type: recall_at_100 value: 62.568999999999996 - type: recall_at_1000 value: 62.568999999999996 - type: recall_at_20 value: 62.568999999999996 - type: recall_at_3 value: 47.842 - type: recall_at_5 value: 54.159 - task: type: Retrieval dataset: name: MTEB CQADupstackWordpressRetrieval type: mteb/cqadupstack-wordpress config: default split: test revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 metrics: - type: map_at_1 value: 24.991 - type: map_at_10 value: 34.183 - type: map_at_100 value: 34.183 - type: map_at_1000 value: 34.183 - type: map_at_20 value: 34.183 - type: map_at_3 value: 31.592 - type: map_at_5 value: 33.121 - type: mrr_at_1 value: 27.172 - type: mrr_at_10 value: 36.463 - type: mrr_at_100 value: 36.463 - type: mrr_at_1000 value: 36.463 - type: mrr_at_20 value: 36.463 - type: mrr_at_3 value: 34.165 - type: mrr_at_5 value: 35.616 - type: ndcg_at_1 value: 27.172 - type: ndcg_at_10 value: 39.311 - type: ndcg_at_100 value: 39.292 - type: ndcg_at_1000 value: 39.292 - type: ndcg_at_20 value: 39.301 - type: ndcg_at_3 value: 34.498 - type: ndcg_at_5 value: 37.006 - type: precision_at_1 value: 27.172 - type: precision_at_10 value: 6.174 - type: precision_at_100 value: 0.617 - type: precision_at_1000 value: 0.062 - type: precision_at_20 value: 3.087 - type: precision_at_3 value: 14.972 - type: precision_at_5 value: 10.499 - type: recall_at_1 value: 24.991 - type: recall_at_10 value: 52.649 - type: recall_at_100 value: 52.649 - type: recall_at_1000 value: 52.649 - type: recall_at_20 value: 52.649 - type: recall_at_3 value: 39.818 - type: recall_at_5 value: 45.927 - task: type: Retrieval dataset: name: MTEB ClimateFEVER type: mteb/climate-fever config: default split: test revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 metrics: - type: map_at_1 value: 12.475999999999999 - type: map_at_10 value: 22.999 - type: map_at_100 value: 22.999 - type: map_at_1000 value: 22.999 - type: map_at_20 value: 22.999 - type: map_at_3 value: 18.804000000000002 - type: map_at_5 value: 20.987000000000002 - type: mrr_at_1 value: 28.404 - type: mrr_at_10 value: 42.335 - type: mrr_at_100 value: 42.335 - type: mrr_at_1000 value: 42.335 - type: mrr_at_20 value: 42.335 - type: mrr_at_3 value: 39.11 - type: mrr_at_5 value: 40.953 - type: ndcg_at_1 value: 28.404 - type: ndcg_at_10 value: 32.467 - type: ndcg_at_100 value: 32.467 - type: ndcg_at_1000 value: 32.467 - type: ndcg_at_20 value: 32.467 - type: ndcg_at_3 value: 26.334999999999997 - type: ndcg_at_5 value: 28.493000000000002 - type: precision_at_1 value: 28.404 - type: precision_at_10 value: 10.43 - type: precision_at_100 value: 1.043 - type: precision_at_1000 value: 0.104 - type: precision_at_20 value: 5.215 - type: precision_at_3 value: 20.13 - type: precision_at_5 value: 15.595999999999998 - type: recall_at_1 value: 12.475999999999999 - type: recall_at_10 value: 39.757 - type: recall_at_100 value: 39.757 - type: recall_at_1000 value: 39.757 - type: recall_at_20 value: 39.757 - type: recall_at_3 value: 24.695 - type: recall_at_5 value: 30.864000000000004 - task: type: Retrieval dataset: name: MTEB DBPedia type: mteb/dbpedia config: default split: test revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 metrics: - type: map_at_1 value: 9.261999999999999 - type: map_at_10 value: 23.807000000000002 - type: map_at_100 value: 23.807000000000002 - type: map_at_1000 value: 23.807000000000002 - type: map_at_20 value: 23.807000000000002 - type: map_at_3 value: 15.776000000000002 - type: map_at_5 value: 19.17 - type: mrr_at_1 value: 71.75 - type: mrr_at_10 value: 79.959 - type: mrr_at_100 value: 79.959 - type: mrr_at_1000 value: 79.959 - type: mrr_at_20 value: 79.959 - type: mrr_at_3 value: 78.625 - type: mrr_at_5 value: 79.412 - type: ndcg_at_1 value: 59.5 - type: ndcg_at_10 value: 48.988 - type: ndcg_at_100 value: 37.452000000000005 - type: ndcg_at_1000 value: 37.32 - type: ndcg_at_20 value: 41.387 - type: ndcg_at_3 value: 52.567 - type: ndcg_at_5 value: 50.649 - type: precision_at_1 value: 71.75 - type: precision_at_10 value: 40.425 - type: precision_at_100 value: 4.042 - type: precision_at_1000 value: 0.404 - type: precision_at_20 value: 20.212 - type: precision_at_3 value: 57.75 - type: precision_at_5 value: 50.349999999999994 - type: recall_at_1 value: 9.261999999999999 - type: recall_at_10 value: 30.329 - type: recall_at_100 value: 30.329 - type: recall_at_1000 value: 30.329 - type: recall_at_20 value: 30.329 - type: recall_at_3 value: 17.422 - type: recall_at_5 value: 22.598 - task: type: Classification dataset: name: MTEB EmotionClassification type: mteb/emotion config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 52.014999999999986 - type: f1 value: 47.33036786740981 - task: type: Retrieval dataset: name: MTEB FEVER type: mteb/fever config: default split: test revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 metrics: - type: map_at_1 value: 82.00800000000001 - type: map_at_10 value: 88.02799999999999 - type: map_at_100 value: 88.02799999999999 - type: map_at_1000 value: 88.02799999999999 - type: map_at_20 value: 88.02799999999999 - type: map_at_3 value: 87.249 - type: map_at_5 value: 87.78399999999999 - type: mrr_at_1 value: 88.299 - type: mrr_at_10 value: 92.92 - type: mrr_at_100 value: 92.92 - type: mrr_at_1000 value: 92.92 - type: mrr_at_20 value: 92.92 - type: mrr_at_3 value: 92.56400000000001 - type: mrr_at_5 value: 92.83200000000001 - type: ndcg_at_1 value: 88.299 - type: ndcg_at_10 value: 90.88000000000001 - type: ndcg_at_100 value: 90.879 - type: ndcg_at_1000 value: 90.879 - type: ndcg_at_20 value: 90.879 - type: ndcg_at_3 value: 89.85499999999999 - type: ndcg_at_5 value: 90.485 - type: precision_at_1 value: 88.299 - type: precision_at_10 value: 10.522 - type: precision_at_100 value: 1.052 - type: precision_at_1000 value: 0.105 - type: precision_at_20 value: 5.261 - type: precision_at_3 value: 33.573 - type: precision_at_5 value: 20.633000000000003 - type: recall_at_1 value: 82.00800000000001 - type: recall_at_10 value: 94.952 - type: recall_at_100 value: 94.952 - type: recall_at_1000 value: 94.952 - type: recall_at_20 value: 94.952 - type: recall_at_3 value: 92.089 - type: recall_at_5 value: 93.794 - task: type: Retrieval dataset: name: MTEB FiQA2018 type: mteb/fiqa config: default split: test revision: 27a168819829fe9bcd655c2df245fb19452e8e06 metrics: - type: map_at_1 value: 26.857 - type: map_at_10 value: 44.645 - type: map_at_100 value: 44.645 - type: map_at_1000 value: 44.645 - type: map_at_20 value: 44.645 - type: map_at_3 value: 38.166 - type: map_at_5 value: 41.992000000000004 - type: mrr_at_1 value: 50.309000000000005 - type: mrr_at_10 value: 59.59100000000001 - type: mrr_at_100 value: 59.59100000000001 - type: mrr_at_1000 value: 59.59100000000001 - type: mrr_at_20 value: 59.59100000000001 - type: mrr_at_3 value: 56.97 - type: mrr_at_5 value: 58.498000000000005 - type: ndcg_at_1 value: 50.309000000000005 - type: ndcg_at_10 value: 53.221 - type: ndcg_at_100 value: 53.15800000000001 - type: ndcg_at_1000 value: 53.15800000000001 - type: ndcg_at_20 value: 53.15800000000001 - type: ndcg_at_3 value: 47.506 - type: ndcg_at_5 value: 49.922 - type: precision_at_1 value: 50.309000000000005 - type: precision_at_10 value: 14.985000000000001 - type: precision_at_100 value: 1.498 - type: precision_at_1000 value: 0.15 - type: precision_at_20 value: 7.492 - type: precision_at_3 value: 31.635999999999996 - type: precision_at_5 value: 24.043 - type: recall_at_1 value: 26.857 - type: recall_at_10 value: 62.051 - type: recall_at_100 value: 62.051 - type: recall_at_1000 value: 62.051 - type: recall_at_20 value: 62.051 - type: recall_at_3 value: 42.966 - type: recall_at_5 value: 51.943 - task: type: Retrieval dataset: name: MTEB HotpotQA type: mteb/hotpotqa config: default split: test revision: ab518f4d6fcca38d87c25209f94beba119d02014 metrics: - type: map_at_1 value: 40.891 - type: map_at_10 value: 70.431 - type: map_at_100 value: 70.431 - type: map_at_1000 value: 70.431 - type: map_at_20 value: 70.431 - type: map_at_3 value: 66.704 - type: map_at_5 value: 69.179 - type: mrr_at_1 value: 81.783 - type: mrr_at_10 value: 87.368 - type: mrr_at_100 value: 87.368 - type: mrr_at_1000 value: 87.368 - type: mrr_at_20 value: 87.368 - type: mrr_at_3 value: 86.59700000000001 - type: mrr_at_5 value: 87.128 - type: ndcg_at_1 value: 81.783 - type: ndcg_at_10 value: 77.697 - type: ndcg_at_100 value: 77.697 - type: ndcg_at_1000 value: 77.697 - type: ndcg_at_20 value: 77.697 - type: ndcg_at_3 value: 72.688 - type: ndcg_at_5 value: 75.69200000000001 - type: precision_at_1 value: 81.783 - type: precision_at_10 value: 16.488 - type: precision_at_100 value: 1.649 - type: precision_at_1000 value: 0.165 - type: precision_at_20 value: 8.244 - type: precision_at_3 value: 47.693000000000005 - type: precision_at_5 value: 30.976 - type: recall_at_1 value: 40.891 - type: recall_at_10 value: 82.438 - type: recall_at_100 value: 82.438 - type: recall_at_1000 value: 82.438 - type: recall_at_20 value: 82.438 - type: recall_at_3 value: 71.54 - type: recall_at_5 value: 77.441 - task: type: Classification dataset: name: MTEB ImdbClassification type: mteb/imdb config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 89.47240000000001 - type: ap value: 85.75618304701787 - type: f1 value: 89.44156774176075 - task: type: Retrieval dataset: name: MTEB MSMARCO type: mteb/msmarco config: default split: dev revision: c5a29a104738b98a9e76336939199e264163d4a0 metrics: - type: map_at_1 value: 19.941 - type: map_at_10 value: 33.108 - type: map_at_100 value: 33.108 - type: map_at_1000 value: 33.108 - type: map_at_20 value: 33.108 - type: map_at_3 value: 28.716 - type: map_at_5 value: 31.255 - type: mrr_at_1 value: 20.458000000000002 - type: mrr_at_10 value: 33.646 - type: mrr_at_100 value: 33.646 - type: mrr_at_1000 value: 33.646 - type: mrr_at_20 value: 33.646 - type: mrr_at_3 value: 29.360000000000003 - type: mrr_at_5 value: 31.849 - type: ndcg_at_1 value: 20.458000000000002 - type: ndcg_at_10 value: 40.664 - type: ndcg_at_100 value: 40.664 - type: ndcg_at_1000 value: 40.664 - type: ndcg_at_20 value: 40.664 - type: ndcg_at_3 value: 31.733 - type: ndcg_at_5 value: 36.266999999999996 - type: precision_at_1 value: 20.458000000000002 - type: precision_at_10 value: 6.703 - type: precision_at_100 value: 0.67 - type: precision_at_1000 value: 0.067 - type: precision_at_20 value: 3.3520000000000003 - type: precision_at_3 value: 13.777000000000001 - type: precision_at_5 value: 10.564 - type: recall_at_1 value: 19.941 - type: recall_at_10 value: 64.103 - type: recall_at_100 value: 64.103 - type: recall_at_1000 value: 64.103 - type: recall_at_20 value: 64.103 - type: recall_at_3 value: 39.800999999999995 - type: recall_at_5 value: 50.727999999999994 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: mteb/mtop_domain config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 96.45690834473322 - type: f1 value: 96.19980363353172 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: mteb/mtop_intent config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 85.38075695394436 - type: f1 value: 71.33409850817071 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: mteb/amazon_massive_intent config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 80.12104909213183 - type: f1 value: 77.26691038674358 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: mteb/amazon_massive_scenario config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 82.69670477471418 - type: f1 value: 82.31935226516424 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P type: mteb/medrxiv-clustering-p2p config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 32.733209733023 - type: v_measures value: - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - 0.3268102022520237 - 0.30894802212942296 - 0.3267412500148118 - 0.3083054819872514 - 0.31284256226804597 - 0.33514297956992917 - 0.3297363893986241 - 0.34536511251773544 - 0.3498041803334763 - 0.3296247928309792 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S type: mteb/medrxiv-clustering-s2s config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 32.325298069936835 - type: v_measures value: - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - 0.3150861010517341 - 0.32155893979978684 - 0.3177517595474066 - 0.30022420485295037 - 0.3197693379138355 - 0.33188657891678974 - 0.3386256684441414 - 0.3305481006752689 - 0.3436443696432427 - 0.31343474614852757 - task: type: Reranking dataset: name: MTEB MindSmallReranking type: mteb/mind_small config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 32.511595472837335 - type: mrr value: 33.73044905745997 - task: type: Retrieval dataset: name: MTEB NFCorpus type: mteb/nfcorpus config: default split: test revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 metrics: - type: map_at_1 value: 7.0760000000000005 - type: map_at_10 value: 16.039 - type: map_at_100 value: 16.039 - type: map_at_1000 value: 16.039 - type: map_at_20 value: 16.039 - type: map_at_3 value: 11.408 - type: map_at_5 value: 13.547 - type: mrr_at_1 value: 53.559999999999995 - type: mrr_at_10 value: 61.531000000000006 - type: mrr_at_100 value: 61.531000000000006 - type: mrr_at_1000 value: 61.531000000000006 - type: mrr_at_20 value: 61.531000000000006 - type: mrr_at_3 value: 59.236 - type: mrr_at_5 value: 60.49 - type: ndcg_at_1 value: 51.083999999999996 - type: ndcg_at_10 value: 41.332 - type: ndcg_at_100 value: 27.083000000000002 - type: ndcg_at_1000 value: 26.619 - type: ndcg_at_20 value: 33.188 - type: ndcg_at_3 value: 46.605999999999995 - type: ndcg_at_5 value: 44.362 - type: precision_at_1 value: 52.941 - type: precision_at_10 value: 30.65 - type: precision_at_100 value: 3.065 - type: precision_at_1000 value: 0.307 - type: precision_at_20 value: 15.325 - type: precision_at_3 value: 43.447 - type: precision_at_5 value: 38.266 - type: recall_at_1 value: 7.0760000000000005 - type: recall_at_10 value: 20.929000000000002 - type: recall_at_100 value: 20.929000000000002 - type: recall_at_1000 value: 20.929000000000002 - type: recall_at_20 value: 20.929000000000002 - type: recall_at_3 value: 12.601 - type: recall_at_5 value: 15.955 - task: type: Retrieval dataset: name: MTEB NQ type: mteb/nq config: default split: test revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 metrics: - type: map_at_1 value: 39.204 - type: map_at_10 value: 56.808 - type: map_at_100 value: 56.808 - type: map_at_1000 value: 56.808 - type: map_at_20 value: 56.808 - type: map_at_3 value: 52.471999999999994 - type: map_at_5 value: 55.191 - type: mrr_at_1 value: 44.032 - type: mrr_at_10 value: 59.158 - type: mrr_at_100 value: 59.158 - type: mrr_at_1000 value: 59.158 - type: mrr_at_20 value: 59.158 - type: mrr_at_3 value: 55.948 - type: mrr_at_5 value: 57.96 - type: ndcg_at_1 value: 44.032 - type: ndcg_at_10 value: 64.672 - type: ndcg_at_100 value: 64.672 - type: ndcg_at_1000 value: 64.672 - type: ndcg_at_20 value: 64.672 - type: ndcg_at_3 value: 56.955999999999996 - type: ndcg_at_5 value: 61.278999999999996 - type: precision_at_1 value: 44.032 - type: precision_at_10 value: 10.295 - type: precision_at_100 value: 1.03 - type: precision_at_1000 value: 0.10300000000000001 - type: precision_at_20 value: 5.148 - type: precision_at_3 value: 25.83 - type: precision_at_5 value: 18.053 - type: recall_at_1 value: 39.204 - type: recall_at_10 value: 85.936 - type: recall_at_100 value: 85.936 - type: recall_at_1000 value: 85.936 - type: recall_at_20 value: 85.936 - type: recall_at_3 value: 66.387 - type: recall_at_5 value: 76.238 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval type: mteb/quora config: default split: test revision: e4e08e0b7dbe3c8700f0daef558ff32256715259 metrics: - type: map_at_1 value: 71.068 - type: map_at_10 value: 85.271 - type: map_at_100 value: 85.271 - type: map_at_1000 value: 85.271 - type: map_at_20 value: 85.271 - type: map_at_3 value: 82.23899999999999 - type: map_at_5 value: 84.165 - type: mrr_at_1 value: 81.85 - type: mrr_at_10 value: 87.856 - type: mrr_at_100 value: 87.856 - type: mrr_at_1000 value: 87.856 - type: mrr_at_20 value: 87.856 - type: mrr_at_3 value: 86.925 - type: mrr_at_5 value: 87.559 - type: ndcg_at_1 value: 81.89 - type: ndcg_at_10 value: 88.856 - type: ndcg_at_100 value: 88.723 - type: ndcg_at_1000 value: 88.723 - type: ndcg_at_20 value: 88.74300000000001 - type: ndcg_at_3 value: 86.05199999999999 - type: ndcg_at_5 value: 87.61 - type: precision_at_1 value: 81.89 - type: precision_at_10 value: 13.569999999999999 - type: precision_at_100 value: 1.357 - type: precision_at_1000 value: 0.136 - type: precision_at_20 value: 6.784999999999999 - type: precision_at_3 value: 37.807 - type: precision_at_5 value: 24.908 - type: recall_at_1 value: 71.068 - type: recall_at_10 value: 95.797 - type: recall_at_100 value: 95.797 - type: recall_at_1000 value: 95.797 - type: recall_at_20 value: 95.797 - type: recall_at_3 value: 87.65899999999999 - type: recall_at_5 value: 92.107 - task: type: Clustering dataset: name: MTEB RedditClustering type: mteb/reddit-clustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 62.16385792305745 - type: v_measures value: - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - 0.587541495063312 - 0.6775885692888917 - 0.567537304495857 - 0.6678131151900565 - 0.5979158867861365 - 0.5956669142507505 - 0.6200557398628851 - 0.5946598821061599 - 0.603673972233609 - 0.6050659113737895 - 0.5742475015975338 - 0.6273500769309232 - 0.6526752602522112 - 0.6416095306029318 - 0.7334431385812594 - 0.5847584715164077 - 0.62727067061333 - 0.6138592437270369 - 0.6280966889397946 - 0.5740785434257363 - 0.5888905363406383 - 0.6073133172766488 - 0.7167239234204423 - 0.6595740709329266 - 0.5935547159550949 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P type: mteb/reddit-clustering-p2p config: default split: test revision: 385e3cb46b4cfa89021f56c4380204149d0efe33 metrics: - type: v_measure value: 65.96296778394698 - type: v_measures value: - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - 0.6994519018160104 - 0.6685310786302858 - 0.6560344637869603 - 0.4053977970605211 - 0.7423583342619767 - 0.6657872853200192 - 0.4487425514322897 - 0.7791528368405061 - 0.7406529421724692 - 0.7901875870736593 - task: type: Retrieval dataset: name: MTEB SCIDOCS type: mteb/scidocs config: default split: test revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88 metrics: - type: map_at_1 value: 5.433000000000001 - type: map_at_10 value: 13.991000000000001 - type: map_at_100 value: 13.991000000000001 - type: map_at_1000 value: 13.991000000000001 - type: map_at_20 value: 13.991000000000001 - type: map_at_3 value: 9.708 - type: map_at_5 value: 11.849 - type: mrr_at_1 value: 26.8 - type: mrr_at_10 value: 38.012 - type: mrr_at_100 value: 38.012 - type: mrr_at_1000 value: 38.012 - type: mrr_at_20 value: 38.012 - type: mrr_at_3 value: 34.449999999999996 - type: mrr_at_5 value: 36.59 - type: ndcg_at_1 value: 26.8 - type: ndcg_at_10 value: 23.006999999999998 - type: ndcg_at_100 value: 23.006999999999998 - type: ndcg_at_1000 value: 23.006999999999998 - type: ndcg_at_20 value: 23.006999999999998 - type: ndcg_at_3 value: 21.386 - type: ndcg_at_5 value: 19.046 - type: precision_at_1 value: 26.8 - type: precision_at_10 value: 12.01 - type: precision_at_100 value: 1.201 - type: precision_at_1000 value: 0.12 - type: precision_at_20 value: 6.005 - type: precision_at_3 value: 19.833000000000002 - type: precision_at_5 value: 16.84 - type: recall_at_1 value: 5.433000000000001 - type: recall_at_10 value: 24.34 - type: recall_at_100 value: 24.34 - type: recall_at_1000 value: 24.34 - type: recall_at_20 value: 24.34 - type: recall_at_3 value: 12.058 - type: recall_at_5 value: 17.058 - task: type: STS dataset: name: MTEB SICK-R type: mteb/sickr-sts config: default split: test revision: 20a6d6f312dd54037fe07a32d58e5e168867909d metrics: - type: cos_sim_pearson value: 84.84178272773948 - type: cos_sim_spearman value: 82.32746830315172 - type: euclidean_pearson value: 82.11599650658388 - type: euclidean_spearman value: 82.38102437050075 - type: manhattan_pearson value: 82.07071847892156 - type: manhattan_spearman value: 82.35710877093594 - task: type: STS dataset: name: MTEB STS12 type: mteb/sts12-sts config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 86.86916828280668 - type: cos_sim_spearman value: 79.69553254808825 - type: euclidean_pearson value: 82.86582224049857 - type: euclidean_spearman value: 79.1765897124049 - type: manhattan_pearson value: 83.15978473993391 - type: manhattan_spearman value: 79.54192003597332 - task: type: STS dataset: name: MTEB STS13 type: mteb/sts13-sts config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 88.7719804239987 - type: cos_sim_spearman value: 89.20788765830103 - type: euclidean_pearson value: 88.67624029627581 - type: euclidean_spearman value: 89.15058058277351 - type: manhattan_pearson value: 88.43477620818435 - type: manhattan_spearman value: 89.01994285052193 - task: type: STS dataset: name: MTEB STS14 type: mteb/sts14-sts config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 87.04733612348426 - type: cos_sim_spearman value: 86.0120242985069 - type: euclidean_pearson value: 86.07045247599824 - type: euclidean_spearman value: 86.22185577032168 - type: manhattan_pearson value: 85.79555943035328 - type: manhattan_spearman value: 86.13821651705776 - task: type: STS dataset: name: MTEB STS15 type: mteb/sts15-sts config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 89.395594115739 - type: cos_sim_spearman value: 89.70312809978681 - type: euclidean_pearson value: 89.10137224981938 - type: euclidean_spearman value: 89.74149793061072 - type: manhattan_pearson value: 89.06144914118401 - type: manhattan_spearman value: 89.78489015365638 - task: type: STS dataset: name: MTEB STS16 type: mteb/sts16-sts config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 86.1720394205624 - type: cos_sim_spearman value: 87.67900288178751 - type: euclidean_pearson value: 86.73052291563968 - type: euclidean_spearman value: 87.49116803671033 - type: manhattan_pearson value: 86.79988999910331 - type: manhattan_spearman value: 87.57540934207157 - task: type: STS dataset: name: MTEB STS17 (en-en) type: mteb/sts17-crosslingual-sts config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 88.75286004155564 - type: cos_sim_spearman value: 88.03161515281518 - type: euclidean_pearson value: 88.55464128719427 - type: euclidean_spearman value: 87.78041200668837 - type: manhattan_pearson value: 88.18469209314583 - type: manhattan_spearman value: 87.31602253333598 - task: type: STS dataset: name: MTEB STS22 (en) type: mteb/sts22-crosslingual-sts config: en split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 70.48372140035973 - type: cos_sim_spearman value: 70.16107814793419 - type: euclidean_pearson value: 69.65789511103976 - type: euclidean_spearman value: 68.92441073988654 - type: manhattan_pearson value: 69.55306498752127 - type: manhattan_spearman value: 68.82186378798527 - task: type: STS dataset: name: MTEB STSBenchmark type: mteb/stsbenchmark-sts config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 87.43017430741797 - type: cos_sim_spearman value: 88.14675226940803 - type: euclidean_pearson value: 87.33329490848514 - type: euclidean_spearman value: 87.94164481397011 - type: manhattan_pearson value: 87.19303598684772 - type: manhattan_spearman value: 87.86899889639051 - task: type: Reranking dataset: name: MTEB SciDocsRR type: mteb/scidocs-reranking config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 87.03073019943413 - type: mrr value: 96.67456726280255 - task: type: Retrieval dataset: name: MTEB SciFact type: mteb/scifact config: default split: test revision: 0228b52cf27578f30900b9e5271d331663a030d7 metrics: - type: map_at_1 value: 64.328 - type: map_at_10 value: 75.046 - type: map_at_100 value: 75.046 - type: map_at_1000 value: 75.046 - type: map_at_20 value: 75.046 - type: map_at_3 value: 72.42 - type: map_at_5 value: 73.88900000000001 - type: mrr_at_1 value: 67.667 - type: mrr_at_10 value: 76.19200000000001 - type: mrr_at_100 value: 76.19200000000001 - type: mrr_at_1000 value: 76.19200000000001 - type: mrr_at_20 value: 76.19200000000001 - type: mrr_at_3 value: 74.556 - type: mrr_at_5 value: 75.372 - type: ndcg_at_1 value: 67.667 - type: ndcg_at_10 value: 79.621 - type: ndcg_at_100 value: 79.621 - type: ndcg_at_1000 value: 79.621 - type: ndcg_at_20 value: 79.621 - type: ndcg_at_3 value: 75.506 - type: ndcg_at_5 value: 77.269 - type: precision_at_1 value: 67.667 - type: precision_at_10 value: 10.467 - type: precision_at_100 value: 1.047 - type: precision_at_1000 value: 0.105 - type: precision_at_20 value: 5.2330000000000005 - type: precision_at_3 value: 29.444 - type: precision_at_5 value: 19.133 - type: recall_at_1 value: 64.328 - type: recall_at_10 value: 92.389 - type: recall_at_100 value: 92.389 - type: recall_at_1000 value: 92.389 - type: recall_at_20 value: 92.389 - type: recall_at_3 value: 81.183 - type: recall_at_5 value: 85.60600000000001 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions type: mteb/sprintduplicatequestions-pairclassification config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.83762376237624 - type: cos_sim_ap value: 96.51580702723564 - type: cos_sim_f1 value: 91.63265306122449 - type: cos_sim_precision value: 93.54166666666667 - type: cos_sim_recall value: 89.8 - type: dot_accuracy value: 99.73663366336633 - type: dot_ap value: 93.5764284433306 - type: dot_f1 value: 86.56565656565655 - type: dot_precision value: 87.44897959183675 - type: dot_recall value: 85.7 - type: euclidean_accuracy value: 99.84059405940594 - type: euclidean_ap value: 96.4738308210008 - type: euclidean_f1 value: 91.76470588235294 - type: euclidean_precision value: 93.92670157068062 - type: euclidean_recall value: 89.7 - type: manhattan_accuracy value: 99.84356435643565 - type: manhattan_ap value: 96.58366196890644 - type: manhattan_f1 value: 91.93054136874362 - type: manhattan_precision value: 93.94572025052193 - type: manhattan_recall value: 90.0 - type: max_accuracy value: 99.84356435643565 - type: max_ap value: 96.58366196890644 - type: max_f1 value: 91.93054136874362 - task: type: Clustering dataset: name: MTEB StackExchangeClustering type: mteb/stackexchange-clustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 71.3538865724681 - type: v_measures value: - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - 0.7491029730754422 - 0.6679041279132695 - 0.6706416821131351 - 0.7400759063631245 - 0.7205282507088282 - 0.7207474445915961 - 0.7076023322461216 - 0.7919544039062477 - 0.697356950041273 - 0.7155185617564064 - 0.8170975778555782 - 0.7758530037956233 - 0.7557716341966847 - 0.7418030161151182 - 0.6544532124169519 - 0.7116665112917787 - 0.6779566961395338 - 0.6721164638120183 - 0.6901024025391699 - 0.6457684359608986 - 0.7074519871138994 - 0.7296079088233842 - 0.7023239980988409 - 0.6900078050266639 - 0.6850583572154368 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P type: mteb/stackexchange-clustering-p2p config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 36.11009155563876 - type: v_measures value: - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - 0.35242637090556483 - 0.34198478937626525 - 0.3480143704468013 - 0.3432433824651389 - 0.34581837944580823 - 0.38852793624316134 - 0.3664105091244259 - 0.3798083138774721 - 0.37268279094517115 - 0.37209231273406684 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions type: mteb/stackoverflowdupquestions-reranking config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 55.54551767207771 - type: mrr value: 56.55926385705797 - task: type: Summarization dataset: name: MTEB SummEval type: mteb/summeval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.805678984951985 - type: cos_sim_spearman value: 30.827574116605362 - type: dot_pearson value: 29.899814768586204 - type: dot_spearman value: 29.588760095881174 - task: type: Retrieval dataset: name: MTEB TRECCOVID type: mteb/trec-covid config: default split: test revision: bb9466bac8153a0349341eb1b22e06409e78ef4e metrics: - type: map_at_1 value: 0.22200000000000003 - type: map_at_10 value: 2.046 - type: map_at_100 value: 2.046 - type: map_at_1000 value: 2.046 - type: map_at_20 value: 2.046 - type: map_at_3 value: 0.661 - type: map_at_5 value: 1.057 - type: mrr_at_1 value: 84.0 - type: mrr_at_10 value: 91.333 - type: mrr_at_100 value: 91.333 - type: mrr_at_1000 value: 91.333 - type: mrr_at_20 value: 91.333 - type: mrr_at_3 value: 91.0 - type: mrr_at_5 value: 91.0 - type: ndcg_at_1 value: 80.0 - type: ndcg_at_10 value: 80.74900000000001 - type: ndcg_at_100 value: 17.761 - type: ndcg_at_1000 value: 7.5920000000000005 - type: ndcg_at_20 value: 52.113 - type: ndcg_at_3 value: 83.542 - type: ndcg_at_5 value: 82.151 - type: precision_at_1 value: 84.0 - type: precision_at_10 value: 84.6 - type: precision_at_100 value: 8.459999999999999 - type: precision_at_1000 value: 0.8460000000000001 - type: precision_at_20 value: 42.3 - type: precision_at_3 value: 88.0 - type: precision_at_5 value: 86.0 - type: recall_at_1 value: 0.22200000000000003 - type: recall_at_10 value: 2.235 - type: recall_at_100 value: 2.235 - type: recall_at_1000 value: 2.235 - type: recall_at_20 value: 2.235 - type: recall_at_3 value: 0.695 - type: recall_at_5 value: 1.121 - task: type: Retrieval dataset: name: MTEB Touche2020 type: mteb/touche2020 config: default split: test revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f metrics: - type: map_at_1 value: 3.2750000000000004 - type: map_at_10 value: 10.514 - type: map_at_100 value: 10.514 - type: map_at_1000 value: 10.514 - type: map_at_20 value: 10.514 - type: map_at_3 value: 5.662 - type: map_at_5 value: 7.808 - type: mrr_at_1 value: 40.816 - type: mrr_at_10 value: 49.88 - type: mrr_at_100 value: 49.88 - type: mrr_at_1000 value: 49.88 - type: mrr_at_20 value: 49.88 - type: mrr_at_3 value: 46.259 - type: mrr_at_5 value: 47.585 - type: ndcg_at_1 value: 37.755 - type: ndcg_at_10 value: 25.237 - type: ndcg_at_100 value: 21.149 - type: ndcg_at_1000 value: 21.149 - type: ndcg_at_20 value: 21.401999999999997 - type: ndcg_at_3 value: 27.465 - type: ndcg_at_5 value: 26.169999999999998 - type: precision_at_1 value: 40.816 - type: precision_at_10 value: 21.224 - type: precision_at_100 value: 2.122 - type: precision_at_1000 value: 0.212 - type: precision_at_20 value: 10.612 - type: precision_at_3 value: 26.531 - type: precision_at_5 value: 24.490000000000002 - type: recall_at_1 value: 3.2750000000000004 - type: recall_at_10 value: 16.264 - type: recall_at_100 value: 16.264 - type: recall_at_1000 value: 16.264 - type: recall_at_20 value: 16.264 - type: recall_at_3 value: 6.265999999999999 - type: recall_at_5 value: 9.677 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification type: mteb/toxic_conversations_50k config: default split: test revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de metrics: - type: accuracy value: 66.181640625 - type: ap value: 12.61343083198892 - type: f1 value: 51.12214559856414 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification type: mteb/tweet_sentiment_extraction config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 62.543859649122815 - type: f1 value: 62.742315191046295 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering type: mteb/twentynewsgroups-clustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 54.7799424517948 - type: v_measures value: - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - 0.550822270643678 - 0.5550309505411892 - 0.5374116804548088 - 0.530806408291854 - 0.5520216200733947 - 0.5723223656123475 - 0.5487505833189581 - 0.5496668776225391 - 0.5230606424471813 - 0.5581008461735308 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 type: mteb/twittersemeval2015-pairclassification config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 88.24581271979496 - type: cos_sim_ap value: 81.34631603712425 - type: cos_sim_f1 value: 73.6588459099556 - type: cos_sim_precision value: 70.91575091575092 - type: cos_sim_recall value: 76.62269129287598 - type: dot_accuracy value: 86.33247898909221 - type: dot_ap value: 74.8713850965631 - type: dot_f1 value: 69.68152866242038 - type: dot_precision value: 67.36453201970444 - type: dot_recall value: 72.16358839050132 - type: euclidean_accuracy value: 88.37098408535495 - type: euclidean_ap value: 81.3880827682646 - type: euclidean_f1 value: 73.69367056104764 - type: euclidean_precision value: 71.76794198549638 - type: euclidean_recall value: 75.72559366754618 - type: manhattan_accuracy value: 88.28157596709781 - type: manhattan_ap value: 81.11568493905267 - type: manhattan_f1 value: 73.38364779874215 - type: manhattan_precision value: 70.1201923076923 - type: manhattan_recall value: 76.96569920844327 - type: max_accuracy value: 88.37098408535495 - type: max_ap value: 81.3880827682646 - type: max_f1 value: 73.69367056104764 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus type: mteb/twitterurlcorpus-pairclassification config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 89.54476656188147 - type: cos_sim_ap value: 86.93964282285746 - type: cos_sim_f1 value: 79.50401702190103 - type: cos_sim_precision value: 75.93020811435778 - type: cos_sim_recall value: 83.43085925469664 - type: dot_accuracy value: 88.64050917840649 - type: dot_ap value: 84.81007248888473 - type: dot_f1 value: 77.95706670508572 - type: dot_precision value: 73.24038982133189 - type: dot_recall value: 83.32306744687403 - type: euclidean_accuracy value: 89.53894516241705 - type: euclidean_ap value: 86.92299719471643 - type: euclidean_f1 value: 79.55922060862585 - type: euclidean_precision value: 75.61381606325426 - type: euclidean_recall value: 83.93902063443178 - type: manhattan_accuracy value: 89.5234214305119 - type: manhattan_ap value: 86.93261273512803 - type: manhattan_f1 value: 79.54703705061019 - type: manhattan_precision value: 75.90041261626688 - type: manhattan_recall value: 83.56174930705266 - type: max_accuracy value: 89.54476656188147 - type: max_ap value: 86.93964282285746 - type: max_f1 value: 79.55922060862585 --- Details to run in https://github.com/raghavlite/TDTE
[ "SUMMARIZATION" ]
[ "BIOSSES", "SCIFACT" ]
BioNLP
Details to run in https://github.com/raghavlite/TDTE
{"tags": ["mteb"], "model-index": [{"name": "0523_mistralv2_sum3echo512_bbcc_8_16_16", "results": [{"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonCounterfactualClassification (en)", "type": "mteb/amazon_counterfactual", "config": "en", "split": "test", "revision": "e8379541af4e31359cca9fbcf4b00f2671dba205"}, "metrics": [{"type": "accuracy", "value": 79.65671641791045}, {"type": "ap", "value": 44.24063991266868}, {"type": "f1", "value": 73.91766997954294}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonPolarityClassification", "type": "mteb/amazon_polarity", "config": "default", "split": "test", "revision": "e2d317d38cd51312af73b3d32a06d1a08b442046"}, "metrics": [{"type": "accuracy", "value": 94.480125}, {"type": "ap", "value": 92.21829806116952}, {"type": "f1", "value": 94.47801150800291}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonReviewsClassification (en)", "type": "mteb/amazon_reviews_multi", "config": "en", "split": "test", "revision": "1399c76144fd37290681b995c656ef9b2e06e26d"}, "metrics": [{"type": "accuracy", "value": 48.157999999999994}, {"type": "f1", "value": 47.11858175135973}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ArguAna", "type": "mteb/arguana", "config": "default", "split": "test", "revision": "c22ab2a51041ffd869aaddef7af8d8215647e41a"}, "metrics": [{"type": "map_at_1", "value": 31.935000000000002}, {"type": "map_at_10", "value": 49.482}, {"type": "map_at_100", "value": 49.482}, {"type": "map_at_1000", "value": 49.482}, {"type": "map_at_20", "value": 49.482}, {"type": "map_at_3", "value": 44.464}, {"type": "map_at_5", "value": 47.569}, {"type": "mrr_at_1", "value": 33.001000000000005}, {"type": "mrr_at_10", "value": 49.989}, {"type": "mrr_at_100", "value": 49.989}, {"type": "mrr_at_1000", "value": 49.989}, {"type": "mrr_at_20", "value": 49.989}, {"type": "mrr_at_3", "value": 44.903}, {"type": "mrr_at_5", "value": 48.054}, {"type": "ndcg_at_1", "value": 31.935000000000002}, {"type": "ndcg_at_10", "value": 58.819}, {"type": "ndcg_at_100", "value": 58.819}, {"type": "ndcg_at_1000", "value": 58.819}, {"type": "ndcg_at_20", "value": 58.819}, {"type": "ndcg_at_3", "value": 48.620000000000005}, {"type": "ndcg_at_5", "value": 54.230000000000004}, {"type": "precision_at_1", "value": 31.935000000000002}, {"type": "precision_at_10", "value": 8.841000000000001}, {"type": "precision_at_100", "value": 0.8840000000000001}, {"type": "precision_at_1000", "value": 0.08800000000000001}, {"type": "precision_at_20", "value": 4.42}, {"type": "precision_at_3", "value": 20.223}, {"type": "precision_at_5", "value": 14.865}, {"type": "recall_at_1", "value": 31.935000000000002}, {"type": "recall_at_10", "value": 88.407}, {"type": "recall_at_100", "value": 88.407}, {"type": "recall_at_1000", "value": 88.407}, {"type": "recall_at_20", "value": 88.407}, {"type": "recall_at_3", "value": 60.669}, {"type": "recall_at_5", "value": 74.324}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringP2P", "type": "mteb/arxiv-clustering-p2p", "config": "default", "split": "test", "revision": "a122ad7f3f0291bf49cc6f4d32aa80929df69d5d"}, "metrics": [{"type": "v_measure", "value": 48.7848435754835}, {"type": "v_measures", "value": [0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714, 0.4921178407713082, 0.4900811693910433, 0.5035743243257481, 0.49769690824686913, 0.484482240428649, 0.48877156706650865, 0.4917783921004695, 0.490848646915023, 0.49292827306716547, 0.4667863103804292, 0.5663892295430093, 0.5668130433770879, 0.5621288042146693, 0.5658463909906998, 0.5669889138453401, 0.5678202745454832, 0.5686559823111067, 0.5672351018082963, 0.554891045405333, 0.5661694307954689, 0.5309350425293812, 0.2938608518329288, 0.4844129096095996, 0.4282763304977941, 0.3635291849887843, 0.2962076070268785, 0.30324674572414795, 0.24299400753636727, 0.34506718232232675, 1.0, 0.28276775680196714]}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringS2S", "type": "mteb/arxiv-clustering-s2s", "config": "default", "split": "test", "revision": "f910caf1a6075f7329cdf8c1a6135696f37dbd53"}, "metrics": [{"type": "v_measure", "value": 46.10665257880071}, {"type": "v_measures", "value": [0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363, 0.4791303592299426, 0.47312049608032497, 0.4855223164775998, 0.4571429771751102, 0.4762861002816672, 0.48218700555188587, 0.4774159340612887, 0.4706669107168955, 0.4817074105941521, 0.46122831822845595, 0.5323998509009684, 0.5366144743504581, 0.5350659892124341, 0.5348097376189661, 0.5361859305887842, 0.5401424740226736, 0.5386301513493418, 0.536195294071538, 0.5307019767098927, 0.529430500641798, 0.48993023034390504, 0.24840671183096288, 0.41882293476660615, 0.3892318610333167, 0.325751283253651, 0.24324245195504823, 0.2853604795144245, 0.23061705991870918, 0.31166614557038164, 1.0, 0.2554489333770363]}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB AskUbuntuDupQuestions", "type": "mteb/askubuntudupquestions-reranking", "config": "default", "split": "test", "revision": "2000358ca161889fa9c082cb41daa8dcfb161a54"}, "metrics": [{"type": "map", "value": 66.7285956124022}, {"type": "mrr", "value": 79.72233214615486}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB BIOSSES", "type": "mteb/biosses-sts", "config": "default", "split": "test", "revision": "d3fb88f8f02e40887cd149695127462bbcf29b4a"}, "metrics": [{"type": "cos_sim_pearson", "value": 88.73245869702066}, {"type": "cos_sim_spearman", "value": 87.28451895745819}, {"type": "euclidean_pearson", "value": 86.44569617089661}, {"type": "euclidean_spearman", "value": 86.7236628044763}, {"type": "manhattan_pearson", "value": 86.50853979799092}, {"type": "manhattan_spearman", "value": 86.75920578302187}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB Banking77Classification", "type": "mteb/banking77", "config": "default", "split": "test", "revision": "0fd18e25b25c072e09e0d92ab615fda904d66300"}, "metrics": [{"type": "accuracy", "value": 88.91233766233766}, {"type": "f1", "value": 88.86315189747688}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringP2P", "type": "mteb/biorxiv-clustering-p2p", "config": "default", "split": "test", "revision": "65b79d1d13f80053f67aca9498d9402c2d9f1f40"}, "metrics": [{"type": "v_measure", "value": 38.7850808112868}, {"type": "v_measures", "value": [0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933, 0.387862617887449, 0.38352827892371627, 0.371265066952095, 0.3774981384705982, 0.37131831220293676, 0.39149988570912153, 0.38703497665413544, 0.40930675826264357, 0.3910216974623904, 0.4081723486035933]}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringS2S", "type": "mteb/biorxiv-clustering-s2s", "config": "default", "split": "test", "revision": "258694dd0231531bc1fd9de6ceb52a0853c6d908"}, "metrics": [{"type": "v_measure", "value": 37.37318034700008}, {"type": "v_measures", "value": [0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467, 0.36845423004088185, 0.38992061254062366, 0.3717948730004672, 0.36026627188254456, 0.3669860108798917, 0.36731355824516293, 0.375291529012098, 0.38550090432534534, 0.36577228218454805, 0.38601776258844467]}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackAndroidRetrieval", "type": "mteb/cqadupstack-android", "config": "default", "split": "test", "revision": "f46a197baaae43b4f621051089b82a364682dfeb"}, "metrics": [{"type": "map_at_1", "value": 39.232}, {"type": "map_at_10", "value": 53.04299999999999}, {"type": "map_at_100", "value": 53.04299999999999}, {"type": "map_at_1000", "value": 53.04299999999999}, {"type": "map_at_20", "value": 53.04299999999999}, {"type": "map_at_3", "value": 48.588}, {"type": "map_at_5", "value": 51.17699999999999}, {"type": "mrr_at_1", "value": 49.356}, {"type": "mrr_at_10", "value": 59.550000000000004}, {"type": "mrr_at_100", "value": 59.550000000000004}, {"type": "mrr_at_1000", "value": 59.550000000000004}, {"type": "mrr_at_20", "value": 59.550000000000004}, {"type": "mrr_at_3", "value": 56.986000000000004}, {"type": "mrr_at_5", "value": 58.638999999999996}, {"type": "ndcg_at_1", "value": 49.356}, {"type": "ndcg_at_10", "value": 60.156}, {"type": "ndcg_at_100", "value": 59.714999999999996}, {"type": "ndcg_at_1000", "value": 59.699000000000005}, {"type": "ndcg_at_20", "value": 59.831}, {"type": "ndcg_at_3", "value": 54.75299999999999}, {"type": "ndcg_at_5", "value": 57.443999999999996}, {"type": "precision_at_1", "value": 49.356}, {"type": "precision_at_10", "value": 11.86}, {"type": "precision_at_100", "value": 1.1860000000000002}, {"type": "precision_at_1000", "value": 0.11900000000000001}, {"type": "precision_at_20", "value": 5.93}, {"type": "precision_at_3", "value": 26.895999999999997}, {"type": "precision_at_5", "value": 19.570999999999998}, {"type": "recall_at_1", "value": 39.232}, {"type": "recall_at_10", "value": 72.98400000000001}, {"type": "recall_at_100", "value": 72.98400000000001}, {"type": "recall_at_1000", "value": 72.98400000000001}, {"type": "recall_at_20", "value": 72.98400000000001}, {"type": "recall_at_3", "value": 56.213}, {"type": "recall_at_5", "value": 64.318}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackEnglishRetrieval", "type": "mteb/cqadupstack-english", "config": "default", "split": "test", "revision": "ad9991cb51e31e31e430383c75ffb2885547b5f0"}, "metrics": [{"type": "map_at_1", "value": 37.157000000000004}, {"type": "map_at_10", "value": 49.512}, {"type": "map_at_100", "value": 49.512}, {"type": "map_at_1000", "value": 49.512}, {"type": "map_at_20", "value": 49.512}, {"type": "map_at_3", "value": 46.099000000000004}, {"type": "map_at_5", "value": 48.061}, {"type": "mrr_at_1", "value": 47.516000000000005}, {"type": "mrr_at_10", "value": 55.803999999999995}, {"type": "mrr_at_100", "value": 55.803999999999995}, {"type": "mrr_at_1000", "value": 55.803999999999995}, {"type": "mrr_at_20", "value": 55.803999999999995}, {"type": "mrr_at_3", "value": 53.885000000000005}, {"type": "mrr_at_5", "value": 54.967999999999996}, {"type": "ndcg_at_1", "value": 47.516000000000005}, {"type": "ndcg_at_10", "value": 55.386}, {"type": "ndcg_at_100", "value": 54.952}, {"type": "ndcg_at_1000", "value": 54.952}, {"type": "ndcg_at_20", "value": 55.07300000000001}, {"type": "ndcg_at_3", "value": 51.458000000000006}, {"type": "ndcg_at_5", "value": 53.189}, {"type": "precision_at_1", "value": 47.516000000000005}, {"type": "precision_at_10", "value": 10.567}, {"type": "precision_at_100", "value": 1.057}, {"type": "precision_at_1000", "value": 0.106}, {"type": "precision_at_20", "value": 5.283}, {"type": "precision_at_3", "value": 25.393}, {"type": "precision_at_5", "value": 17.656}, {"type": "recall_at_1", "value": 37.157000000000004}, {"type": "recall_at_10", "value": 65.026}, {"type": "recall_at_100", "value": 65.026}, {"type": "recall_at_1000", "value": 65.026}, {"type": "recall_at_20", "value": 65.026}, {"type": "recall_at_3", "value": 52.36300000000001}, {"type": "recall_at_5", "value": 57.989999999999995}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackGamingRetrieval", "type": "mteb/cqadupstack-gaming", "config": "default", "split": "test", "revision": "4885aa143210c98657558c04aaf3dc47cfb54340"}, "metrics": [{"type": "map_at_1", "value": 48.522999999999996}, {"type": "map_at_10", "value": 62.844}, {"type": "map_at_100", "value": 62.844}, {"type": "map_at_1000", "value": 62.844}, {"type": "map_at_20", "value": 62.844}, {"type": "map_at_3", "value": 59.150999999999996}, {"type": "map_at_5", "value": 61.403}, {"type": "mrr_at_1", "value": 55.925000000000004}, {"type": "mrr_at_10", "value": 66.113}, {"type": "mrr_at_100", "value": 66.113}, {"type": "mrr_at_1000", "value": 66.113}, {"type": "mrr_at_20", "value": 66.113}, {"type": "mrr_at_3", "value": 63.783}, {"type": "mrr_at_5", "value": 65.212}, {"type": "ndcg_at_1", "value": 55.925000000000004}, {"type": "ndcg_at_10", "value": 68.869}, {"type": "ndcg_at_100", "value": 68.774}, {"type": "ndcg_at_1000", "value": 68.774}, {"type": "ndcg_at_20", "value": 68.777}, {"type": "ndcg_at_3", "value": 63.31400000000001}, {"type": "ndcg_at_5", "value": 66.247}, {"type": "precision_at_1", "value": 55.925000000000004}, {"type": "precision_at_10", "value": 10.997}, {"type": "precision_at_100", "value": 1.0999999999999999}, {"type": "precision_at_1000", "value": 0.11}, {"type": "precision_at_20", "value": 5.498}, {"type": "precision_at_3", "value": 28.359}, {"type": "precision_at_5", "value": 19.386}, {"type": "recall_at_1", "value": 48.522999999999996}, {"type": "recall_at_10", "value": 83.045}, {"type": "recall_at_100", "value": 83.045}, {"type": "recall_at_1000", "value": 83.045}, {"type": "recall_at_20", "value": 83.045}, {"type": "recall_at_3", "value": 68.449}, {"type": "recall_at_5", "value": 75.62100000000001}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackGisRetrieval", "type": "mteb/cqadupstack-gis", "config": "default", "split": "test", "revision": "5003b3064772da1887988e05400cf3806fe491f2"}, "metrics": [{"type": "map_at_1", "value": 30.726}, {"type": "map_at_10", "value": 40.433}, {"type": "map_at_100", "value": 40.433}, {"type": "map_at_1000", "value": 40.433}, {"type": "map_at_20", "value": 40.433}, {"type": "map_at_3", "value": 37.135}, {"type": "map_at_5", "value": 39.17}, {"type": "mrr_at_1", "value": 33.672000000000004}, {"type": "mrr_at_10", "value": 42.836}, {"type": "mrr_at_100", "value": 42.836}, {"type": "mrr_at_1000", "value": 42.836}, {"type": "mrr_at_20", "value": 42.836}, {"type": "mrr_at_3", "value": 39.755}, {"type": "mrr_at_5", "value": 41.631}, {"type": "ndcg_at_1", "value": 33.672000000000004}, {"type": "ndcg_at_10", "value": 46.092}, {"type": "ndcg_at_100", "value": 46.092}, {"type": "ndcg_at_1000", "value": 46.092}, {"type": "ndcg_at_20", "value": 46.092}, {"type": "ndcg_at_3", "value": 39.797}, {"type": "ndcg_at_5", "value": 43.171}, {"type": "precision_at_1", "value": 33.672000000000004}, {"type": "precision_at_10", "value": 7.073}, {"type": "precision_at_100", "value": 0.707}, {"type": "precision_at_1000", "value": 0.07100000000000001}, {"type": "precision_at_20", "value": 3.537}, {"type": "precision_at_3", "value": 16.648}, {"type": "precision_at_5", "value": 11.91}, {"type": "recall_at_1", "value": 30.726}, {"type": "recall_at_10", "value": 61.24000000000001}, {"type": "recall_at_100", "value": 61.24000000000001}, {"type": "recall_at_1000", "value": 61.24000000000001}, {"type": "recall_at_20", "value": 61.24000000000001}, {"type": "recall_at_3", "value": 44.557}, {"type": "recall_at_5", "value": 52.608999999999995}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackMathematicaRetrieval", "type": "mteb/cqadupstack-mathematica", "config": "default", "split": "test", "revision": "90fceea13679c63fe563ded68f3b6f06e50061de"}, "metrics": [{"type": "map_at_1", "value": 21.554000000000002}, {"type": "map_at_10", "value": 31.508000000000003}, {"type": "map_at_100", "value": 31.508000000000003}, {"type": "map_at_1000", "value": 31.508000000000003}, {"type": "map_at_20", "value": 31.508000000000003}, {"type": "map_at_3", "value": 28.225}, {"type": "map_at_5", "value": 30.043}, {"type": "mrr_at_1", "value": 27.114}, {"type": "mrr_at_10", "value": 36.631}, {"type": "mrr_at_100", "value": 36.631}, {"type": "mrr_at_1000", "value": 36.631}, {"type": "mrr_at_20", "value": 36.631}, {"type": "mrr_at_3", "value": 34.059}, {"type": "mrr_at_5", "value": 35.601}, {"type": "ndcg_at_1", "value": 27.114}, {"type": "ndcg_at_10", "value": 37.592999999999996}, {"type": "ndcg_at_100", "value": 37.588}, {"type": "ndcg_at_1000", "value": 37.588}, {"type": "ndcg_at_20", "value": 37.588}, {"type": "ndcg_at_3", "value": 32.038}, {"type": "ndcg_at_5", "value": 34.689}, {"type": "precision_at_1", "value": 27.114}, {"type": "precision_at_10", "value": 7.090000000000001}, {"type": "precision_at_100", "value": 0.709}, {"type": "precision_at_1000", "value": 0.07100000000000001}, {"type": "precision_at_20", "value": 3.5450000000000004}, {"type": "precision_at_3", "value": 15.506}, {"type": "precision_at_5", "value": 11.393}, {"type": "recall_at_1", "value": 21.554000000000002}, {"type": "recall_at_10", "value": 50.879}, {"type": "recall_at_100", "value": 50.879}, {"type": "recall_at_1000", "value": 50.879}, {"type": "recall_at_20", "value": 50.879}, {"type": "recall_at_3", "value": 35.827999999999996}, {"type": "recall_at_5", "value": 42.476}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackPhysicsRetrieval", "type": "mteb/cqadupstack-physics", "config": "default", "split": "test", "revision": "79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4"}, "metrics": [{"type": "map_at_1", "value": 35.36}, {"type": "map_at_10", "value": 48.483}, {"type": "map_at_100", "value": 48.483}, {"type": "map_at_1000", "value": 48.483}, {"type": "map_at_20", "value": 48.483}, {"type": "map_at_3", "value": 44.639}, {"type": "map_at_5", "value": 46.698}, {"type": "mrr_at_1", "value": 43.985}, {"type": "mrr_at_10", "value": 54.039}, {"type": "mrr_at_100", "value": 54.039}, {"type": "mrr_at_1000", "value": 54.039}, {"type": "mrr_at_20", "value": 54.039}, {"type": "mrr_at_3", "value": 51.54}, {"type": "mrr_at_5", "value": 52.859}, {"type": "ndcg_at_1", "value": 43.985}, {"type": "ndcg_at_10", "value": 55.069}, {"type": "ndcg_at_100", "value": 54.967}, {"type": "ndcg_at_1000", "value": 54.967}, {"type": "ndcg_at_20", "value": 54.996}, {"type": "ndcg_at_3", "value": 49.544}, {"type": "ndcg_at_5", "value": 51.932}, {"type": "precision_at_1", "value": 43.985}, {"type": "precision_at_10", "value": 10.202}, {"type": "precision_at_100", "value": 1.02}, {"type": "precision_at_1000", "value": 0.10200000000000001}, {"type": "precision_at_20", "value": 5.101}, {"type": "precision_at_3", "value": 23.933}, {"type": "precision_at_5", "value": 16.901}, {"type": "recall_at_1", "value": 35.36}, {"type": "recall_at_10", "value": 68.806}, {"type": "recall_at_100", "value": 68.806}, {"type": "recall_at_1000", "value": 68.806}, {"type": "recall_at_20", "value": 68.806}, {"type": "recall_at_3", "value": 52.714000000000006}, {"type": "recall_at_5", "value": 59.168}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackProgrammersRetrieval", "type": "mteb/cqadupstack-programmers", "config": "default", "split": "test", "revision": "6184bc1440d2dbc7612be22b50686b8826d22b32"}, "metrics": [{"type": "map_at_1", "value": 32.431}, {"type": "map_at_10", "value": 45.421}, {"type": "map_at_100", "value": 45.421}, {"type": "map_at_1000", "value": 45.421}, {"type": "map_at_20", "value": 45.421}, {"type": "map_at_3", "value": 41.82}, {"type": "map_at_5", "value": 43.692}, {"type": "mrr_at_1", "value": 41.096}, {"type": "mrr_at_10", "value": 51.293}, {"type": "mrr_at_100", "value": 51.293}, {"type": "mrr_at_1000", "value": 51.293}, {"type": "mrr_at_20", "value": 51.293}, {"type": "mrr_at_3", "value": 49.049}, {"type": "mrr_at_5", "value": 50.327}, {"type": "ndcg_at_1", "value": 41.096}, {"type": "ndcg_at_10", "value": 52.032999999999994}, {"type": "ndcg_at_100", "value": 51.903}, {"type": "ndcg_at_1000", "value": 51.897999999999996}, {"type": "ndcg_at_20", "value": 51.942}, {"type": "ndcg_at_3", "value": 47.024}, {"type": "ndcg_at_5", "value": 49.071}, {"type": "precision_at_1", "value": 41.096}, {"type": "precision_at_10", "value": 9.725999999999999}, {"type": "precision_at_100", "value": 0.9730000000000001}, {"type": "precision_at_1000", "value": 0.097}, {"type": "precision_at_20", "value": 4.8629999999999995}, {"type": "precision_at_3", "value": 23.097}, {"type": "precision_at_5", "value": 16.096}, {"type": "recall_at_1", "value": 32.431}, {"type": "recall_at_10", "value": 65.42999999999999}, {"type": "recall_at_100", "value": 65.42999999999999}, {"type": "recall_at_1000", "value": 65.42999999999999}, {"type": "recall_at_20", "value": 65.42999999999999}, {"type": "recall_at_3", "value": 50.856}, {"type": "recall_at_5", "value": 56.846}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackRetrieval", "type": "mteb/cqadupstack", "config": "default", "split": "test", "revision": "ad9991cb51e31e31e430383c75ffb2885547b5f0"}, "metrics": [{"type": "map_at_1", "value": 32.074749999999995}, {"type": "map_at_10", "value": 43.474}, {"type": "map_at_100", "value": 43.474}, {"type": "map_at_1000", "value": 43.474}, {"type": "map_at_20", "value": 43.474}, {"type": "map_at_3", "value": 40.10458333333333}, {"type": "map_at_5", "value": 42.010749999999994}, {"type": "mrr_at_1", "value": 38.60425}, {"type": "mrr_at_10", "value": 48.05550000000001}, {"type": "mrr_at_100", "value": 48.05550000000001}, {"type": "mrr_at_1000", "value": 48.05550000000001}, {"type": "mrr_at_20", "value": 48.05550000000001}, {"type": "mrr_at_3", "value": 45.58083333333334}, {"type": "mrr_at_5", "value": 47.04750000000001}, {"type": "ndcg_at_1", "value": 38.60425}, {"type": "ndcg_at_10", "value": 49.51958333333334}, {"type": "ndcg_at_100", "value": 49.3385}, {"type": "ndcg_at_1000", "value": 49.33491666666667}, {"type": "ndcg_at_20", "value": 49.393}, {"type": "ndcg_at_3", "value": 44.32699999999999}, {"type": "ndcg_at_5", "value": 46.81008333333333}, {"type": "precision_at_1", "value": 38.60425}, {"type": "precision_at_10", "value": 8.800666666666668}, {"type": "precision_at_100", "value": 0.8800833333333334}, {"type": "precision_at_1000", "value": 0.08808333333333335}, {"type": "precision_at_20", "value": 4.400333333333334}, {"type": "precision_at_3", "value": 20.723166666666664}, {"type": "precision_at_5", "value": 14.65683333333333}, {"type": "recall_at_1", "value": 32.074749999999995}, {"type": "recall_at_10", "value": 62.5025}, {"type": "recall_at_100", "value": 62.5025}, {"type": "recall_at_1000", "value": 62.5025}, {"type": "recall_at_20", "value": 62.5025}, {"type": "recall_at_3", "value": 47.81091666666667}, {"type": "recall_at_5", "value": 54.38974999999999}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackStatsRetrieval", "type": "mteb/cqadupstack-stats", "config": "default", "split": "test", "revision": "65ac3a16b8e91f9cee4c9828cc7c335575432a2a"}, "metrics": [{"type": "map_at_1", "value": 28.758}, {"type": "map_at_10", "value": 37.633}, {"type": "map_at_100", "value": 37.633}, {"type": "map_at_1000", "value": 37.633}, {"type": "map_at_20", "value": 37.633}, {"type": "map_at_3", "value": 34.865}, {"type": "map_at_5", "value": 36.437999999999995}, {"type": "mrr_at_1", "value": 32.208999999999996}, {"type": "mrr_at_10", "value": 40.598}, {"type": "mrr_at_100", "value": 40.598}, {"type": "mrr_at_1000", "value": 40.598}, {"type": "mrr_at_20", "value": 40.598}, {"type": "mrr_at_3", "value": 37.935}, {"type": "mrr_at_5", "value": 39.476}, {"type": "ndcg_at_1", "value": 32.208999999999996}, {"type": "ndcg_at_10", "value": 42.798}, {"type": "ndcg_at_100", "value": 42.768}, {"type": "ndcg_at_1000", "value": 42.768}, {"type": "ndcg_at_20", "value": 42.768}, {"type": "ndcg_at_3", "value": 37.651}, {"type": "ndcg_at_5", "value": 40.172999999999995}, {"type": "precision_at_1", "value": 32.208999999999996}, {"type": "precision_at_10", "value": 6.84}, {"type": "precision_at_100", "value": 0.6839999999999999}, {"type": "precision_at_1000", "value": 0.068}, {"type": "precision_at_20", "value": 3.42}, {"type": "precision_at_3", "value": 16.258}, {"type": "precision_at_5", "value": 11.472}, {"type": "recall_at_1", "value": 28.758}, {"type": "recall_at_10", "value": 55.55799999999999}, {"type": "recall_at_100", "value": 55.55799999999999}, {"type": "recall_at_1000", "value": 55.55799999999999}, {"type": "recall_at_20", "value": 55.55799999999999}, {"type": "recall_at_3", "value": 41.488}, {"type": "recall_at_5", "value": 47.659}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackTexRetrieval", "type": "mteb/cqadupstack-tex", "config": "default", "split": "test", "revision": "46989137a86843e03a6195de44b09deda022eec7"}, "metrics": [{"type": "map_at_1", "value": 21.088}, {"type": "map_at_10", "value": 30.297}, {"type": "map_at_100", "value": 30.297}, {"type": "map_at_1000", "value": 30.297}, {"type": "map_at_20", "value": 30.297}, {"type": "map_at_3", "value": 27.376}, {"type": "map_at_5", "value": 29.064}, {"type": "mrr_at_1", "value": 26.358999999999998}, {"type": "mrr_at_10", "value": 34.996}, {"type": "mrr_at_100", "value": 34.996}, {"type": "mrr_at_1000", "value": 34.996}, {"type": "mrr_at_20", "value": 34.996}, {"type": "mrr_at_3", "value": 32.467}, {"type": "mrr_at_5", "value": 33.944}, {"type": "ndcg_at_1", "value": 26.358999999999998}, {"type": "ndcg_at_10", "value": 35.851}, {"type": "ndcg_at_100", "value": 35.731}, {"type": "ndcg_at_1000", "value": 35.729}, {"type": "ndcg_at_20", "value": 35.77}, {"type": "ndcg_at_3", "value": 30.97}, {"type": "ndcg_at_5", "value": 33.312000000000005}, {"type": "precision_at_1", "value": 26.358999999999998}, {"type": "precision_at_10", "value": 6.641}, {"type": "precision_at_100", "value": 0.664}, {"type": "precision_at_1000", "value": 0.066}, {"type": "precision_at_20", "value": 3.321}, {"type": "precision_at_3", "value": 14.923}, {"type": "precision_at_5", "value": 10.86}, {"type": "recall_at_1", "value": 21.088}, {"type": "recall_at_10", "value": 47.818}, {"type": "recall_at_100", "value": 47.818}, {"type": "recall_at_1000", "value": 47.818}, {"type": "recall_at_20", "value": 47.818}, {"type": "recall_at_3", "value": 33.815}, {"type": "recall_at_5", "value": 39.973}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackUnixRetrieval", "type": "mteb/cqadupstack-unix", "config": "default", "split": "test", "revision": "6c6430d3a6d36f8d2a829195bc5dc94d7e063e53"}, "metrics": [{"type": "map_at_1", "value": 33.579}, {"type": "map_at_10", "value": 44.875}, {"type": "map_at_100", "value": 44.875}, {"type": "map_at_1000", "value": 44.875}, {"type": "map_at_20", "value": 44.875}, {"type": "map_at_3", "value": 41.64}, {"type": "map_at_5", "value": 43.433}, {"type": "mrr_at_1", "value": 40.111999999999995}, {"type": "mrr_at_10", "value": 49.586999999999996}, {"type": "mrr_at_100", "value": 49.586999999999996}, {"type": "mrr_at_1000", "value": 49.586999999999996}, {"type": "mrr_at_20", "value": 49.586999999999996}, {"type": "mrr_at_3", "value": 47.233000000000004}, {"type": "mrr_at_5", "value": 48.613}, {"type": "ndcg_at_1", "value": 40.111999999999995}, {"type": "ndcg_at_10", "value": 50.836000000000006}, {"type": "ndcg_at_100", "value": 50.822}, {"type": "ndcg_at_1000", "value": 50.822}, {"type": "ndcg_at_20", "value": 50.822}, {"type": "ndcg_at_3", "value": 45.737}, {"type": "ndcg_at_5", "value": 48.081}, {"type": "precision_at_1", "value": 40.111999999999995}, {"type": "precision_at_10", "value": 8.674999999999999}, {"type": "precision_at_100", "value": 0.868}, {"type": "precision_at_1000", "value": 0.087}, {"type": "precision_at_20", "value": 4.338}, {"type": "precision_at_3", "value": 21.02}, {"type": "precision_at_5", "value": 14.682999999999998}, {"type": "recall_at_1", "value": 33.579}, {"type": "recall_at_10", "value": 64.02600000000001}, {"type": "recall_at_100", "value": 64.02600000000001}, {"type": "recall_at_1000", "value": 64.02600000000001}, {"type": "recall_at_20", "value": 64.02600000000001}, {"type": "recall_at_3", "value": 49.788}, {"type": "recall_at_5", "value": 55.931}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackWebmastersRetrieval", "type": "mteb/cqadupstack-webmasters", "config": "default", "split": "test", "revision": "160c094312a0e1facb97e55eeddb698c0abe3571"}, "metrics": [{"type": "map_at_1", "value": 31.497999999999998}, {"type": "map_at_10", "value": 43.456}, {"type": "map_at_100", "value": 43.456}, {"type": "map_at_1000", "value": 43.456}, {"type": "map_at_20", "value": 43.456}, {"type": "map_at_3", "value": 40.125}, {"type": "map_at_5", "value": 41.829}, {"type": "mrr_at_1", "value": 38.735}, {"type": "mrr_at_10", "value": 48.756}, {"type": "mrr_at_100", "value": 48.756}, {"type": "mrr_at_1000", "value": 48.756}, {"type": "mrr_at_20", "value": 48.756}, {"type": "mrr_at_3", "value": 46.113}, {"type": "mrr_at_5", "value": 47.684}, {"type": "ndcg_at_1", "value": 38.735}, {"type": "ndcg_at_10", "value": 50.241}, {"type": "ndcg_at_100", "value": 49.458}, {"type": "ndcg_at_1000", "value": 49.437999999999995}, {"type": "ndcg_at_20", "value": 49.756}, {"type": "ndcg_at_3", "value": 45.14}, {"type": "ndcg_at_5", "value": 47.406}, {"type": "precision_at_1", "value": 38.735}, {"type": "precision_at_10", "value": 9.763}, {"type": "precision_at_100", "value": 0.976}, {"type": "precision_at_1000", "value": 0.098}, {"type": "precision_at_20", "value": 4.881}, {"type": "precision_at_3", "value": 21.673000000000002}, {"type": "precision_at_5", "value": 15.455}, {"type": "recall_at_1", "value": 31.497999999999998}, {"type": "recall_at_10", "value": 62.568999999999996}, {"type": "recall_at_100", "value": 62.568999999999996}, {"type": "recall_at_1000", "value": 62.568999999999996}, {"type": "recall_at_20", "value": 62.568999999999996}, {"type": "recall_at_3", "value": 47.842}, {"type": "recall_at_5", "value": 54.159}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackWordpressRetrieval", "type": "mteb/cqadupstack-wordpress", "config": "default", "split": "test", "revision": "4ffe81d471b1924886b33c7567bfb200e9eec5c4"}, "metrics": [{"type": "map_at_1", "value": 24.991}, {"type": "map_at_10", "value": 34.183}, {"type": "map_at_100", "value": 34.183}, {"type": "map_at_1000", "value": 34.183}, {"type": "map_at_20", "value": 34.183}, {"type": "map_at_3", "value": 31.592}, {"type": "map_at_5", "value": 33.121}, {"type": "mrr_at_1", "value": 27.172}, {"type": "mrr_at_10", "value": 36.463}, {"type": "mrr_at_100", "value": 36.463}, {"type": "mrr_at_1000", "value": 36.463}, {"type": "mrr_at_20", "value": 36.463}, {"type": "mrr_at_3", "value": 34.165}, {"type": "mrr_at_5", "value": 35.616}, {"type": "ndcg_at_1", "value": 27.172}, {"type": "ndcg_at_10", "value": 39.311}, {"type": "ndcg_at_100", "value": 39.292}, {"type": "ndcg_at_1000", "value": 39.292}, {"type": "ndcg_at_20", "value": 39.301}, {"type": "ndcg_at_3", "value": 34.498}, {"type": "ndcg_at_5", "value": 37.006}, {"type": "precision_at_1", "value": 27.172}, {"type": "precision_at_10", "value": 6.174}, {"type": "precision_at_100", "value": 0.617}, {"type": "precision_at_1000", "value": 0.062}, {"type": "precision_at_20", "value": 3.087}, {"type": "precision_at_3", "value": 14.972}, {"type": "precision_at_5", "value": 10.499}, {"type": "recall_at_1", "value": 24.991}, {"type": "recall_at_10", "value": 52.649}, {"type": "recall_at_100", "value": 52.649}, {"type": "recall_at_1000", "value": 52.649}, {"type": "recall_at_20", "value": 52.649}, {"type": "recall_at_3", "value": 39.818}, {"type": "recall_at_5", "value": 45.927}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ClimateFEVER", "type": "mteb/climate-fever", "config": "default", "split": "test", "revision": "47f2ac6acb640fc46020b02a5b59fdda04d39380"}, "metrics": [{"type": "map_at_1", "value": 12.475999999999999}, {"type": "map_at_10", "value": 22.999}, {"type": "map_at_100", "value": 22.999}, {"type": "map_at_1000", "value": 22.999}, {"type": "map_at_20", "value": 22.999}, {"type": "map_at_3", "value": 18.804000000000002}, {"type": "map_at_5", "value": 20.987000000000002}, {"type": "mrr_at_1", "value": 28.404}, {"type": "mrr_at_10", "value": 42.335}, {"type": "mrr_at_100", "value": 42.335}, {"type": "mrr_at_1000", "value": 42.335}, {"type": "mrr_at_20", "value": 42.335}, {"type": "mrr_at_3", "value": 39.11}, {"type": "mrr_at_5", "value": 40.953}, {"type": "ndcg_at_1", "value": 28.404}, {"type": "ndcg_at_10", "value": 32.467}, {"type": "ndcg_at_100", "value": 32.467}, {"type": "ndcg_at_1000", "value": 32.467}, {"type": "ndcg_at_20", "value": 32.467}, {"type": "ndcg_at_3", "value": 26.334999999999997}, {"type": "ndcg_at_5", "value": 28.493000000000002}, {"type": "precision_at_1", "value": 28.404}, {"type": "precision_at_10", "value": 10.43}, {"type": "precision_at_100", "value": 1.043}, {"type": "precision_at_1000", "value": 0.104}, {"type": "precision_at_20", "value": 5.215}, {"type": "precision_at_3", "value": 20.13}, {"type": "precision_at_5", "value": 15.595999999999998}, {"type": "recall_at_1", "value": 12.475999999999999}, {"type": "recall_at_10", "value": 39.757}, {"type": "recall_at_100", "value": 39.757}, {"type": "recall_at_1000", "value": 39.757}, {"type": "recall_at_20", "value": 39.757}, {"type": "recall_at_3", "value": 24.695}, {"type": "recall_at_5", "value": 30.864000000000004}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB DBPedia", "type": "mteb/dbpedia", "config": "default", "split": "test", "revision": "c0f706b76e590d620bd6618b3ca8efdd34e2d659"}, "metrics": [{"type": "map_at_1", "value": 9.261999999999999}, {"type": "map_at_10", "value": 23.807000000000002}, {"type": "map_at_100", "value": 23.807000000000002}, {"type": "map_at_1000", "value": 23.807000000000002}, {"type": "map_at_20", "value": 23.807000000000002}, {"type": "map_at_3", "value": 15.776000000000002}, {"type": "map_at_5", "value": 19.17}, {"type": "mrr_at_1", "value": 71.75}, {"type": "mrr_at_10", "value": 79.959}, {"type": "mrr_at_100", "value": 79.959}, {"type": "mrr_at_1000", "value": 79.959}, {"type": "mrr_at_20", "value": 79.959}, {"type": "mrr_at_3", "value": 78.625}, {"type": "mrr_at_5", "value": 79.412}, {"type": "ndcg_at_1", "value": 59.5}, {"type": "ndcg_at_10", "value": 48.988}, {"type": "ndcg_at_100", "value": 37.452000000000005}, {"type": "ndcg_at_1000", "value": 37.32}, {"type": "ndcg_at_20", "value": 41.387}, {"type": "ndcg_at_3", "value": 52.567}, {"type": "ndcg_at_5", "value": 50.649}, {"type": "precision_at_1", "value": 71.75}, {"type": "precision_at_10", "value": 40.425}, {"type": "precision_at_100", "value": 4.042}, {"type": "precision_at_1000", "value": 0.404}, {"type": "precision_at_20", "value": 20.212}, {"type": "precision_at_3", "value": 57.75}, {"type": "precision_at_5", "value": 50.349999999999994}, {"type": "recall_at_1", "value": 9.261999999999999}, {"type": "recall_at_10", "value": 30.329}, {"type": "recall_at_100", "value": 30.329}, {"type": "recall_at_1000", "value": 30.329}, {"type": "recall_at_20", "value": 30.329}, {"type": "recall_at_3", "value": 17.422}, {"type": "recall_at_5", "value": 22.598}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB EmotionClassification", "type": "mteb/emotion", "config": "default", "split": "test", "revision": "4f58c6b202a23cf9a4da393831edf4f9183cad37"}, "metrics": [{"type": "accuracy", "value": 52.014999999999986}, {"type": "f1", "value": 47.33036786740981}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB FEVER", "type": "mteb/fever", "config": "default", "split": "test", "revision": "bea83ef9e8fb933d90a2f1d5515737465d613e12"}, "metrics": [{"type": "map_at_1", "value": 82.00800000000001}, {"type": "map_at_10", "value": 88.02799999999999}, {"type": "map_at_100", "value": 88.02799999999999}, {"type": "map_at_1000", "value": 88.02799999999999}, {"type": "map_at_20", "value": 88.02799999999999}, {"type": "map_at_3", "value": 87.249}, {"type": "map_at_5", "value": 87.78399999999999}, {"type": "mrr_at_1", "value": 88.299}, {"type": "mrr_at_10", "value": 92.92}, {"type": "mrr_at_100", "value": 92.92}, {"type": "mrr_at_1000", "value": 92.92}, {"type": "mrr_at_20", "value": 92.92}, {"type": "mrr_at_3", "value": 92.56400000000001}, {"type": "mrr_at_5", "value": 92.83200000000001}, {"type": "ndcg_at_1", "value": 88.299}, {"type": "ndcg_at_10", "value": 90.88000000000001}, {"type": "ndcg_at_100", "value": 90.879}, {"type": "ndcg_at_1000", "value": 90.879}, {"type": "ndcg_at_20", "value": 90.879}, {"type": "ndcg_at_3", "value": 89.85499999999999}, {"type": "ndcg_at_5", "value": 90.485}, {"type": "precision_at_1", "value": 88.299}, {"type": "precision_at_10", "value": 10.522}, {"type": "precision_at_100", "value": 1.052}, {"type": "precision_at_1000", "value": 0.105}, {"type": "precision_at_20", "value": 5.261}, {"type": "precision_at_3", "value": 33.573}, {"type": "precision_at_5", "value": 20.633000000000003}, {"type": "recall_at_1", "value": 82.00800000000001}, {"type": "recall_at_10", "value": 94.952}, {"type": "recall_at_100", "value": 94.952}, {"type": "recall_at_1000", "value": 94.952}, {"type": "recall_at_20", "value": 94.952}, {"type": "recall_at_3", "value": 92.089}, {"type": "recall_at_5", "value": 93.794}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB FiQA2018", "type": "mteb/fiqa", "config": "default", "split": "test", "revision": "27a168819829fe9bcd655c2df245fb19452e8e06"}, "metrics": [{"type": "map_at_1", "value": 26.857}, {"type": "map_at_10", "value": 44.645}, {"type": "map_at_100", "value": 44.645}, {"type": "map_at_1000", "value": 44.645}, {"type": "map_at_20", "value": 44.645}, {"type": "map_at_3", "value": 38.166}, {"type": "map_at_5", "value": 41.992000000000004}, {"type": "mrr_at_1", "value": 50.309000000000005}, {"type": "mrr_at_10", "value": 59.59100000000001}, {"type": "mrr_at_100", "value": 59.59100000000001}, {"type": "mrr_at_1000", "value": 59.59100000000001}, {"type": "mrr_at_20", "value": 59.59100000000001}, {"type": "mrr_at_3", "value": 56.97}, {"type": "mrr_at_5", "value": 58.498000000000005}, {"type": "ndcg_at_1", "value": 50.309000000000005}, {"type": "ndcg_at_10", "value": 53.221}, {"type": "ndcg_at_100", "value": 53.15800000000001}, {"type": "ndcg_at_1000", "value": 53.15800000000001}, {"type": "ndcg_at_20", "value": 53.15800000000001}, {"type": "ndcg_at_3", "value": 47.506}, {"type": "ndcg_at_5", "value": 49.922}, {"type": "precision_at_1", "value": 50.309000000000005}, {"type": "precision_at_10", "value": 14.985000000000001}, {"type": "precision_at_100", "value": 1.498}, {"type": "precision_at_1000", "value": 0.15}, {"type": "precision_at_20", "value": 7.492}, {"type": "precision_at_3", "value": 31.635999999999996}, {"type": "precision_at_5", "value": 24.043}, {"type": "recall_at_1", "value": 26.857}, {"type": "recall_at_10", "value": 62.051}, {"type": "recall_at_100", "value": 62.051}, {"type": "recall_at_1000", "value": 62.051}, {"type": "recall_at_20", "value": 62.051}, {"type": "recall_at_3", "value": 42.966}, {"type": "recall_at_5", "value": 51.943}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB HotpotQA", "type": "mteb/hotpotqa", "config": "default", "split": "test", "revision": "ab518f4d6fcca38d87c25209f94beba119d02014"}, "metrics": [{"type": "map_at_1", "value": 40.891}, {"type": "map_at_10", "value": 70.431}, {"type": "map_at_100", "value": 70.431}, {"type": "map_at_1000", "value": 70.431}, {"type": "map_at_20", "value": 70.431}, {"type": "map_at_3", "value": 66.704}, {"type": "map_at_5", "value": 69.179}, {"type": "mrr_at_1", "value": 81.783}, {"type": "mrr_at_10", "value": 87.368}, {"type": "mrr_at_100", "value": 87.368}, {"type": "mrr_at_1000", "value": 87.368}, {"type": "mrr_at_20", "value": 87.368}, {"type": "mrr_at_3", "value": 86.59700000000001}, {"type": "mrr_at_5", "value": 87.128}, {"type": "ndcg_at_1", "value": 81.783}, {"type": "ndcg_at_10", "value": 77.697}, {"type": "ndcg_at_100", "value": 77.697}, {"type": "ndcg_at_1000", "value": 77.697}, {"type": "ndcg_at_20", "value": 77.697}, {"type": "ndcg_at_3", "value": 72.688}, {"type": "ndcg_at_5", "value": 75.69200000000001}, {"type": "precision_at_1", "value": 81.783}, {"type": "precision_at_10", "value": 16.488}, {"type": "precision_at_100", "value": 1.649}, {"type": "precision_at_1000", "value": 0.165}, {"type": "precision_at_20", "value": 8.244}, {"type": "precision_at_3", "value": 47.693000000000005}, {"type": "precision_at_5", "value": 30.976}, {"type": "recall_at_1", "value": 40.891}, {"type": "recall_at_10", "value": 82.438}, {"type": "recall_at_100", "value": 82.438}, {"type": "recall_at_1000", "value": 82.438}, {"type": "recall_at_20", "value": 82.438}, {"type": "recall_at_3", "value": 71.54}, {"type": "recall_at_5", "value": 77.441}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ImdbClassification", "type": "mteb/imdb", "config": "default", "split": "test", "revision": "3d86128a09e091d6018b6d26cad27f2739fc2db7"}, "metrics": [{"type": "accuracy", "value": 89.47240000000001}, {"type": "ap", "value": 85.75618304701787}, {"type": "f1", "value": 89.44156774176075}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB MSMARCO", "type": "mteb/msmarco", "config": "default", "split": "dev", "revision": "c5a29a104738b98a9e76336939199e264163d4a0"}, "metrics": [{"type": "map_at_1", "value": 19.941}, {"type": "map_at_10", "value": 33.108}, {"type": "map_at_100", "value": 33.108}, {"type": "map_at_1000", "value": 33.108}, {"type": "map_at_20", "value": 33.108}, {"type": "map_at_3", "value": 28.716}, {"type": "map_at_5", "value": 31.255}, {"type": "mrr_at_1", "value": 20.458000000000002}, {"type": "mrr_at_10", "value": 33.646}, {"type": "mrr_at_100", "value": 33.646}, {"type": "mrr_at_1000", "value": 33.646}, {"type": "mrr_at_20", "value": 33.646}, {"type": "mrr_at_3", "value": 29.360000000000003}, {"type": "mrr_at_5", "value": 31.849}, {"type": "ndcg_at_1", "value": 20.458000000000002}, {"type": "ndcg_at_10", "value": 40.664}, {"type": "ndcg_at_100", "value": 40.664}, {"type": "ndcg_at_1000", "value": 40.664}, {"type": "ndcg_at_20", "value": 40.664}, {"type": "ndcg_at_3", "value": 31.733}, {"type": "ndcg_at_5", "value": 36.266999999999996}, {"type": "precision_at_1", "value": 20.458000000000002}, {"type": "precision_at_10", "value": 6.703}, {"type": "precision_at_100", "value": 0.67}, {"type": "precision_at_1000", "value": 0.067}, {"type": "precision_at_20", "value": 3.3520000000000003}, {"type": "precision_at_3", "value": 13.777000000000001}, {"type": "precision_at_5", "value": 10.564}, {"type": "recall_at_1", "value": 19.941}, {"type": "recall_at_10", "value": 64.103}, {"type": "recall_at_100", "value": 64.103}, {"type": "recall_at_1000", "value": 64.103}, {"type": "recall_at_20", "value": 64.103}, {"type": "recall_at_3", "value": 39.800999999999995}, {"type": "recall_at_5", "value": 50.727999999999994}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPDomainClassification (en)", "type": "mteb/mtop_domain", "config": "en", "split": "test", "revision": "d80d48c1eb48d3562165c59d59d0034df9fff0bf"}, "metrics": [{"type": "accuracy", "value": 96.45690834473322}, {"type": "f1", "value": 96.19980363353172}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPIntentClassification (en)", "type": "mteb/mtop_intent", "config": "en", "split": "test", "revision": "ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba"}, "metrics": [{"type": "accuracy", "value": 85.38075695394436}, {"type": "f1", "value": 71.33409850817071}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (en)", "type": "mteb/amazon_massive_intent", "config": "en", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 80.12104909213183}, {"type": "f1", "value": 77.26691038674358}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (en)", "type": "mteb/amazon_massive_scenario", "config": "en", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 82.69670477471418}, {"type": "f1", "value": 82.31935226516424}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringP2P", "type": "mteb/medrxiv-clustering-p2p", "config": "default", "split": "test", "revision": "e7a26af6f3ae46b30dde8737f02c07b1505bcc73"}, "metrics": [{"type": "v_measure", "value": 32.733209733023}, {"type": "v_measures", "value": [0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792, 0.3268102022520237, 0.30894802212942296, 0.3267412500148118, 0.3083054819872514, 0.31284256226804597, 0.33514297956992917, 0.3297363893986241, 0.34536511251773544, 0.3498041803334763, 0.3296247928309792]}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringS2S", "type": "mteb/medrxiv-clustering-s2s", "config": "default", "split": "test", "revision": "35191c8c0dca72d8ff3efcd72aa802307d469663"}, "metrics": [{"type": "v_measure", "value": 32.325298069936835}, {"type": "v_measures", "value": [0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757, 0.3150861010517341, 0.32155893979978684, 0.3177517595474066, 0.30022420485295037, 0.3197693379138355, 0.33188657891678974, 0.3386256684441414, 0.3305481006752689, 0.3436443696432427, 0.31343474614852757]}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB MindSmallReranking", "type": "mteb/mind_small", "config": "default", "split": "test", "revision": "3bdac13927fdc888b903db93b2ffdbd90b295a69"}, "metrics": [{"type": "map", "value": 32.511595472837335}, {"type": "mrr", "value": 33.73044905745997}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB NFCorpus", "type": "mteb/nfcorpus", "config": "default", "split": "test", "revision": "ec0fa4fe99da2ff19ca1214b7966684033a58814"}, "metrics": [{"type": "map_at_1", "value": 7.0760000000000005}, {"type": "map_at_10", "value": 16.039}, {"type": "map_at_100", "value": 16.039}, {"type": "map_at_1000", "value": 16.039}, {"type": "map_at_20", "value": 16.039}, {"type": "map_at_3", "value": 11.408}, {"type": "map_at_5", "value": 13.547}, {"type": "mrr_at_1", "value": 53.559999999999995}, {"type": "mrr_at_10", "value": 61.531000000000006}, {"type": "mrr_at_100", "value": 61.531000000000006}, {"type": "mrr_at_1000", "value": 61.531000000000006}, {"type": "mrr_at_20", "value": 61.531000000000006}, {"type": "mrr_at_3", "value": 59.236}, {"type": "mrr_at_5", "value": 60.49}, {"type": "ndcg_at_1", "value": 51.083999999999996}, {"type": "ndcg_at_10", "value": 41.332}, {"type": "ndcg_at_100", "value": 27.083000000000002}, {"type": "ndcg_at_1000", "value": 26.619}, {"type": "ndcg_at_20", "value": 33.188}, {"type": "ndcg_at_3", "value": 46.605999999999995}, {"type": "ndcg_at_5", "value": 44.362}, {"type": "precision_at_1", "value": 52.941}, {"type": "precision_at_10", "value": 30.65}, {"type": "precision_at_100", "value": 3.065}, {"type": "precision_at_1000", "value": 0.307}, {"type": "precision_at_20", "value": 15.325}, {"type": "precision_at_3", "value": 43.447}, {"type": "precision_at_5", "value": 38.266}, {"type": "recall_at_1", "value": 7.0760000000000005}, {"type": "recall_at_10", "value": 20.929000000000002}, {"type": "recall_at_100", "value": 20.929000000000002}, {"type": "recall_at_1000", "value": 20.929000000000002}, {"type": "recall_at_20", "value": 20.929000000000002}, {"type": "recall_at_3", "value": 12.601}, {"type": "recall_at_5", "value": 15.955}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB NQ", "type": "mteb/nq", "config": "default", "split": "test", "revision": "b774495ed302d8c44a3a7ea25c90dbce03968f31"}, "metrics": [{"type": "map_at_1", "value": 39.204}, {"type": "map_at_10", "value": 56.808}, {"type": "map_at_100", "value": 56.808}, {"type": "map_at_1000", "value": 56.808}, {"type": "map_at_20", "value": 56.808}, {"type": "map_at_3", "value": 52.471999999999994}, {"type": "map_at_5", "value": 55.191}, {"type": "mrr_at_1", "value": 44.032}, {"type": "mrr_at_10", "value": 59.158}, {"type": "mrr_at_100", "value": 59.158}, {"type": "mrr_at_1000", "value": 59.158}, {"type": "mrr_at_20", "value": 59.158}, {"type": "mrr_at_3", "value": 55.948}, {"type": "mrr_at_5", "value": 57.96}, {"type": "ndcg_at_1", "value": 44.032}, {"type": "ndcg_at_10", "value": 64.672}, {"type": "ndcg_at_100", "value": 64.672}, {"type": "ndcg_at_1000", "value": 64.672}, {"type": "ndcg_at_20", "value": 64.672}, {"type": "ndcg_at_3", "value": 56.955999999999996}, {"type": "ndcg_at_5", "value": 61.278999999999996}, {"type": "precision_at_1", "value": 44.032}, {"type": "precision_at_10", "value": 10.295}, {"type": "precision_at_100", "value": 1.03}, {"type": "precision_at_1000", "value": 0.10300000000000001}, {"type": "precision_at_20", "value": 5.148}, {"type": "precision_at_3", "value": 25.83}, {"type": "precision_at_5", "value": 18.053}, {"type": "recall_at_1", "value": 39.204}, {"type": "recall_at_10", "value": 85.936}, {"type": "recall_at_100", "value": 85.936}, {"type": "recall_at_1000", "value": 85.936}, {"type": "recall_at_20", "value": 85.936}, {"type": "recall_at_3", "value": 66.387}, {"type": "recall_at_5", "value": 76.238}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB QuoraRetrieval", "type": "mteb/quora", "config": "default", "split": "test", "revision": "e4e08e0b7dbe3c8700f0daef558ff32256715259"}, "metrics": [{"type": "map_at_1", "value": 71.068}, {"type": "map_at_10", "value": 85.271}, {"type": "map_at_100", "value": 85.271}, {"type": "map_at_1000", "value": 85.271}, {"type": "map_at_20", "value": 85.271}, {"type": "map_at_3", "value": 82.23899999999999}, {"type": "map_at_5", "value": 84.165}, {"type": "mrr_at_1", "value": 81.85}, {"type": "mrr_at_10", "value": 87.856}, {"type": "mrr_at_100", "value": 87.856}, {"type": "mrr_at_1000", "value": 87.856}, {"type": "mrr_at_20", "value": 87.856}, {"type": "mrr_at_3", "value": 86.925}, {"type": "mrr_at_5", "value": 87.559}, {"type": "ndcg_at_1", "value": 81.89}, {"type": "ndcg_at_10", "value": 88.856}, {"type": "ndcg_at_100", "value": 88.723}, {"type": "ndcg_at_1000", "value": 88.723}, {"type": "ndcg_at_20", "value": 88.74300000000001}, {"type": "ndcg_at_3", "value": 86.05199999999999}, {"type": "ndcg_at_5", "value": 87.61}, {"type": "precision_at_1", "value": 81.89}, {"type": "precision_at_10", "value": 13.569999999999999}, {"type": "precision_at_100", "value": 1.357}, {"type": "precision_at_1000", "value": 0.136}, {"type": "precision_at_20", "value": 6.784999999999999}, {"type": "precision_at_3", "value": 37.807}, {"type": "precision_at_5", "value": 24.908}, {"type": "recall_at_1", "value": 71.068}, {"type": "recall_at_10", "value": 95.797}, {"type": "recall_at_100", "value": 95.797}, {"type": "recall_at_1000", "value": 95.797}, {"type": "recall_at_20", "value": 95.797}, {"type": "recall_at_3", "value": 87.65899999999999}, {"type": "recall_at_5", "value": 92.107}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClustering", "type": "mteb/reddit-clustering", "config": "default", "split": "test", "revision": "24640382cdbf8abc73003fb0fa6d111a705499eb"}, "metrics": [{"type": "v_measure", "value": 62.16385792305745}, {"type": "v_measures", "value": [0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949, 0.587541495063312, 0.6775885692888917, 0.567537304495857, 0.6678131151900565, 0.5979158867861365, 0.5956669142507505, 0.6200557398628851, 0.5946598821061599, 0.603673972233609, 0.6050659113737895, 0.5742475015975338, 0.6273500769309232, 0.6526752602522112, 0.6416095306029318, 0.7334431385812594, 0.5847584715164077, 0.62727067061333, 0.6138592437270369, 0.6280966889397946, 0.5740785434257363, 0.5888905363406383, 0.6073133172766488, 0.7167239234204423, 0.6595740709329266, 0.5935547159550949]}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClusteringP2P", "type": "mteb/reddit-clustering-p2p", "config": "default", "split": "test", "revision": "385e3cb46b4cfa89021f56c4380204149d0efe33"}, "metrics": [{"type": "v_measure", "value": 65.96296778394698}, {"type": "v_measures", "value": [0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593, 0.6994519018160104, 0.6685310786302858, 0.6560344637869603, 0.4053977970605211, 0.7423583342619767, 0.6657872853200192, 0.4487425514322897, 0.7791528368405061, 0.7406529421724692, 0.7901875870736593]}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB SCIDOCS", "type": "mteb/scidocs", "config": "default", "split": "test", "revision": "f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88"}, "metrics": [{"type": "map_at_1", "value": 5.433000000000001}, {"type": "map_at_10", "value": 13.991000000000001}, {"type": "map_at_100", "value": 13.991000000000001}, {"type": "map_at_1000", "value": 13.991000000000001}, {"type": "map_at_20", "value": 13.991000000000001}, {"type": "map_at_3", "value": 9.708}, {"type": "map_at_5", "value": 11.849}, {"type": "mrr_at_1", "value": 26.8}, {"type": "mrr_at_10", "value": 38.012}, {"type": "mrr_at_100", "value": 38.012}, {"type": "mrr_at_1000", "value": 38.012}, {"type": "mrr_at_20", "value": 38.012}, {"type": "mrr_at_3", "value": 34.449999999999996}, {"type": "mrr_at_5", "value": 36.59}, {"type": "ndcg_at_1", "value": 26.8}, {"type": "ndcg_at_10", "value": 23.006999999999998}, {"type": "ndcg_at_100", "value": 23.006999999999998}, {"type": "ndcg_at_1000", "value": 23.006999999999998}, {"type": "ndcg_at_20", "value": 23.006999999999998}, {"type": "ndcg_at_3", "value": 21.386}, {"type": "ndcg_at_5", "value": 19.046}, {"type": "precision_at_1", "value": 26.8}, {"type": "precision_at_10", "value": 12.01}, {"type": "precision_at_100", "value": 1.201}, {"type": "precision_at_1000", "value": 0.12}, {"type": "precision_at_20", "value": 6.005}, {"type": "precision_at_3", "value": 19.833000000000002}, {"type": "precision_at_5", "value": 16.84}, {"type": "recall_at_1", "value": 5.433000000000001}, {"type": "recall_at_10", "value": 24.34}, {"type": "recall_at_100", "value": 24.34}, {"type": "recall_at_1000", "value": 24.34}, {"type": "recall_at_20", "value": 24.34}, {"type": "recall_at_3", "value": 12.058}, {"type": "recall_at_5", "value": 17.058}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB SICK-R", "type": "mteb/sickr-sts", "config": "default", "split": "test", "revision": "20a6d6f312dd54037fe07a32d58e5e168867909d"}, "metrics": [{"type": "cos_sim_pearson", "value": 84.84178272773948}, {"type": "cos_sim_spearman", "value": 82.32746830315172}, {"type": "euclidean_pearson", "value": 82.11599650658388}, {"type": "euclidean_spearman", "value": 82.38102437050075}, {"type": "manhattan_pearson", "value": 82.07071847892156}, {"type": "manhattan_spearman", "value": 82.35710877093594}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS12", "type": "mteb/sts12-sts", "config": "default", "split": "test", "revision": "a0d554a64d88156834ff5ae9920b964011b16384"}, "metrics": [{"type": "cos_sim_pearson", "value": 86.86916828280668}, {"type": "cos_sim_spearman", "value": 79.69553254808825}, {"type": "euclidean_pearson", "value": 82.86582224049857}, {"type": "euclidean_spearman", "value": 79.1765897124049}, {"type": "manhattan_pearson", "value": 83.15978473993391}, {"type": "manhattan_spearman", "value": 79.54192003597332}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS13", "type": "mteb/sts13-sts", "config": "default", "split": "test", "revision": "7e90230a92c190f1bf69ae9002b8cea547a64cca"}, "metrics": [{"type": "cos_sim_pearson", "value": 88.7719804239987}, {"type": "cos_sim_spearman", "value": 89.20788765830103}, {"type": "euclidean_pearson", "value": 88.67624029627581}, {"type": "euclidean_spearman", "value": 89.15058058277351}, {"type": "manhattan_pearson", "value": 88.43477620818435}, {"type": "manhattan_spearman", "value": 89.01994285052193}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS14", "type": "mteb/sts14-sts", "config": "default", "split": "test", "revision": "6031580fec1f6af667f0bd2da0a551cf4f0b2375"}, "metrics": [{"type": "cos_sim_pearson", "value": 87.04733612348426}, {"type": "cos_sim_spearman", "value": 86.0120242985069}, {"type": "euclidean_pearson", "value": 86.07045247599824}, {"type": "euclidean_spearman", "value": 86.22185577032168}, {"type": "manhattan_pearson", "value": 85.79555943035328}, {"type": "manhattan_spearman", "value": 86.13821651705776}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS15", "type": "mteb/sts15-sts", "config": "default", "split": "test", "revision": "ae752c7c21bf194d8b67fd573edf7ae58183cbe3"}, "metrics": [{"type": "cos_sim_pearson", "value": 89.395594115739}, {"type": "cos_sim_spearman", "value": 89.70312809978681}, {"type": "euclidean_pearson", "value": 89.10137224981938}, {"type": "euclidean_spearman", "value": 89.74149793061072}, {"type": "manhattan_pearson", "value": 89.06144914118401}, {"type": "manhattan_spearman", "value": 89.78489015365638}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS16", "type": "mteb/sts16-sts", "config": "default", "split": "test", "revision": "4d8694f8f0e0100860b497b999b3dbed754a0513"}, "metrics": [{"type": "cos_sim_pearson", "value": 86.1720394205624}, {"type": "cos_sim_spearman", "value": 87.67900288178751}, {"type": "euclidean_pearson", "value": 86.73052291563968}, {"type": "euclidean_spearman", "value": 87.49116803671033}, {"type": "manhattan_pearson", "value": 86.79988999910331}, {"type": "manhattan_spearman", "value": 87.57540934207157}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS17 (en-en)", "type": "mteb/sts17-crosslingual-sts", "config": "en-en", "split": "test", "revision": "af5e6fb845001ecf41f4c1e033ce921939a2a68d"}, "metrics": [{"type": "cos_sim_pearson", "value": 88.75286004155564}, {"type": "cos_sim_spearman", "value": 88.03161515281518}, {"type": "euclidean_pearson", "value": 88.55464128719427}, {"type": "euclidean_spearman", "value": 87.78041200668837}, {"type": "manhattan_pearson", "value": 88.18469209314583}, {"type": "manhattan_spearman", "value": 87.31602253333598}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (en)", "type": "mteb/sts22-crosslingual-sts", "config": "en", "split": "test", "revision": "eea2b4fe26a775864c896887d910b76a8098ad3f"}, "metrics": [{"type": "cos_sim_pearson", "value": 70.48372140035973}, {"type": "cos_sim_spearman", "value": 70.16107814793419}, {"type": "euclidean_pearson", "value": 69.65789511103976}, {"type": "euclidean_spearman", "value": 68.92441073988654}, {"type": "manhattan_pearson", "value": 69.55306498752127}, {"type": "manhattan_spearman", "value": 68.82186378798527}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STSBenchmark", "type": "mteb/stsbenchmark-sts", "config": "default", "split": "test", "revision": "b0fddb56ed78048fa8b90373c8a3cfc37b684831"}, "metrics": [{"type": "cos_sim_pearson", "value": 87.43017430741797}, {"type": "cos_sim_spearman", "value": 88.14675226940803}, {"type": "euclidean_pearson", "value": 87.33329490848514}, {"type": "euclidean_spearman", "value": 87.94164481397011}, {"type": "manhattan_pearson", "value": 87.19303598684772}, {"type": "manhattan_spearman", "value": 87.86899889639051}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB SciDocsRR", "type": "mteb/scidocs-reranking", "config": "default", "split": "test", "revision": "d3c5e1fc0b855ab6097bf1cda04dd73947d7caab"}, "metrics": [{"type": "map", "value": 87.03073019943413}, {"type": "mrr", "value": 96.67456726280255}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB SciFact", "type": "mteb/scifact", "config": "default", "split": "test", "revision": "0228b52cf27578f30900b9e5271d331663a030d7"}, "metrics": [{"type": "map_at_1", "value": 64.328}, {"type": "map_at_10", "value": 75.046}, {"type": "map_at_100", "value": 75.046}, {"type": "map_at_1000", "value": 75.046}, {"type": "map_at_20", "value": 75.046}, {"type": "map_at_3", "value": 72.42}, {"type": "map_at_5", "value": 73.88900000000001}, {"type": "mrr_at_1", "value": 67.667}, {"type": "mrr_at_10", "value": 76.19200000000001}, {"type": "mrr_at_100", "value": 76.19200000000001}, {"type": "mrr_at_1000", "value": 76.19200000000001}, {"type": "mrr_at_20", "value": 76.19200000000001}, {"type": "mrr_at_3", "value": 74.556}, {"type": "mrr_at_5", "value": 75.372}, {"type": "ndcg_at_1", "value": 67.667}, {"type": "ndcg_at_10", "value": 79.621}, {"type": "ndcg_at_100", "value": 79.621}, {"type": "ndcg_at_1000", "value": 79.621}, {"type": "ndcg_at_20", "value": 79.621}, {"type": "ndcg_at_3", "value": 75.506}, {"type": "ndcg_at_5", "value": 77.269}, {"type": "precision_at_1", "value": 67.667}, {"type": "precision_at_10", "value": 10.467}, {"type": "precision_at_100", "value": 1.047}, {"type": "precision_at_1000", "value": 0.105}, {"type": "precision_at_20", "value": 5.2330000000000005}, {"type": "precision_at_3", "value": 29.444}, {"type": "precision_at_5", "value": 19.133}, {"type": "recall_at_1", "value": 64.328}, {"type": "recall_at_10", "value": 92.389}, {"type": "recall_at_100", "value": 92.389}, {"type": "recall_at_1000", "value": 92.389}, {"type": "recall_at_20", "value": 92.389}, {"type": "recall_at_3", "value": 81.183}, {"type": "recall_at_5", "value": 85.60600000000001}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB SprintDuplicateQuestions", "type": "mteb/sprintduplicatequestions-pairclassification", "config": "default", "split": "test", "revision": "d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46"}, "metrics": [{"type": "cos_sim_accuracy", "value": 99.83762376237624}, {"type": "cos_sim_ap", "value": 96.51580702723564}, {"type": "cos_sim_f1", "value": 91.63265306122449}, {"type": "cos_sim_precision", "value": 93.54166666666667}, {"type": "cos_sim_recall", "value": 89.8}, {"type": "dot_accuracy", "value": 99.73663366336633}, {"type": "dot_ap", "value": 93.5764284433306}, {"type": "dot_f1", "value": 86.56565656565655}, {"type": "dot_precision", "value": 87.44897959183675}, {"type": "dot_recall", "value": 85.7}, {"type": "euclidean_accuracy", "value": 99.84059405940594}, {"type": "euclidean_ap", "value": 96.4738308210008}, {"type": "euclidean_f1", "value": 91.76470588235294}, {"type": "euclidean_precision", "value": 93.92670157068062}, {"type": "euclidean_recall", "value": 89.7}, {"type": "manhattan_accuracy", "value": 99.84356435643565}, {"type": "manhattan_ap", "value": 96.58366196890644}, {"type": "manhattan_f1", "value": 91.93054136874362}, {"type": "manhattan_precision", "value": 93.94572025052193}, {"type": "manhattan_recall", "value": 90.0}, {"type": "max_accuracy", "value": 99.84356435643565}, {"type": "max_ap", "value": 96.58366196890644}, {"type": "max_f1", "value": 91.93054136874362}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClustering", "type": "mteb/stackexchange-clustering", "config": "default", "split": "test", "revision": "6cbc1f7b2bc0622f2e39d2c77fa502909748c259"}, "metrics": [{"type": "v_measure", "value": 71.3538865724681}, {"type": "v_measures", "value": [0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368, 0.7491029730754422, 0.6679041279132695, 0.6706416821131351, 0.7400759063631245, 0.7205282507088282, 0.7207474445915961, 0.7076023322461216, 0.7919544039062477, 0.697356950041273, 0.7155185617564064, 0.8170975778555782, 0.7758530037956233, 0.7557716341966847, 0.7418030161151182, 0.6544532124169519, 0.7116665112917787, 0.6779566961395338, 0.6721164638120183, 0.6901024025391699, 0.6457684359608986, 0.7074519871138994, 0.7296079088233842, 0.7023239980988409, 0.6900078050266639, 0.6850583572154368]}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClusteringP2P", "type": "mteb/stackexchange-clustering-p2p", "config": "default", "split": "test", "revision": "815ca46b2622cec33ccafc3735d572c266efdb44"}, "metrics": [{"type": "v_measure", "value": 36.11009155563876}, {"type": "v_measures", "value": [0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684, 0.35242637090556483, 0.34198478937626525, 0.3480143704468013, 0.3432433824651389, 0.34581837944580823, 0.38852793624316134, 0.3664105091244259, 0.3798083138774721, 0.37268279094517115, 0.37209231273406684]}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB StackOverflowDupQuestions", "type": "mteb/stackoverflowdupquestions-reranking", "config": "default", "split": "test", "revision": "e185fbe320c72810689fc5848eb6114e1ef5ec69"}, "metrics": [{"type": "map", "value": 55.54551767207771}, {"type": "mrr", "value": 56.55926385705797}]}, {"task": {"type": "Summarization"}, "dataset": {"name": "MTEB SummEval", "type": "mteb/summeval", "config": "default", "split": "test", "revision": "cda12ad7615edc362dbf25a00fdd61d3b1eaf93c"}, "metrics": [{"type": "cos_sim_pearson", "value": 30.805678984951985}, {"type": "cos_sim_spearman", "value": 30.827574116605362}, {"type": "dot_pearson", "value": 29.899814768586204}, {"type": "dot_spearman", "value": 29.588760095881174}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB TRECCOVID", "type": "mteb/trec-covid", "config": "default", "split": "test", "revision": "bb9466bac8153a0349341eb1b22e06409e78ef4e"}, "metrics": [{"type": "map_at_1", "value": 0.22200000000000003}, {"type": "map_at_10", "value": 2.046}, {"type": "map_at_100", "value": 2.046}, {"type": "map_at_1000", "value": 2.046}, {"type": "map_at_20", "value": 2.046}, {"type": "map_at_3", "value": 0.661}, {"type": "map_at_5", "value": 1.057}, {"type": "mrr_at_1", "value": 84.0}, {"type": "mrr_at_10", "value": 91.333}, {"type": "mrr_at_100", "value": 91.333}, {"type": "mrr_at_1000", "value": 91.333}, {"type": "mrr_at_20", "value": 91.333}, {"type": "mrr_at_3", "value": 91.0}, {"type": "mrr_at_5", "value": 91.0}, {"type": "ndcg_at_1", "value": 80.0}, {"type": "ndcg_at_10", "value": 80.74900000000001}, {"type": "ndcg_at_100", "value": 17.761}, {"type": "ndcg_at_1000", "value": 7.5920000000000005}, {"type": "ndcg_at_20", "value": 52.113}, {"type": "ndcg_at_3", "value": 83.542}, {"type": "ndcg_at_5", "value": 82.151}, {"type": "precision_at_1", "value": 84.0}, {"type": "precision_at_10", "value": 84.6}, {"type": "precision_at_100", "value": 8.459999999999999}, {"type": "precision_at_1000", "value": 0.8460000000000001}, {"type": "precision_at_20", "value": 42.3}, {"type": "precision_at_3", "value": 88.0}, {"type": "precision_at_5", "value": 86.0}, {"type": "recall_at_1", "value": 0.22200000000000003}, {"type": "recall_at_10", "value": 2.235}, {"type": "recall_at_100", "value": 2.235}, {"type": "recall_at_1000", "value": 2.235}, {"type": "recall_at_20", "value": 2.235}, {"type": "recall_at_3", "value": 0.695}, {"type": "recall_at_5", "value": 1.121}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB Touche2020", "type": "mteb/touche2020", "config": "default", "split": "test", "revision": "a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f"}, "metrics": [{"type": "map_at_1", "value": 3.2750000000000004}, {"type": "map_at_10", "value": 10.514}, {"type": "map_at_100", "value": 10.514}, {"type": "map_at_1000", "value": 10.514}, {"type": "map_at_20", "value": 10.514}, {"type": "map_at_3", "value": 5.662}, {"type": "map_at_5", "value": 7.808}, {"type": "mrr_at_1", "value": 40.816}, {"type": "mrr_at_10", "value": 49.88}, {"type": "mrr_at_100", "value": 49.88}, {"type": "mrr_at_1000", "value": 49.88}, {"type": "mrr_at_20", "value": 49.88}, {"type": "mrr_at_3", "value": 46.259}, {"type": "mrr_at_5", "value": 47.585}, {"type": "ndcg_at_1", "value": 37.755}, {"type": "ndcg_at_10", "value": 25.237}, {"type": "ndcg_at_100", "value": 21.149}, {"type": "ndcg_at_1000", "value": 21.149}, {"type": "ndcg_at_20", "value": 21.401999999999997}, {"type": "ndcg_at_3", "value": 27.465}, {"type": "ndcg_at_5", "value": 26.169999999999998}, {"type": "precision_at_1", "value": 40.816}, {"type": "precision_at_10", "value": 21.224}, {"type": "precision_at_100", "value": 2.122}, {"type": "precision_at_1000", "value": 0.212}, {"type": "precision_at_20", "value": 10.612}, {"type": "precision_at_3", "value": 26.531}, {"type": "precision_at_5", "value": 24.490000000000002}, {"type": "recall_at_1", "value": 3.2750000000000004}, {"type": "recall_at_10", "value": 16.264}, {"type": "recall_at_100", "value": 16.264}, {"type": "recall_at_1000", "value": 16.264}, {"type": "recall_at_20", "value": 16.264}, {"type": "recall_at_3", "value": 6.265999999999999}, {"type": "recall_at_5", "value": 9.677}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ToxicConversationsClassification", "type": "mteb/toxic_conversations_50k", "config": "default", "split": "test", "revision": "edfaf9da55d3dd50d43143d90c1ac476895ae6de"}, "metrics": [{"type": "accuracy", "value": 66.181640625}, {"type": "ap", "value": 12.61343083198892}, {"type": "f1", "value": 51.12214559856414}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB TweetSentimentExtractionClassification", "type": "mteb/tweet_sentiment_extraction", "config": "default", "split": "test", "revision": "d604517c81ca91fe16a244d1248fc021f9ecee7a"}, "metrics": [{"type": "accuracy", "value": 62.543859649122815}, {"type": "f1", "value": 62.742315191046295}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB TwentyNewsgroupsClustering", "type": "mteb/twentynewsgroups-clustering", "config": "default", "split": "test", "revision": "6125ec4e24fa026cec8a478383ee943acfbd5449"}, "metrics": [{"type": "v_measure", "value": 54.7799424517948}, {"type": "v_measures", "value": [0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308, 0.550822270643678, 0.5550309505411892, 0.5374116804548088, 0.530806408291854, 0.5520216200733947, 0.5723223656123475, 0.5487505833189581, 0.5496668776225391, 0.5230606424471813, 0.5581008461735308]}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterSemEval2015", "type": "mteb/twittersemeval2015-pairclassification", "config": "default", "split": "test", "revision": "70970daeab8776df92f5ea462b6173c0b46fd2d1"}, "metrics": [{"type": "cos_sim_accuracy", "value": 88.24581271979496}, {"type": "cos_sim_ap", "value": 81.34631603712425}, {"type": "cos_sim_f1", "value": 73.6588459099556}, {"type": "cos_sim_precision", "value": 70.91575091575092}, {"type": "cos_sim_recall", "value": 76.62269129287598}, {"type": "dot_accuracy", "value": 86.33247898909221}, {"type": "dot_ap", "value": 74.8713850965631}, {"type": "dot_f1", "value": 69.68152866242038}, {"type": "dot_precision", "value": 67.36453201970444}, {"type": "dot_recall", "value": 72.16358839050132}, {"type": "euclidean_accuracy", "value": 88.37098408535495}, {"type": "euclidean_ap", "value": 81.3880827682646}, {"type": "euclidean_f1", "value": 73.69367056104764}, {"type": "euclidean_precision", "value": 71.76794198549638}, {"type": "euclidean_recall", "value": 75.72559366754618}, {"type": "manhattan_accuracy", "value": 88.28157596709781}, {"type": "manhattan_ap", "value": 81.11568493905267}, {"type": "manhattan_f1", "value": 73.38364779874215}, {"type": "manhattan_precision", "value": 70.1201923076923}, {"type": "manhattan_recall", "value": 76.96569920844327}, {"type": "max_accuracy", "value": 88.37098408535495}, {"type": "max_ap", "value": 81.3880827682646}, {"type": "max_f1", "value": 73.69367056104764}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterURLCorpus", "type": "mteb/twitterurlcorpus-pairclassification", "config": "default", "split": "test", "revision": "8b6510b0b1fa4e4c4f879467980e9be563ec1cdf"}, "metrics": [{"type": "cos_sim_accuracy", "value": 89.54476656188147}, {"type": "cos_sim_ap", "value": 86.93964282285746}, {"type": "cos_sim_f1", "value": 79.50401702190103}, {"type": "cos_sim_precision", "value": 75.93020811435778}, {"type": "cos_sim_recall", "value": 83.43085925469664}, {"type": "dot_accuracy", "value": 88.64050917840649}, {"type": "dot_ap", "value": 84.81007248888473}, {"type": "dot_f1", "value": 77.95706670508572}, {"type": "dot_precision", "value": 73.24038982133189}, {"type": "dot_recall", "value": 83.32306744687403}, {"type": "euclidean_accuracy", "value": 89.53894516241705}, {"type": "euclidean_ap", "value": 86.92299719471643}, {"type": "euclidean_f1", "value": 79.55922060862585}, {"type": "euclidean_precision", "value": 75.61381606325426}, {"type": "euclidean_recall", "value": 83.93902063443178}, {"type": "manhattan_accuracy", "value": 89.5234214305119}, {"type": "manhattan_ap", "value": 86.93261273512803}, {"type": "manhattan_f1", "value": 79.54703705061019}, {"type": "manhattan_precision", "value": 75.90041261626688}, {"type": "manhattan_recall", "value": 83.56174930705266}, {"type": "max_accuracy", "value": 89.54476656188147}, {"type": "max_ap", "value": 86.93964282285746}, {"type": "max_f1", "value": 79.55922060862585}]}]}]}
Geolumina/instructor-xl
Geolumina
sentence-similarity
[ "sentence-transformers", "pytorch", "t5", "text-embedding", "embeddings", "information-retrieval", "beir", "text-classification", "language-model", "text-clustering", "text-semantic-similarity", "text-evaluation", "prompt-retrieval", "text-reranking", "feature-extraction", "sentence-similarity", "transformers", "English", "Sentence Similarity", "natural_questions", "ms_marco", "fever", "hotpot_qa", "mteb", "en", "arxiv:2212.09741", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
2024-03-05T03:00:52
2025-02-05T20:03:17
9
1
--- language: en license: apache-2.0 pipeline_tag: sentence-similarity tags: - text-embedding - embeddings - information-retrieval - beir - text-classification - language-model - text-clustering - text-semantic-similarity - text-evaluation - prompt-retrieval - text-reranking - sentence-transformers - feature-extraction - sentence-similarity - transformers - t5 - English - Sentence Similarity - natural_questions - ms_marco - fever - hotpot_qa - mteb inference: false model-index: - name: final_xl_results results: - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: mteb/amazon_counterfactual config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 85.08955223880596 - type: ap value: 52.66066378722476 - type: f1 value: 79.63340218960269 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification type: mteb/amazon_polarity config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 86.542 - type: ap value: 81.92695193008987 - type: f1 value: 86.51466132573681 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: mteb/amazon_reviews_multi config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 42.964 - type: f1 value: 41.43146249774862 - task: type: Retrieval dataset: name: MTEB ArguAna type: arguana config: default split: test revision: None metrics: - type: map_at_1 value: 29.872 - type: map_at_10 value: 46.342 - type: map_at_100 value: 47.152 - type: map_at_1000 value: 47.154 - type: map_at_3 value: 41.216 - type: map_at_5 value: 44.035999999999994 - type: mrr_at_1 value: 30.939 - type: mrr_at_10 value: 46.756 - type: mrr_at_100 value: 47.573 - type: mrr_at_1000 value: 47.575 - type: mrr_at_3 value: 41.548 - type: mrr_at_5 value: 44.425 - type: ndcg_at_1 value: 29.872 - type: ndcg_at_10 value: 55.65 - type: ndcg_at_100 value: 58.88099999999999 - type: ndcg_at_1000 value: 58.951 - type: ndcg_at_3 value: 45.0 - type: ndcg_at_5 value: 50.09 - type: precision_at_1 value: 29.872 - type: precision_at_10 value: 8.549 - type: precision_at_100 value: 0.991 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 18.658 - type: precision_at_5 value: 13.669999999999998 - type: recall_at_1 value: 29.872 - type: recall_at_10 value: 85.491 - type: recall_at_100 value: 99.075 - type: recall_at_1000 value: 99.644 - type: recall_at_3 value: 55.974000000000004 - type: recall_at_5 value: 68.35 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P type: mteb/arxiv-clustering-p2p config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 42.452729850641276 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S type: mteb/arxiv-clustering-s2s config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 32.21141846480423 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions type: mteb/askubuntudupquestions-reranking config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 65.34710928952622 - type: mrr value: 77.61124301983028 - task: type: STS dataset: name: MTEB BIOSSES type: mteb/biosses-sts config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_spearman value: 84.15312230525639 - task: type: Classification dataset: name: MTEB Banking77Classification type: mteb/banking77 config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 82.66233766233766 - type: f1 value: 82.04175284777669 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P type: mteb/biorxiv-clustering-p2p config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 37.36697339826455 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S type: mteb/biorxiv-clustering-s2s config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 30.551241447593092 - task: type: Retrieval dataset: name: MTEB CQADupstackAndroidRetrieval type: BeIR/cqadupstack config: default split: test revision: None metrics: - type: map_at_1 value: 36.797000000000004 - type: map_at_10 value: 48.46 - type: map_at_100 value: 49.968 - type: map_at_1000 value: 50.080000000000005 - type: map_at_3 value: 44.71 - type: map_at_5 value: 46.592 - type: mrr_at_1 value: 45.494 - type: mrr_at_10 value: 54.747 - type: mrr_at_100 value: 55.43599999999999 - type: mrr_at_1000 value: 55.464999999999996 - type: mrr_at_3 value: 52.361000000000004 - type: mrr_at_5 value: 53.727000000000004 - type: ndcg_at_1 value: 45.494 - type: ndcg_at_10 value: 54.989 - type: ndcg_at_100 value: 60.096000000000004 - type: ndcg_at_1000 value: 61.58 - type: ndcg_at_3 value: 49.977 - type: ndcg_at_5 value: 51.964999999999996 - type: precision_at_1 value: 45.494 - type: precision_at_10 value: 10.558 - type: precision_at_100 value: 1.6049999999999998 - type: precision_at_1000 value: 0.203 - type: precision_at_3 value: 23.796 - type: precision_at_5 value: 16.881 - type: recall_at_1 value: 36.797000000000004 - type: recall_at_10 value: 66.83 - type: recall_at_100 value: 88.34100000000001 - type: recall_at_1000 value: 97.202 - type: recall_at_3 value: 51.961999999999996 - type: recall_at_5 value: 57.940000000000005 - type: map_at_1 value: 32.597 - type: map_at_10 value: 43.424 - type: map_at_100 value: 44.78 - type: map_at_1000 value: 44.913 - type: map_at_3 value: 40.315 - type: map_at_5 value: 41.987 - type: mrr_at_1 value: 40.382 - type: mrr_at_10 value: 49.219 - type: mrr_at_100 value: 49.895 - type: mrr_at_1000 value: 49.936 - type: mrr_at_3 value: 46.996 - type: mrr_at_5 value: 48.231 - type: ndcg_at_1 value: 40.382 - type: ndcg_at_10 value: 49.318 - type: ndcg_at_100 value: 53.839999999999996 - type: ndcg_at_1000 value: 55.82899999999999 - type: ndcg_at_3 value: 44.914 - type: ndcg_at_5 value: 46.798 - type: precision_at_1 value: 40.382 - type: precision_at_10 value: 9.274000000000001 - type: precision_at_100 value: 1.497 - type: precision_at_1000 value: 0.198 - type: precision_at_3 value: 21.592 - type: precision_at_5 value: 15.159 - type: recall_at_1 value: 32.597 - type: recall_at_10 value: 59.882000000000005 - type: recall_at_100 value: 78.446 - type: recall_at_1000 value: 90.88000000000001 - type: recall_at_3 value: 46.9 - type: recall_at_5 value: 52.222 - type: map_at_1 value: 43.8 - type: map_at_10 value: 57.293000000000006 - type: map_at_100 value: 58.321 - type: map_at_1000 value: 58.361 - type: map_at_3 value: 53.839999999999996 - type: map_at_5 value: 55.838 - type: mrr_at_1 value: 49.592000000000006 - type: mrr_at_10 value: 60.643 - type: mrr_at_100 value: 61.23499999999999 - type: mrr_at_1000 value: 61.251999999999995 - type: mrr_at_3 value: 58.265 - type: mrr_at_5 value: 59.717 - type: ndcg_at_1 value: 49.592000000000006 - type: ndcg_at_10 value: 63.364 - type: ndcg_at_100 value: 67.167 - type: ndcg_at_1000 value: 67.867 - type: ndcg_at_3 value: 57.912 - type: ndcg_at_5 value: 60.697 - type: precision_at_1 value: 49.592000000000006 - type: precision_at_10 value: 10.088 - type: precision_at_100 value: 1.2930000000000001 - type: precision_at_1000 value: 0.13899999999999998 - type: precision_at_3 value: 25.789 - type: precision_at_5 value: 17.541999999999998 - type: recall_at_1 value: 43.8 - type: recall_at_10 value: 77.635 - type: recall_at_100 value: 93.748 - type: recall_at_1000 value: 98.468 - type: recall_at_3 value: 63.223 - type: recall_at_5 value: 70.122 - type: map_at_1 value: 27.721 - type: map_at_10 value: 35.626999999999995 - type: map_at_100 value: 36.719 - type: map_at_1000 value: 36.8 - type: map_at_3 value: 32.781 - type: map_at_5 value: 34.333999999999996 - type: mrr_at_1 value: 29.604999999999997 - type: mrr_at_10 value: 37.564 - type: mrr_at_100 value: 38.505 - type: mrr_at_1000 value: 38.565 - type: mrr_at_3 value: 34.727000000000004 - type: mrr_at_5 value: 36.207 - type: ndcg_at_1 value: 29.604999999999997 - type: ndcg_at_10 value: 40.575 - type: ndcg_at_100 value: 45.613 - type: ndcg_at_1000 value: 47.676 - type: ndcg_at_3 value: 34.811 - type: ndcg_at_5 value: 37.491 - type: precision_at_1 value: 29.604999999999997 - type: precision_at_10 value: 6.1690000000000005 - type: precision_at_100 value: 0.906 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 14.237 - type: precision_at_5 value: 10.056 - type: recall_at_1 value: 27.721 - type: recall_at_10 value: 54.041 - type: recall_at_100 value: 76.62299999999999 - type: recall_at_1000 value: 92.134 - type: recall_at_3 value: 38.582 - type: recall_at_5 value: 44.989000000000004 - type: map_at_1 value: 16.553 - type: map_at_10 value: 25.384 - type: map_at_100 value: 26.655 - type: map_at_1000 value: 26.778000000000002 - type: map_at_3 value: 22.733 - type: map_at_5 value: 24.119 - type: mrr_at_1 value: 20.149 - type: mrr_at_10 value: 29.705 - type: mrr_at_100 value: 30.672 - type: mrr_at_1000 value: 30.737 - type: mrr_at_3 value: 27.032 - type: mrr_at_5 value: 28.369 - type: ndcg_at_1 value: 20.149 - type: ndcg_at_10 value: 30.843999999999998 - type: ndcg_at_100 value: 36.716 - type: ndcg_at_1000 value: 39.495000000000005 - type: ndcg_at_3 value: 25.918999999999997 - type: ndcg_at_5 value: 27.992 - type: precision_at_1 value: 20.149 - type: precision_at_10 value: 5.858 - type: precision_at_100 value: 1.009 - type: precision_at_1000 value: 0.13799999999999998 - type: precision_at_3 value: 12.645000000000001 - type: precision_at_5 value: 9.179 - type: recall_at_1 value: 16.553 - type: recall_at_10 value: 43.136 - type: recall_at_100 value: 68.562 - type: recall_at_1000 value: 88.208 - type: recall_at_3 value: 29.493000000000002 - type: recall_at_5 value: 34.751 - type: map_at_1 value: 28.000999999999998 - type: map_at_10 value: 39.004 - type: map_at_100 value: 40.461999999999996 - type: map_at_1000 value: 40.566 - type: map_at_3 value: 35.805 - type: map_at_5 value: 37.672 - type: mrr_at_1 value: 33.782000000000004 - type: mrr_at_10 value: 44.702 - type: mrr_at_100 value: 45.528 - type: mrr_at_1000 value: 45.576 - type: mrr_at_3 value: 42.14 - type: mrr_at_5 value: 43.651 - type: ndcg_at_1 value: 33.782000000000004 - type: ndcg_at_10 value: 45.275999999999996 - type: ndcg_at_100 value: 50.888 - type: ndcg_at_1000 value: 52.879 - type: ndcg_at_3 value: 40.191 - type: ndcg_at_5 value: 42.731 - type: precision_at_1 value: 33.782000000000004 - type: precision_at_10 value: 8.200000000000001 - type: precision_at_100 value: 1.287 - type: precision_at_1000 value: 0.16199999999999998 - type: precision_at_3 value: 19.185 - type: precision_at_5 value: 13.667000000000002 - type: recall_at_1 value: 28.000999999999998 - type: recall_at_10 value: 58.131 - type: recall_at_100 value: 80.869 - type: recall_at_1000 value: 93.931 - type: recall_at_3 value: 44.161 - type: recall_at_5 value: 50.592000000000006 - type: map_at_1 value: 28.047 - type: map_at_10 value: 38.596000000000004 - type: map_at_100 value: 40.116 - type: map_at_1000 value: 40.232 - type: map_at_3 value: 35.205 - type: map_at_5 value: 37.076 - type: mrr_at_1 value: 34.932 - type: mrr_at_10 value: 44.496 - type: mrr_at_100 value: 45.47 - type: mrr_at_1000 value: 45.519999999999996 - type: mrr_at_3 value: 41.743 - type: mrr_at_5 value: 43.352000000000004 - type: ndcg_at_1 value: 34.932 - type: ndcg_at_10 value: 44.901 - type: ndcg_at_100 value: 50.788999999999994 - type: ndcg_at_1000 value: 52.867 - type: ndcg_at_3 value: 39.449 - type: ndcg_at_5 value: 41.929 - type: precision_at_1 value: 34.932 - type: precision_at_10 value: 8.311 - type: precision_at_100 value: 1.3050000000000002 - type: precision_at_1000 value: 0.166 - type: precision_at_3 value: 18.836 - type: precision_at_5 value: 13.447000000000001 - type: recall_at_1 value: 28.047 - type: recall_at_10 value: 57.717 - type: recall_at_100 value: 82.182 - type: recall_at_1000 value: 95.82000000000001 - type: recall_at_3 value: 42.448 - type: recall_at_5 value: 49.071 - type: map_at_1 value: 27.861250000000005 - type: map_at_10 value: 37.529583333333335 - type: map_at_100 value: 38.7915 - type: map_at_1000 value: 38.90558333333335 - type: map_at_3 value: 34.57333333333333 - type: map_at_5 value: 36.187166666666656 - type: mrr_at_1 value: 32.88291666666666 - type: mrr_at_10 value: 41.79750000000001 - type: mrr_at_100 value: 42.63183333333333 - type: mrr_at_1000 value: 42.68483333333333 - type: mrr_at_3 value: 39.313750000000006 - type: mrr_at_5 value: 40.70483333333333 - type: ndcg_at_1 value: 32.88291666666666 - type: ndcg_at_10 value: 43.09408333333333 - type: ndcg_at_100 value: 48.22158333333333 - type: ndcg_at_1000 value: 50.358000000000004 - type: ndcg_at_3 value: 38.129583333333336 - type: ndcg_at_5 value: 40.39266666666666 - type: precision_at_1 value: 32.88291666666666 - type: precision_at_10 value: 7.5584999999999996 - type: precision_at_100 value: 1.1903333333333332 - type: precision_at_1000 value: 0.15658333333333332 - type: precision_at_3 value: 17.495916666666666 - type: precision_at_5 value: 12.373833333333332 - type: recall_at_1 value: 27.861250000000005 - type: recall_at_10 value: 55.215916666666665 - type: recall_at_100 value: 77.392 - type: recall_at_1000 value: 92.04908333333334 - type: recall_at_3 value: 41.37475 - type: recall_at_5 value: 47.22908333333333 - type: map_at_1 value: 25.064999999999998 - type: map_at_10 value: 31.635999999999996 - type: map_at_100 value: 32.596000000000004 - type: map_at_1000 value: 32.695 - type: map_at_3 value: 29.612 - type: map_at_5 value: 30.768 - type: mrr_at_1 value: 28.528 - type: mrr_at_10 value: 34.717 - type: mrr_at_100 value: 35.558 - type: mrr_at_1000 value: 35.626000000000005 - type: mrr_at_3 value: 32.745000000000005 - type: mrr_at_5 value: 33.819 - type: ndcg_at_1 value: 28.528 - type: ndcg_at_10 value: 35.647 - type: ndcg_at_100 value: 40.207 - type: ndcg_at_1000 value: 42.695 - type: ndcg_at_3 value: 31.878 - type: ndcg_at_5 value: 33.634 - type: precision_at_1 value: 28.528 - type: precision_at_10 value: 5.46 - type: precision_at_100 value: 0.84 - type: precision_at_1000 value: 0.11399999999999999 - type: precision_at_3 value: 13.547999999999998 - type: precision_at_5 value: 9.325 - type: recall_at_1 value: 25.064999999999998 - type: recall_at_10 value: 45.096000000000004 - type: recall_at_100 value: 65.658 - type: recall_at_1000 value: 84.128 - type: recall_at_3 value: 34.337 - type: recall_at_5 value: 38.849000000000004 - type: map_at_1 value: 17.276 - type: map_at_10 value: 24.535 - type: map_at_100 value: 25.655 - type: map_at_1000 value: 25.782 - type: map_at_3 value: 22.228 - type: map_at_5 value: 23.612 - type: mrr_at_1 value: 21.266 - type: mrr_at_10 value: 28.474 - type: mrr_at_100 value: 29.398000000000003 - type: mrr_at_1000 value: 29.482000000000003 - type: mrr_at_3 value: 26.245 - type: mrr_at_5 value: 27.624 - type: ndcg_at_1 value: 21.266 - type: ndcg_at_10 value: 29.087000000000003 - type: ndcg_at_100 value: 34.374 - type: ndcg_at_1000 value: 37.433 - type: ndcg_at_3 value: 25.040000000000003 - type: ndcg_at_5 value: 27.116 - type: precision_at_1 value: 21.266 - type: precision_at_10 value: 5.258 - type: precision_at_100 value: 0.9299999999999999 - type: precision_at_1000 value: 0.13699999999999998 - type: precision_at_3 value: 11.849 - type: precision_at_5 value: 8.699 - type: recall_at_1 value: 17.276 - type: recall_at_10 value: 38.928000000000004 - type: recall_at_100 value: 62.529 - type: recall_at_1000 value: 84.44800000000001 - type: recall_at_3 value: 27.554000000000002 - type: recall_at_5 value: 32.915 - type: map_at_1 value: 27.297 - type: map_at_10 value: 36.957 - type: map_at_100 value: 38.252 - type: map_at_1000 value: 38.356 - type: map_at_3 value: 34.121 - type: map_at_5 value: 35.782000000000004 - type: mrr_at_1 value: 32.275999999999996 - type: mrr_at_10 value: 41.198 - type: mrr_at_100 value: 42.131 - type: mrr_at_1000 value: 42.186 - type: mrr_at_3 value: 38.557 - type: mrr_at_5 value: 40.12 - type: ndcg_at_1 value: 32.275999999999996 - type: ndcg_at_10 value: 42.516 - type: ndcg_at_100 value: 48.15 - type: ndcg_at_1000 value: 50.344 - type: ndcg_at_3 value: 37.423 - type: ndcg_at_5 value: 39.919 - type: precision_at_1 value: 32.275999999999996 - type: precision_at_10 value: 7.155 - type: precision_at_100 value: 1.123 - type: precision_at_1000 value: 0.14200000000000002 - type: precision_at_3 value: 17.163999999999998 - type: precision_at_5 value: 12.127 - type: recall_at_1 value: 27.297 - type: recall_at_10 value: 55.238 - type: recall_at_100 value: 79.2 - type: recall_at_1000 value: 94.258 - type: recall_at_3 value: 41.327000000000005 - type: recall_at_5 value: 47.588 - type: map_at_1 value: 29.142000000000003 - type: map_at_10 value: 38.769 - type: map_at_100 value: 40.292 - type: map_at_1000 value: 40.510000000000005 - type: map_at_3 value: 35.39 - type: map_at_5 value: 37.009 - type: mrr_at_1 value: 34.19 - type: mrr_at_10 value: 43.418 - type: mrr_at_100 value: 44.132 - type: mrr_at_1000 value: 44.175 - type: mrr_at_3 value: 40.547 - type: mrr_at_5 value: 42.088 - type: ndcg_at_1 value: 34.19 - type: ndcg_at_10 value: 45.14 - type: ndcg_at_100 value: 50.364 - type: ndcg_at_1000 value: 52.481 - type: ndcg_at_3 value: 39.466 - type: ndcg_at_5 value: 41.772 - type: precision_at_1 value: 34.19 - type: precision_at_10 value: 8.715 - type: precision_at_100 value: 1.6150000000000002 - type: precision_at_1000 value: 0.247 - type: precision_at_3 value: 18.248 - type: precision_at_5 value: 13.161999999999999 - type: recall_at_1 value: 29.142000000000003 - type: recall_at_10 value: 57.577999999999996 - type: recall_at_100 value: 81.428 - type: recall_at_1000 value: 94.017 - type: recall_at_3 value: 41.402 - type: recall_at_5 value: 47.695 - type: map_at_1 value: 22.039 - type: map_at_10 value: 30.669999999999998 - type: map_at_100 value: 31.682 - type: map_at_1000 value: 31.794 - type: map_at_3 value: 28.139999999999997 - type: map_at_5 value: 29.457 - type: mrr_at_1 value: 24.399 - type: mrr_at_10 value: 32.687 - type: mrr_at_100 value: 33.622 - type: mrr_at_1000 value: 33.698 - type: mrr_at_3 value: 30.407 - type: mrr_at_5 value: 31.552999999999997 - type: ndcg_at_1 value: 24.399 - type: ndcg_at_10 value: 35.472 - type: ndcg_at_100 value: 40.455000000000005 - type: ndcg_at_1000 value: 43.15 - type: ndcg_at_3 value: 30.575000000000003 - type: ndcg_at_5 value: 32.668 - type: precision_at_1 value: 24.399 - type: precision_at_10 value: 5.656 - type: precision_at_100 value: 0.874 - type: precision_at_1000 value: 0.121 - type: precision_at_3 value: 13.062000000000001 - type: precision_at_5 value: 9.242 - type: recall_at_1 value: 22.039 - type: recall_at_10 value: 48.379 - type: recall_at_100 value: 71.11800000000001 - type: recall_at_1000 value: 91.095 - type: recall_at_3 value: 35.108 - type: recall_at_5 value: 40.015 - task: type: Retrieval dataset: name: MTEB ClimateFEVER type: climate-fever config: default split: test revision: None metrics: - type: map_at_1 value: 10.144 - type: map_at_10 value: 18.238 - type: map_at_100 value: 20.143 - type: map_at_1000 value: 20.346 - type: map_at_3 value: 14.809 - type: map_at_5 value: 16.567999999999998 - type: mrr_at_1 value: 22.671 - type: mrr_at_10 value: 34.906 - type: mrr_at_100 value: 35.858000000000004 - type: mrr_at_1000 value: 35.898 - type: mrr_at_3 value: 31.238 - type: mrr_at_5 value: 33.342 - type: ndcg_at_1 value: 22.671 - type: ndcg_at_10 value: 26.540000000000003 - type: ndcg_at_100 value: 34.138000000000005 - type: ndcg_at_1000 value: 37.72 - type: ndcg_at_3 value: 20.766000000000002 - type: ndcg_at_5 value: 22.927 - type: precision_at_1 value: 22.671 - type: precision_at_10 value: 8.619 - type: precision_at_100 value: 1.678 - type: precision_at_1000 value: 0.23500000000000001 - type: precision_at_3 value: 15.592 - type: precision_at_5 value: 12.43 - type: recall_at_1 value: 10.144 - type: recall_at_10 value: 33.46 - type: recall_at_100 value: 59.758 - type: recall_at_1000 value: 79.704 - type: recall_at_3 value: 19.604 - type: recall_at_5 value: 25.367 - task: type: Retrieval dataset: name: MTEB DBPedia type: dbpedia-entity config: default split: test revision: None metrics: - type: map_at_1 value: 8.654 - type: map_at_10 value: 18.506 - type: map_at_100 value: 26.412999999999997 - type: map_at_1000 value: 28.13 - type: map_at_3 value: 13.379 - type: map_at_5 value: 15.529000000000002 - type: mrr_at_1 value: 66.0 - type: mrr_at_10 value: 74.13 - type: mrr_at_100 value: 74.48700000000001 - type: mrr_at_1000 value: 74.49799999999999 - type: mrr_at_3 value: 72.75 - type: mrr_at_5 value: 73.762 - type: ndcg_at_1 value: 54.50000000000001 - type: ndcg_at_10 value: 40.236 - type: ndcg_at_100 value: 44.690999999999995 - type: ndcg_at_1000 value: 52.195 - type: ndcg_at_3 value: 45.632 - type: ndcg_at_5 value: 42.952 - type: precision_at_1 value: 66.0 - type: precision_at_10 value: 31.724999999999998 - type: precision_at_100 value: 10.299999999999999 - type: precision_at_1000 value: 2.194 - type: precision_at_3 value: 48.75 - type: precision_at_5 value: 41.6 - type: recall_at_1 value: 8.654 - type: recall_at_10 value: 23.74 - type: recall_at_100 value: 50.346999999999994 - type: recall_at_1000 value: 74.376 - type: recall_at_3 value: 14.636 - type: recall_at_5 value: 18.009 - task: type: Classification dataset: name: MTEB EmotionClassification type: mteb/emotion config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 53.245 - type: f1 value: 48.74520523753552 - task: type: Retrieval dataset: name: MTEB FEVER type: fever config: default split: test revision: None metrics: - type: map_at_1 value: 51.729 - type: map_at_10 value: 63.904 - type: map_at_100 value: 64.363 - type: map_at_1000 value: 64.38199999999999 - type: map_at_3 value: 61.393 - type: map_at_5 value: 63.02100000000001 - type: mrr_at_1 value: 55.686 - type: mrr_at_10 value: 67.804 - type: mrr_at_100 value: 68.15299999999999 - type: mrr_at_1000 value: 68.161 - type: mrr_at_3 value: 65.494 - type: mrr_at_5 value: 67.01599999999999 - type: ndcg_at_1 value: 55.686 - type: ndcg_at_10 value: 70.025 - type: ndcg_at_100 value: 72.011 - type: ndcg_at_1000 value: 72.443 - type: ndcg_at_3 value: 65.32900000000001 - type: ndcg_at_5 value: 68.05600000000001 - type: precision_at_1 value: 55.686 - type: precision_at_10 value: 9.358 - type: precision_at_100 value: 1.05 - type: precision_at_1000 value: 0.11 - type: precision_at_3 value: 26.318 - type: precision_at_5 value: 17.321 - type: recall_at_1 value: 51.729 - type: recall_at_10 value: 85.04 - type: recall_at_100 value: 93.777 - type: recall_at_1000 value: 96.824 - type: recall_at_3 value: 72.521 - type: recall_at_5 value: 79.148 - task: type: Retrieval dataset: name: MTEB FiQA2018 type: fiqa config: default split: test revision: None metrics: - type: map_at_1 value: 23.765 - type: map_at_10 value: 39.114 - type: map_at_100 value: 40.987 - type: map_at_1000 value: 41.155 - type: map_at_3 value: 34.028000000000006 - type: map_at_5 value: 36.925000000000004 - type: mrr_at_1 value: 46.451 - type: mrr_at_10 value: 54.711 - type: mrr_at_100 value: 55.509 - type: mrr_at_1000 value: 55.535000000000004 - type: mrr_at_3 value: 52.649 - type: mrr_at_5 value: 53.729000000000006 - type: ndcg_at_1 value: 46.451 - type: ndcg_at_10 value: 46.955999999999996 - type: ndcg_at_100 value: 53.686 - type: ndcg_at_1000 value: 56.230000000000004 - type: ndcg_at_3 value: 43.374 - type: ndcg_at_5 value: 44.372 - type: precision_at_1 value: 46.451 - type: precision_at_10 value: 13.256 - type: precision_at_100 value: 2.019 - type: precision_at_1000 value: 0.247 - type: precision_at_3 value: 29.115000000000002 - type: precision_at_5 value: 21.389 - type: recall_at_1 value: 23.765 - type: recall_at_10 value: 53.452999999999996 - type: recall_at_100 value: 78.828 - type: recall_at_1000 value: 93.938 - type: recall_at_3 value: 39.023 - type: recall_at_5 value: 45.18 - task: type: Retrieval dataset: name: MTEB HotpotQA type: hotpotqa config: default split: test revision: None metrics: - type: map_at_1 value: 31.918000000000003 - type: map_at_10 value: 46.741 - type: map_at_100 value: 47.762 - type: map_at_1000 value: 47.849000000000004 - type: map_at_3 value: 43.578 - type: map_at_5 value: 45.395 - type: mrr_at_1 value: 63.834999999999994 - type: mrr_at_10 value: 71.312 - type: mrr_at_100 value: 71.695 - type: mrr_at_1000 value: 71.714 - type: mrr_at_3 value: 69.82000000000001 - type: mrr_at_5 value: 70.726 - type: ndcg_at_1 value: 63.834999999999994 - type: ndcg_at_10 value: 55.879999999999995 - type: ndcg_at_100 value: 59.723000000000006 - type: ndcg_at_1000 value: 61.49400000000001 - type: ndcg_at_3 value: 50.964 - type: ndcg_at_5 value: 53.47 - type: precision_at_1 value: 63.834999999999994 - type: precision_at_10 value: 11.845 - type: precision_at_100 value: 1.4869999999999999 - type: precision_at_1000 value: 0.172 - type: precision_at_3 value: 32.158 - type: precision_at_5 value: 21.278 - type: recall_at_1 value: 31.918000000000003 - type: recall_at_10 value: 59.223000000000006 - type: recall_at_100 value: 74.328 - type: recall_at_1000 value: 86.05000000000001 - type: recall_at_3 value: 48.238 - type: recall_at_5 value: 53.193999999999996 - task: type: Classification dataset: name: MTEB ImdbClassification type: mteb/imdb config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 79.7896 - type: ap value: 73.65166029460288 - type: f1 value: 79.71794693711813 - task: type: Retrieval dataset: name: MTEB MSMARCO type: msmarco config: default split: dev revision: None metrics: - type: map_at_1 value: 22.239 - type: map_at_10 value: 34.542 - type: map_at_100 value: 35.717999999999996 - type: map_at_1000 value: 35.764 - type: map_at_3 value: 30.432 - type: map_at_5 value: 32.81 - type: mrr_at_1 value: 22.908 - type: mrr_at_10 value: 35.127 - type: mrr_at_100 value: 36.238 - type: mrr_at_1000 value: 36.278 - type: mrr_at_3 value: 31.076999999999998 - type: mrr_at_5 value: 33.419 - type: ndcg_at_1 value: 22.908 - type: ndcg_at_10 value: 41.607 - type: ndcg_at_100 value: 47.28 - type: ndcg_at_1000 value: 48.414 - type: ndcg_at_3 value: 33.253 - type: ndcg_at_5 value: 37.486000000000004 - type: precision_at_1 value: 22.908 - type: precision_at_10 value: 6.645 - type: precision_at_100 value: 0.9490000000000001 - type: precision_at_1000 value: 0.105 - type: precision_at_3 value: 14.130999999999998 - type: precision_at_5 value: 10.616 - type: recall_at_1 value: 22.239 - type: recall_at_10 value: 63.42 - type: recall_at_100 value: 89.696 - type: recall_at_1000 value: 98.351 - type: recall_at_3 value: 40.77 - type: recall_at_5 value: 50.93 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: mteb/mtop_domain config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 95.06839945280439 - type: f1 value: 94.74276398224072 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: mteb/mtop_intent config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 72.25718194254446 - type: f1 value: 53.91164489161391 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: mteb/amazon_massive_intent config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 71.47948890383323 - type: f1 value: 69.98520247230257 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: mteb/amazon_massive_scenario config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 76.46603900470748 - type: f1 value: 76.44111526065399 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P type: mteb/medrxiv-clustering-p2p config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 33.19106070798198 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S type: mteb/medrxiv-clustering-s2s config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 30.78772205248094 - task: type: Reranking dataset: name: MTEB MindSmallReranking type: mteb/mind_small config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 31.811231631488507 - type: mrr value: 32.98200485378021 - task: type: Retrieval dataset: name: MTEB NFCorpus type: nfcorpus config: default split: test revision: None metrics: - type: map_at_1 value: 6.9 - type: map_at_10 value: 13.703000000000001 - type: map_at_100 value: 17.251 - type: map_at_1000 value: 18.795 - type: map_at_3 value: 10.366999999999999 - type: map_at_5 value: 11.675 - type: mrr_at_1 value: 47.059 - type: mrr_at_10 value: 55.816 - type: mrr_at_100 value: 56.434 - type: mrr_at_1000 value: 56.467 - type: mrr_at_3 value: 53.973000000000006 - type: mrr_at_5 value: 55.257999999999996 - type: ndcg_at_1 value: 44.737 - type: ndcg_at_10 value: 35.997 - type: ndcg_at_100 value: 33.487 - type: ndcg_at_1000 value: 41.897 - type: ndcg_at_3 value: 41.18 - type: ndcg_at_5 value: 38.721 - type: precision_at_1 value: 46.129999999999995 - type: precision_at_10 value: 26.533 - type: precision_at_100 value: 8.706 - type: precision_at_1000 value: 2.16 - type: precision_at_3 value: 38.493 - type: precision_at_5 value: 33.189 - type: recall_at_1 value: 6.9 - type: recall_at_10 value: 17.488999999999997 - type: recall_at_100 value: 34.583000000000006 - type: recall_at_1000 value: 64.942 - type: recall_at_3 value: 11.494 - type: recall_at_5 value: 13.496 - task: type: Retrieval dataset: name: MTEB NQ type: nq config: default split: test revision: None metrics: - type: map_at_1 value: 33.028999999999996 - type: map_at_10 value: 49.307 - type: map_at_100 value: 50.205 - type: map_at_1000 value: 50.23 - type: map_at_3 value: 44.782 - type: map_at_5 value: 47.599999999999994 - type: mrr_at_1 value: 37.108999999999995 - type: mrr_at_10 value: 51.742999999999995 - type: mrr_at_100 value: 52.405 - type: mrr_at_1000 value: 52.422000000000004 - type: mrr_at_3 value: 48.087999999999994 - type: mrr_at_5 value: 50.414 - type: ndcg_at_1 value: 37.08 - type: ndcg_at_10 value: 57.236 - type: ndcg_at_100 value: 60.931999999999995 - type: ndcg_at_1000 value: 61.522 - type: ndcg_at_3 value: 48.93 - type: ndcg_at_5 value: 53.561 - type: precision_at_1 value: 37.08 - type: precision_at_10 value: 9.386 - type: precision_at_100 value: 1.1480000000000001 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 22.258 - type: precision_at_5 value: 16.025 - type: recall_at_1 value: 33.028999999999996 - type: recall_at_10 value: 78.805 - type: recall_at_100 value: 94.643 - type: recall_at_1000 value: 99.039 - type: recall_at_3 value: 57.602 - type: recall_at_5 value: 68.253 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval type: quora config: default split: test revision: None metrics: - type: map_at_1 value: 71.122 - type: map_at_10 value: 85.237 - type: map_at_100 value: 85.872 - type: map_at_1000 value: 85.885 - type: map_at_3 value: 82.27499999999999 - type: map_at_5 value: 84.13199999999999 - type: mrr_at_1 value: 81.73 - type: mrr_at_10 value: 87.834 - type: mrr_at_100 value: 87.92 - type: mrr_at_1000 value: 87.921 - type: mrr_at_3 value: 86.878 - type: mrr_at_5 value: 87.512 - type: ndcg_at_1 value: 81.73 - type: ndcg_at_10 value: 88.85499999999999 - type: ndcg_at_100 value: 89.992 - type: ndcg_at_1000 value: 90.07 - type: ndcg_at_3 value: 85.997 - type: ndcg_at_5 value: 87.55199999999999 - type: precision_at_1 value: 81.73 - type: precision_at_10 value: 13.491 - type: precision_at_100 value: 1.536 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.623 - type: precision_at_5 value: 24.742 - type: recall_at_1 value: 71.122 - type: recall_at_10 value: 95.935 - type: recall_at_100 value: 99.657 - type: recall_at_1000 value: 99.996 - type: recall_at_3 value: 87.80799999999999 - type: recall_at_5 value: 92.161 - task: type: Clustering dataset: name: MTEB RedditClustering type: mteb/reddit-clustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 63.490029238193756 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P type: mteb/reddit-clustering-p2p config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 65.13153408508836 - task: type: Retrieval dataset: name: MTEB SCIDOCS type: scidocs config: default split: test revision: None metrics: - type: map_at_1 value: 4.202999999999999 - type: map_at_10 value: 10.174 - type: map_at_100 value: 12.138 - type: map_at_1000 value: 12.418 - type: map_at_3 value: 7.379 - type: map_at_5 value: 8.727 - type: mrr_at_1 value: 20.7 - type: mrr_at_10 value: 30.389 - type: mrr_at_100 value: 31.566 - type: mrr_at_1000 value: 31.637999999999998 - type: mrr_at_3 value: 27.133000000000003 - type: mrr_at_5 value: 29.078 - type: ndcg_at_1 value: 20.7 - type: ndcg_at_10 value: 17.355999999999998 - type: ndcg_at_100 value: 25.151 - type: ndcg_at_1000 value: 30.37 - type: ndcg_at_3 value: 16.528000000000002 - type: ndcg_at_5 value: 14.396999999999998 - type: precision_at_1 value: 20.7 - type: precision_at_10 value: 8.98 - type: precision_at_100 value: 2.015 - type: precision_at_1000 value: 0.327 - type: precision_at_3 value: 15.367 - type: precision_at_5 value: 12.559999999999999 - type: recall_at_1 value: 4.202999999999999 - type: recall_at_10 value: 18.197 - type: recall_at_100 value: 40.903 - type: recall_at_1000 value: 66.427 - type: recall_at_3 value: 9.362 - type: recall_at_5 value: 12.747 - task: type: STS dataset: name: MTEB SICK-R type: mteb/sickr-sts config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_spearman value: 81.69890989765257 - task: type: STS dataset: name: MTEB STS12 type: mteb/sts12-sts config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_spearman value: 75.31953790551489 - task: type: STS dataset: name: MTEB STS13 type: mteb/sts13-sts config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_spearman value: 87.44050861280759 - task: type: STS dataset: name: MTEB STS14 type: mteb/sts14-sts config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_spearman value: 81.86922869270393 - task: type: STS dataset: name: MTEB STS15 type: mteb/sts15-sts config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_spearman value: 88.9399170304284 - task: type: STS dataset: name: MTEB STS16 type: mteb/sts16-sts config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_spearman value: 85.38015314088582 - task: type: STS dataset: name: MTEB STS17 (en-en) type: mteb/sts17-crosslingual-sts config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_spearman value: 90.53653527788835 - task: type: STS dataset: name: MTEB STS22 (en) type: mteb/sts22-crosslingual-sts config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_spearman value: 68.64526474250209 - task: type: STS dataset: name: MTEB STSBenchmark type: mteb/stsbenchmark-sts config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_spearman value: 86.56156983963042 - task: type: Reranking dataset: name: MTEB SciDocsRR type: mteb/scidocs-reranking config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 79.48610254648003 - type: mrr value: 94.02481505422682 - task: type: Retrieval dataset: name: MTEB SciFact type: scifact config: default split: test revision: None metrics: - type: map_at_1 value: 48.983 - type: map_at_10 value: 59.077999999999996 - type: map_at_100 value: 59.536 - type: map_at_1000 value: 59.575 - type: map_at_3 value: 55.691 - type: map_at_5 value: 57.410000000000004 - type: mrr_at_1 value: 51.666999999999994 - type: mrr_at_10 value: 60.427 - type: mrr_at_100 value: 60.763 - type: mrr_at_1000 value: 60.79900000000001 - type: mrr_at_3 value: 57.556 - type: mrr_at_5 value: 59.089000000000006 - type: ndcg_at_1 value: 51.666999999999994 - type: ndcg_at_10 value: 64.559 - type: ndcg_at_100 value: 66.58 - type: ndcg_at_1000 value: 67.64 - type: ndcg_at_3 value: 58.287 - type: ndcg_at_5 value: 61.001000000000005 - type: precision_at_1 value: 51.666999999999994 - type: precision_at_10 value: 9.067 - type: precision_at_100 value: 1.0170000000000001 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 23.0 - type: precision_at_5 value: 15.6 - type: recall_at_1 value: 48.983 - type: recall_at_10 value: 80.289 - type: recall_at_100 value: 89.43299999999999 - type: recall_at_1000 value: 97.667 - type: recall_at_3 value: 62.978 - type: recall_at_5 value: 69.872 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions type: mteb/sprintduplicatequestions-pairclassification config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.79009900990098 - type: cos_sim_ap value: 94.94115052608419 - type: cos_sim_f1 value: 89.1260162601626 - type: cos_sim_precision value: 90.599173553719 - type: cos_sim_recall value: 87.7 - type: dot_accuracy value: 99.79009900990098 - type: dot_ap value: 94.94115052608419 - type: dot_f1 value: 89.1260162601626 - type: dot_precision value: 90.599173553719 - type: dot_recall value: 87.7 - type: euclidean_accuracy value: 99.79009900990098 - type: euclidean_ap value: 94.94115052608419 - type: euclidean_f1 value: 89.1260162601626 - type: euclidean_precision value: 90.599173553719 - type: euclidean_recall value: 87.7 - type: manhattan_accuracy value: 99.7940594059406 - type: manhattan_ap value: 94.95271414642431 - type: manhattan_f1 value: 89.24508790072387 - type: manhattan_precision value: 92.3982869379015 - type: manhattan_recall value: 86.3 - type: max_accuracy value: 99.7940594059406 - type: max_ap value: 94.95271414642431 - type: max_f1 value: 89.24508790072387 - task: type: Clustering dataset: name: MTEB StackExchangeClustering type: mteb/stackexchange-clustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 68.43866571935851 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P type: mteb/stackexchange-clustering-p2p config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 35.16579026551532 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions type: mteb/stackoverflowdupquestions-reranking config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 52.518952473513934 - type: mrr value: 53.292457134368895 - task: type: Summarization dataset: name: MTEB SummEval type: mteb/summeval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 31.12529588316604 - type: cos_sim_spearman value: 32.31662126895294 - type: dot_pearson value: 31.125303796647056 - type: dot_spearman value: 32.31662126895294 - task: type: Retrieval dataset: name: MTEB TRECCOVID type: trec-covid config: default split: test revision: None metrics: - type: map_at_1 value: 0.219 - type: map_at_10 value: 1.7469999999999999 - type: map_at_100 value: 10.177999999999999 - type: map_at_1000 value: 26.108999999999998 - type: map_at_3 value: 0.64 - type: map_at_5 value: 0.968 - type: mrr_at_1 value: 82.0 - type: mrr_at_10 value: 89.067 - type: mrr_at_100 value: 89.067 - type: mrr_at_1000 value: 89.067 - type: mrr_at_3 value: 88.333 - type: mrr_at_5 value: 88.73299999999999 - type: ndcg_at_1 value: 78.0 - type: ndcg_at_10 value: 71.398 - type: ndcg_at_100 value: 55.574999999999996 - type: ndcg_at_1000 value: 51.771 - type: ndcg_at_3 value: 77.765 - type: ndcg_at_5 value: 73.614 - type: precision_at_1 value: 82.0 - type: precision_at_10 value: 75.4 - type: precision_at_100 value: 58.040000000000006 - type: precision_at_1000 value: 23.516000000000002 - type: precision_at_3 value: 84.0 - type: precision_at_5 value: 78.4 - type: recall_at_1 value: 0.219 - type: recall_at_10 value: 1.958 - type: recall_at_100 value: 13.797999999999998 - type: recall_at_1000 value: 49.881 - type: recall_at_3 value: 0.672 - type: recall_at_5 value: 1.0370000000000001 - task: type: Retrieval dataset: name: MTEB Touche2020 type: webis-touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 1.8610000000000002 - type: map_at_10 value: 8.705 - type: map_at_100 value: 15.164 - type: map_at_1000 value: 16.78 - type: map_at_3 value: 4.346 - type: map_at_5 value: 6.151 - type: mrr_at_1 value: 22.448999999999998 - type: mrr_at_10 value: 41.556 - type: mrr_at_100 value: 42.484 - type: mrr_at_1000 value: 42.494 - type: mrr_at_3 value: 37.755 - type: mrr_at_5 value: 40.102 - type: ndcg_at_1 value: 21.429000000000002 - type: ndcg_at_10 value: 23.439 - type: ndcg_at_100 value: 36.948 - type: ndcg_at_1000 value: 48.408 - type: ndcg_at_3 value: 22.261 - type: ndcg_at_5 value: 23.085 - type: precision_at_1 value: 22.448999999999998 - type: precision_at_10 value: 21.633 - type: precision_at_100 value: 8.02 - type: precision_at_1000 value: 1.5939999999999999 - type: precision_at_3 value: 23.810000000000002 - type: precision_at_5 value: 24.490000000000002 - type: recall_at_1 value: 1.8610000000000002 - type: recall_at_10 value: 15.876000000000001 - type: recall_at_100 value: 50.300999999999995 - type: recall_at_1000 value: 86.098 - type: recall_at_3 value: 5.892 - type: recall_at_5 value: 9.443 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification type: mteb/toxic_conversations_50k config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 70.3264 - type: ap value: 13.249577616243794 - type: f1 value: 53.621518367695685 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification type: mteb/tweet_sentiment_extraction config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 61.57611771363894 - type: f1 value: 61.79797478568639 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering type: mteb/twentynewsgroups-clustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 53.38315344479284 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 type: mteb/twittersemeval2015-pairclassification config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 87.55438993860642 - type: cos_sim_ap value: 77.98702600017738 - type: cos_sim_f1 value: 71.94971653931476 - type: cos_sim_precision value: 67.50693802035153 - type: cos_sim_recall value: 77.01846965699208 - type: dot_accuracy value: 87.55438993860642 - type: dot_ap value: 77.98702925907986 - type: dot_f1 value: 71.94971653931476 - type: dot_precision value: 67.50693802035153 - type: dot_recall value: 77.01846965699208 - type: euclidean_accuracy value: 87.55438993860642 - type: euclidean_ap value: 77.98702951957925 - type: euclidean_f1 value: 71.94971653931476 - type: euclidean_precision value: 67.50693802035153 - type: euclidean_recall value: 77.01846965699208 - type: manhattan_accuracy value: 87.54246885617214 - type: manhattan_ap value: 77.95531413902947 - type: manhattan_f1 value: 71.93605683836589 - type: manhattan_precision value: 69.28152492668622 - type: manhattan_recall value: 74.80211081794195 - type: max_accuracy value: 87.55438993860642 - type: max_ap value: 77.98702951957925 - type: max_f1 value: 71.94971653931476 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus type: mteb/twitterurlcorpus-pairclassification config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 89.47296930182016 - type: cos_sim_ap value: 86.92853616302108 - type: cos_sim_f1 value: 79.35138351681047 - type: cos_sim_precision value: 76.74820143884892 - type: cos_sim_recall value: 82.13735756082538 - type: dot_accuracy value: 89.47296930182016 - type: dot_ap value: 86.92854339601595 - type: dot_f1 value: 79.35138351681047 - type: dot_precision value: 76.74820143884892 - type: dot_recall value: 82.13735756082538 - type: euclidean_accuracy value: 89.47296930182016 - type: euclidean_ap value: 86.92854191061649 - type: euclidean_f1 value: 79.35138351681047 - type: euclidean_precision value: 76.74820143884892 - type: euclidean_recall value: 82.13735756082538 - type: manhattan_accuracy value: 89.47685023479644 - type: manhattan_ap value: 86.90063722679578 - type: manhattan_f1 value: 79.30753865502702 - type: manhattan_precision value: 76.32066068631639 - type: manhattan_recall value: 82.53772713273791 - type: max_accuracy value: 89.47685023479644 - type: max_ap value: 86.92854339601595 - type: max_f1 value: 79.35138351681047 --- clone of hkunlp/instructor with added requirements.txt for inference endpoint and handler that allows use of langchain # hkunlp/instructor-xl We introduce **Instructor**👨‍🏫, an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g., classification, retrieval, clustering, text evaluation, etc.) and domains (e.g., science, finance, etc.) ***by simply providing the task instruction, without any finetuning***. Instructor👨‍ achieves sota on 70 diverse embedding tasks! The model is easy to use with **our customized** `sentence-transformer` library. For more details, check out [our paper](https://arxiv.org/abs/2212.09741) and [project page](https://instructor-embedding.github.io/)! **************************** **Updates** **************************** * 01/21: We released a new [checkpoint](https://huggingface.co/hkunlp/instructor-xl) trained with hard negatives, which gives better performance. * 12/21: We released our [paper](https://arxiv.org/abs/2212.09741), [code](https://github.com/HKUNLP/instructor-embedding), [checkpoint](https://huggingface.co/hkunlp/instructor-xl) and [project page](https://instructor-embedding.github.io/)! Check them out! ## Quick start <hr /> ## Installation ```bash pip install InstructorEmbedding ``` ## Compute your customized embeddings Then you can use the model like this to calculate domain-specific and task-aware embeddings: ```python from InstructorEmbedding import INSTRUCTOR model = INSTRUCTOR('hkunlp/instructor-xl') sentence = "3D ActionSLAM: wearable person tracking in multi-floor environments" instruction = "Represent the Science title:" embeddings = model.encode([[instruction,sentence]]) print(embeddings) ``` ## Use cases <hr /> ## Calculate embeddings for your customized texts If you want to calculate customized embeddings for specific sentences, you may follow the unified template to write instructions: &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Represent the `domain` `text_type` for `task_objective`: * `domain` is optional, and it specifies the domain of the text, e.g., science, finance, medicine, etc. * `text_type` is required, and it specifies the encoding unit, e.g., sentence, document, paragraph, etc. * `task_objective` is optional, and it specifies the objective of embedding, e.g., retrieve a document, classify the sentence, etc. ## Calculate Sentence similarities You can further use the model to compute similarities between two groups of sentences, with **customized embeddings**. ```python from sklearn.metrics.pairwise import cosine_similarity sentences_a = [['Represent the Science sentence: ','Parton energy loss in QCD matter'], ['Represent the Financial statement: ','The Federal Reserve on Wednesday raised its benchmark interest rate.']] sentences_b = [['Represent the Science sentence: ','The Chiral Phase Transition in Dissipative Dynamics'], ['Represent the Financial statement: ','The funds rose less than 0.5 per cent on Friday']] embeddings_a = model.encode(sentences_a) embeddings_b = model.encode(sentences_b) similarities = cosine_similarity(embeddings_a,embeddings_b) print(similarities) ``` ## Information Retrieval You can also use **customized embeddings** for information retrieval. ```python import numpy as np from sklearn.metrics.pairwise import cosine_similarity query = [['Represent the Wikipedia question for retrieving supporting documents: ','where is the food stored in a yam plant']] corpus = [['Represent the Wikipedia document for retrieval: ','Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that the term "mixed economies" more precisely describes most contemporary economies, due to their containing both private-owned and state-owned enterprises. In capitalism, prices determine the demand-supply scale. For example, higher demand for certain goods and services lead to higher prices and lower demand for certain goods lead to lower prices.'], ['Represent the Wikipedia document for retrieval: ',"The disparate impact theory is especially controversial under the Fair Housing Act because the Act regulates many activities relating to housing, insurance, and mortgage loans—and some scholars have argued that the theory's use under the Fair Housing Act, combined with extensions of the Community Reinvestment Act, contributed to rise of sub-prime lending and the crash of the U.S. housing market and ensuing global economic recession"], ['Represent the Wikipedia document for retrieval: ','Disparate impact in United States labor law refers to practices in employment, housing, and other areas that adversely affect one group of people of a protected characteristic more than another, even though rules applied by employers or landlords are formally neutral. Although the protected classes vary by statute, most federal civil rights laws protect based on race, color, religion, national origin, and sex as protected traits, and some laws include disability status and other traits as well.']] query_embeddings = model.encode(query) corpus_embeddings = model.encode(corpus) similarities = cosine_similarity(query_embeddings,corpus_embeddings) retrieved_doc_id = np.argmax(similarities) print(retrieved_doc_id) ``` ## Clustering Use **customized embeddings** for clustering texts in groups. ```python import sklearn.cluster sentences = [['Represent the Medicine sentence for clustering: ','Dynamical Scalar Degree of Freedom in Horava-Lifshitz Gravity'], ['Represent the Medicine sentence for clustering: ','Comparison of Atmospheric Neutrino Flux Calculations at Low Energies'], ['Represent the Medicine sentence for clustering: ','Fermion Bags in the Massive Gross-Neveu Model'], ['Represent the Medicine sentence for clustering: ',"QCD corrections to Associated t-tbar-H production at the Tevatron"], ['Represent the Medicine sentence for clustering: ','A New Analysis of the R Measurements: Resonance Parameters of the Higher, Vector States of Charmonium']] embeddings = model.encode(sentences) clustering_model = sklearn.cluster.MiniBatchKMeans(n_clusters=2) clustering_model.fit(embeddings) cluster_assignment = clustering_model.labels_ print(cluster_assignment) ```
[ "SUMMARIZATION" ]
[ "BIOSSES", "SCIFACT" ]
Non_BioNLP
clone of hkunlp/instructor with added requirements.txt for inference endpoint and handler that allows use of langchain # hkunlp/instructor-xl We introduce **Instructor**👨‍🏫, an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g., classification, retrieval, clustering, text evaluation, etc.) and domains (e.g., science, finance, etc.) ***by simply providing the task instruction, without any finetuning***. Instructor👨‍ achieves sota on 70 diverse embedding tasks! The model is easy to use with **our customized** `sentence-transformer` library. For more details, check out [our paper](https://arxiv.org/abs/2212.09741) and [project page](https://instructor-embedding.github.io/)! **************************** **Updates** **************************** * 01/21: We released a new [checkpoint](https://huggingface.co/hkunlp/instructor-xl) trained with hard negatives, which gives better performance. * 12/21: We released our [paper](https://arxiv.org/abs/2212.09741), [code](https://github.com/HKUNLP/instructor-embedding), [checkpoint](https://huggingface.co/hkunlp/instructor-xl) and [project page](https://instructor-embedding.github.io/)! Check them out! ## Quick start <hr /> ## Installation ```bash pip install InstructorEmbedding ``` ## Compute your customized embeddings Then you can use the model like this to calculate domain-specific and task-aware embeddings: ```python from InstructorEmbedding import INSTRUCTOR model = INSTRUCTOR('hkunlp/instructor-xl') sentence = "3D ActionSLAM: wearable person tracking in multi-floor environments" instruction = "Represent the Science title:" embeddings = model.encode([[instruction,sentence]]) print(embeddings) ``` ## Use cases <hr /> ## Calculate embeddings for your customized texts If you want to calculate customized embeddings for specific sentences, you may follow the unified template to write instructions: &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Represent the `domain` `text_type` for `task_objective`: * `domain` is optional, and it specifies the domain of the text, e.g., science, finance, medicine, etc. * `text_type` is required, and it specifies the encoding unit, e.g., sentence, document, paragraph, etc. * `task_objective` is optional, and it specifies the objective of embedding, e.g., retrieve a document, classify the sentence, etc. ## Calculate Sentence similarities You can further use the model to compute similarities between two groups of sentences, with **customized embeddings**. ```python from sklearn.metrics.pairwise import cosine_similarity sentences_a = [['Represent the Science sentence: ','Parton energy loss in QCD matter'], ['Represent the Financial statement: ','The Federal Reserve on Wednesday raised its benchmark interest rate.']] sentences_b = [['Represent the Science sentence: ','The Chiral Phase Transition in Dissipative Dynamics'], ['Represent the Financial statement: ','The funds rose less than 0.5 per cent on Friday']] embeddings_a = model.encode(sentences_a) embeddings_b = model.encode(sentences_b) similarities = cosine_similarity(embeddings_a,embeddings_b) print(similarities) ``` ## Information Retrieval You can also use **customized embeddings** for information retrieval. ```python import numpy as np from sklearn.metrics.pairwise import cosine_similarity query = [['Represent the Wikipedia question for retrieving supporting documents: ','where is the food stored in a yam plant']] corpus = [['Represent the Wikipedia document for retrieval: ','Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that the term "mixed economies" more precisely describes most contemporary economies, due to their containing both private-owned and state-owned enterprises. In capitalism, prices determine the demand-supply scale. For example, higher demand for certain goods and services lead to higher prices and lower demand for certain goods lead to lower prices.'], ['Represent the Wikipedia document for retrieval: ',"The disparate impact theory is especially controversial under the Fair Housing Act because the Act regulates many activities relating to housing, insurance, and mortgage loans—and some scholars have argued that the theory's use under the Fair Housing Act, combined with extensions of the Community Reinvestment Act, contributed to rise of sub-prime lending and the crash of the U.S. housing market and ensuing global economic recession"], ['Represent the Wikipedia document for retrieval: ','Disparate impact in United States labor law refers to practices in employment, housing, and other areas that adversely affect one group of people of a protected characteristic more than another, even though rules applied by employers or landlords are formally neutral. Although the protected classes vary by statute, most federal civil rights laws protect based on race, color, religion, national origin, and sex as protected traits, and some laws include disability status and other traits as well.']] query_embeddings = model.encode(query) corpus_embeddings = model.encode(corpus) similarities = cosine_similarity(query_embeddings,corpus_embeddings) retrieved_doc_id = np.argmax(similarities) print(retrieved_doc_id) ``` ## Clustering Use **customized embeddings** for clustering texts in groups. ```python import sklearn.cluster sentences = [['Represent the Medicine sentence for clustering: ','Dynamical Scalar Degree of Freedom in Horava-Lifshitz Gravity'], ['Represent the Medicine sentence for clustering: ','Comparison of Atmospheric Neutrino Flux Calculations at Low Energies'], ['Represent the Medicine sentence for clustering: ','Fermion Bags in the Massive Gross-Neveu Model'], ['Represent the Medicine sentence for clustering: ',"QCD corrections to Associated t-tbar-H production at the Tevatron"], ['Represent the Medicine sentence for clustering: ','A New Analysis of the R Measurements: Resonance Parameters of the Higher, Vector States of Charmonium']] embeddings = model.encode(sentences) clustering_model = sklearn.cluster.MiniBatchKMeans(n_clusters=2) clustering_model.fit(embeddings) cluster_assignment = clustering_model.labels_ print(cluster_assignment) ```
{"language": "en", "license": "apache-2.0", "pipeline_tag": "sentence-similarity", "tags": ["text-embedding", "embeddings", "information-retrieval", "beir", "text-classification", "language-model", "text-clustering", "text-semantic-similarity", "text-evaluation", "prompt-retrieval", "text-reranking", "sentence-transformers", "feature-extraction", "sentence-similarity", "transformers", "t5", "English", "Sentence Similarity", "natural_questions", "ms_marco", "fever", "hotpot_qa", "mteb"], "inference": false, "model-index": [{"name": "final_xl_results", "results": [{"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonCounterfactualClassification (en)", "type": "mteb/amazon_counterfactual", "config": "en", "split": "test", "revision": "e8379541af4e31359cca9fbcf4b00f2671dba205"}, "metrics": [{"type": "accuracy", "value": 85.08955223880596}, {"type": "ap", "value": 52.66066378722476}, {"type": "f1", "value": 79.63340218960269}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonPolarityClassification", "type": "mteb/amazon_polarity", "config": "default", "split": "test", "revision": "e2d317d38cd51312af73b3d32a06d1a08b442046"}, "metrics": [{"type": "accuracy", "value": 86.542}, {"type": "ap", "value": 81.92695193008987}, {"type": "f1", "value": 86.51466132573681}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonReviewsClassification (en)", "type": "mteb/amazon_reviews_multi", "config": "en", "split": "test", "revision": "1399c76144fd37290681b995c656ef9b2e06e26d"}, "metrics": [{"type": "accuracy", "value": 42.964}, {"type": "f1", "value": 41.43146249774862}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ArguAna", "type": "arguana", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 29.872}, {"type": "map_at_10", "value": 46.342}, {"type": "map_at_100", "value": 47.152}, {"type": "map_at_1000", "value": 47.154}, {"type": "map_at_3", "value": 41.216}, {"type": "map_at_5", "value": 44.035999999999994}, {"type": "mrr_at_1", "value": 30.939}, {"type": "mrr_at_10", "value": 46.756}, {"type": "mrr_at_100", "value": 47.573}, {"type": "mrr_at_1000", "value": 47.575}, {"type": "mrr_at_3", "value": 41.548}, {"type": "mrr_at_5", "value": 44.425}, {"type": "ndcg_at_1", "value": 29.872}, {"type": "ndcg_at_10", "value": 55.65}, {"type": "ndcg_at_100", "value": 58.88099999999999}, {"type": "ndcg_at_1000", "value": 58.951}, {"type": "ndcg_at_3", "value": 45.0}, {"type": "ndcg_at_5", "value": 50.09}, {"type": "precision_at_1", "value": 29.872}, {"type": "precision_at_10", "value": 8.549}, {"type": "precision_at_100", "value": 0.991}, {"type": "precision_at_1000", "value": 0.1}, {"type": "precision_at_3", "value": 18.658}, {"type": "precision_at_5", "value": 13.669999999999998}, {"type": "recall_at_1", "value": 29.872}, {"type": "recall_at_10", "value": 85.491}, {"type": "recall_at_100", "value": 99.075}, {"type": "recall_at_1000", "value": 99.644}, {"type": "recall_at_3", "value": 55.974000000000004}, {"type": "recall_at_5", "value": 68.35}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringP2P", "type": "mteb/arxiv-clustering-p2p", "config": "default", "split": "test", "revision": "a122ad7f3f0291bf49cc6f4d32aa80929df69d5d"}, "metrics": [{"type": "v_measure", "value": 42.452729850641276}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringS2S", "type": "mteb/arxiv-clustering-s2s", "config": "default", "split": "test", "revision": "f910caf1a6075f7329cdf8c1a6135696f37dbd53"}, "metrics": [{"type": "v_measure", "value": 32.21141846480423}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB AskUbuntuDupQuestions", "type": "mteb/askubuntudupquestions-reranking", "config": "default", "split": "test", "revision": "2000358ca161889fa9c082cb41daa8dcfb161a54"}, "metrics": [{"type": "map", "value": 65.34710928952622}, {"type": "mrr", "value": 77.61124301983028}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB BIOSSES", "type": "mteb/biosses-sts", "config": "default", "split": "test", "revision": "d3fb88f8f02e40887cd149695127462bbcf29b4a"}, "metrics": [{"type": "cos_sim_spearman", "value": 84.15312230525639}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB Banking77Classification", "type": "mteb/banking77", "config": "default", "split": "test", "revision": "0fd18e25b25c072e09e0d92ab615fda904d66300"}, "metrics": [{"type": "accuracy", "value": 82.66233766233766}, {"type": "f1", "value": 82.04175284777669}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringP2P", "type": "mteb/biorxiv-clustering-p2p", "config": "default", "split": "test", "revision": "65b79d1d13f80053f67aca9498d9402c2d9f1f40"}, "metrics": [{"type": "v_measure", "value": 37.36697339826455}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringS2S", "type": "mteb/biorxiv-clustering-s2s", "config": "default", "split": "test", "revision": "258694dd0231531bc1fd9de6ceb52a0853c6d908"}, "metrics": [{"type": "v_measure", "value": 30.551241447593092}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackAndroidRetrieval", "type": "BeIR/cqadupstack", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 36.797000000000004}, {"type": "map_at_10", "value": 48.46}, {"type": "map_at_100", "value": 49.968}, {"type": "map_at_1000", "value": 50.080000000000005}, {"type": "map_at_3", "value": 44.71}, {"type": "map_at_5", "value": 46.592}, {"type": "mrr_at_1", "value": 45.494}, {"type": "mrr_at_10", "value": 54.747}, {"type": "mrr_at_100", "value": 55.43599999999999}, {"type": "mrr_at_1000", "value": 55.464999999999996}, {"type": "mrr_at_3", "value": 52.361000000000004}, {"type": "mrr_at_5", "value": 53.727000000000004}, {"type": "ndcg_at_1", "value": 45.494}, {"type": "ndcg_at_10", "value": 54.989}, {"type": "ndcg_at_100", "value": 60.096000000000004}, {"type": "ndcg_at_1000", "value": 61.58}, {"type": "ndcg_at_3", "value": 49.977}, {"type": "ndcg_at_5", "value": 51.964999999999996}, {"type": "precision_at_1", "value": 45.494}, {"type": "precision_at_10", "value": 10.558}, {"type": "precision_at_100", "value": 1.6049999999999998}, {"type": "precision_at_1000", "value": 0.203}, {"type": "precision_at_3", "value": 23.796}, {"type": "precision_at_5", "value": 16.881}, {"type": "recall_at_1", "value": 36.797000000000004}, {"type": "recall_at_10", "value": 66.83}, {"type": "recall_at_100", "value": 88.34100000000001}, {"type": "recall_at_1000", "value": 97.202}, {"type": "recall_at_3", "value": 51.961999999999996}, {"type": "recall_at_5", "value": 57.940000000000005}, {"type": "map_at_1", "value": 32.597}, {"type": "map_at_10", "value": 43.424}, {"type": "map_at_100", "value": 44.78}, {"type": "map_at_1000", "value": 44.913}, {"type": "map_at_3", "value": 40.315}, {"type": "map_at_5", "value": 41.987}, {"type": "mrr_at_1", "value": 40.382}, {"type": "mrr_at_10", "value": 49.219}, {"type": "mrr_at_100", "value": 49.895}, {"type": "mrr_at_1000", "value": 49.936}, {"type": "mrr_at_3", "value": 46.996}, {"type": "mrr_at_5", "value": 48.231}, {"type": "ndcg_at_1", "value": 40.382}, {"type": "ndcg_at_10", "value": 49.318}, {"type": "ndcg_at_100", "value": 53.839999999999996}, {"type": "ndcg_at_1000", "value": 55.82899999999999}, {"type": "ndcg_at_3", "value": 44.914}, {"type": "ndcg_at_5", "value": 46.798}, {"type": "precision_at_1", "value": 40.382}, {"type": "precision_at_10", "value": 9.274000000000001}, {"type": "precision_at_100", "value": 1.497}, {"type": "precision_at_1000", "value": 0.198}, {"type": "precision_at_3", "value": 21.592}, {"type": "precision_at_5", "value": 15.159}, {"type": "recall_at_1", "value": 32.597}, {"type": "recall_at_10", "value": 59.882000000000005}, {"type": "recall_at_100", "value": 78.446}, {"type": "recall_at_1000", "value": 90.88000000000001}, {"type": "recall_at_3", "value": 46.9}, {"type": "recall_at_5", "value": 52.222}, {"type": "map_at_1", "value": 43.8}, {"type": "map_at_10", "value": 57.293000000000006}, {"type": "map_at_100", "value": 58.321}, {"type": "map_at_1000", "value": 58.361}, {"type": "map_at_3", "value": 53.839999999999996}, {"type": "map_at_5", "value": 55.838}, {"type": "mrr_at_1", "value": 49.592000000000006}, {"type": "mrr_at_10", "value": 60.643}, {"type": "mrr_at_100", "value": 61.23499999999999}, {"type": "mrr_at_1000", "value": 61.251999999999995}, {"type": "mrr_at_3", "value": 58.265}, {"type": "mrr_at_5", "value": 59.717}, {"type": "ndcg_at_1", "value": 49.592000000000006}, {"type": "ndcg_at_10", "value": 63.364}, {"type": "ndcg_at_100", "value": 67.167}, {"type": "ndcg_at_1000", "value": 67.867}, {"type": "ndcg_at_3", "value": 57.912}, {"type": "ndcg_at_5", "value": 60.697}, {"type": "precision_at_1", "value": 49.592000000000006}, {"type": "precision_at_10", "value": 10.088}, {"type": "precision_at_100", "value": 1.2930000000000001}, {"type": "precision_at_1000", "value": 0.13899999999999998}, {"type": "precision_at_3", "value": 25.789}, {"type": "precision_at_5", "value": 17.541999999999998}, {"type": "recall_at_1", "value": 43.8}, {"type": "recall_at_10", "value": 77.635}, {"type": "recall_at_100", "value": 93.748}, {"type": "recall_at_1000", "value": 98.468}, {"type": "recall_at_3", "value": 63.223}, {"type": "recall_at_5", "value": 70.122}, {"type": "map_at_1", "value": 27.721}, {"type": "map_at_10", "value": 35.626999999999995}, {"type": "map_at_100", "value": 36.719}, {"type": "map_at_1000", "value": 36.8}, {"type": "map_at_3", "value": 32.781}, {"type": "map_at_5", "value": 34.333999999999996}, {"type": "mrr_at_1", "value": 29.604999999999997}, {"type": "mrr_at_10", "value": 37.564}, {"type": "mrr_at_100", "value": 38.505}, {"type": "mrr_at_1000", "value": 38.565}, {"type": "mrr_at_3", "value": 34.727000000000004}, {"type": "mrr_at_5", "value": 36.207}, {"type": "ndcg_at_1", "value": 29.604999999999997}, {"type": "ndcg_at_10", "value": 40.575}, {"type": "ndcg_at_100", "value": 45.613}, {"type": "ndcg_at_1000", "value": 47.676}, {"type": "ndcg_at_3", "value": 34.811}, {"type": "ndcg_at_5", "value": 37.491}, {"type": "precision_at_1", "value": 29.604999999999997}, {"type": "precision_at_10", "value": 6.1690000000000005}, {"type": "precision_at_100", "value": 0.906}, {"type": "precision_at_1000", "value": 0.11199999999999999}, {"type": "precision_at_3", "value": 14.237}, {"type": "precision_at_5", "value": 10.056}, {"type": "recall_at_1", "value": 27.721}, {"type": "recall_at_10", "value": 54.041}, {"type": "recall_at_100", "value": 76.62299999999999}, {"type": "recall_at_1000", "value": 92.134}, {"type": "recall_at_3", "value": 38.582}, {"type": "recall_at_5", "value": 44.989000000000004}, {"type": "map_at_1", "value": 16.553}, {"type": "map_at_10", "value": 25.384}, {"type": "map_at_100", "value": 26.655}, {"type": "map_at_1000", "value": 26.778000000000002}, {"type": "map_at_3", "value": 22.733}, {"type": "map_at_5", "value": 24.119}, {"type": "mrr_at_1", "value": 20.149}, {"type": "mrr_at_10", "value": 29.705}, {"type": "mrr_at_100", "value": 30.672}, {"type": "mrr_at_1000", "value": 30.737}, {"type": "mrr_at_3", "value": 27.032}, {"type": "mrr_at_5", "value": 28.369}, {"type": "ndcg_at_1", "value": 20.149}, {"type": "ndcg_at_10", "value": 30.843999999999998}, {"type": "ndcg_at_100", "value": 36.716}, {"type": "ndcg_at_1000", "value": 39.495000000000005}, {"type": "ndcg_at_3", "value": 25.918999999999997}, {"type": "ndcg_at_5", "value": 27.992}, {"type": "precision_at_1", "value": 20.149}, {"type": "precision_at_10", "value": 5.858}, {"type": "precision_at_100", "value": 1.009}, {"type": "precision_at_1000", "value": 0.13799999999999998}, {"type": "precision_at_3", "value": 12.645000000000001}, {"type": "precision_at_5", "value": 9.179}, {"type": "recall_at_1", "value": 16.553}, {"type": "recall_at_10", "value": 43.136}, {"type": "recall_at_100", "value": 68.562}, {"type": "recall_at_1000", "value": 88.208}, {"type": "recall_at_3", "value": 29.493000000000002}, {"type": "recall_at_5", "value": 34.751}, {"type": "map_at_1", "value": 28.000999999999998}, {"type": "map_at_10", "value": 39.004}, {"type": "map_at_100", "value": 40.461999999999996}, {"type": "map_at_1000", "value": 40.566}, {"type": "map_at_3", "value": 35.805}, {"type": "map_at_5", "value": 37.672}, {"type": "mrr_at_1", "value": 33.782000000000004}, {"type": "mrr_at_10", "value": 44.702}, {"type": "mrr_at_100", "value": 45.528}, {"type": "mrr_at_1000", "value": 45.576}, {"type": "mrr_at_3", "value": 42.14}, {"type": "mrr_at_5", "value": 43.651}, {"type": "ndcg_at_1", "value": 33.782000000000004}, {"type": "ndcg_at_10", "value": 45.275999999999996}, {"type": "ndcg_at_100", "value": 50.888}, {"type": "ndcg_at_1000", "value": 52.879}, {"type": "ndcg_at_3", "value": 40.191}, {"type": "ndcg_at_5", "value": 42.731}, {"type": "precision_at_1", "value": 33.782000000000004}, {"type": "precision_at_10", "value": 8.200000000000001}, {"type": "precision_at_100", "value": 1.287}, {"type": "precision_at_1000", "value": 0.16199999999999998}, {"type": "precision_at_3", "value": 19.185}, {"type": "precision_at_5", "value": 13.667000000000002}, {"type": "recall_at_1", "value": 28.000999999999998}, {"type": "recall_at_10", "value": 58.131}, {"type": "recall_at_100", "value": 80.869}, {"type": "recall_at_1000", "value": 93.931}, {"type": "recall_at_3", "value": 44.161}, {"type": "recall_at_5", "value": 50.592000000000006}, {"type": "map_at_1", "value": 28.047}, {"type": "map_at_10", "value": 38.596000000000004}, {"type": "map_at_100", "value": 40.116}, {"type": "map_at_1000", "value": 40.232}, {"type": "map_at_3", "value": 35.205}, {"type": "map_at_5", "value": 37.076}, {"type": "mrr_at_1", "value": 34.932}, {"type": "mrr_at_10", "value": 44.496}, {"type": "mrr_at_100", "value": 45.47}, {"type": "mrr_at_1000", "value": 45.519999999999996}, {"type": "mrr_at_3", "value": 41.743}, {"type": "mrr_at_5", "value": 43.352000000000004}, {"type": "ndcg_at_1", "value": 34.932}, {"type": "ndcg_at_10", "value": 44.901}, {"type": "ndcg_at_100", "value": 50.788999999999994}, {"type": "ndcg_at_1000", "value": 52.867}, {"type": "ndcg_at_3", "value": 39.449}, {"type": "ndcg_at_5", "value": 41.929}, {"type": "precision_at_1", "value": 34.932}, {"type": "precision_at_10", "value": 8.311}, {"type": "precision_at_100", "value": 1.3050000000000002}, {"type": "precision_at_1000", "value": 0.166}, {"type": "precision_at_3", "value": 18.836}, {"type": "precision_at_5", "value": 13.447000000000001}, {"type": "recall_at_1", "value": 28.047}, {"type": "recall_at_10", "value": 57.717}, {"type": "recall_at_100", "value": 82.182}, {"type": "recall_at_1000", "value": 95.82000000000001}, {"type": "recall_at_3", "value": 42.448}, {"type": "recall_at_5", "value": 49.071}, {"type": "map_at_1", "value": 27.861250000000005}, {"type": "map_at_10", "value": 37.529583333333335}, {"type": "map_at_100", "value": 38.7915}, {"type": "map_at_1000", "value": 38.90558333333335}, {"type": "map_at_3", "value": 34.57333333333333}, {"type": "map_at_5", "value": 36.187166666666656}, {"type": "mrr_at_1", "value": 32.88291666666666}, {"type": "mrr_at_10", "value": 41.79750000000001}, {"type": "mrr_at_100", "value": 42.63183333333333}, {"type": "mrr_at_1000", "value": 42.68483333333333}, {"type": "mrr_at_3", "value": 39.313750000000006}, {"type": "mrr_at_5", "value": 40.70483333333333}, {"type": "ndcg_at_1", "value": 32.88291666666666}, {"type": "ndcg_at_10", "value": 43.09408333333333}, {"type": "ndcg_at_100", "value": 48.22158333333333}, {"type": "ndcg_at_1000", "value": 50.358000000000004}, {"type": "ndcg_at_3", "value": 38.129583333333336}, {"type": "ndcg_at_5", "value": 40.39266666666666}, {"type": "precision_at_1", "value": 32.88291666666666}, {"type": "precision_at_10", "value": 7.5584999999999996}, {"type": "precision_at_100", "value": 1.1903333333333332}, {"type": "precision_at_1000", "value": 0.15658333333333332}, {"type": "precision_at_3", "value": 17.495916666666666}, {"type": "precision_at_5", "value": 12.373833333333332}, {"type": "recall_at_1", "value": 27.861250000000005}, {"type": "recall_at_10", "value": 55.215916666666665}, {"type": "recall_at_100", "value": 77.392}, {"type": "recall_at_1000", "value": 92.04908333333334}, {"type": "recall_at_3", "value": 41.37475}, {"type": "recall_at_5", "value": 47.22908333333333}, {"type": "map_at_1", "value": 25.064999999999998}, {"type": "map_at_10", "value": 31.635999999999996}, {"type": "map_at_100", "value": 32.596000000000004}, {"type": "map_at_1000", "value": 32.695}, {"type": "map_at_3", "value": 29.612}, {"type": "map_at_5", "value": 30.768}, {"type": "mrr_at_1", "value": 28.528}, {"type": "mrr_at_10", "value": 34.717}, {"type": "mrr_at_100", "value": 35.558}, {"type": "mrr_at_1000", "value": 35.626000000000005}, {"type": "mrr_at_3", "value": 32.745000000000005}, {"type": "mrr_at_5", "value": 33.819}, {"type": "ndcg_at_1", "value": 28.528}, {"type": "ndcg_at_10", "value": 35.647}, {"type": "ndcg_at_100", "value": 40.207}, {"type": "ndcg_at_1000", "value": 42.695}, {"type": "ndcg_at_3", "value": 31.878}, {"type": "ndcg_at_5", "value": 33.634}, {"type": "precision_at_1", "value": 28.528}, {"type": "precision_at_10", "value": 5.46}, {"type": "precision_at_100", "value": 0.84}, {"type": "precision_at_1000", "value": 0.11399999999999999}, {"type": "precision_at_3", "value": 13.547999999999998}, {"type": "precision_at_5", "value": 9.325}, {"type": "recall_at_1", "value": 25.064999999999998}, {"type": "recall_at_10", "value": 45.096000000000004}, {"type": "recall_at_100", "value": 65.658}, {"type": "recall_at_1000", "value": 84.128}, {"type": "recall_at_3", "value": 34.337}, {"type": "recall_at_5", "value": 38.849000000000004}, {"type": "map_at_1", "value": 17.276}, {"type": "map_at_10", "value": 24.535}, {"type": "map_at_100", "value": 25.655}, {"type": "map_at_1000", "value": 25.782}, {"type": "map_at_3", "value": 22.228}, {"type": "map_at_5", "value": 23.612}, {"type": "mrr_at_1", "value": 21.266}, {"type": "mrr_at_10", "value": 28.474}, {"type": "mrr_at_100", "value": 29.398000000000003}, {"type": "mrr_at_1000", "value": 29.482000000000003}, {"type": "mrr_at_3", "value": 26.245}, {"type": "mrr_at_5", "value": 27.624}, {"type": "ndcg_at_1", "value": 21.266}, {"type": "ndcg_at_10", "value": 29.087000000000003}, {"type": "ndcg_at_100", "value": 34.374}, {"type": "ndcg_at_1000", "value": 37.433}, {"type": "ndcg_at_3", "value": 25.040000000000003}, {"type": "ndcg_at_5", "value": 27.116}, {"type": "precision_at_1", "value": 21.266}, {"type": "precision_at_10", "value": 5.258}, {"type": "precision_at_100", "value": 0.9299999999999999}, {"type": "precision_at_1000", "value": 0.13699999999999998}, {"type": "precision_at_3", "value": 11.849}, {"type": "precision_at_5", "value": 8.699}, {"type": "recall_at_1", "value": 17.276}, {"type": "recall_at_10", "value": 38.928000000000004}, {"type": "recall_at_100", "value": 62.529}, {"type": "recall_at_1000", "value": 84.44800000000001}, {"type": "recall_at_3", "value": 27.554000000000002}, {"type": "recall_at_5", "value": 32.915}, {"type": "map_at_1", "value": 27.297}, {"type": "map_at_10", "value": 36.957}, {"type": "map_at_100", "value": 38.252}, {"type": "map_at_1000", "value": 38.356}, {"type": "map_at_3", "value": 34.121}, {"type": "map_at_5", "value": 35.782000000000004}, {"type": "mrr_at_1", "value": 32.275999999999996}, {"type": "mrr_at_10", "value": 41.198}, {"type": "mrr_at_100", "value": 42.131}, {"type": "mrr_at_1000", "value": 42.186}, {"type": "mrr_at_3", "value": 38.557}, {"type": "mrr_at_5", "value": 40.12}, {"type": "ndcg_at_1", "value": 32.275999999999996}, {"type": "ndcg_at_10", "value": 42.516}, {"type": "ndcg_at_100", "value": 48.15}, {"type": "ndcg_at_1000", "value": 50.344}, {"type": "ndcg_at_3", "value": 37.423}, {"type": "ndcg_at_5", "value": 39.919}, {"type": "precision_at_1", "value": 32.275999999999996}, {"type": "precision_at_10", "value": 7.155}, {"type": "precision_at_100", "value": 1.123}, {"type": "precision_at_1000", "value": 0.14200000000000002}, {"type": "precision_at_3", "value": 17.163999999999998}, {"type": "precision_at_5", "value": 12.127}, {"type": "recall_at_1", "value": 27.297}, {"type": "recall_at_10", "value": 55.238}, {"type": "recall_at_100", "value": 79.2}, {"type": "recall_at_1000", "value": 94.258}, {"type": "recall_at_3", "value": 41.327000000000005}, {"type": "recall_at_5", "value": 47.588}, {"type": "map_at_1", "value": 29.142000000000003}, {"type": "map_at_10", "value": 38.769}, {"type": "map_at_100", "value": 40.292}, {"type": "map_at_1000", "value": 40.510000000000005}, {"type": "map_at_3", "value": 35.39}, {"type": "map_at_5", "value": 37.009}, {"type": "mrr_at_1", "value": 34.19}, {"type": "mrr_at_10", "value": 43.418}, {"type": "mrr_at_100", "value": 44.132}, {"type": "mrr_at_1000", "value": 44.175}, {"type": "mrr_at_3", "value": 40.547}, {"type": "mrr_at_5", "value": 42.088}, {"type": "ndcg_at_1", "value": 34.19}, {"type": "ndcg_at_10", "value": 45.14}, {"type": "ndcg_at_100", "value": 50.364}, {"type": "ndcg_at_1000", "value": 52.481}, {"type": "ndcg_at_3", "value": 39.466}, {"type": "ndcg_at_5", "value": 41.772}, {"type": "precision_at_1", "value": 34.19}, {"type": "precision_at_10", "value": 8.715}, {"type": "precision_at_100", "value": 1.6150000000000002}, {"type": "precision_at_1000", "value": 0.247}, {"type": "precision_at_3", "value": 18.248}, {"type": "precision_at_5", "value": 13.161999999999999}, {"type": "recall_at_1", "value": 29.142000000000003}, {"type": "recall_at_10", "value": 57.577999999999996}, {"type": "recall_at_100", "value": 81.428}, {"type": "recall_at_1000", "value": 94.017}, {"type": "recall_at_3", "value": 41.402}, {"type": "recall_at_5", "value": 47.695}, {"type": "map_at_1", "value": 22.039}, {"type": "map_at_10", "value": 30.669999999999998}, {"type": "map_at_100", "value": 31.682}, {"type": "map_at_1000", "value": 31.794}, {"type": "map_at_3", "value": 28.139999999999997}, {"type": "map_at_5", "value": 29.457}, {"type": "mrr_at_1", "value": 24.399}, {"type": "mrr_at_10", "value": 32.687}, {"type": "mrr_at_100", "value": 33.622}, {"type": "mrr_at_1000", "value": 33.698}, {"type": "mrr_at_3", "value": 30.407}, {"type": "mrr_at_5", "value": 31.552999999999997}, {"type": "ndcg_at_1", "value": 24.399}, {"type": "ndcg_at_10", "value": 35.472}, {"type": "ndcg_at_100", "value": 40.455000000000005}, {"type": "ndcg_at_1000", "value": 43.15}, {"type": "ndcg_at_3", "value": 30.575000000000003}, {"type": "ndcg_at_5", "value": 32.668}, {"type": "precision_at_1", "value": 24.399}, {"type": "precision_at_10", "value": 5.656}, {"type": "precision_at_100", "value": 0.874}, {"type": "precision_at_1000", "value": 0.121}, {"type": "precision_at_3", "value": 13.062000000000001}, {"type": "precision_at_5", "value": 9.242}, {"type": "recall_at_1", "value": 22.039}, {"type": "recall_at_10", "value": 48.379}, {"type": "recall_at_100", "value": 71.11800000000001}, {"type": "recall_at_1000", "value": 91.095}, {"type": "recall_at_3", "value": 35.108}, {"type": "recall_at_5", "value": 40.015}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ClimateFEVER", "type": "climate-fever", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 10.144}, {"type": "map_at_10", "value": 18.238}, {"type": "map_at_100", "value": 20.143}, {"type": "map_at_1000", "value": 20.346}, {"type": "map_at_3", "value": 14.809}, {"type": "map_at_5", "value": 16.567999999999998}, {"type": "mrr_at_1", "value": 22.671}, {"type": "mrr_at_10", "value": 34.906}, {"type": "mrr_at_100", "value": 35.858000000000004}, {"type": "mrr_at_1000", "value": 35.898}, {"type": "mrr_at_3", "value": 31.238}, {"type": "mrr_at_5", "value": 33.342}, {"type": "ndcg_at_1", "value": 22.671}, {"type": "ndcg_at_10", "value": 26.540000000000003}, {"type": "ndcg_at_100", "value": 34.138000000000005}, {"type": "ndcg_at_1000", "value": 37.72}, {"type": "ndcg_at_3", "value": 20.766000000000002}, {"type": "ndcg_at_5", "value": 22.927}, {"type": "precision_at_1", "value": 22.671}, {"type": "precision_at_10", "value": 8.619}, {"type": "precision_at_100", "value": 1.678}, {"type": "precision_at_1000", "value": 0.23500000000000001}, {"type": "precision_at_3", "value": 15.592}, {"type": "precision_at_5", "value": 12.43}, {"type": "recall_at_1", "value": 10.144}, {"type": "recall_at_10", "value": 33.46}, {"type": "recall_at_100", "value": 59.758}, {"type": "recall_at_1000", "value": 79.704}, {"type": "recall_at_3", "value": 19.604}, {"type": "recall_at_5", "value": 25.367}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB DBPedia", "type": "dbpedia-entity", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 8.654}, {"type": "map_at_10", "value": 18.506}, {"type": "map_at_100", "value": 26.412999999999997}, {"type": "map_at_1000", "value": 28.13}, {"type": "map_at_3", "value": 13.379}, {"type": "map_at_5", "value": 15.529000000000002}, {"type": "mrr_at_1", "value": 66.0}, {"type": "mrr_at_10", "value": 74.13}, {"type": "mrr_at_100", "value": 74.48700000000001}, {"type": "mrr_at_1000", "value": 74.49799999999999}, {"type": "mrr_at_3", "value": 72.75}, {"type": "mrr_at_5", "value": 73.762}, {"type": "ndcg_at_1", "value": 54.50000000000001}, {"type": "ndcg_at_10", "value": 40.236}, {"type": "ndcg_at_100", "value": 44.690999999999995}, {"type": "ndcg_at_1000", "value": 52.195}, {"type": "ndcg_at_3", "value": 45.632}, {"type": "ndcg_at_5", "value": 42.952}, {"type": "precision_at_1", "value": 66.0}, {"type": "precision_at_10", "value": 31.724999999999998}, {"type": "precision_at_100", "value": 10.299999999999999}, {"type": "precision_at_1000", "value": 2.194}, {"type": "precision_at_3", "value": 48.75}, {"type": "precision_at_5", "value": 41.6}, {"type": "recall_at_1", "value": 8.654}, {"type": "recall_at_10", "value": 23.74}, {"type": "recall_at_100", "value": 50.346999999999994}, {"type": "recall_at_1000", "value": 74.376}, {"type": "recall_at_3", "value": 14.636}, {"type": "recall_at_5", "value": 18.009}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB EmotionClassification", "type": "mteb/emotion", "config": "default", "split": "test", "revision": "4f58c6b202a23cf9a4da393831edf4f9183cad37"}, "metrics": [{"type": "accuracy", "value": 53.245}, {"type": "f1", "value": 48.74520523753552}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB FEVER", "type": "fever", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 51.729}, {"type": "map_at_10", "value": 63.904}, {"type": "map_at_100", "value": 64.363}, {"type": "map_at_1000", "value": 64.38199999999999}, {"type": "map_at_3", "value": 61.393}, {"type": "map_at_5", "value": 63.02100000000001}, {"type": "mrr_at_1", "value": 55.686}, {"type": "mrr_at_10", "value": 67.804}, {"type": "mrr_at_100", "value": 68.15299999999999}, {"type": "mrr_at_1000", "value": 68.161}, {"type": "mrr_at_3", "value": 65.494}, {"type": "mrr_at_5", "value": 67.01599999999999}, {"type": "ndcg_at_1", "value": 55.686}, {"type": "ndcg_at_10", "value": 70.025}, {"type": "ndcg_at_100", "value": 72.011}, {"type": "ndcg_at_1000", "value": 72.443}, {"type": "ndcg_at_3", "value": 65.32900000000001}, {"type": "ndcg_at_5", "value": 68.05600000000001}, {"type": "precision_at_1", "value": 55.686}, {"type": "precision_at_10", "value": 9.358}, {"type": "precision_at_100", "value": 1.05}, {"type": "precision_at_1000", "value": 0.11}, {"type": "precision_at_3", "value": 26.318}, {"type": "precision_at_5", "value": 17.321}, {"type": "recall_at_1", "value": 51.729}, {"type": "recall_at_10", "value": 85.04}, {"type": "recall_at_100", "value": 93.777}, {"type": "recall_at_1000", "value": 96.824}, {"type": "recall_at_3", "value": 72.521}, {"type": "recall_at_5", "value": 79.148}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB FiQA2018", "type": "fiqa", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 23.765}, {"type": "map_at_10", "value": 39.114}, {"type": "map_at_100", "value": 40.987}, {"type": "map_at_1000", "value": 41.155}, {"type": "map_at_3", "value": 34.028000000000006}, {"type": "map_at_5", "value": 36.925000000000004}, {"type": "mrr_at_1", "value": 46.451}, {"type": "mrr_at_10", "value": 54.711}, {"type": "mrr_at_100", "value": 55.509}, {"type": "mrr_at_1000", "value": 55.535000000000004}, {"type": "mrr_at_3", "value": 52.649}, {"type": "mrr_at_5", "value": 53.729000000000006}, {"type": "ndcg_at_1", "value": 46.451}, {"type": "ndcg_at_10", "value": 46.955999999999996}, {"type": "ndcg_at_100", "value": 53.686}, {"type": "ndcg_at_1000", "value": 56.230000000000004}, {"type": "ndcg_at_3", "value": 43.374}, {"type": "ndcg_at_5", "value": 44.372}, {"type": "precision_at_1", "value": 46.451}, {"type": "precision_at_10", "value": 13.256}, {"type": "precision_at_100", "value": 2.019}, {"type": "precision_at_1000", "value": 0.247}, {"type": "precision_at_3", "value": 29.115000000000002}, {"type": "precision_at_5", "value": 21.389}, {"type": "recall_at_1", "value": 23.765}, {"type": "recall_at_10", "value": 53.452999999999996}, {"type": "recall_at_100", "value": 78.828}, {"type": "recall_at_1000", "value": 93.938}, {"type": "recall_at_3", "value": 39.023}, {"type": "recall_at_5", "value": 45.18}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB HotpotQA", "type": "hotpotqa", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 31.918000000000003}, {"type": "map_at_10", "value": 46.741}, {"type": "map_at_100", "value": 47.762}, {"type": "map_at_1000", "value": 47.849000000000004}, {"type": "map_at_3", "value": 43.578}, {"type": "map_at_5", "value": 45.395}, {"type": "mrr_at_1", "value": 63.834999999999994}, {"type": "mrr_at_10", "value": 71.312}, {"type": "mrr_at_100", "value": 71.695}, {"type": "mrr_at_1000", "value": 71.714}, {"type": "mrr_at_3", "value": 69.82000000000001}, {"type": "mrr_at_5", "value": 70.726}, {"type": "ndcg_at_1", "value": 63.834999999999994}, {"type": "ndcg_at_10", "value": 55.879999999999995}, {"type": "ndcg_at_100", "value": 59.723000000000006}, {"type": "ndcg_at_1000", "value": 61.49400000000001}, {"type": "ndcg_at_3", "value": 50.964}, {"type": "ndcg_at_5", "value": 53.47}, {"type": "precision_at_1", "value": 63.834999999999994}, {"type": "precision_at_10", "value": 11.845}, {"type": "precision_at_100", "value": 1.4869999999999999}, {"type": "precision_at_1000", "value": 0.172}, {"type": "precision_at_3", "value": 32.158}, {"type": "precision_at_5", "value": 21.278}, {"type": "recall_at_1", "value": 31.918000000000003}, {"type": "recall_at_10", "value": 59.223000000000006}, {"type": "recall_at_100", "value": 74.328}, {"type": "recall_at_1000", "value": 86.05000000000001}, {"type": "recall_at_3", "value": 48.238}, {"type": "recall_at_5", "value": 53.193999999999996}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ImdbClassification", "type": "mteb/imdb", "config": "default", "split": "test", "revision": "3d86128a09e091d6018b6d26cad27f2739fc2db7"}, "metrics": [{"type": "accuracy", "value": 79.7896}, {"type": "ap", "value": 73.65166029460288}, {"type": "f1", "value": 79.71794693711813}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB MSMARCO", "type": "msmarco", "config": "default", "split": "dev", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 22.239}, {"type": "map_at_10", "value": 34.542}, {"type": "map_at_100", "value": 35.717999999999996}, {"type": "map_at_1000", "value": 35.764}, {"type": "map_at_3", "value": 30.432}, {"type": "map_at_5", "value": 32.81}, {"type": "mrr_at_1", "value": 22.908}, {"type": "mrr_at_10", "value": 35.127}, {"type": "mrr_at_100", "value": 36.238}, {"type": "mrr_at_1000", "value": 36.278}, {"type": "mrr_at_3", "value": 31.076999999999998}, {"type": "mrr_at_5", "value": 33.419}, {"type": "ndcg_at_1", "value": 22.908}, {"type": "ndcg_at_10", "value": 41.607}, {"type": "ndcg_at_100", "value": 47.28}, {"type": "ndcg_at_1000", "value": 48.414}, {"type": "ndcg_at_3", "value": 33.253}, {"type": "ndcg_at_5", "value": 37.486000000000004}, {"type": "precision_at_1", "value": 22.908}, {"type": "precision_at_10", "value": 6.645}, {"type": "precision_at_100", "value": 0.9490000000000001}, {"type": "precision_at_1000", "value": 0.105}, {"type": "precision_at_3", "value": 14.130999999999998}, {"type": "precision_at_5", "value": 10.616}, {"type": "recall_at_1", "value": 22.239}, {"type": "recall_at_10", "value": 63.42}, {"type": "recall_at_100", "value": 89.696}, {"type": "recall_at_1000", "value": 98.351}, {"type": "recall_at_3", "value": 40.77}, {"type": "recall_at_5", "value": 50.93}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPDomainClassification (en)", "type": "mteb/mtop_domain", "config": "en", "split": "test", "revision": "d80d48c1eb48d3562165c59d59d0034df9fff0bf"}, "metrics": [{"type": "accuracy", "value": 95.06839945280439}, {"type": "f1", "value": 94.74276398224072}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPIntentClassification (en)", "type": "mteb/mtop_intent", "config": "en", "split": "test", "revision": "ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba"}, "metrics": [{"type": "accuracy", "value": 72.25718194254446}, {"type": "f1", "value": 53.91164489161391}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (en)", "type": "mteb/amazon_massive_intent", "config": "en", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 71.47948890383323}, {"type": "f1", "value": 69.98520247230257}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (en)", "type": "mteb/amazon_massive_scenario", "config": "en", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 76.46603900470748}, {"type": "f1", "value": 76.44111526065399}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringP2P", "type": "mteb/medrxiv-clustering-p2p", "config": "default", "split": "test", "revision": "e7a26af6f3ae46b30dde8737f02c07b1505bcc73"}, "metrics": [{"type": "v_measure", "value": 33.19106070798198}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringS2S", "type": "mteb/medrxiv-clustering-s2s", "config": "default", "split": "test", "revision": "35191c8c0dca72d8ff3efcd72aa802307d469663"}, "metrics": [{"type": "v_measure", "value": 30.78772205248094}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB MindSmallReranking", "type": "mteb/mind_small", "config": "default", "split": "test", "revision": "3bdac13927fdc888b903db93b2ffdbd90b295a69"}, "metrics": [{"type": "map", "value": 31.811231631488507}, {"type": "mrr", "value": 32.98200485378021}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB NFCorpus", "type": "nfcorpus", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 6.9}, {"type": "map_at_10", "value": 13.703000000000001}, {"type": "map_at_100", "value": 17.251}, {"type": "map_at_1000", "value": 18.795}, {"type": "map_at_3", "value": 10.366999999999999}, {"type": "map_at_5", "value": 11.675}, {"type": "mrr_at_1", "value": 47.059}, {"type": "mrr_at_10", "value": 55.816}, {"type": "mrr_at_100", "value": 56.434}, {"type": "mrr_at_1000", "value": 56.467}, {"type": "mrr_at_3", "value": 53.973000000000006}, {"type": "mrr_at_5", "value": 55.257999999999996}, {"type": "ndcg_at_1", "value": 44.737}, {"type": "ndcg_at_10", "value": 35.997}, {"type": "ndcg_at_100", "value": 33.487}, {"type": "ndcg_at_1000", "value": 41.897}, {"type": "ndcg_at_3", "value": 41.18}, {"type": "ndcg_at_5", "value": 38.721}, {"type": "precision_at_1", "value": 46.129999999999995}, {"type": "precision_at_10", "value": 26.533}, {"type": "precision_at_100", "value": 8.706}, {"type": "precision_at_1000", "value": 2.16}, {"type": "precision_at_3", "value": 38.493}, {"type": "precision_at_5", "value": 33.189}, {"type": "recall_at_1", "value": 6.9}, {"type": "recall_at_10", "value": 17.488999999999997}, {"type": "recall_at_100", "value": 34.583000000000006}, {"type": "recall_at_1000", "value": 64.942}, {"type": "recall_at_3", "value": 11.494}, {"type": "recall_at_5", "value": 13.496}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB NQ", "type": "nq", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 33.028999999999996}, {"type": "map_at_10", "value": 49.307}, {"type": "map_at_100", "value": 50.205}, {"type": "map_at_1000", "value": 50.23}, {"type": "map_at_3", "value": 44.782}, {"type": "map_at_5", "value": 47.599999999999994}, {"type": "mrr_at_1", "value": 37.108999999999995}, {"type": "mrr_at_10", "value": 51.742999999999995}, {"type": "mrr_at_100", "value": 52.405}, {"type": "mrr_at_1000", "value": 52.422000000000004}, {"type": "mrr_at_3", "value": 48.087999999999994}, {"type": "mrr_at_5", "value": 50.414}, {"type": "ndcg_at_1", "value": 37.08}, {"type": "ndcg_at_10", "value": 57.236}, {"type": "ndcg_at_100", "value": 60.931999999999995}, {"type": "ndcg_at_1000", "value": 61.522}, {"type": "ndcg_at_3", "value": 48.93}, {"type": "ndcg_at_5", "value": 53.561}, {"type": "precision_at_1", "value": 37.08}, {"type": "precision_at_10", "value": 9.386}, {"type": "precision_at_100", "value": 1.1480000000000001}, {"type": "precision_at_1000", "value": 0.12}, {"type": "precision_at_3", "value": 22.258}, {"type": "precision_at_5", "value": 16.025}, {"type": "recall_at_1", "value": 33.028999999999996}, {"type": "recall_at_10", "value": 78.805}, {"type": "recall_at_100", "value": 94.643}, {"type": "recall_at_1000", "value": 99.039}, {"type": "recall_at_3", "value": 57.602}, {"type": "recall_at_5", "value": 68.253}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB QuoraRetrieval", "type": "quora", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 71.122}, {"type": "map_at_10", "value": 85.237}, {"type": "map_at_100", "value": 85.872}, {"type": "map_at_1000", "value": 85.885}, {"type": "map_at_3", "value": 82.27499999999999}, {"type": "map_at_5", "value": 84.13199999999999}, {"type": "mrr_at_1", "value": 81.73}, {"type": "mrr_at_10", "value": 87.834}, {"type": "mrr_at_100", "value": 87.92}, {"type": "mrr_at_1000", "value": 87.921}, {"type": "mrr_at_3", "value": 86.878}, {"type": "mrr_at_5", "value": 87.512}, {"type": "ndcg_at_1", "value": 81.73}, {"type": "ndcg_at_10", "value": 88.85499999999999}, {"type": "ndcg_at_100", "value": 89.992}, {"type": "ndcg_at_1000", "value": 90.07}, {"type": "ndcg_at_3", "value": 85.997}, {"type": "ndcg_at_5", "value": 87.55199999999999}, {"type": "precision_at_1", "value": 81.73}, {"type": "precision_at_10", "value": 13.491}, {"type": "precision_at_100", "value": 1.536}, {"type": "precision_at_1000", "value": 0.157}, {"type": "precision_at_3", "value": 37.623}, {"type": "precision_at_5", "value": 24.742}, {"type": "recall_at_1", "value": 71.122}, {"type": "recall_at_10", "value": 95.935}, {"type": "recall_at_100", "value": 99.657}, {"type": "recall_at_1000", "value": 99.996}, {"type": "recall_at_3", "value": 87.80799999999999}, {"type": "recall_at_5", "value": 92.161}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClustering", "type": "mteb/reddit-clustering", "config": "default", "split": "test", "revision": "24640382cdbf8abc73003fb0fa6d111a705499eb"}, "metrics": [{"type": "v_measure", "value": 63.490029238193756}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClusteringP2P", "type": "mteb/reddit-clustering-p2p", "config": "default", "split": "test", "revision": "282350215ef01743dc01b456c7f5241fa8937f16"}, "metrics": [{"type": "v_measure", "value": 65.13153408508836}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB SCIDOCS", "type": "scidocs", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 4.202999999999999}, {"type": "map_at_10", "value": 10.174}, {"type": "map_at_100", "value": 12.138}, {"type": "map_at_1000", "value": 12.418}, {"type": "map_at_3", "value": 7.379}, {"type": "map_at_5", "value": 8.727}, {"type": "mrr_at_1", "value": 20.7}, {"type": "mrr_at_10", "value": 30.389}, {"type": "mrr_at_100", "value": 31.566}, {"type": "mrr_at_1000", "value": 31.637999999999998}, {"type": "mrr_at_3", "value": 27.133000000000003}, {"type": "mrr_at_5", "value": 29.078}, {"type": "ndcg_at_1", "value": 20.7}, {"type": "ndcg_at_10", "value": 17.355999999999998}, {"type": "ndcg_at_100", "value": 25.151}, {"type": "ndcg_at_1000", "value": 30.37}, {"type": "ndcg_at_3", "value": 16.528000000000002}, {"type": "ndcg_at_5", "value": 14.396999999999998}, {"type": "precision_at_1", "value": 20.7}, {"type": "precision_at_10", "value": 8.98}, {"type": "precision_at_100", "value": 2.015}, {"type": "precision_at_1000", "value": 0.327}, {"type": "precision_at_3", "value": 15.367}, {"type": "precision_at_5", "value": 12.559999999999999}, {"type": "recall_at_1", "value": 4.202999999999999}, {"type": "recall_at_10", "value": 18.197}, {"type": "recall_at_100", "value": 40.903}, {"type": "recall_at_1000", "value": 66.427}, {"type": "recall_at_3", "value": 9.362}, {"type": "recall_at_5", "value": 12.747}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB SICK-R", "type": "mteb/sickr-sts", "config": "default", "split": "test", "revision": "a6ea5a8cab320b040a23452cc28066d9beae2cee"}, "metrics": [{"type": "cos_sim_spearman", "value": 81.69890989765257}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS12", "type": "mteb/sts12-sts", "config": "default", "split": "test", "revision": "a0d554a64d88156834ff5ae9920b964011b16384"}, "metrics": [{"type": "cos_sim_spearman", "value": 75.31953790551489}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS13", "type": "mteb/sts13-sts", "config": "default", "split": "test", "revision": "7e90230a92c190f1bf69ae9002b8cea547a64cca"}, "metrics": [{"type": "cos_sim_spearman", "value": 87.44050861280759}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS14", "type": "mteb/sts14-sts", "config": "default", "split": "test", "revision": "6031580fec1f6af667f0bd2da0a551cf4f0b2375"}, "metrics": [{"type": "cos_sim_spearman", "value": 81.86922869270393}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS15", "type": "mteb/sts15-sts", "config": "default", "split": "test", "revision": "ae752c7c21bf194d8b67fd573edf7ae58183cbe3"}, "metrics": [{"type": "cos_sim_spearman", "value": 88.9399170304284}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS16", "type": "mteb/sts16-sts", "config": "default", "split": "test", "revision": "4d8694f8f0e0100860b497b999b3dbed754a0513"}, "metrics": [{"type": "cos_sim_spearman", "value": 85.38015314088582}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS17 (en-en)", "type": "mteb/sts17-crosslingual-sts", "config": "en-en", "split": "test", "revision": "af5e6fb845001ecf41f4c1e033ce921939a2a68d"}, "metrics": [{"type": "cos_sim_spearman", "value": 90.53653527788835}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (en)", "type": "mteb/sts22-crosslingual-sts", "config": "en", "split": "test", "revision": "6d1ba47164174a496b7fa5d3569dae26a6813b80"}, "metrics": [{"type": "cos_sim_spearman", "value": 68.64526474250209}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STSBenchmark", "type": "mteb/stsbenchmark-sts", "config": "default", "split": "test", "revision": "b0fddb56ed78048fa8b90373c8a3cfc37b684831"}, "metrics": [{"type": "cos_sim_spearman", "value": 86.56156983963042}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB SciDocsRR", "type": "mteb/scidocs-reranking", "config": "default", "split": "test", "revision": "d3c5e1fc0b855ab6097bf1cda04dd73947d7caab"}, "metrics": [{"type": "map", "value": 79.48610254648003}, {"type": "mrr", "value": 94.02481505422682}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB SciFact", "type": "scifact", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 48.983}, {"type": "map_at_10", "value": 59.077999999999996}, {"type": "map_at_100", "value": 59.536}, {"type": "map_at_1000", "value": 59.575}, {"type": "map_at_3", "value": 55.691}, {"type": "map_at_5", "value": 57.410000000000004}, {"type": "mrr_at_1", "value": 51.666999999999994}, {"type": "mrr_at_10", "value": 60.427}, {"type": "mrr_at_100", "value": 60.763}, {"type": "mrr_at_1000", "value": 60.79900000000001}, {"type": "mrr_at_3", "value": 57.556}, {"type": "mrr_at_5", "value": 59.089000000000006}, {"type": "ndcg_at_1", "value": 51.666999999999994}, {"type": "ndcg_at_10", "value": 64.559}, {"type": "ndcg_at_100", "value": 66.58}, {"type": "ndcg_at_1000", "value": 67.64}, {"type": "ndcg_at_3", "value": 58.287}, {"type": "ndcg_at_5", "value": 61.001000000000005}, {"type": "precision_at_1", "value": 51.666999999999994}, {"type": "precision_at_10", "value": 9.067}, {"type": "precision_at_100", "value": 1.0170000000000001}, {"type": "precision_at_1000", "value": 0.11100000000000002}, {"type": "precision_at_3", "value": 23.0}, {"type": "precision_at_5", "value": 15.6}, {"type": "recall_at_1", "value": 48.983}, {"type": "recall_at_10", "value": 80.289}, {"type": "recall_at_100", "value": 89.43299999999999}, {"type": "recall_at_1000", "value": 97.667}, {"type": "recall_at_3", "value": 62.978}, {"type": "recall_at_5", "value": 69.872}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB SprintDuplicateQuestions", "type": "mteb/sprintduplicatequestions-pairclassification", "config": "default", "split": "test", "revision": "d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46"}, "metrics": [{"type": "cos_sim_accuracy", "value": 99.79009900990098}, {"type": "cos_sim_ap", "value": 94.94115052608419}, {"type": "cos_sim_f1", "value": 89.1260162601626}, {"type": "cos_sim_precision", "value": 90.599173553719}, {"type": "cos_sim_recall", "value": 87.7}, {"type": "dot_accuracy", "value": 99.79009900990098}, {"type": "dot_ap", "value": 94.94115052608419}, {"type": "dot_f1", "value": 89.1260162601626}, {"type": "dot_precision", "value": 90.599173553719}, {"type": "dot_recall", "value": 87.7}, {"type": "euclidean_accuracy", "value": 99.79009900990098}, {"type": "euclidean_ap", "value": 94.94115052608419}, {"type": "euclidean_f1", "value": 89.1260162601626}, {"type": "euclidean_precision", "value": 90.599173553719}, {"type": "euclidean_recall", "value": 87.7}, {"type": "manhattan_accuracy", "value": 99.7940594059406}, {"type": "manhattan_ap", "value": 94.95271414642431}, {"type": "manhattan_f1", "value": 89.24508790072387}, {"type": "manhattan_precision", "value": 92.3982869379015}, {"type": "manhattan_recall", "value": 86.3}, {"type": "max_accuracy", "value": 99.7940594059406}, {"type": "max_ap", "value": 94.95271414642431}, {"type": "max_f1", "value": 89.24508790072387}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClustering", "type": "mteb/stackexchange-clustering", "config": "default", "split": "test", "revision": "6cbc1f7b2bc0622f2e39d2c77fa502909748c259"}, "metrics": [{"type": "v_measure", "value": 68.43866571935851}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClusteringP2P", "type": "mteb/stackexchange-clustering-p2p", "config": "default", "split": "test", "revision": "815ca46b2622cec33ccafc3735d572c266efdb44"}, "metrics": [{"type": "v_measure", "value": 35.16579026551532}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB StackOverflowDupQuestions", "type": "mteb/stackoverflowdupquestions-reranking", "config": "default", "split": "test", "revision": "e185fbe320c72810689fc5848eb6114e1ef5ec69"}, "metrics": [{"type": "map", "value": 52.518952473513934}, {"type": "mrr", "value": 53.292457134368895}]}, {"task": {"type": "Summarization"}, "dataset": {"name": "MTEB SummEval", "type": "mteb/summeval", "config": "default", "split": "test", "revision": "cda12ad7615edc362dbf25a00fdd61d3b1eaf93c"}, "metrics": [{"type": "cos_sim_pearson", "value": 31.12529588316604}, {"type": "cos_sim_spearman", "value": 32.31662126895294}, {"type": "dot_pearson", "value": 31.125303796647056}, {"type": "dot_spearman", "value": 32.31662126895294}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB TRECCOVID", "type": "trec-covid", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 0.219}, {"type": "map_at_10", "value": 1.7469999999999999}, {"type": "map_at_100", "value": 10.177999999999999}, {"type": "map_at_1000", "value": 26.108999999999998}, {"type": "map_at_3", "value": 0.64}, {"type": "map_at_5", "value": 0.968}, {"type": "mrr_at_1", "value": 82.0}, {"type": "mrr_at_10", "value": 89.067}, {"type": "mrr_at_100", "value": 89.067}, {"type": "mrr_at_1000", "value": 89.067}, {"type": "mrr_at_3", "value": 88.333}, {"type": "mrr_at_5", "value": 88.73299999999999}, {"type": "ndcg_at_1", "value": 78.0}, {"type": "ndcg_at_10", "value": 71.398}, {"type": "ndcg_at_100", "value": 55.574999999999996}, {"type": "ndcg_at_1000", "value": 51.771}, {"type": "ndcg_at_3", "value": 77.765}, {"type": "ndcg_at_5", "value": 73.614}, {"type": "precision_at_1", "value": 82.0}, {"type": "precision_at_10", "value": 75.4}, {"type": "precision_at_100", "value": 58.040000000000006}, {"type": "precision_at_1000", "value": 23.516000000000002}, {"type": "precision_at_3", "value": 84.0}, {"type": "precision_at_5", "value": 78.4}, {"type": "recall_at_1", "value": 0.219}, {"type": "recall_at_10", "value": 1.958}, {"type": "recall_at_100", "value": 13.797999999999998}, {"type": "recall_at_1000", "value": 49.881}, {"type": "recall_at_3", "value": 0.672}, {"type": "recall_at_5", "value": 1.0370000000000001}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB Touche2020", "type": "webis-touche2020", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 1.8610000000000002}, {"type": "map_at_10", "value": 8.705}, {"type": "map_at_100", "value": 15.164}, {"type": "map_at_1000", "value": 16.78}, {"type": "map_at_3", "value": 4.346}, {"type": "map_at_5", "value": 6.151}, {"type": "mrr_at_1", "value": 22.448999999999998}, {"type": "mrr_at_10", "value": 41.556}, {"type": "mrr_at_100", "value": 42.484}, {"type": "mrr_at_1000", "value": 42.494}, {"type": "mrr_at_3", "value": 37.755}, {"type": "mrr_at_5", "value": 40.102}, {"type": "ndcg_at_1", "value": 21.429000000000002}, {"type": "ndcg_at_10", "value": 23.439}, {"type": "ndcg_at_100", "value": 36.948}, {"type": "ndcg_at_1000", "value": 48.408}, {"type": "ndcg_at_3", "value": 22.261}, {"type": "ndcg_at_5", "value": 23.085}, {"type": "precision_at_1", "value": 22.448999999999998}, {"type": "precision_at_10", "value": 21.633}, {"type": "precision_at_100", "value": 8.02}, {"type": "precision_at_1000", "value": 1.5939999999999999}, {"type": "precision_at_3", "value": 23.810000000000002}, {"type": "precision_at_5", "value": 24.490000000000002}, {"type": "recall_at_1", "value": 1.8610000000000002}, {"type": "recall_at_10", "value": 15.876000000000001}, {"type": "recall_at_100", "value": 50.300999999999995}, {"type": "recall_at_1000", "value": 86.098}, {"type": "recall_at_3", "value": 5.892}, {"type": "recall_at_5", "value": 9.443}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ToxicConversationsClassification", "type": "mteb/toxic_conversations_50k", "config": "default", "split": "test", "revision": "d7c0de2777da35d6aae2200a62c6e0e5af397c4c"}, "metrics": [{"type": "accuracy", "value": 70.3264}, {"type": "ap", "value": 13.249577616243794}, {"type": "f1", "value": 53.621518367695685}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB TweetSentimentExtractionClassification", "type": "mteb/tweet_sentiment_extraction", "config": "default", "split": "test", "revision": "d604517c81ca91fe16a244d1248fc021f9ecee7a"}, "metrics": [{"type": "accuracy", "value": 61.57611771363894}, {"type": "f1", "value": 61.79797478568639}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB TwentyNewsgroupsClustering", "type": "mteb/twentynewsgroups-clustering", "config": "default", "split": "test", "revision": "6125ec4e24fa026cec8a478383ee943acfbd5449"}, "metrics": [{"type": "v_measure", "value": 53.38315344479284}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterSemEval2015", "type": "mteb/twittersemeval2015-pairclassification", "config": "default", "split": "test", "revision": "70970daeab8776df92f5ea462b6173c0b46fd2d1"}, "metrics": [{"type": "cos_sim_accuracy", "value": 87.55438993860642}, {"type": "cos_sim_ap", "value": 77.98702600017738}, {"type": "cos_sim_f1", "value": 71.94971653931476}, {"type": "cos_sim_precision", "value": 67.50693802035153}, {"type": "cos_sim_recall", "value": 77.01846965699208}, {"type": "dot_accuracy", "value": 87.55438993860642}, {"type": "dot_ap", "value": 77.98702925907986}, {"type": "dot_f1", "value": 71.94971653931476}, {"type": "dot_precision", "value": 67.50693802035153}, {"type": "dot_recall", "value": 77.01846965699208}, {"type": "euclidean_accuracy", "value": 87.55438993860642}, {"type": "euclidean_ap", "value": 77.98702951957925}, {"type": "euclidean_f1", "value": 71.94971653931476}, {"type": "euclidean_precision", "value": 67.50693802035153}, {"type": "euclidean_recall", "value": 77.01846965699208}, {"type": "manhattan_accuracy", "value": 87.54246885617214}, {"type": "manhattan_ap", "value": 77.95531413902947}, {"type": "manhattan_f1", "value": 71.93605683836589}, {"type": "manhattan_precision", "value": 69.28152492668622}, {"type": "manhattan_recall", "value": 74.80211081794195}, {"type": "max_accuracy", "value": 87.55438993860642}, {"type": "max_ap", "value": 77.98702951957925}, {"type": "max_f1", "value": 71.94971653931476}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterURLCorpus", "type": "mteb/twitterurlcorpus-pairclassification", "config": "default", "split": "test", "revision": "8b6510b0b1fa4e4c4f879467980e9be563ec1cdf"}, "metrics": [{"type": "cos_sim_accuracy", "value": 89.47296930182016}, {"type": "cos_sim_ap", "value": 86.92853616302108}, {"type": "cos_sim_f1", "value": 79.35138351681047}, {"type": "cos_sim_precision", "value": 76.74820143884892}, {"type": "cos_sim_recall", "value": 82.13735756082538}, {"type": "dot_accuracy", "value": 89.47296930182016}, {"type": "dot_ap", "value": 86.92854339601595}, {"type": "dot_f1", "value": 79.35138351681047}, {"type": "dot_precision", "value": 76.74820143884892}, {"type": "dot_recall", "value": 82.13735756082538}, {"type": "euclidean_accuracy", "value": 89.47296930182016}, {"type": "euclidean_ap", "value": 86.92854191061649}, {"type": "euclidean_f1", "value": 79.35138351681047}, {"type": "euclidean_precision", "value": 76.74820143884892}, {"type": "euclidean_recall", "value": 82.13735756082538}, {"type": "manhattan_accuracy", "value": 89.47685023479644}, {"type": "manhattan_ap", "value": 86.90063722679578}, {"type": "manhattan_f1", "value": 79.30753865502702}, {"type": "manhattan_precision", "value": 76.32066068631639}, {"type": "manhattan_recall", "value": 82.53772713273791}, {"type": "max_accuracy", "value": 89.47685023479644}, {"type": "max_ap", "value": 86.92854339601595}, {"type": "max_f1", "value": 79.35138351681047}]}]}]}
Shashwat13333/bge-base-en-v1.5
Shashwat13333
sentence-similarity
[ "sentence-transformers", "safetensors", "bert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:150", "loss:MatryoshkaLoss", "loss:MultipleNegativesRankingLoss", "en", "arxiv:1908.10084", "arxiv:2205.13147", "arxiv:1705.00652", "base_model:BAAI/bge-base-en-v1.5", "base_model:finetune:BAAI/bge-base-en-v1.5", "license:apache-2.0", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
2025-02-03T12:34:28
2025-02-03T13:56:03
4
0
--- base_model: BAAI/bge-base-en-v1.5 language: - en library_name: sentence-transformers license: apache-2.0 metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:150 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: What services does Techchefz Digital offer for AI adoption? sentences: - 'We are a New breed of innovative digital transformation agency, redefining storytelling for an always-on world. With roots dating back to 2017, we started as a pocket size team of enthusiasts with a goal of helping traditional businesses transform and create dynamic, digital cultures through disruptive strategies and agile deployment of innovative solutions.' - "At Techchefz Digital, we specialize in guiding companies through the complexities\ \ of adopting and integrating Artificial Intelligence and Machine Learning technologies.\ \ Our consultancy services are designed to enhance your operational efficiency\ \ and decision-making capabilities across all sectors. With a global network of\ \ AI/ML experts and a commitment to excellence, we are your partners in transforming\ \ innovative possibilities into real-world achievements. \ \ \ \ \n DATA INTELLIGENCE PLATFORMS we\ \ specialize in\nTensorFlow\nDatabricks\nTableau\nPytorch\nOpenAI\nPinecone\"" - 'How can we get started with your DevOps solutions? Getting started is easy. Contact us through our website. We''ll schedule a consultation to discuss your needs, evaluate your current infrastructure, and propose a customized DevOps solution designed to achieve your goals.' - source_sentence: Hav you made any services for schools and students? sentences: - 'How do we do Custom Development ? We follow below process to develop custom web or mobile Application on Agile Methodology, breaking requirements in pieces and developing and shipping them with considering utmost quality: Requirements Analysis We begin by understanding the client&#39;s needs and objectives for the website. Identify key features, functionality, and any specific design preferences. Project Planning Then create a detailed project plan outlining the scope, timeline, and milestones. Define the technology stack and development tools suitable for the project. User Experience Design Then comes the stage of Developing wireframes or prototypes to visualize the website&#39;s structure and layout. We create a custom design that aligns with the brand identity and user experience goals. Development After getting Sign-off on Design from Client, we break the requirements into Sprints on Agile Methodology, and start developing them.' - 'This is our Portfolio Introducing the world of Housing Finance& Banking Firm. Corporate Website with 10 regional languages in India with analytics and user personalization and Dashboard for Regional Managers, Sales Agents, etc. to manage the Builder Requests, approve/deny Properties, manage visits and appointments, manage leads, etc. Introducing the world of Global Automotive Brand.We have implemented a Multi Locale Multilingual Omnichannel platform for Royal Enfield. The platform supports public websites, customer portals, internal portals, business applications for over 35+ different locations all over the world. Developed Digital Platform for Students, Guardians, Teachers, Tutors, with AI/ML in collaboration with Successive Technologies Inc, USA. Cloud, Dev-Sec-Ops & Data Governance Managing cloud provisioning and modernization alongside automated infrastructure, event-driven microservices, containerization, DevOps, cybersecurity, and 24x7 monitoring support ensures efficient, secure, and responsive IT operations.' - "SERVICES WE PROVIDE\nFlexible engagement models tailored to your needs\nWe specialize\ \ in comprehensive website audits that provide valuable insights and recommendations\ \ to enhance your online presence.\nDigital Strategy & Consulting\nCreating digital\ \ roadmap that transform your digital enterprise and produce a return on investment,\ \ basis our discovery framework, brainstorming sessions & current state analysis.\n\ \nPlatform Selection\nHelping you select the optimal digital experience, commerce,\ \ cloud and marketing platform for your enterprise.\n\nPlatform Builds\nDeploying\ \ next-gen scalable and agile enterprise digital platforms, along with multi-platform\ \ integrations. \nProduct Builds\nHelp you ideate, strategize, and engineer\ \ your product with help of our enterprise frameworks\nInfrastructure\nSpecialize\ \ in multi-cloud infrastructure helping you put forward the right cloud infrastructure\ \ and optimization strategy.\n\nManaged Services\nOperate and monitor your business-critical\ \ applications, data, and IT workloads, along with Application maintenance and\ \ operations.\nTeam Augmentation\nHelp you scale up and augment your existing\ \ team to solve your hiring challenges with our easy to deploy staff augmentation\ \ offerings.\"" - source_sentence: How did TechChefz evolve from its early days? sentences: - 'Why do we need Microservices ? Instead of building a monolithic application where all functionalities are tightly integrated, microservices break down the system into modular and loosely coupled services. Scalability Flexibility and Agility Resilience and Fault Isolation Technology Diversity Continuous Delivery' - 'After a transformative scuba dive in the Maldives, Mayank Maggon made a pivotal decision to depart from the corporate ladder in December 2016. Fueled by a clear vision to revolutionize the digital landscape, Mayank set out to leverage the best technology ingredients, crafting custom applications and digital ecosystems tailored to clients'' specific needs, limitations, and budgets. However, this solo journey was not without its challenges. Mayank had to initiate the revenue engine by offering corporate trainings and conducting online batches for tech training across the USA. He also undertook small projects and subcontracted modules of larger projects for clients in the US, UK, and India. It was only after this initial groundwork that Mayank was able to hire a group of interns, whom he meticulously trained and groomed to prepare them for handling Enterprise Level Applications. This journey reflects Mayank''s resilience, determination, and entrepreneurial spirit in building TechChefz Digital from the ground up. With a passion for innovation and a relentless drive for excellence, Mayank has steered TechChefz Digital through strategic partnerships, groundbreaking projects, and exponential growth. His leadership has been instrumental in shaping TechChefz Digital into a leading force in the digital transformation arena, inspiring a culture of innovation and excellence that continues to propel the company forward.' - 'In what ways can machine learning optimize our operations? Machine learning algorithms can analyze operational data to identify inefficiencies, predict maintenance needs, optimize supply chains, and automate repetitive tasks, significantly improving operational efficiency and reducing costs.' - source_sentence: What kind of data do you leverage for AI solutions? sentences: - 'In the Introducing the world of Global Insurance Firm, we crafted Effective Solutions for Complex Problems and delieverd a comprehensive Website Development, Production Support & Managed Services, we optimized customer journeys, integrate analytics, CRM, ERP, and third-party applications, and implement cutting-edge technologies for enhanced performance and efficiency and achievied 200% Reduction in operational time & effort managing content & experience, 70% Reduction in Deployment Errors and Downtime, 2.5X Customer Engagement, Conversion & Retention' - 'Our Solutions Strategy & Digital Transformation Innovate via digital transformation, modernize tech, craft product strategies, enhance customer experiences, optimize data analytics, transition to cloud for growth and efficiency Product Engineering & Custom Development Providing product development, enterprise web and mobile development, microservices integrations, quality engineering, and application support services to drive innovation and enhance operational efficiency.' - Our AI/ML services pave the way for transformative change across industries, embodying a client-focused approach that integrates seamlessly with human-centric innovation. Our collaborative teams are dedicated to fostering growth, leveraging data, and harnessing the predictive power of artificial intelligence to forge the next wave of software excellence. We don't just deliver AI; we deliver the future. - source_sentence: What managed services does TechChefz provide ? sentences: - " What we do\n\nDigital Strategy\nCreating digital frameworks that transform\ \ your digital enterprise and produce a return on investment.\n\nPlatform Selection\n\ Helping you select the optimal digital experience, commerce, cloud and marketing\ \ platform for your enterprise.\n\nPlatform Builds\nDeploying next-gen scalable\ \ and agile enterprise digital platforms, along with multi-platform integrations.\n\ \nProduct Builds\nHelp you ideate, strategize, and engineer your product with\ \ help of our enterprise frameworks \n\nTeam Augmentation\nHelp you scale up and\ \ augment your existing team to solve your hiring challenges with our easy to\ \ deploy staff augmentation offerings .\nManaged Services\nOperate and monitor\ \ your business-critical applications, data, and IT workloads, along with Application\ \ maintenance and operations\n" - 'What makes your DevOps solutions stand out from the competition? Our DevOps solutions stand out due to our personalized approach, extensive expertise, and commitment to innovation. We focus on delivering measurable results, such as reduced deployment times, improved system reliability, and enhanced security, ensuring you get the maximum benefit from our services.' - 'Introducing the world of General Insurance Firm In this project, we implemented Digital Solution and Implementation with Headless Drupal as the CMS, and lightweight React JS (Next JS SSR on Node JS) with the following features: PWA & AMP based Web Pages Page Speed Optimization Reusable and scalable React JS / Next JS Templates and Components Headless Drupal CMS with Content & Experience management, approval workflows, etc for seamless collaboration between the business and marketing teams Minimalistic Buy and Renewal Journeys for various products, with API integrations and adherence to data compliances We achieved 250% Reduction in Operational Time and Effort in managing the Content & Experience for Buy & renew Journeys,220% Reduction in Customer Drops during buy and renewal journeys, 300% Reduction in bounce rate on policy landing and campaign pages' model-index: - name: BGE base Financial Matryoshka results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.17333333333333334 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5466666666666666 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.6933333333333334 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.17333333333333334 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1822222222222222 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.12 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06933333333333333 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.17333333333333334 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5466666666666666 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.6 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6933333333333334 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.43705488094312567 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.3539576719576719 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.3663753684578632 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.17333333333333334 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5333333333333333 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6266666666666667 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.6933333333333334 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.17333333333333334 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.17777777777777776 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.12533333333333332 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06933333333333333 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.17333333333333334 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5333333333333333 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.6266666666666667 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6933333333333334 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.43324477959330543 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.3495185185185184 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.359896266319179 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.22666666666666666 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.49333333333333335 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.56 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.68 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.22666666666666666 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.16444444444444445 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.11199999999999997 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06799999999999998 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.22666666666666666 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.49333333333333335 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.56 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.68 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.4383628839300849 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.36210582010582004 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.3731640827722892 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.24 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.48 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.56 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.6933333333333334 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.24 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.16 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.11199999999999997 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06933333333333332 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.24 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.48 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.56 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6933333333333334 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.4443870388298522 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.36651322751322746 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.37546675549059694 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.08 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.3466666666666667 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.49333333333333335 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.56 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.08 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.11555555555555555 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.09866666666666667 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.05599999999999999 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.08 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.3466666666666667 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.49333333333333335 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.56 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.3120295466486537 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.23260846560846554 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.24731947636993173 name: Cosine Map@100 --- # BGE base Financial Matryoshka This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Shashwat13333/bge-base-en-v1.5") # Run inference sentences = [ 'What managed services does TechChefz provide ?', ' What we do\n\nDigital Strategy\nCreating digital frameworks that transform your digital enterprise and produce a return on investment.\n\nPlatform Selection\nHelping you select the optimal digital experience, commerce, cloud and marketing platform for your enterprise.\n\nPlatform Builds\nDeploying next-gen scalable and agile enterprise digital platforms, along with multi-platform integrations.\n\nProduct Builds\nHelp you ideate, strategize, and engineer your product with help of our enterprise frameworks \n\nTeam Augmentation\nHelp you scale up and augment your existing team to solve your hiring challenges with our easy to deploy staff augmentation offerings .\nManaged Services\nOperate and monitor your business-critical applications, data, and IT workloads, along with Application maintenance and operations\n', 'Introducing the world of General Insurance Firm\nIn this project, we implemented Digital Solution and Implementation with Headless Drupal as the CMS, and lightweight React JS (Next JS SSR on Node JS) with the following features:\nPWA & AMP based Web Pages\nPage Speed Optimization\nReusable and scalable React JS / Next JS Templates and Components\nHeadless Drupal CMS with Content & Experience management, approval workflows, etc for seamless collaboration between the business and marketing teams\nMinimalistic Buy and Renewal Journeys for various products, with API integrations and adherence to data compliances\n\nWe achieved 250% Reduction in Operational Time and Effort in managing the Content & Experience for Buy & renew Journeys,220% Reduction in Customer Drops during buy and renewal journeys, 300% Reduction in bounce rate on policy landing and campaign pages', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 | |:--------------------|:-----------|:-----------|:-----------|:-----------|:----------| | cosine_accuracy@1 | 0.1733 | 0.1733 | 0.2267 | 0.24 | 0.08 | | cosine_accuracy@3 | 0.5467 | 0.5333 | 0.4933 | 0.48 | 0.3467 | | cosine_accuracy@5 | 0.6 | 0.6267 | 0.56 | 0.56 | 0.4933 | | cosine_accuracy@10 | 0.6933 | 0.6933 | 0.68 | 0.6933 | 0.56 | | cosine_precision@1 | 0.1733 | 0.1733 | 0.2267 | 0.24 | 0.08 | | cosine_precision@3 | 0.1822 | 0.1778 | 0.1644 | 0.16 | 0.1156 | | cosine_precision@5 | 0.12 | 0.1253 | 0.112 | 0.112 | 0.0987 | | cosine_precision@10 | 0.0693 | 0.0693 | 0.068 | 0.0693 | 0.056 | | cosine_recall@1 | 0.1733 | 0.1733 | 0.2267 | 0.24 | 0.08 | | cosine_recall@3 | 0.5467 | 0.5333 | 0.4933 | 0.48 | 0.3467 | | cosine_recall@5 | 0.6 | 0.6267 | 0.56 | 0.56 | 0.4933 | | cosine_recall@10 | 0.6933 | 0.6933 | 0.68 | 0.6933 | 0.56 | | **cosine_ndcg@10** | **0.4371** | **0.4332** | **0.4384** | **0.4444** | **0.312** | | cosine_mrr@10 | 0.354 | 0.3495 | 0.3621 | 0.3665 | 0.2326 | | cosine_map@100 | 0.3664 | 0.3599 | 0.3732 | 0.3755 | 0.2473 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 150 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 150 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 7 tokens</li><li>mean: 12.4 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 126.17 tokens</li><li>max: 378 tokens</li></ul> | * Samples: | anchor | positive | |:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Is it hard to move old systems to the cloud?</code> | <code>We offer custom software development, digital marketing strategies, and tailored solutions to drive tangible results for your business. Our expert team combines technical prowess with industry insights to propel your business forward in the digital landscape.<br><br>"Engage, analyze & target your customers<br>Digital transformation enables you to interact with customers across multiple channels, providing personalized experiences. This could include social media engagement, interactive websites, and mobile apps." "Empower your employees & partners<br>The push for digital transformation has led many companies to embrace cloud solutions. However, the migration and integration of legacy systems into the cloud often present challenges." "Optimize & automate your operations<br>The push for digital transformation has led many companies to embrace cloud solutions. However, the migration and integration of legacy systems into the cloud often present challenges." "Transform your products<br>The push for digi...</code> | | <code>What benefits does marketing automation offer for time management?</code> | <code>Our MarTech capabilities<br><br>Personalization<br>Involves tailoring marketing messages and experiences to individual customers. It enhances customer engagement, loyalty, and ultimately, conversion rates.<br><br>Marketing Automation<br>Marketing automation streamlines repetitive tasks such as email marketing, lead nurturing, and social media posting. It improves efficiency, saves time, and ensures timely communication with customers.<br><br>Customer Relationship Management<br>CRM systems help manage interactions with current and potential customers. They store customer data, track interactions, and facilitate communication, improving customer retention.</code> | | <code>How can your recommendation engines improve our business?</code> | <code>How can your recommendation engines improve our business?<br>Our recommendation engines are designed to analyze customer behavior and preferences to deliver personalized suggestions, enhancing user experience, increasing sales, and boosting customer retention.</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `gradient_accumulation_steps`: 4 - `learning_rate`: 1e-05 - `weight_decay`: 0.01 - `num_train_epochs`: 4 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `fp16`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `push_to_hub`: True - `hub_model_id`: Shashwat13333/bge-base-en-v1.5 - `push_to_hub_model_id`: bge-base-en-v1.5 - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 4 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 1e-05 - `weight_decay`: 0.01 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: True - `resume_from_checkpoint`: None - `hub_model_id`: Shashwat13333/bge-base-en-v1.5 - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: bge-base-en-v1.5 - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 | |:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:| | 0.2105 | 1 | 4.4608 | - | - | - | - | - | | 0.8421 | 4 | - | 0.3891 | 0.3727 | 0.4175 | 0.3876 | 0.2956 | | 1.2105 | 5 | 4.2215 | - | - | - | - | - | | 1.8421 | 8 | - | 0.4088 | 0.4351 | 0.4034 | 0.4052 | 0.3167 | | 2.4211 | 10 | 3.397 | - | - | - | - | - | | 2.8421 | 12 | - | 0.4440 | 0.4252 | 0.4133 | 0.4284 | 0.3024 | | 3.6316 | 15 | 2.87 | - | - | - | - | - | | **3.8421** | **16** | **-** | **0.4371** | **0.4332** | **0.4384** | **0.4444** | **0.312** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.3.1 - Transformers: 4.47.1 - PyTorch: 2.5.1+cu124 - Accelerate: 1.2.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
[ "TEXT_CLASSIFICATION" ]
[ "CRAFT" ]
Non_BioNLP
# BGE base Financial Matryoshka This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Shashwat13333/bge-base-en-v1.5") # Run inference sentences = [ 'What managed services does TechChefz provide ?', ' What we do\n\nDigital Strategy\nCreating digital frameworks that transform your digital enterprise and produce a return on investment.\n\nPlatform Selection\nHelping you select the optimal digital experience, commerce, cloud and marketing platform for your enterprise.\n\nPlatform Builds\nDeploying next-gen scalable and agile enterprise digital platforms, along with multi-platform integrations.\n\nProduct Builds\nHelp you ideate, strategize, and engineer your product with help of our enterprise frameworks \n\nTeam Augmentation\nHelp you scale up and augment your existing team to solve your hiring challenges with our easy to deploy staff augmentation offerings .\nManaged Services\nOperate and monitor your business-critical applications, data, and IT workloads, along with Application maintenance and operations\n', 'Introducing the world of General Insurance Firm\nIn this project, we implemented Digital Solution and Implementation with Headless Drupal as the CMS, and lightweight React JS (Next JS SSR on Node JS) with the following features:\nPWA & AMP based Web Pages\nPage Speed Optimization\nReusable and scalable React JS / Next JS Templates and Components\nHeadless Drupal CMS with Content & Experience management, approval workflows, etc for seamless collaboration between the business and marketing teams\nMinimalistic Buy and Renewal Journeys for various products, with API integrations and adherence to data compliances\n\nWe achieved 250% Reduction in Operational Time and Effort in managing the Content & Experience for Buy & renew Journeys,220% Reduction in Customer Drops during buy and renewal journeys, 300% Reduction in bounce rate on policy landing and campaign pages', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 | |:--------------------|:-----------|:-----------|:-----------|:-----------|:----------| | cosine_accuracy@1 | 0.1733 | 0.1733 | 0.2267 | 0.24 | 0.08 | | cosine_accuracy@3 | 0.5467 | 0.5333 | 0.4933 | 0.48 | 0.3467 | | cosine_accuracy@5 | 0.6 | 0.6267 | 0.56 | 0.56 | 0.4933 | | cosine_accuracy@10 | 0.6933 | 0.6933 | 0.68 | 0.6933 | 0.56 | | cosine_precision@1 | 0.1733 | 0.1733 | 0.2267 | 0.24 | 0.08 | | cosine_precision@3 | 0.1822 | 0.1778 | 0.1644 | 0.16 | 0.1156 | | cosine_precision@5 | 0.12 | 0.1253 | 0.112 | 0.112 | 0.0987 | | cosine_precision@10 | 0.0693 | 0.0693 | 0.068 | 0.0693 | 0.056 | | cosine_recall@1 | 0.1733 | 0.1733 | 0.2267 | 0.24 | 0.08 | | cosine_recall@3 | 0.5467 | 0.5333 | 0.4933 | 0.48 | 0.3467 | | cosine_recall@5 | 0.6 | 0.6267 | 0.56 | 0.56 | 0.4933 | | cosine_recall@10 | 0.6933 | 0.6933 | 0.68 | 0.6933 | 0.56 | | **cosine_ndcg@10** | **0.4371** | **0.4332** | **0.4384** | **0.4444** | **0.312** | | cosine_mrr@10 | 0.354 | 0.3495 | 0.3621 | 0.3665 | 0.2326 | | cosine_map@100 | 0.3664 | 0.3599 | 0.3732 | 0.3755 | 0.2473 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 150 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 150 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 7 tokens</li><li>mean: 12.4 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 126.17 tokens</li><li>max: 378 tokens</li></ul> | * Samples: | anchor | positive | |:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Is it hard to move old systems to the cloud?</code> | <code>We offer custom software development, digital marketing strategies, and tailored solutions to drive tangible results for your business. Our expert team combines technical prowess with industry insights to propel your business forward in the digital landscape.<br><br>"Engage, analyze & target your customers<br>Digital transformation enables you to interact with customers across multiple channels, providing personalized experiences. This could include social media engagement, interactive websites, and mobile apps." "Empower your employees & partners<br>The push for digital transformation has led many companies to embrace cloud solutions. However, the migration and integration of legacy systems into the cloud often present challenges." "Optimize & automate your operations<br>The push for digital transformation has led many companies to embrace cloud solutions. However, the migration and integration of legacy systems into the cloud often present challenges." "Transform your products<br>The push for digi...</code> | | <code>What benefits does marketing automation offer for time management?</code> | <code>Our MarTech capabilities<br><br>Personalization<br>Involves tailoring marketing messages and experiences to individual customers. It enhances customer engagement, loyalty, and ultimately, conversion rates.<br><br>Marketing Automation<br>Marketing automation streamlines repetitive tasks such as email marketing, lead nurturing, and social media posting. It improves efficiency, saves time, and ensures timely communication with customers.<br><br>Customer Relationship Management<br>CRM systems help manage interactions with current and potential customers. They store customer data, track interactions, and facilitate communication, improving customer retention.</code> | | <code>How can your recommendation engines improve our business?</code> | <code>How can your recommendation engines improve our business?<br>Our recommendation engines are designed to analyze customer behavior and preferences to deliver personalized suggestions, enhancing user experience, increasing sales, and boosting customer retention.</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `gradient_accumulation_steps`: 4 - `learning_rate`: 1e-05 - `weight_decay`: 0.01 - `num_train_epochs`: 4 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `fp16`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `push_to_hub`: True - `hub_model_id`: Shashwat13333/bge-base-en-v1.5 - `push_to_hub_model_id`: bge-base-en-v1.5 - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 4 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 1e-05 - `weight_decay`: 0.01 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: True - `resume_from_checkpoint`: None - `hub_model_id`: Shashwat13333/bge-base-en-v1.5 - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: bge-base-en-v1.5 - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 | |:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:| | 0.2105 | 1 | 4.4608 | - | - | - | - | - | | 0.8421 | 4 | - | 0.3891 | 0.3727 | 0.4175 | 0.3876 | 0.2956 | | 1.2105 | 5 | 4.2215 | - | - | - | - | - | | 1.8421 | 8 | - | 0.4088 | 0.4351 | 0.4034 | 0.4052 | 0.3167 | | 2.4211 | 10 | 3.397 | - | - | - | - | - | | 2.8421 | 12 | - | 0.4440 | 0.4252 | 0.4133 | 0.4284 | 0.3024 | | 3.6316 | 15 | 2.87 | - | - | - | - | - | | **3.8421** | **16** | **-** | **0.4371** | **0.4332** | **0.4384** | **0.4444** | **0.312** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.3.1 - Transformers: 4.47.1 - PyTorch: 2.5.1+cu124 - Accelerate: 1.2.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
{"base_model": "BAAI/bge-base-en-v1.5", "language": ["en"], "library_name": "sentence-transformers", "license": "apache-2.0", "metrics": ["cosine_accuracy@1", "cosine_accuracy@3", "cosine_accuracy@5", "cosine_accuracy@10", "cosine_precision@1", "cosine_precision@3", "cosine_precision@5", "cosine_precision@10", "cosine_recall@1", "cosine_recall@3", "cosine_recall@5", "cosine_recall@10", "cosine_ndcg@10", "cosine_mrr@10", "cosine_map@100"], "pipeline_tag": "sentence-similarity", "tags": ["sentence-transformers", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:150", "loss:MatryoshkaLoss", "loss:MultipleNegativesRankingLoss"], "widget": [{"source_sentence": "What services does Techchefz Digital offer for AI adoption?", "sentences": ["We are a New breed of innovative digital transformation agency, redefining storytelling for an always-on world.\nWith roots dating back to 2017, we started as a pocket size team of enthusiasts with a goal of helping traditional businesses transform and create dynamic, digital cultures through disruptive strategies and agile deployment of innovative solutions.", "At Techchefz Digital, we specialize in guiding companies through the complexities of adopting and integrating Artificial Intelligence and Machine Learning technologies. Our consultancy services are designed to enhance your operational efficiency and decision-making capabilities across all sectors. With a global network of AI/ML experts and a commitment to excellence, we are your partners in transforming innovative possibilities into real-world achievements. \n DATA INTELLIGENCE PLATFORMS we specialize in\nTensorFlow\nDatabricks\nTableau\nPytorch\nOpenAI\nPinecone\"", "How can we get started with your DevOps solutions?\nGetting started is easy. Contact us through our website. We'll schedule a consultation to discuss your needs, evaluate your current infrastructure, and propose a customized DevOps solution designed to achieve your goals."]}, {"source_sentence": "Hav you made any services for schools and students?", "sentences": ["How do we do Custom Development ?\nWe follow below process to develop custom web or mobile Application on Agile Methodology, breaking requirements in pieces and developing and shipping them with considering utmost quality:\nRequirements Analysis\nWe begin by understanding the client&#39;s needs and objectives for the website. Identify key features, functionality, and any specific design preferences.\n\nProject Planning\nThen create a detailed project plan outlining the scope, timeline, and milestones. Define the technology stack and development tools suitable for the project.\n\nUser Experience Design\nThen comes the stage of Developing wireframes or prototypes to visualize the website&#39;s structure and layout. We create a custom design that aligns with the brand identity and user experience goals.\n\nDevelopment\nAfter getting Sign-off on Design from Client, we break the requirements into Sprints on Agile Methodology, and start developing them.", "This is our Portfolio\nIntroducing the world of Housing Finance& Banking Firm.\nCorporate Website with 10 regional languages in India with analytics and user personalization and Dashboard for Regional Managers, Sales Agents, etc. to manage the Builder Requests, approve/deny Properties, manage visits and appointments, manage leads, etc.\n\n\nIntroducing the world of Global Automotive Brand.We have implemented a Multi Locale Multilingual Omnichannel platform for Royal Enfield. The platform supports public websites, customer portals, internal portals, business applications for over 35+ different locations all over the world.\n\nDeveloped Digital Platform for Students, Guardians, Teachers, Tutors, with AI/ML in collaboration with Successive Technologies Inc, USA. Cloud, Dev-Sec-Ops & Data Governance\nManaging cloud provisioning and modernization alongside automated infrastructure, event-driven microservices, containerization, DevOps, cybersecurity, and 24x7 monitoring support ensures efficient, secure, and responsive IT operations.", "SERVICES WE PROVIDE\nFlexible engagement models tailored to your needs\nWe specialize in comprehensive website audits that provide valuable insights and recommendations to enhance your online presence.\nDigital Strategy & Consulting\nCreating digital roadmap that transform your digital enterprise and produce a return on investment, basis our discovery framework, brainstorming sessions & current state analysis.\n\nPlatform Selection\nHelping you select the optimal digital experience, commerce, cloud and marketing platform for your enterprise.\n\nPlatform Builds\nDeploying next-gen scalable and agile enterprise digital platforms, along with multi-platform integrations. \nProduct Builds\nHelp you ideate, strategize, and engineer your product with help of our enterprise frameworks\nInfrastructure\nSpecialize in multi-cloud infrastructure helping you put forward the right cloud infrastructure and optimization strategy.\n\nManaged Services\nOperate and monitor your business-critical applications, data, and IT workloads, along with Application maintenance and operations.\nTeam Augmentation\nHelp you scale up and augment your existing team to solve your hiring challenges with our easy to deploy staff augmentation offerings.\""]}, {"source_sentence": "How did TechChefz evolve from its early days?", "sentences": ["Why do we need Microservices ?\nInstead of building a monolithic application where all functionalities are tightly integrated, microservices break down the system into modular and loosely coupled services.\n\nScalability\nFlexibility and Agility\nResilience and Fault Isolation\nTechnology Diversity\nContinuous Delivery", "After a transformative scuba dive in the Maldives, Mayank Maggon made a pivotal decision to depart from the corporate ladder in December 2016. Fueled by a clear vision to revolutionize the digital landscape, Mayank set out to leverage the best technology ingredients, crafting custom applications and digital ecosystems tailored to clients' specific needs, limitations, and budgets.\n\nHowever, this solo journey was not without its challenges. Mayank had to initiate the revenue engine by offering corporate trainings and conducting online batches for tech training across the USA. He also undertook small projects and subcontracted modules of larger projects for clients in the US, UK, and India. It was only after this initial groundwork that Mayank was able to hire a group of interns, whom he meticulously trained and groomed to prepare them for handling Enterprise Level Applications. This journey reflects Mayank's resilience, determination, and entrepreneurial spirit in building TechChefz Digital from the ground up.\n\nWith a passion for innovation and a relentless drive for excellence, Mayank has steered TechChefz Digital through strategic partnerships, groundbreaking projects, and exponential growth. His leadership has been instrumental in shaping TechChefz Digital into a leading force in the digital transformation arena, inspiring a culture of innovation and excellence that continues to propel the company forward.", "In what ways can machine learning optimize our operations?\nMachine learning algorithms can analyze operational data to identify inefficiencies, predict maintenance needs, optimize supply chains, and automate repetitive tasks, significantly improving operational efficiency and reducing costs."]}, {"source_sentence": "What kind of data do you leverage for AI solutions?", "sentences": ["In the Introducing the world of Global Insurance Firm, we crafted Effective Solutions for Complex Problems and delieverd a comprehensive Website Development, Production Support & Managed Services, we optimized customer journeys, integrate analytics, CRM, ERP, and third-party applications, and implement cutting-edge technologies for enhanced performance and efficiency\nand achievied 200% Reduction in operational time & effort managing content & experience, 70% Reduction in Deployment Errors and Downtime, 2.5X Customer Engagement, Conversion & Retention", "Our Solutions\nStrategy & Digital Transformation\nInnovate via digital transformation, modernize tech, craft product strategies, enhance customer experiences, optimize data analytics, transition to cloud for growth and efficiency\n\nProduct Engineering & Custom Development\nProviding product development, enterprise web and mobile development, microservices integrations, quality engineering, and application support services to drive innovation and enhance operational efficiency.", "Our AI/ML services pave the way for transformative change across industries, embodying a client-focused approach that integrates seamlessly with human-centric innovation. Our collaborative teams are dedicated to fostering growth, leveraging data, and harnessing the predictive power of artificial intelligence to forge the next wave of software excellence. We don't just deliver AI; we deliver the future."]}, {"source_sentence": "What managed services does TechChefz provide ?", "sentences": [" What we do\n\nDigital Strategy\nCreating digital frameworks that transform your digital enterprise and produce a return on investment.\n\nPlatform Selection\nHelping you select the optimal digital experience, commerce, cloud and marketing platform for your enterprise.\n\nPlatform Builds\nDeploying next-gen scalable and agile enterprise digital platforms, along with multi-platform integrations.\n\nProduct Builds\nHelp you ideate, strategize, and engineer your product with help of our enterprise frameworks \n\nTeam Augmentation\nHelp you scale up and augment your existing team to solve your hiring challenges with our easy to deploy staff augmentation offerings .\nManaged Services\nOperate and monitor your business-critical applications, data, and IT workloads, along with Application maintenance and operations\n", "What makes your DevOps solutions stand out from the competition?\nOur DevOps solutions stand out due to our personalized approach, extensive expertise, and commitment to innovation. We focus on delivering measurable results, such as reduced deployment times, improved system reliability, and enhanced security, ensuring you get the maximum benefit from our services.", "Introducing the world of General Insurance Firm\nIn this project, we implemented Digital Solution and Implementation with Headless Drupal as the CMS, and lightweight React JS (Next JS SSR on Node JS) with the following features:\nPWA & AMP based Web Pages\nPage Speed Optimization\nReusable and scalable React JS / Next JS Templates and Components\nHeadless Drupal CMS with Content & Experience management, approval workflows, etc for seamless collaboration between the business and marketing teams\nMinimalistic Buy and Renewal Journeys for various products, with API integrations and adherence to data compliances\n\nWe achieved 250% Reduction in Operational Time and Effort in managing the Content & Experience for Buy & renew Journeys,220% Reduction in Customer Drops during buy and renewal journeys, 300% Reduction in bounce rate on policy landing and campaign pages"]}], "model-index": [{"name": "BGE base Financial Matryoshka", "results": [{"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "dim 768", "type": "dim_768"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.17333333333333334, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.5466666666666666, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.6, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.6933333333333334, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.17333333333333334, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.1822222222222222, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.12, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.06933333333333333, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.17333333333333334, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.5466666666666666, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.6, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.6933333333333334, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.43705488094312567, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.3539576719576719, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.3663753684578632, "name": "Cosine Map@100"}]}, {"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "dim 512", "type": "dim_512"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.17333333333333334, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.5333333333333333, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.6266666666666667, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.6933333333333334, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.17333333333333334, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.17777777777777776, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.12533333333333332, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.06933333333333333, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.17333333333333334, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.5333333333333333, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.6266666666666667, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.6933333333333334, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.43324477959330543, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.3495185185185184, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.359896266319179, "name": "Cosine Map@100"}]}, {"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "dim 256", "type": "dim_256"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.22666666666666666, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.49333333333333335, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.56, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.68, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.22666666666666666, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.16444444444444445, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.11199999999999997, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.06799999999999998, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.22666666666666666, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.49333333333333335, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.56, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.68, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.4383628839300849, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.36210582010582004, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.3731640827722892, "name": "Cosine Map@100"}]}, {"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "dim 128", "type": "dim_128"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.24, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.48, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.56, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.6933333333333334, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.24, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.16, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.11199999999999997, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.06933333333333332, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.24, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.48, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.56, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.6933333333333334, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.4443870388298522, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.36651322751322746, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.37546675549059694, "name": "Cosine Map@100"}]}, {"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "dim 64", "type": "dim_64"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.08, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.3466666666666667, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.49333333333333335, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.56, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.08, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.11555555555555555, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.09866666666666667, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.05599999999999999, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.08, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.3466666666666667, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.49333333333333335, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.56, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.3120295466486537, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.23260846560846554, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.24731947636993173, "name": "Cosine Map@100"}]}]}]}
BSC-NLP4BIA/biomedical-term-classifier-setfit
BSC-NLP4BIA
text-classification
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "bert", "biomedical", "lexical semantics", "bionlp", "es", "license:apache-2.0", "region:us" ]
2024-05-22T15:47:16
2024-05-22T16:34:40
21
0
--- language: - es license: apache-2.0 pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - bert - biomedical - lexical semantics - bionlp --- # Biomedical term classifier with SetFit in Spanish ## Table of contents <details> <summary>Click to expand</summary> - [Model description](#model-description) - [Intended uses and limitations](#intended-use) - [How to use](#how-to-use) - [Training](#training) - [Evaluation](#evaluation) - [Additional information](#additional-information) - [Author](#author) - [Licensing information](#licensing-information) - [Citation information](#citation-information) - [Disclaimer](#disclaimer) </details> ## Model description This is a [SetFit model](https://github.com/huggingface/setfit) trained for multilabel biomedical text classification in Spanish. ## Intended uses and limitations The model is prepared to classify medical entities among 21 classes, including diseases, medical procedures, symptoms, and drugs, among others. It still lacks some classes like body structures. ## How to use This model is implemented as part of the KeyCARE library. Install first the keycare module to call the SetFit classifier: ```bash python -m pip install keycare ``` You can then run the KeyCARE pipeline that uses the SetFit model: ```python from keycare install TermExtractor.TermExtractor # initialize the termextractor object termextractor = TermExtractor() # Run the pipeline text = """Acude al Servicio de Urgencias por cefalea frontoparietal derecha. Mediante biopsia se diagnostica adenocarcinoma de próstata Gleason 4+4=8 con metástasis óseas múltiples. Se trata con Ácido Zoledrónico 4 mg iv/4 semanas. """ termextractor(text) # You can also access the class storing the SetFit model categorizer = termextractor.categorizer ``` ## Training The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. The used pre-trained model is SapBERT-from-roberta-base-biomedical-clinical-es from the BSC-NLP4BIA reserch group. 2. Training a classification head with features from the fine-tuned Sentence Transformer. The training data has been obtained from NER Gold Standard Corpora also generated by BSC-NLP4BIA, including [MedProcNER](https://temu.bsc.es/medprocner/), [DISTEMIST](https://temu.bsc.es/distemist/), [SympTEMIST](https://temu.bsc.es/symptemist/), [CANTEMIST](https://temu.bsc.es/cantemist/), and [PharmaCoNER](https://temu.bsc.es/pharmaconer/), among others. ## Evaluation To be published ## Additional information ### Author NLP4BIA at the Barcelona Supercomputing Center ### Licensing information [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ### Citation information To be published ### Disclaimer <details> <summary>Click to expand</summary> The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions. When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence. </details>
[ "TEXT_CLASSIFICATION" ]
[ "CANTEMIST", "DISTEMIST", "PHARMACONER", "SYMPTEMIST" ]
BioNLP
# Biomedical term classifier with SetFit in Spanish ## Table of contents <details> <summary>Click to expand</summary> - [Model description](#model-description) - [Intended uses and limitations](#intended-use) - [How to use](#how-to-use) - [Training](#training) - [Evaluation](#evaluation) - [Additional information](#additional-information) - [Author](#author) - [Licensing information](#licensing-information) - [Citation information](#citation-information) - [Disclaimer](#disclaimer) </details> ## Model description This is a [SetFit model](https://github.com/huggingface/setfit) trained for multilabel biomedical text classification in Spanish. ## Intended uses and limitations The model is prepared to classify medical entities among 21 classes, including diseases, medical procedures, symptoms, and drugs, among others. It still lacks some classes like body structures. ## How to use This model is implemented as part of the KeyCARE library. Install first the keycare module to call the SetFit classifier: ```bash python -m pip install keycare ``` You can then run the KeyCARE pipeline that uses the SetFit model: ```python from keycare install TermExtractor.TermExtractor # initialize the termextractor object termextractor = TermExtractor() # Run the pipeline text = """Acude al Servicio de Urgencias por cefalea frontoparietal derecha. Mediante biopsia se diagnostica adenocarcinoma de próstata Gleason 4+4=8 con metástasis óseas múltiples. Se trata con Ácido Zoledrónico 4 mg iv/4 semanas. """ termextractor(text) # You can also access the class storing the SetFit model categorizer = termextractor.categorizer ``` ## Training The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. The used pre-trained model is SapBERT-from-roberta-base-biomedical-clinical-es from the BSC-NLP4BIA reserch group. 2. Training a classification head with features from the fine-tuned Sentence Transformer. The training data has been obtained from NER Gold Standard Corpora also generated by BSC-NLP4BIA, including [MedProcNER](https://temu.bsc.es/medprocner/), [DISTEMIST](https://temu.bsc.es/distemist/), [SympTEMIST](https://temu.bsc.es/symptemist/), [CANTEMIST](https://temu.bsc.es/cantemist/), and [PharmaCoNER](https://temu.bsc.es/pharmaconer/), among others. ## Evaluation To be published ## Additional information ### Author NLP4BIA at the Barcelona Supercomputing Center ### Licensing information [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ### Citation information To be published ### Disclaimer <details> <summary>Click to expand</summary> The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions. When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence. </details>
{"language": ["es"], "license": "apache-2.0", "pipeline_tag": "text-classification", "tags": ["setfit", "sentence-transformers", "text-classification", "bert", "biomedical", "lexical semantics", "bionlp"]}
mav23/gte-Qwen2-1.5B-instruct-GGUF
mav23
sentence-similarity
[ "sentence-transformers", "gguf", "mteb", "transformers", "Qwen2", "sentence-similarity", "arxiv:2308.03281", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us", "conversational" ]
2024-10-11T14:04:27
2024-10-11T14:18:45
631
2
--- license: apache-2.0 tags: - mteb - sentence-transformers - transformers - Qwen2 - sentence-similarity model-index: - name: gte-qwen2-7B-instruct results: - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: mteb/amazon_counterfactual config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 83.98507462686567 - type: ap value: 50.93015252587014 - type: f1 value: 78.50416599051215 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification type: mteb/amazon_polarity config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 96.61065 - type: ap value: 94.89174052954196 - type: f1 value: 96.60942596940565 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: mteb/amazon_reviews_multi config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 55.614000000000004 - type: f1 value: 54.90553480294904 - task: type: Retrieval dataset: name: MTEB ArguAna type: mteb/arguana config: default split: test revision: c22ab2a51041ffd869aaddef7af8d8215647e41a metrics: - type: map_at_1 value: 45.164 - type: map_at_10 value: 61.519 - type: map_at_100 value: 61.769 - type: map_at_1000 value: 61.769 - type: map_at_3 value: 57.443999999999996 - type: map_at_5 value: 60.058 - type: mrr_at_1 value: 46.088 - type: mrr_at_10 value: 61.861 - type: mrr_at_100 value: 62.117999999999995 - type: mrr_at_1000 value: 62.117999999999995 - type: mrr_at_3 value: 57.729 - type: mrr_at_5 value: 60.392 - type: ndcg_at_1 value: 45.164 - type: ndcg_at_10 value: 69.72 - type: ndcg_at_100 value: 70.719 - type: ndcg_at_1000 value: 70.719 - type: ndcg_at_3 value: 61.517999999999994 - type: ndcg_at_5 value: 66.247 - type: precision_at_1 value: 45.164 - type: precision_at_10 value: 9.545 - type: precision_at_100 value: 0.996 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 24.443 - type: precision_at_5 value: 16.97 - type: recall_at_1 value: 45.164 - type: recall_at_10 value: 95.448 - type: recall_at_100 value: 99.644 - type: recall_at_1000 value: 99.644 - type: recall_at_3 value: 73.329 - type: recall_at_5 value: 84.851 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P type: mteb/arxiv-clustering-p2p config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 50.511868162026175 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S type: mteb/arxiv-clustering-s2s config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 45.007803189284004 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions type: mteb/askubuntudupquestions-reranking config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 64.55292107723382 - type: mrr value: 77.66158818097877 - task: type: STS dataset: name: MTEB BIOSSES type: mteb/biosses-sts config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 85.65459047085452 - type: cos_sim_spearman value: 82.10729255710761 - type: euclidean_pearson value: 82.78079159312476 - type: euclidean_spearman value: 80.50002701880933 - type: manhattan_pearson value: 82.41372641383016 - type: manhattan_spearman value: 80.57412509272639 - task: type: Classification dataset: name: MTEB Banking77Classification type: mteb/banking77 config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 87.30844155844156 - type: f1 value: 87.25307322443255 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P type: mteb/biorxiv-clustering-p2p config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 43.20754608934859 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S type: mteb/biorxiv-clustering-s2s config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 38.818037697335505 - task: type: Retrieval dataset: name: MTEB CQADupstackAndroidRetrieval type: BeIR/cqadupstack config: default split: test revision: f46a197baaae43b4f621051089b82a364682dfeb metrics: - type: map_at_1 value: 35.423 - type: map_at_10 value: 47.198 - type: map_at_100 value: 48.899 - type: map_at_1000 value: 49.004 - type: map_at_3 value: 43.114999999999995 - type: map_at_5 value: 45.491 - type: mrr_at_1 value: 42.918 - type: mrr_at_10 value: 53.299 - type: mrr_at_100 value: 54.032000000000004 - type: mrr_at_1000 value: 54.055 - type: mrr_at_3 value: 50.453 - type: mrr_at_5 value: 52.205999999999996 - type: ndcg_at_1 value: 42.918 - type: ndcg_at_10 value: 53.98 - type: ndcg_at_100 value: 59.57 - type: ndcg_at_1000 value: 60.879000000000005 - type: ndcg_at_3 value: 48.224000000000004 - type: ndcg_at_5 value: 50.998 - type: precision_at_1 value: 42.918 - type: precision_at_10 value: 10.299999999999999 - type: precision_at_100 value: 1.687 - type: precision_at_1000 value: 0.211 - type: precision_at_3 value: 22.842000000000002 - type: precision_at_5 value: 16.681 - type: recall_at_1 value: 35.423 - type: recall_at_10 value: 66.824 - type: recall_at_100 value: 89.564 - type: recall_at_1000 value: 97.501 - type: recall_at_3 value: 50.365 - type: recall_at_5 value: 57.921 - task: type: Retrieval dataset: name: MTEB CQADupstackEnglishRetrieval type: BeIR/cqadupstack config: default split: test revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 metrics: - type: map_at_1 value: 33.205 - type: map_at_10 value: 44.859 - type: map_at_100 value: 46.135 - type: map_at_1000 value: 46.259 - type: map_at_3 value: 41.839 - type: map_at_5 value: 43.662 - type: mrr_at_1 value: 41.146 - type: mrr_at_10 value: 50.621 - type: mrr_at_100 value: 51.207 - type: mrr_at_1000 value: 51.246 - type: mrr_at_3 value: 48.535000000000004 - type: mrr_at_5 value: 49.818 - type: ndcg_at_1 value: 41.146 - type: ndcg_at_10 value: 50.683 - type: ndcg_at_100 value: 54.82 - type: ndcg_at_1000 value: 56.69 - type: ndcg_at_3 value: 46.611000000000004 - type: ndcg_at_5 value: 48.66 - type: precision_at_1 value: 41.146 - type: precision_at_10 value: 9.439 - type: precision_at_100 value: 1.465 - type: precision_at_1000 value: 0.194 - type: precision_at_3 value: 22.59 - type: precision_at_5 value: 15.86 - type: recall_at_1 value: 33.205 - type: recall_at_10 value: 61.028999999999996 - type: recall_at_100 value: 78.152 - type: recall_at_1000 value: 89.59700000000001 - type: recall_at_3 value: 49.05 - type: recall_at_5 value: 54.836 - task: type: Retrieval dataset: name: MTEB CQADupstackGamingRetrieval type: BeIR/cqadupstack config: default split: test revision: 4885aa143210c98657558c04aaf3dc47cfb54340 metrics: - type: map_at_1 value: 41.637 - type: map_at_10 value: 55.162 - type: map_at_100 value: 56.142 - type: map_at_1000 value: 56.188 - type: map_at_3 value: 51.564 - type: map_at_5 value: 53.696 - type: mrr_at_1 value: 47.524 - type: mrr_at_10 value: 58.243 - type: mrr_at_100 value: 58.879999999999995 - type: mrr_at_1000 value: 58.9 - type: mrr_at_3 value: 55.69499999999999 - type: mrr_at_5 value: 57.284 - type: ndcg_at_1 value: 47.524 - type: ndcg_at_10 value: 61.305 - type: ndcg_at_100 value: 65.077 - type: ndcg_at_1000 value: 65.941 - type: ndcg_at_3 value: 55.422000000000004 - type: ndcg_at_5 value: 58.516 - type: precision_at_1 value: 47.524 - type: precision_at_10 value: 9.918000000000001 - type: precision_at_100 value: 1.276 - type: precision_at_1000 value: 0.13899999999999998 - type: precision_at_3 value: 24.765 - type: precision_at_5 value: 17.204 - type: recall_at_1 value: 41.637 - type: recall_at_10 value: 76.185 - type: recall_at_100 value: 92.149 - type: recall_at_1000 value: 98.199 - type: recall_at_3 value: 60.856 - type: recall_at_5 value: 68.25099999999999 - task: type: Retrieval dataset: name: MTEB CQADupstackGisRetrieval type: BeIR/cqadupstack config: default split: test revision: 5003b3064772da1887988e05400cf3806fe491f2 metrics: - type: map_at_1 value: 26.27 - type: map_at_10 value: 37.463 - type: map_at_100 value: 38.434000000000005 - type: map_at_1000 value: 38.509 - type: map_at_3 value: 34.226 - type: map_at_5 value: 36.161 - type: mrr_at_1 value: 28.588 - type: mrr_at_10 value: 39.383 - type: mrr_at_100 value: 40.23 - type: mrr_at_1000 value: 40.281 - type: mrr_at_3 value: 36.422 - type: mrr_at_5 value: 38.252 - type: ndcg_at_1 value: 28.588 - type: ndcg_at_10 value: 43.511 - type: ndcg_at_100 value: 48.274 - type: ndcg_at_1000 value: 49.975 - type: ndcg_at_3 value: 37.319 - type: ndcg_at_5 value: 40.568 - type: precision_at_1 value: 28.588 - type: precision_at_10 value: 6.893000000000001 - type: precision_at_100 value: 0.9900000000000001 - type: precision_at_1000 value: 0.117 - type: precision_at_3 value: 16.347 - type: precision_at_5 value: 11.661000000000001 - type: recall_at_1 value: 26.27 - type: recall_at_10 value: 60.284000000000006 - type: recall_at_100 value: 81.902 - type: recall_at_1000 value: 94.43 - type: recall_at_3 value: 43.537 - type: recall_at_5 value: 51.475 - task: type: Retrieval dataset: name: MTEB CQADupstackMathematicaRetrieval type: BeIR/cqadupstack config: default split: test revision: 90fceea13679c63fe563ded68f3b6f06e50061de metrics: - type: map_at_1 value: 18.168 - type: map_at_10 value: 28.410000000000004 - type: map_at_100 value: 29.78 - type: map_at_1000 value: 29.892999999999997 - type: map_at_3 value: 25.238 - type: map_at_5 value: 26.96 - type: mrr_at_1 value: 23.507 - type: mrr_at_10 value: 33.382 - type: mrr_at_100 value: 34.404 - type: mrr_at_1000 value: 34.467999999999996 - type: mrr_at_3 value: 30.637999999999998 - type: mrr_at_5 value: 32.199 - type: ndcg_at_1 value: 23.507 - type: ndcg_at_10 value: 34.571000000000005 - type: ndcg_at_100 value: 40.663 - type: ndcg_at_1000 value: 43.236000000000004 - type: ndcg_at_3 value: 29.053 - type: ndcg_at_5 value: 31.563999999999997 - type: precision_at_1 value: 23.507 - type: precision_at_10 value: 6.654 - type: precision_at_100 value: 1.113 - type: precision_at_1000 value: 0.146 - type: precision_at_3 value: 14.427999999999999 - type: precision_at_5 value: 10.498000000000001 - type: recall_at_1 value: 18.168 - type: recall_at_10 value: 48.443000000000005 - type: recall_at_100 value: 74.47 - type: recall_at_1000 value: 92.494 - type: recall_at_3 value: 33.379999999999995 - type: recall_at_5 value: 39.76 - task: type: Retrieval dataset: name: MTEB CQADupstackPhysicsRetrieval type: BeIR/cqadupstack config: default split: test revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 metrics: - type: map_at_1 value: 32.39 - type: map_at_10 value: 44.479 - type: map_at_100 value: 45.977000000000004 - type: map_at_1000 value: 46.087 - type: map_at_3 value: 40.976 - type: map_at_5 value: 43.038 - type: mrr_at_1 value: 40.135 - type: mrr_at_10 value: 50.160000000000004 - type: mrr_at_100 value: 51.052 - type: mrr_at_1000 value: 51.087 - type: mrr_at_3 value: 47.818 - type: mrr_at_5 value: 49.171 - type: ndcg_at_1 value: 40.135 - type: ndcg_at_10 value: 50.731 - type: ndcg_at_100 value: 56.452000000000005 - type: ndcg_at_1000 value: 58.123000000000005 - type: ndcg_at_3 value: 45.507 - type: ndcg_at_5 value: 48.11 - type: precision_at_1 value: 40.135 - type: precision_at_10 value: 9.192 - type: precision_at_100 value: 1.397 - type: precision_at_1000 value: 0.169 - type: precision_at_3 value: 21.816 - type: precision_at_5 value: 15.476 - type: recall_at_1 value: 32.39 - type: recall_at_10 value: 63.597 - type: recall_at_100 value: 86.737 - type: recall_at_1000 value: 97.039 - type: recall_at_3 value: 48.906 - type: recall_at_5 value: 55.659000000000006 - task: type: Retrieval dataset: name: MTEB CQADupstackProgrammersRetrieval type: BeIR/cqadupstack config: default split: test revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 metrics: - type: map_at_1 value: 28.397 - type: map_at_10 value: 39.871 - type: map_at_100 value: 41.309000000000005 - type: map_at_1000 value: 41.409 - type: map_at_3 value: 36.047000000000004 - type: map_at_5 value: 38.104 - type: mrr_at_1 value: 34.703 - type: mrr_at_10 value: 44.773 - type: mrr_at_100 value: 45.64 - type: mrr_at_1000 value: 45.678999999999995 - type: mrr_at_3 value: 41.705 - type: mrr_at_5 value: 43.406 - type: ndcg_at_1 value: 34.703 - type: ndcg_at_10 value: 46.271 - type: ndcg_at_100 value: 52.037 - type: ndcg_at_1000 value: 53.81700000000001 - type: ndcg_at_3 value: 39.966 - type: ndcg_at_5 value: 42.801 - type: precision_at_1 value: 34.703 - type: precision_at_10 value: 8.744 - type: precision_at_100 value: 1.348 - type: precision_at_1000 value: 0.167 - type: precision_at_3 value: 19.102 - type: precision_at_5 value: 13.836 - type: recall_at_1 value: 28.397 - type: recall_at_10 value: 60.299 - type: recall_at_100 value: 84.595 - type: recall_at_1000 value: 96.155 - type: recall_at_3 value: 43.065 - type: recall_at_5 value: 50.371 - task: type: Retrieval dataset: name: MTEB CQADupstackRetrieval type: BeIR/cqadupstack config: default split: test revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 metrics: - type: map_at_1 value: 28.044333333333338 - type: map_at_10 value: 38.78691666666666 - type: map_at_100 value: 40.113 - type: map_at_1000 value: 40.22125 - type: map_at_3 value: 35.52966666666667 - type: map_at_5 value: 37.372749999999996 - type: mrr_at_1 value: 33.159083333333335 - type: mrr_at_10 value: 42.913583333333335 - type: mrr_at_100 value: 43.7845 - type: mrr_at_1000 value: 43.830333333333336 - type: mrr_at_3 value: 40.29816666666667 - type: mrr_at_5 value: 41.81366666666667 - type: ndcg_at_1 value: 33.159083333333335 - type: ndcg_at_10 value: 44.75750000000001 - type: ndcg_at_100 value: 50.13658333333334 - type: ndcg_at_1000 value: 52.037 - type: ndcg_at_3 value: 39.34258333333334 - type: ndcg_at_5 value: 41.93708333333333 - type: precision_at_1 value: 33.159083333333335 - type: precision_at_10 value: 7.952416666666667 - type: precision_at_100 value: 1.2571666666666668 - type: precision_at_1000 value: 0.16099999999999998 - type: precision_at_3 value: 18.303833333333337 - type: precision_at_5 value: 13.057083333333333 - type: recall_at_1 value: 28.044333333333338 - type: recall_at_10 value: 58.237249999999996 - type: recall_at_100 value: 81.35391666666666 - type: recall_at_1000 value: 94.21283333333334 - type: recall_at_3 value: 43.32341666666667 - type: recall_at_5 value: 49.94908333333333 - type: map_at_1 value: 18.398 - type: map_at_10 value: 27.929 - type: map_at_100 value: 29.032999999999998 - type: map_at_1000 value: 29.126 - type: map_at_3 value: 25.070999999999998 - type: map_at_5 value: 26.583000000000002 - type: mrr_at_1 value: 19.963 - type: mrr_at_10 value: 29.997 - type: mrr_at_100 value: 30.9 - type: mrr_at_1000 value: 30.972 - type: mrr_at_3 value: 27.264 - type: mrr_at_5 value: 28.826 - type: ndcg_at_1 value: 19.963 - type: ndcg_at_10 value: 33.678999999999995 - type: ndcg_at_100 value: 38.931 - type: ndcg_at_1000 value: 41.379 - type: ndcg_at_3 value: 28.000000000000004 - type: ndcg_at_5 value: 30.637999999999998 - type: precision_at_1 value: 19.963 - type: precision_at_10 value: 5.7299999999999995 - type: precision_at_100 value: 0.902 - type: precision_at_1000 value: 0.122 - type: precision_at_3 value: 12.631 - type: precision_at_5 value: 9.057 - type: recall_at_1 value: 18.398 - type: recall_at_10 value: 49.254 - type: recall_at_100 value: 73.182 - type: recall_at_1000 value: 91.637 - type: recall_at_3 value: 34.06 - type: recall_at_5 value: 40.416000000000004 - task: type: Retrieval dataset: name: MTEB CQADupstackStatsRetrieval type: BeIR/cqadupstack config: default split: test revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a metrics: - type: map_at_1 value: 27.838 - type: map_at_10 value: 36.04 - type: map_at_100 value: 37.113 - type: map_at_1000 value: 37.204 - type: map_at_3 value: 33.585 - type: map_at_5 value: 34.845 - type: mrr_at_1 value: 30.982 - type: mrr_at_10 value: 39.105000000000004 - type: mrr_at_100 value: 39.98 - type: mrr_at_1000 value: 40.042 - type: mrr_at_3 value: 36.912 - type: mrr_at_5 value: 38.062000000000005 - type: ndcg_at_1 value: 30.982 - type: ndcg_at_10 value: 40.982 - type: ndcg_at_100 value: 46.092 - type: ndcg_at_1000 value: 48.25 - type: ndcg_at_3 value: 36.41 - type: ndcg_at_5 value: 38.379999999999995 - type: precision_at_1 value: 30.982 - type: precision_at_10 value: 6.534 - type: precision_at_100 value: 0.9820000000000001 - type: precision_at_1000 value: 0.124 - type: precision_at_3 value: 15.745999999999999 - type: precision_at_5 value: 10.828 - type: recall_at_1 value: 27.838 - type: recall_at_10 value: 52.971000000000004 - type: recall_at_100 value: 76.357 - type: recall_at_1000 value: 91.973 - type: recall_at_3 value: 40.157 - type: recall_at_5 value: 45.147999999999996 - task: type: Retrieval dataset: name: MTEB CQADupstackTexRetrieval type: BeIR/cqadupstack config: default split: test revision: 46989137a86843e03a6195de44b09deda022eec7 metrics: - type: map_at_1 value: 19.059 - type: map_at_10 value: 27.454 - type: map_at_100 value: 28.736 - type: map_at_1000 value: 28.865000000000002 - type: map_at_3 value: 24.773999999999997 - type: map_at_5 value: 26.266000000000002 - type: mrr_at_1 value: 23.125 - type: mrr_at_10 value: 31.267 - type: mrr_at_100 value: 32.32 - type: mrr_at_1000 value: 32.394 - type: mrr_at_3 value: 28.894 - type: mrr_at_5 value: 30.281000000000002 - type: ndcg_at_1 value: 23.125 - type: ndcg_at_10 value: 32.588 - type: ndcg_at_100 value: 38.432 - type: ndcg_at_1000 value: 41.214 - type: ndcg_at_3 value: 27.938000000000002 - type: ndcg_at_5 value: 30.127 - type: precision_at_1 value: 23.125 - type: precision_at_10 value: 5.9639999999999995 - type: precision_at_100 value: 1.047 - type: precision_at_1000 value: 0.148 - type: precision_at_3 value: 13.294 - type: precision_at_5 value: 9.628 - type: recall_at_1 value: 19.059 - type: recall_at_10 value: 44.25 - type: recall_at_100 value: 69.948 - type: recall_at_1000 value: 89.35300000000001 - type: recall_at_3 value: 31.114000000000004 - type: recall_at_5 value: 36.846000000000004 - task: type: Retrieval dataset: name: MTEB CQADupstackUnixRetrieval type: BeIR/cqadupstack config: default split: test revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 metrics: - type: map_at_1 value: 28.355999999999998 - type: map_at_10 value: 39.055 - type: map_at_100 value: 40.486 - type: map_at_1000 value: 40.571 - type: map_at_3 value: 35.69 - type: map_at_5 value: 37.605 - type: mrr_at_1 value: 33.302 - type: mrr_at_10 value: 42.986000000000004 - type: mrr_at_100 value: 43.957 - type: mrr_at_1000 value: 43.996 - type: mrr_at_3 value: 40.111999999999995 - type: mrr_at_5 value: 41.735 - type: ndcg_at_1 value: 33.302 - type: ndcg_at_10 value: 44.962999999999994 - type: ndcg_at_100 value: 50.917 - type: ndcg_at_1000 value: 52.622 - type: ndcg_at_3 value: 39.182 - type: ndcg_at_5 value: 41.939 - type: precision_at_1 value: 33.302 - type: precision_at_10 value: 7.779999999999999 - type: precision_at_100 value: 1.203 - type: precision_at_1000 value: 0.145 - type: precision_at_3 value: 18.035 - type: precision_at_5 value: 12.873000000000001 - type: recall_at_1 value: 28.355999999999998 - type: recall_at_10 value: 58.782000000000004 - type: recall_at_100 value: 84.02199999999999 - type: recall_at_1000 value: 95.511 - type: recall_at_3 value: 43.126999999999995 - type: recall_at_5 value: 50.14999999999999 - task: type: Retrieval dataset: name: MTEB CQADupstackWebmastersRetrieval type: BeIR/cqadupstack config: default split: test revision: 160c094312a0e1facb97e55eeddb698c0abe3571 metrics: - type: map_at_1 value: 27.391 - type: map_at_10 value: 37.523 - type: map_at_100 value: 39.312000000000005 - type: map_at_1000 value: 39.54 - type: map_at_3 value: 34.231 - type: map_at_5 value: 36.062 - type: mrr_at_1 value: 32.016 - type: mrr_at_10 value: 41.747 - type: mrr_at_100 value: 42.812 - type: mrr_at_1000 value: 42.844 - type: mrr_at_3 value: 39.129999999999995 - type: mrr_at_5 value: 40.524 - type: ndcg_at_1 value: 32.016 - type: ndcg_at_10 value: 43.826 - type: ndcg_at_100 value: 50.373999999999995 - type: ndcg_at_1000 value: 52.318 - type: ndcg_at_3 value: 38.479 - type: ndcg_at_5 value: 40.944 - type: precision_at_1 value: 32.016 - type: precision_at_10 value: 8.280999999999999 - type: precision_at_100 value: 1.6760000000000002 - type: precision_at_1000 value: 0.25 - type: precision_at_3 value: 18.05 - type: precision_at_5 value: 13.083 - type: recall_at_1 value: 27.391 - type: recall_at_10 value: 56.928999999999995 - type: recall_at_100 value: 85.169 - type: recall_at_1000 value: 96.665 - type: recall_at_3 value: 42.264 - type: recall_at_5 value: 48.556 - task: type: Retrieval dataset: name: MTEB ClimateFEVER type: mteb/climate-fever config: default split: test revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 metrics: - type: map_at_1 value: 19.681 - type: map_at_10 value: 32.741 - type: map_at_100 value: 34.811 - type: map_at_1000 value: 35.003 - type: map_at_3 value: 27.697 - type: map_at_5 value: 30.372 - type: mrr_at_1 value: 44.951 - type: mrr_at_10 value: 56.34400000000001 - type: mrr_at_100 value: 56.961 - type: mrr_at_1000 value: 56.987 - type: mrr_at_3 value: 53.681 - type: mrr_at_5 value: 55.407 - type: ndcg_at_1 value: 44.951 - type: ndcg_at_10 value: 42.905 - type: ndcg_at_100 value: 49.95 - type: ndcg_at_1000 value: 52.917 - type: ndcg_at_3 value: 36.815 - type: ndcg_at_5 value: 38.817 - type: precision_at_1 value: 44.951 - type: precision_at_10 value: 12.989999999999998 - type: precision_at_100 value: 2.068 - type: precision_at_1000 value: 0.263 - type: precision_at_3 value: 27.275 - type: precision_at_5 value: 20.365 - type: recall_at_1 value: 19.681 - type: recall_at_10 value: 48.272999999999996 - type: recall_at_100 value: 71.87400000000001 - type: recall_at_1000 value: 87.929 - type: recall_at_3 value: 32.653999999999996 - type: recall_at_5 value: 39.364 - task: type: Retrieval dataset: name: MTEB DBPedia type: mteb/dbpedia config: default split: test revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 metrics: - type: map_at_1 value: 10.231 - type: map_at_10 value: 22.338 - type: map_at_100 value: 31.927 - type: map_at_1000 value: 33.87 - type: map_at_3 value: 15.559999999999999 - type: map_at_5 value: 18.239 - type: mrr_at_1 value: 75.0 - type: mrr_at_10 value: 81.303 - type: mrr_at_100 value: 81.523 - type: mrr_at_1000 value: 81.53 - type: mrr_at_3 value: 80.083 - type: mrr_at_5 value: 80.758 - type: ndcg_at_1 value: 64.625 - type: ndcg_at_10 value: 48.687000000000005 - type: ndcg_at_100 value: 52.791 - type: ndcg_at_1000 value: 60.041999999999994 - type: ndcg_at_3 value: 53.757999999999996 - type: ndcg_at_5 value: 50.76500000000001 - type: precision_at_1 value: 75.0 - type: precision_at_10 value: 38.3 - type: precision_at_100 value: 12.025 - type: precision_at_1000 value: 2.3970000000000002 - type: precision_at_3 value: 55.417 - type: precision_at_5 value: 47.5 - type: recall_at_1 value: 10.231 - type: recall_at_10 value: 27.697 - type: recall_at_100 value: 57.409 - type: recall_at_1000 value: 80.547 - type: recall_at_3 value: 16.668 - type: recall_at_5 value: 20.552 - task: type: Classification dataset: name: MTEB EmotionClassification type: mteb/emotion config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 61.365 - type: f1 value: 56.7540827912991 - task: type: Retrieval dataset: name: MTEB FEVER type: mteb/fever config: default split: test revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 metrics: - type: map_at_1 value: 83.479 - type: map_at_10 value: 88.898 - type: map_at_100 value: 89.11 - type: map_at_1000 value: 89.12400000000001 - type: map_at_3 value: 88.103 - type: map_at_5 value: 88.629 - type: mrr_at_1 value: 89.934 - type: mrr_at_10 value: 93.91000000000001 - type: mrr_at_100 value: 93.937 - type: mrr_at_1000 value: 93.938 - type: mrr_at_3 value: 93.62700000000001 - type: mrr_at_5 value: 93.84599999999999 - type: ndcg_at_1 value: 89.934 - type: ndcg_at_10 value: 91.574 - type: ndcg_at_100 value: 92.238 - type: ndcg_at_1000 value: 92.45 - type: ndcg_at_3 value: 90.586 - type: ndcg_at_5 value: 91.16300000000001 - type: precision_at_1 value: 89.934 - type: precision_at_10 value: 10.555 - type: precision_at_100 value: 1.1159999999999999 - type: precision_at_1000 value: 0.11499999999999999 - type: precision_at_3 value: 33.588 - type: precision_at_5 value: 20.642 - type: recall_at_1 value: 83.479 - type: recall_at_10 value: 94.971 - type: recall_at_100 value: 97.397 - type: recall_at_1000 value: 98.666 - type: recall_at_3 value: 92.24799999999999 - type: recall_at_5 value: 93.797 - task: type: Retrieval dataset: name: MTEB FiQA2018 type: mteb/fiqa config: default split: test revision: 27a168819829fe9bcd655c2df245fb19452e8e06 metrics: - type: map_at_1 value: 27.16 - type: map_at_10 value: 45.593 - type: map_at_100 value: 47.762 - type: map_at_1000 value: 47.899 - type: map_at_3 value: 39.237 - type: map_at_5 value: 42.970000000000006 - type: mrr_at_1 value: 52.623 - type: mrr_at_10 value: 62.637 - type: mrr_at_100 value: 63.169 - type: mrr_at_1000 value: 63.185 - type: mrr_at_3 value: 59.928000000000004 - type: mrr_at_5 value: 61.702999999999996 - type: ndcg_at_1 value: 52.623 - type: ndcg_at_10 value: 54.701 - type: ndcg_at_100 value: 61.263 - type: ndcg_at_1000 value: 63.134 - type: ndcg_at_3 value: 49.265 - type: ndcg_at_5 value: 51.665000000000006 - type: precision_at_1 value: 52.623 - type: precision_at_10 value: 15.185 - type: precision_at_100 value: 2.202 - type: precision_at_1000 value: 0.254 - type: precision_at_3 value: 32.767 - type: precision_at_5 value: 24.722 - type: recall_at_1 value: 27.16 - type: recall_at_10 value: 63.309000000000005 - type: recall_at_100 value: 86.722 - type: recall_at_1000 value: 97.505 - type: recall_at_3 value: 45.045 - type: recall_at_5 value: 54.02400000000001 - task: type: Retrieval dataset: name: MTEB HotpotQA type: mteb/hotpotqa config: default split: test revision: ab518f4d6fcca38d87c25209f94beba119d02014 metrics: - type: map_at_1 value: 42.573 - type: map_at_10 value: 59.373 - type: map_at_100 value: 60.292 - type: map_at_1000 value: 60.358999999999995 - type: map_at_3 value: 56.159000000000006 - type: map_at_5 value: 58.123999999999995 - type: mrr_at_1 value: 85.14500000000001 - type: mrr_at_10 value: 89.25999999999999 - type: mrr_at_100 value: 89.373 - type: mrr_at_1000 value: 89.377 - type: mrr_at_3 value: 88.618 - type: mrr_at_5 value: 89.036 - type: ndcg_at_1 value: 85.14500000000001 - type: ndcg_at_10 value: 68.95 - type: ndcg_at_100 value: 71.95 - type: ndcg_at_1000 value: 73.232 - type: ndcg_at_3 value: 64.546 - type: ndcg_at_5 value: 66.945 - type: precision_at_1 value: 85.14500000000001 - type: precision_at_10 value: 13.865 - type: precision_at_100 value: 1.619 - type: precision_at_1000 value: 0.179 - type: precision_at_3 value: 39.703 - type: precision_at_5 value: 25.718000000000004 - type: recall_at_1 value: 42.573 - type: recall_at_10 value: 69.325 - type: recall_at_100 value: 80.932 - type: recall_at_1000 value: 89.446 - type: recall_at_3 value: 59.553999999999995 - type: recall_at_5 value: 64.294 - task: type: Classification dataset: name: MTEB ImdbClassification type: mteb/imdb config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 95.8336 - type: ap value: 93.78862962194073 - type: f1 value: 95.83192650728371 - task: type: Retrieval dataset: name: MTEB MSMARCO type: mteb/msmarco config: default split: dev revision: c5a29a104738b98a9e76336939199e264163d4a0 metrics: - type: map_at_1 value: 23.075000000000003 - type: map_at_10 value: 36.102000000000004 - type: map_at_100 value: 37.257 - type: map_at_1000 value: 37.3 - type: map_at_3 value: 32.144 - type: map_at_5 value: 34.359 - type: mrr_at_1 value: 23.711 - type: mrr_at_10 value: 36.671 - type: mrr_at_100 value: 37.763999999999996 - type: mrr_at_1000 value: 37.801 - type: mrr_at_3 value: 32.775 - type: mrr_at_5 value: 34.977000000000004 - type: ndcg_at_1 value: 23.711 - type: ndcg_at_10 value: 43.361 - type: ndcg_at_100 value: 48.839 - type: ndcg_at_1000 value: 49.88 - type: ndcg_at_3 value: 35.269 - type: ndcg_at_5 value: 39.224 - type: precision_at_1 value: 23.711 - type: precision_at_10 value: 6.866999999999999 - type: precision_at_100 value: 0.96 - type: precision_at_1000 value: 0.105 - type: precision_at_3 value: 15.096000000000002 - type: precision_at_5 value: 11.083 - type: recall_at_1 value: 23.075000000000003 - type: recall_at_10 value: 65.756 - type: recall_at_100 value: 90.88199999999999 - type: recall_at_1000 value: 98.739 - type: recall_at_3 value: 43.691 - type: recall_at_5 value: 53.15800000000001 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: mteb/mtop_domain config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 97.69493844049248 - type: f1 value: 97.55048089616261 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: mteb/mtop_intent config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 88.75968992248062 - type: f1 value: 72.26321223399123 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: mteb/amazon_massive_intent config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 82.40080699394754 - type: f1 value: 79.62590029057968 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: mteb/amazon_massive_scenario config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 84.49562878278414 - type: f1 value: 84.0040193313333 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P type: mteb/medrxiv-clustering-p2p config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 39.386760057101945 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S type: mteb/medrxiv-clustering-s2s config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 37.89687154075537 - task: type: Reranking dataset: name: MTEB MindSmallReranking type: mteb/mind_small config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 33.94151656057482 - type: mrr value: 35.32684700746953 - task: type: Retrieval dataset: name: MTEB NFCorpus type: mteb/nfcorpus config: default split: test revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 metrics: - type: map_at_1 value: 6.239999999999999 - type: map_at_10 value: 14.862 - type: map_at_100 value: 18.955 - type: map_at_1000 value: 20.694000000000003 - type: map_at_3 value: 10.683 - type: map_at_5 value: 12.674 - type: mrr_at_1 value: 50.15500000000001 - type: mrr_at_10 value: 59.697 - type: mrr_at_100 value: 60.095 - type: mrr_at_1000 value: 60.129999999999995 - type: mrr_at_3 value: 58.35900000000001 - type: mrr_at_5 value: 58.839 - type: ndcg_at_1 value: 48.452 - type: ndcg_at_10 value: 39.341 - type: ndcg_at_100 value: 35.866 - type: ndcg_at_1000 value: 45.111000000000004 - type: ndcg_at_3 value: 44.527 - type: ndcg_at_5 value: 42.946 - type: precision_at_1 value: 50.15500000000001 - type: precision_at_10 value: 29.536 - type: precision_at_100 value: 9.142 - type: precision_at_1000 value: 2.2849999999999997 - type: precision_at_3 value: 41.899 - type: precision_at_5 value: 37.647000000000006 - type: recall_at_1 value: 6.239999999999999 - type: recall_at_10 value: 19.278000000000002 - type: recall_at_100 value: 36.074 - type: recall_at_1000 value: 70.017 - type: recall_at_3 value: 12.066 - type: recall_at_5 value: 15.254000000000001 - task: type: Retrieval dataset: name: MTEB NQ type: mteb/nq config: default split: test revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 metrics: - type: map_at_1 value: 39.75 - type: map_at_10 value: 56.443 - type: map_at_100 value: 57.233999999999995 - type: map_at_1000 value: 57.249 - type: map_at_3 value: 52.032999999999994 - type: map_at_5 value: 54.937999999999995 - type: mrr_at_1 value: 44.728 - type: mrr_at_10 value: 58.939 - type: mrr_at_100 value: 59.489000000000004 - type: mrr_at_1000 value: 59.499 - type: mrr_at_3 value: 55.711999999999996 - type: mrr_at_5 value: 57.89 - type: ndcg_at_1 value: 44.728 - type: ndcg_at_10 value: 63.998999999999995 - type: ndcg_at_100 value: 67.077 - type: ndcg_at_1000 value: 67.40899999999999 - type: ndcg_at_3 value: 56.266000000000005 - type: ndcg_at_5 value: 60.88 - type: precision_at_1 value: 44.728 - type: precision_at_10 value: 10.09 - type: precision_at_100 value: 1.1809999999999998 - type: precision_at_1000 value: 0.121 - type: precision_at_3 value: 25.145 - type: precision_at_5 value: 17.822 - type: recall_at_1 value: 39.75 - type: recall_at_10 value: 84.234 - type: recall_at_100 value: 97.055 - type: recall_at_1000 value: 99.517 - type: recall_at_3 value: 64.851 - type: recall_at_5 value: 75.343 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval type: mteb/quora config: default split: test revision: None metrics: - type: map_at_1 value: 72.085 - type: map_at_10 value: 86.107 - type: map_at_100 value: 86.727 - type: map_at_1000 value: 86.74 - type: map_at_3 value: 83.21 - type: map_at_5 value: 85.06 - type: mrr_at_1 value: 82.94 - type: mrr_at_10 value: 88.845 - type: mrr_at_100 value: 88.926 - type: mrr_at_1000 value: 88.927 - type: mrr_at_3 value: 87.993 - type: mrr_at_5 value: 88.62299999999999 - type: ndcg_at_1 value: 82.97 - type: ndcg_at_10 value: 89.645 - type: ndcg_at_100 value: 90.717 - type: ndcg_at_1000 value: 90.78 - type: ndcg_at_3 value: 86.99900000000001 - type: ndcg_at_5 value: 88.52600000000001 - type: precision_at_1 value: 82.97 - type: precision_at_10 value: 13.569 - type: precision_at_100 value: 1.539 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 38.043 - type: precision_at_5 value: 24.992 - type: recall_at_1 value: 72.085 - type: recall_at_10 value: 96.262 - type: recall_at_100 value: 99.77000000000001 - type: recall_at_1000 value: 99.997 - type: recall_at_3 value: 88.652 - type: recall_at_5 value: 93.01899999999999 - task: type: Clustering dataset: name: MTEB RedditClustering type: mteb/reddit-clustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 55.82153952668092 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P type: mteb/reddit-clustering-p2p config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 62.094465801879295 - task: type: Retrieval dataset: name: MTEB SCIDOCS type: mteb/scidocs config: default split: test revision: None metrics: - type: map_at_1 value: 5.688 - type: map_at_10 value: 15.201999999999998 - type: map_at_100 value: 18.096 - type: map_at_1000 value: 18.481 - type: map_at_3 value: 10.734 - type: map_at_5 value: 12.94 - type: mrr_at_1 value: 28.000000000000004 - type: mrr_at_10 value: 41.101 - type: mrr_at_100 value: 42.202 - type: mrr_at_1000 value: 42.228 - type: mrr_at_3 value: 37.683 - type: mrr_at_5 value: 39.708 - type: ndcg_at_1 value: 28.000000000000004 - type: ndcg_at_10 value: 24.976000000000003 - type: ndcg_at_100 value: 35.129 - type: ndcg_at_1000 value: 40.77 - type: ndcg_at_3 value: 23.787 - type: ndcg_at_5 value: 20.816000000000003 - type: precision_at_1 value: 28.000000000000004 - type: precision_at_10 value: 13.04 - type: precision_at_100 value: 2.761 - type: precision_at_1000 value: 0.41000000000000003 - type: precision_at_3 value: 22.6 - type: precision_at_5 value: 18.52 - type: recall_at_1 value: 5.688 - type: recall_at_10 value: 26.43 - type: recall_at_100 value: 56.02 - type: recall_at_1000 value: 83.21 - type: recall_at_3 value: 13.752 - type: recall_at_5 value: 18.777 - task: type: STS dataset: name: MTEB SICK-R type: mteb/sickr-sts config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 85.15084859283178 - type: cos_sim_spearman value: 80.49030614009419 - type: euclidean_pearson value: 81.84574978672468 - type: euclidean_spearman value: 79.89787150656818 - type: manhattan_pearson value: 81.63076538567131 - type: manhattan_spearman value: 79.69867352121841 - task: type: STS dataset: name: MTEB STS12 type: mteb/sts12-sts config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 84.64097921490992 - type: cos_sim_spearman value: 77.25370084896514 - type: euclidean_pearson value: 82.71210826468788 - type: euclidean_spearman value: 78.50445584994826 - type: manhattan_pearson value: 82.92580164330298 - type: manhattan_spearman value: 78.69686891301019 - task: type: STS dataset: name: MTEB STS13 type: mteb/sts13-sts config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 87.24596417308994 - type: cos_sim_spearman value: 87.79454220555091 - type: euclidean_pearson value: 87.40242561671164 - type: euclidean_spearman value: 88.25955597373556 - type: manhattan_pearson value: 87.25160240485849 - type: manhattan_spearman value: 88.155794979818 - task: type: STS dataset: name: MTEB STS14 type: mteb/sts14-sts config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 84.44914233422564 - type: cos_sim_spearman value: 82.91015471820322 - type: euclidean_pearson value: 84.7206656630327 - type: euclidean_spearman value: 83.86408872059216 - type: manhattan_pearson value: 84.72816725158454 - type: manhattan_spearman value: 84.01603388572788 - task: type: STS dataset: name: MTEB STS15 type: mteb/sts15-sts config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 87.6168026237477 - type: cos_sim_spearman value: 88.45414278092397 - type: euclidean_pearson value: 88.57023240882022 - type: euclidean_spearman value: 89.04102190922094 - type: manhattan_pearson value: 88.66695535796354 - type: manhattan_spearman value: 89.19898476680969 - task: type: STS dataset: name: MTEB STS16 type: mteb/sts16-sts config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 84.27925826089424 - type: cos_sim_spearman value: 85.45291099550461 - type: euclidean_pearson value: 83.63853036580834 - type: euclidean_spearman value: 84.33468035821484 - type: manhattan_pearson value: 83.72778773251596 - type: manhattan_spearman value: 84.51583132445376 - task: type: STS dataset: name: MTEB STS17 (en-en) type: mteb/sts17-crosslingual-sts config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 89.67375185692552 - type: cos_sim_spearman value: 90.32542469203855 - type: euclidean_pearson value: 89.63513717951847 - type: euclidean_spearman value: 89.87760271003745 - type: manhattan_pearson value: 89.28381452982924 - type: manhattan_spearman value: 89.53568197785721 - task: type: STS dataset: name: MTEB STS22 (en) type: mteb/sts22-crosslingual-sts config: en split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 66.24644693819846 - type: cos_sim_spearman value: 66.09889420525377 - type: euclidean_pearson value: 63.72551583520747 - type: euclidean_spearman value: 63.01385470780679 - type: manhattan_pearson value: 64.09258157214097 - type: manhattan_spearman value: 63.080517752822594 - task: type: STS dataset: name: MTEB STSBenchmark type: mteb/stsbenchmark-sts config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 86.27321463839989 - type: cos_sim_spearman value: 86.37572865993327 - type: euclidean_pearson value: 86.36268020198149 - type: euclidean_spearman value: 86.31089339478922 - type: manhattan_pearson value: 86.4260445761947 - type: manhattan_spearman value: 86.45885895320457 - task: type: Reranking dataset: name: MTEB SciDocsRR type: mteb/scidocs-reranking config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 86.52456702387798 - type: mrr value: 96.34556529164372 - task: type: Retrieval dataset: name: MTEB SciFact type: mteb/scifact config: default split: test revision: 0228b52cf27578f30900b9e5271d331663a030d7 metrics: - type: map_at_1 value: 61.99400000000001 - type: map_at_10 value: 73.38799999999999 - type: map_at_100 value: 73.747 - type: map_at_1000 value: 73.75 - type: map_at_3 value: 70.04599999999999 - type: map_at_5 value: 72.095 - type: mrr_at_1 value: 65.0 - type: mrr_at_10 value: 74.42800000000001 - type: mrr_at_100 value: 74.722 - type: mrr_at_1000 value: 74.725 - type: mrr_at_3 value: 72.056 - type: mrr_at_5 value: 73.60600000000001 - type: ndcg_at_1 value: 65.0 - type: ndcg_at_10 value: 78.435 - type: ndcg_at_100 value: 79.922 - type: ndcg_at_1000 value: 80.00500000000001 - type: ndcg_at_3 value: 73.05199999999999 - type: ndcg_at_5 value: 75.98 - type: precision_at_1 value: 65.0 - type: precision_at_10 value: 10.5 - type: precision_at_100 value: 1.123 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 28.555999999999997 - type: precision_at_5 value: 19.0 - type: recall_at_1 value: 61.99400000000001 - type: recall_at_10 value: 92.72200000000001 - type: recall_at_100 value: 99.333 - type: recall_at_1000 value: 100.0 - type: recall_at_3 value: 78.739 - type: recall_at_5 value: 85.828 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions type: mteb/sprintduplicatequestions-pairclassification config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.79009900990098 - type: cos_sim_ap value: 95.3203137438653 - type: cos_sim_f1 value: 89.12386706948641 - type: cos_sim_precision value: 89.75659229208925 - type: cos_sim_recall value: 88.5 - type: dot_accuracy value: 99.67821782178218 - type: dot_ap value: 89.94069840000675 - type: dot_f1 value: 83.45902463549521 - type: dot_precision value: 83.9231547017189 - type: dot_recall value: 83.0 - type: euclidean_accuracy value: 99.78613861386138 - type: euclidean_ap value: 95.10648259135526 - type: euclidean_f1 value: 88.77338877338877 - type: euclidean_precision value: 92.42424242424242 - type: euclidean_recall value: 85.39999999999999 - type: manhattan_accuracy value: 99.7950495049505 - type: manhattan_ap value: 95.29987661320946 - type: manhattan_f1 value: 89.21313183949972 - type: manhattan_precision value: 93.14472252448314 - type: manhattan_recall value: 85.6 - type: max_accuracy value: 99.7950495049505 - type: max_ap value: 95.3203137438653 - type: max_f1 value: 89.21313183949972 - task: type: Clustering dataset: name: MTEB StackExchangeClustering type: mteb/stackexchange-clustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 67.65446577183913 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P type: mteb/stackexchange-clustering-p2p config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 46.30749237193961 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions type: mteb/stackoverflowdupquestions-reranking config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 54.91481849959949 - type: mrr value: 55.853506175197346 - task: type: Summarization dataset: name: MTEB SummEval type: mteb/summeval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.08196549170419 - type: cos_sim_spearman value: 31.16661390597077 - type: dot_pearson value: 29.892258410943466 - type: dot_spearman value: 30.51328811965085 - task: type: Retrieval dataset: name: MTEB TRECCOVID type: mteb/trec-covid config: default split: test revision: None metrics: - type: map_at_1 value: 0.23900000000000002 - type: map_at_10 value: 2.173 - type: map_at_100 value: 14.24 - type: map_at_1000 value: 35.309000000000005 - type: map_at_3 value: 0.7100000000000001 - type: map_at_5 value: 1.163 - type: mrr_at_1 value: 92.0 - type: mrr_at_10 value: 96.0 - type: mrr_at_100 value: 96.0 - type: mrr_at_1000 value: 96.0 - type: mrr_at_3 value: 96.0 - type: mrr_at_5 value: 96.0 - type: ndcg_at_1 value: 90.0 - type: ndcg_at_10 value: 85.382 - type: ndcg_at_100 value: 68.03 - type: ndcg_at_1000 value: 61.021 - type: ndcg_at_3 value: 89.765 - type: ndcg_at_5 value: 88.444 - type: precision_at_1 value: 92.0 - type: precision_at_10 value: 88.0 - type: precision_at_100 value: 70.02000000000001 - type: precision_at_1000 value: 26.984 - type: precision_at_3 value: 94.0 - type: precision_at_5 value: 92.80000000000001 - type: recall_at_1 value: 0.23900000000000002 - type: recall_at_10 value: 2.313 - type: recall_at_100 value: 17.049 - type: recall_at_1000 value: 57.489999999999995 - type: recall_at_3 value: 0.737 - type: recall_at_5 value: 1.221 - task: type: Retrieval dataset: name: MTEB Touche2020 type: mteb/touche2020 config: default split: test revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f metrics: - type: map_at_1 value: 2.75 - type: map_at_10 value: 11.29 - type: map_at_100 value: 18.032999999999998 - type: map_at_1000 value: 19.746 - type: map_at_3 value: 6.555 - type: map_at_5 value: 8.706999999999999 - type: mrr_at_1 value: 34.694 - type: mrr_at_10 value: 50.55 - type: mrr_at_100 value: 51.659 - type: mrr_at_1000 value: 51.659 - type: mrr_at_3 value: 47.278999999999996 - type: mrr_at_5 value: 49.728 - type: ndcg_at_1 value: 32.653 - type: ndcg_at_10 value: 27.894000000000002 - type: ndcg_at_100 value: 39.769 - type: ndcg_at_1000 value: 51.495999999999995 - type: ndcg_at_3 value: 32.954 - type: ndcg_at_5 value: 31.502999999999997 - type: precision_at_1 value: 34.694 - type: precision_at_10 value: 23.265 - type: precision_at_100 value: 7.898 - type: precision_at_1000 value: 1.58 - type: precision_at_3 value: 34.694 - type: precision_at_5 value: 31.429000000000002 - type: recall_at_1 value: 2.75 - type: recall_at_10 value: 16.953 - type: recall_at_100 value: 48.68 - type: recall_at_1000 value: 85.18599999999999 - type: recall_at_3 value: 7.710999999999999 - type: recall_at_5 value: 11.484 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification type: mteb/toxic_conversations_50k config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 82.66099999999999 - type: ap value: 25.555698090238337 - type: f1 value: 66.48402012461622 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification type: mteb/tweet_sentiment_extraction config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 72.94567062818335 - type: f1 value: 73.28139189595674 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering type: mteb/twentynewsgroups-clustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 49.581627240203474 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 type: mteb/twittersemeval2015-pairclassification config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 87.78089050485785 - type: cos_sim_ap value: 79.64487116574168 - type: cos_sim_f1 value: 72.46563021970964 - type: cos_sim_precision value: 70.62359128474831 - type: cos_sim_recall value: 74.40633245382587 - type: dot_accuracy value: 86.2609524944865 - type: dot_ap value: 75.513046857613 - type: dot_f1 value: 68.58213616489695 - type: dot_precision value: 65.12455516014235 - type: dot_recall value: 72.42744063324538 - type: euclidean_accuracy value: 87.6080348095607 - type: euclidean_ap value: 79.00204933649795 - type: euclidean_f1 value: 72.14495342605589 - type: euclidean_precision value: 69.85421299728193 - type: euclidean_recall value: 74.5910290237467 - type: manhattan_accuracy value: 87.59611372712642 - type: manhattan_ap value: 78.78523756706264 - type: manhattan_f1 value: 71.86499137718648 - type: manhattan_precision value: 67.39833641404806 - type: manhattan_recall value: 76.96569920844327 - type: max_accuracy value: 87.78089050485785 - type: max_ap value: 79.64487116574168 - type: max_f1 value: 72.46563021970964 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus type: mteb/twitterurlcorpus-pairclassification config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 89.98719292117825 - type: cos_sim_ap value: 87.58146137353202 - type: cos_sim_f1 value: 80.28543232369239 - type: cos_sim_precision value: 79.1735289714029 - type: cos_sim_recall value: 81.42901139513397 - type: dot_accuracy value: 88.9199363526992 - type: dot_ap value: 84.98499998630417 - type: dot_f1 value: 78.21951400757969 - type: dot_precision value: 75.58523624874336 - type: dot_recall value: 81.04404065291038 - type: euclidean_accuracy value: 89.77374160748244 - type: euclidean_ap value: 87.35151562835209 - type: euclidean_f1 value: 79.92160922940393 - type: euclidean_precision value: 76.88531587933979 - type: euclidean_recall value: 83.20757622420696 - type: manhattan_accuracy value: 89.72717041176699 - type: manhattan_ap value: 87.34065592142515 - type: manhattan_f1 value: 79.85603419187943 - type: manhattan_precision value: 77.82243332115455 - type: manhattan_recall value: 81.99876809362489 - type: max_accuracy value: 89.98719292117825 - type: max_ap value: 87.58146137353202 - type: max_f1 value: 80.28543232369239 - task: type: STS dataset: name: MTEB AFQMC type: C-MTEB/AFQMC config: default split: validation revision: b44c3b011063adb25877c13823db83bb193913c4 metrics: - type: cos_sim_pearson value: 53.45954203592337 - type: cos_sim_spearman value: 58.42154680418638 - type: euclidean_pearson value: 56.41543791722753 - type: euclidean_spearman value: 58.39328016640146 - type: manhattan_pearson value: 56.318510356833876 - type: manhattan_spearman value: 58.28423447818184 - task: type: STS dataset: name: MTEB ATEC type: C-MTEB/ATEC config: default split: test revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865 metrics: - type: cos_sim_pearson value: 50.78356460675945 - type: cos_sim_spearman value: 55.6530411663269 - type: euclidean_pearson value: 56.50763660417816 - type: euclidean_spearman value: 55.733823335669065 - type: manhattan_pearson value: 56.45323093512866 - type: manhattan_spearman value: 55.63248619032702 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (zh) type: mteb/amazon_reviews_multi config: zh split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 47.209999999999994 - type: f1 value: 46.08892432018655 - task: type: STS dataset: name: MTEB BQ type: C-MTEB/BQ config: default split: test revision: e3dda5e115e487b39ec7e618c0c6a29137052a55 metrics: - type: cos_sim_pearson value: 70.25573992001478 - type: cos_sim_spearman value: 73.85247134951433 - type: euclidean_pearson value: 72.60033082168442 - type: euclidean_spearman value: 73.72445893756499 - type: manhattan_pearson value: 72.59932284620231 - type: manhattan_spearman value: 73.68002490614583 - task: type: Clustering dataset: name: MTEB CLSClusteringP2P type: C-MTEB/CLSClusteringP2P config: default split: test revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476 metrics: - type: v_measure value: 45.21317724305628 - task: type: Clustering dataset: name: MTEB CLSClusteringS2S type: C-MTEB/CLSClusteringS2S config: default split: test revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f metrics: - type: v_measure value: 42.49825170976724 - task: type: Reranking dataset: name: MTEB CMedQAv1 type: C-MTEB/CMedQAv1-reranking config: default split: test revision: 8d7f1e942507dac42dc58017c1a001c3717da7df metrics: - type: map value: 88.15661686810597 - type: mrr value: 90.11222222222223 - task: type: Reranking dataset: name: MTEB CMedQAv2 type: C-MTEB/CMedQAv2-reranking config: default split: test revision: 23d186750531a14a0357ca22cd92d712fd512ea0 metrics: - type: map value: 88.1204726064383 - type: mrr value: 90.20142857142858 - task: type: Retrieval dataset: name: MTEB CmedqaRetrieval type: C-MTEB/CmedqaRetrieval config: default split: dev revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301 metrics: - type: map_at_1 value: 27.224999999999998 - type: map_at_10 value: 40.169 - type: map_at_100 value: 42.0 - type: map_at_1000 value: 42.109 - type: map_at_3 value: 35.76 - type: map_at_5 value: 38.221 - type: mrr_at_1 value: 40.56 - type: mrr_at_10 value: 49.118 - type: mrr_at_100 value: 50.092999999999996 - type: mrr_at_1000 value: 50.133 - type: mrr_at_3 value: 46.507 - type: mrr_at_5 value: 47.973 - type: ndcg_at_1 value: 40.56 - type: ndcg_at_10 value: 46.972 - type: ndcg_at_100 value: 54.04 - type: ndcg_at_1000 value: 55.862 - type: ndcg_at_3 value: 41.36 - type: ndcg_at_5 value: 43.704 - type: precision_at_1 value: 40.56 - type: precision_at_10 value: 10.302999999999999 - type: precision_at_100 value: 1.606 - type: precision_at_1000 value: 0.184 - type: precision_at_3 value: 23.064 - type: precision_at_5 value: 16.764000000000003 - type: recall_at_1 value: 27.224999999999998 - type: recall_at_10 value: 58.05200000000001 - type: recall_at_100 value: 87.092 - type: recall_at_1000 value: 99.099 - type: recall_at_3 value: 41.373 - type: recall_at_5 value: 48.453 - task: type: PairClassification dataset: name: MTEB Cmnli type: C-MTEB/CMNLI config: default split: validation revision: 41bc36f332156f7adc9e38f53777c959b2ae9766 metrics: - type: cos_sim_accuracy value: 77.40228502705953 - type: cos_sim_ap value: 86.22359172956327 - type: cos_sim_f1 value: 78.96328293736501 - type: cos_sim_precision value: 73.36945615091311 - type: cos_sim_recall value: 85.48047696983868 - type: dot_accuracy value: 75.53818400481059 - type: dot_ap value: 83.70164011305312 - type: dot_f1 value: 77.67298719348754 - type: dot_precision value: 67.49482401656314 - type: dot_recall value: 91.46598082768296 - type: euclidean_accuracy value: 77.94347564642213 - type: euclidean_ap value: 86.4652108728609 - type: euclidean_f1 value: 79.15555555555555 - type: euclidean_precision value: 75.41816641964853 - type: euclidean_recall value: 83.28267477203647 - type: manhattan_accuracy value: 77.45039085989175 - type: manhattan_ap value: 86.09986583900665 - type: manhattan_f1 value: 78.93669264438988 - type: manhattan_precision value: 72.63261296660117 - type: manhattan_recall value: 86.43909282207154 - type: max_accuracy value: 77.94347564642213 - type: max_ap value: 86.4652108728609 - type: max_f1 value: 79.15555555555555 - task: type: Retrieval dataset: name: MTEB CovidRetrieval type: C-MTEB/CovidRetrieval config: default split: dev revision: 1271c7809071a13532e05f25fb53511ffce77117 metrics: - type: map_at_1 value: 69.336 - type: map_at_10 value: 77.16 - type: map_at_100 value: 77.47500000000001 - type: map_at_1000 value: 77.482 - type: map_at_3 value: 75.42999999999999 - type: map_at_5 value: 76.468 - type: mrr_at_1 value: 69.44200000000001 - type: mrr_at_10 value: 77.132 - type: mrr_at_100 value: 77.43299999999999 - type: mrr_at_1000 value: 77.44 - type: mrr_at_3 value: 75.395 - type: mrr_at_5 value: 76.459 - type: ndcg_at_1 value: 69.547 - type: ndcg_at_10 value: 80.794 - type: ndcg_at_100 value: 82.245 - type: ndcg_at_1000 value: 82.40899999999999 - type: ndcg_at_3 value: 77.303 - type: ndcg_at_5 value: 79.168 - type: precision_at_1 value: 69.547 - type: precision_at_10 value: 9.305 - type: precision_at_100 value: 0.9979999999999999 - type: precision_at_1000 value: 0.101 - type: precision_at_3 value: 27.749000000000002 - type: precision_at_5 value: 17.576 - type: recall_at_1 value: 69.336 - type: recall_at_10 value: 92.097 - type: recall_at_100 value: 98.736 - type: recall_at_1000 value: 100.0 - type: recall_at_3 value: 82.64 - type: recall_at_5 value: 87.144 - task: type: Retrieval dataset: name: MTEB DuRetrieval type: C-MTEB/DuRetrieval config: default split: dev revision: a1a333e290fe30b10f3f56498e3a0d911a693ced metrics: - type: map_at_1 value: 26.817999999999998 - type: map_at_10 value: 82.67 - type: map_at_100 value: 85.304 - type: map_at_1000 value: 85.334 - type: map_at_3 value: 57.336 - type: map_at_5 value: 72.474 - type: mrr_at_1 value: 91.45 - type: mrr_at_10 value: 94.272 - type: mrr_at_100 value: 94.318 - type: mrr_at_1000 value: 94.32000000000001 - type: mrr_at_3 value: 94.0 - type: mrr_at_5 value: 94.17699999999999 - type: ndcg_at_1 value: 91.45 - type: ndcg_at_10 value: 89.404 - type: ndcg_at_100 value: 91.724 - type: ndcg_at_1000 value: 91.973 - type: ndcg_at_3 value: 88.104 - type: ndcg_at_5 value: 87.25699999999999 - type: precision_at_1 value: 91.45 - type: precision_at_10 value: 42.585 - type: precision_at_100 value: 4.838 - type: precision_at_1000 value: 0.49 - type: precision_at_3 value: 78.8 - type: precision_at_5 value: 66.66 - type: recall_at_1 value: 26.817999999999998 - type: recall_at_10 value: 90.67 - type: recall_at_100 value: 98.36200000000001 - type: recall_at_1000 value: 99.583 - type: recall_at_3 value: 59.614999999999995 - type: recall_at_5 value: 77.05199999999999 - task: type: Retrieval dataset: name: MTEB EcomRetrieval type: C-MTEB/EcomRetrieval config: default split: dev revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9 metrics: - type: map_at_1 value: 47.699999999999996 - type: map_at_10 value: 57.589999999999996 - type: map_at_100 value: 58.226 - type: map_at_1000 value: 58.251 - type: map_at_3 value: 55.233 - type: map_at_5 value: 56.633 - type: mrr_at_1 value: 47.699999999999996 - type: mrr_at_10 value: 57.589999999999996 - type: mrr_at_100 value: 58.226 - type: mrr_at_1000 value: 58.251 - type: mrr_at_3 value: 55.233 - type: mrr_at_5 value: 56.633 - type: ndcg_at_1 value: 47.699999999999996 - type: ndcg_at_10 value: 62.505 - type: ndcg_at_100 value: 65.517 - type: ndcg_at_1000 value: 66.19800000000001 - type: ndcg_at_3 value: 57.643 - type: ndcg_at_5 value: 60.181 - type: precision_at_1 value: 47.699999999999996 - type: precision_at_10 value: 7.8 - type: precision_at_100 value: 0.919 - type: precision_at_1000 value: 0.097 - type: precision_at_3 value: 21.532999999999998 - type: precision_at_5 value: 14.16 - type: recall_at_1 value: 47.699999999999996 - type: recall_at_10 value: 78.0 - type: recall_at_100 value: 91.9 - type: recall_at_1000 value: 97.3 - type: recall_at_3 value: 64.60000000000001 - type: recall_at_5 value: 70.8 - task: type: Classification dataset: name: MTEB IFlyTek type: C-MTEB/IFlyTek-classification config: default split: validation revision: 421605374b29664c5fc098418fe20ada9bd55f8a metrics: - type: accuracy value: 44.84801846864178 - type: f1 value: 37.47347897956339 - task: type: Classification dataset: name: MTEB JDReview type: C-MTEB/JDReview-classification config: default split: test revision: b7c64bd89eb87f8ded463478346f76731f07bf8b metrics: - type: accuracy value: 85.81613508442777 - type: ap value: 52.68244615477374 - type: f1 value: 80.0445640948843 - task: type: STS dataset: name: MTEB LCQMC type: C-MTEB/LCQMC config: default split: test revision: 17f9b096f80380fce5ed12a9be8be7784b337daf metrics: - type: cos_sim_pearson value: 69.57786502217138 - type: cos_sim_spearman value: 75.39106054489906 - type: euclidean_pearson value: 73.72082954602402 - type: euclidean_spearman value: 75.14421475913619 - type: manhattan_pearson value: 73.62463076633642 - type: manhattan_spearman value: 75.01301565104112 - task: type: Reranking dataset: name: MTEB MMarcoReranking type: C-MTEB/Mmarco-reranking config: default split: dev revision: None metrics: - type: map value: 29.143797057999134 - type: mrr value: 28.08174603174603 - task: type: Retrieval dataset: name: MTEB MMarcoRetrieval type: C-MTEB/MMarcoRetrieval config: default split: dev revision: 539bbde593d947e2a124ba72651aafc09eb33fc2 metrics: - type: map_at_1 value: 70.492 - type: map_at_10 value: 79.501 - type: map_at_100 value: 79.728 - type: map_at_1000 value: 79.735 - type: map_at_3 value: 77.77 - type: map_at_5 value: 78.851 - type: mrr_at_1 value: 72.822 - type: mrr_at_10 value: 80.001 - type: mrr_at_100 value: 80.19 - type: mrr_at_1000 value: 80.197 - type: mrr_at_3 value: 78.484 - type: mrr_at_5 value: 79.42099999999999 - type: ndcg_at_1 value: 72.822 - type: ndcg_at_10 value: 83.013 - type: ndcg_at_100 value: 84.013 - type: ndcg_at_1000 value: 84.20400000000001 - type: ndcg_at_3 value: 79.728 - type: ndcg_at_5 value: 81.542 - type: precision_at_1 value: 72.822 - type: precision_at_10 value: 9.917 - type: precision_at_100 value: 1.042 - type: precision_at_1000 value: 0.106 - type: precision_at_3 value: 29.847 - type: precision_at_5 value: 18.871 - type: recall_at_1 value: 70.492 - type: recall_at_10 value: 93.325 - type: recall_at_100 value: 97.822 - type: recall_at_1000 value: 99.319 - type: recall_at_3 value: 84.636 - type: recall_at_5 value: 88.93100000000001 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (zh-CN) type: mteb/amazon_massive_intent config: zh-CN split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 76.88298587760592 - type: f1 value: 73.89001762017176 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (zh-CN) type: mteb/amazon_massive_scenario config: zh-CN split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 80.76328177538669 - type: f1 value: 80.24718532423358 - task: type: Retrieval dataset: name: MTEB MedicalRetrieval type: C-MTEB/MedicalRetrieval config: default split: dev revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6 metrics: - type: map_at_1 value: 49.6 - type: map_at_10 value: 55.620999999999995 - type: map_at_100 value: 56.204 - type: map_at_1000 value: 56.251 - type: map_at_3 value: 54.132999999999996 - type: map_at_5 value: 54.933 - type: mrr_at_1 value: 49.7 - type: mrr_at_10 value: 55.67100000000001 - type: mrr_at_100 value: 56.254000000000005 - type: mrr_at_1000 value: 56.301 - type: mrr_at_3 value: 54.18300000000001 - type: mrr_at_5 value: 54.983000000000004 - type: ndcg_at_1 value: 49.6 - type: ndcg_at_10 value: 58.645 - type: ndcg_at_100 value: 61.789 - type: ndcg_at_1000 value: 63.219 - type: ndcg_at_3 value: 55.567 - type: ndcg_at_5 value: 57.008 - type: precision_at_1 value: 49.6 - type: precision_at_10 value: 6.819999999999999 - type: precision_at_100 value: 0.836 - type: precision_at_1000 value: 0.095 - type: precision_at_3 value: 19.900000000000002 - type: precision_at_5 value: 12.64 - type: recall_at_1 value: 49.6 - type: recall_at_10 value: 68.2 - type: recall_at_100 value: 83.6 - type: recall_at_1000 value: 95.3 - type: recall_at_3 value: 59.699999999999996 - type: recall_at_5 value: 63.2 - task: type: Classification dataset: name: MTEB MultilingualSentiment type: C-MTEB/MultilingualSentiment-classification config: default split: validation revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a metrics: - type: accuracy value: 74.45666666666666 - type: f1 value: 74.32582402190089 - task: type: PairClassification dataset: name: MTEB Ocnli type: C-MTEB/OCNLI config: default split: validation revision: 66e76a618a34d6d565d5538088562851e6daa7ec metrics: - type: cos_sim_accuracy value: 80.67135896047645 - type: cos_sim_ap value: 87.60421240712051 - type: cos_sim_f1 value: 82.1304131408661 - type: cos_sim_precision value: 77.68361581920904 - type: cos_sim_recall value: 87.11721224920802 - type: dot_accuracy value: 79.04710341093666 - type: dot_ap value: 85.6370059719336 - type: dot_f1 value: 80.763723150358 - type: dot_precision value: 73.69337979094077 - type: dot_recall value: 89.33474128827878 - type: euclidean_accuracy value: 81.05035192203573 - type: euclidean_ap value: 87.7880240053663 - type: euclidean_f1 value: 82.50244379276637 - type: euclidean_precision value: 76.7970882620564 - type: euclidean_recall value: 89.1235480464625 - type: manhattan_accuracy value: 80.61721710882512 - type: manhattan_ap value: 87.43568120591175 - type: manhattan_f1 value: 81.89526184538653 - type: manhattan_precision value: 77.5992438563327 - type: manhattan_recall value: 86.6948257655755 - type: max_accuracy value: 81.05035192203573 - type: max_ap value: 87.7880240053663 - type: max_f1 value: 82.50244379276637 - task: type: Classification dataset: name: MTEB OnlineShopping type: C-MTEB/OnlineShopping-classification config: default split: test revision: e610f2ebd179a8fda30ae534c3878750a96db120 metrics: - type: accuracy value: 93.5 - type: ap value: 91.31357903446782 - type: f1 value: 93.48088994006616 - task: type: STS dataset: name: MTEB PAWSX type: C-MTEB/PAWSX config: default split: test revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1 metrics: - type: cos_sim_pearson value: 36.93293453538077 - type: cos_sim_spearman value: 42.45972506308574 - type: euclidean_pearson value: 42.34945133152159 - type: euclidean_spearman value: 42.331610303674644 - type: manhattan_pearson value: 42.31455070249498 - type: manhattan_spearman value: 42.19887982891834 - task: type: STS dataset: name: MTEB QBQTC type: C-MTEB/QBQTC config: default split: test revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7 metrics: - type: cos_sim_pearson value: 33.683290790043785 - type: cos_sim_spearman value: 35.149171171202994 - type: euclidean_pearson value: 32.33806561267862 - type: euclidean_spearman value: 34.483576387347966 - type: manhattan_pearson value: 32.47629754599608 - type: manhattan_spearman value: 34.66434471867615 - task: type: STS dataset: name: MTEB STS22 (zh) type: mteb/sts22-crosslingual-sts config: zh split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 66.46322760516104 - type: cos_sim_spearman value: 67.398478319726 - type: euclidean_pearson value: 64.7223480293625 - type: euclidean_spearman value: 66.83118568812951 - type: manhattan_pearson value: 64.88440039828305 - type: manhattan_spearman value: 66.80429458952257 - task: type: STS dataset: name: MTEB STSB type: C-MTEB/STSB config: default split: test revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0 metrics: - type: cos_sim_pearson value: 79.08991383232105 - type: cos_sim_spearman value: 79.39715677296854 - type: euclidean_pearson value: 78.63201279320496 - type: euclidean_spearman value: 79.40262660785731 - type: manhattan_pearson value: 78.98138363146906 - type: manhattan_spearman value: 79.79968413014194 - task: type: Reranking dataset: name: MTEB T2Reranking type: C-MTEB/T2Reranking config: default split: dev revision: 76631901a18387f85eaa53e5450019b87ad58ef9 metrics: - type: map value: 67.43289278789972 - type: mrr value: 77.53012460908535 - task: type: Retrieval dataset: name: MTEB T2Retrieval type: C-MTEB/T2Retrieval config: default split: dev revision: 8731a845f1bf500a4f111cf1070785c793d10e64 metrics: - type: map_at_1 value: 27.733999999999998 - type: map_at_10 value: 78.24799999999999 - type: map_at_100 value: 81.765 - type: map_at_1000 value: 81.824 - type: map_at_3 value: 54.92 - type: map_at_5 value: 67.61399999999999 - type: mrr_at_1 value: 90.527 - type: mrr_at_10 value: 92.843 - type: mrr_at_100 value: 92.927 - type: mrr_at_1000 value: 92.93 - type: mrr_at_3 value: 92.45100000000001 - type: mrr_at_5 value: 92.693 - type: ndcg_at_1 value: 90.527 - type: ndcg_at_10 value: 85.466 - type: ndcg_at_100 value: 88.846 - type: ndcg_at_1000 value: 89.415 - type: ndcg_at_3 value: 86.768 - type: ndcg_at_5 value: 85.46000000000001 - type: precision_at_1 value: 90.527 - type: precision_at_10 value: 42.488 - type: precision_at_100 value: 5.024 - type: precision_at_1000 value: 0.516 - type: precision_at_3 value: 75.907 - type: precision_at_5 value: 63.727000000000004 - type: recall_at_1 value: 27.733999999999998 - type: recall_at_10 value: 84.346 - type: recall_at_100 value: 95.536 - type: recall_at_1000 value: 98.42999999999999 - type: recall_at_3 value: 56.455 - type: recall_at_5 value: 70.755 - task: type: Classification dataset: name: MTEB TNews type: C-MTEB/TNews-classification config: default split: validation revision: 317f262bf1e6126357bbe89e875451e4b0938fe4 metrics: - type: accuracy value: 49.952000000000005 - type: f1 value: 48.264617195258054 - task: type: Clustering dataset: name: MTEB ThuNewsClusteringP2P type: C-MTEB/ThuNewsClusteringP2P config: default split: test revision: 5798586b105c0434e4f0fe5e767abe619442cf93 metrics: - type: v_measure value: 68.23769904483508 - task: type: Clustering dataset: name: MTEB ThuNewsClusteringS2S type: C-MTEB/ThuNewsClusteringS2S config: default split: test revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d metrics: - type: v_measure value: 62.50294403136556 - task: type: Retrieval dataset: name: MTEB VideoRetrieval type: C-MTEB/VideoRetrieval config: default split: dev revision: 58c2597a5943a2ba48f4668c3b90d796283c5639 metrics: - type: map_at_1 value: 54.0 - type: map_at_10 value: 63.668 - type: map_at_100 value: 64.217 - type: map_at_1000 value: 64.23100000000001 - type: map_at_3 value: 61.7 - type: map_at_5 value: 62.870000000000005 - type: mrr_at_1 value: 54.0 - type: mrr_at_10 value: 63.668 - type: mrr_at_100 value: 64.217 - type: mrr_at_1000 value: 64.23100000000001 - type: mrr_at_3 value: 61.7 - type: mrr_at_5 value: 62.870000000000005 - type: ndcg_at_1 value: 54.0 - type: ndcg_at_10 value: 68.11399999999999 - type: ndcg_at_100 value: 70.723 - type: ndcg_at_1000 value: 71.123 - type: ndcg_at_3 value: 64.074 - type: ndcg_at_5 value: 66.178 - type: precision_at_1 value: 54.0 - type: precision_at_10 value: 8.200000000000001 - type: precision_at_100 value: 0.941 - type: precision_at_1000 value: 0.097 - type: precision_at_3 value: 23.633000000000003 - type: precision_at_5 value: 15.2 - type: recall_at_1 value: 54.0 - type: recall_at_10 value: 82.0 - type: recall_at_100 value: 94.1 - type: recall_at_1000 value: 97.3 - type: recall_at_3 value: 70.89999999999999 - type: recall_at_5 value: 76.0 - task: type: Classification dataset: name: MTEB Waimai type: C-MTEB/waimai-classification config: default split: test revision: 339287def212450dcaa9df8c22bf93e9980c7023 metrics: - type: accuracy value: 86.63000000000001 - type: ap value: 69.99457882599567 - type: f1 value: 85.07735617998541 - task: type: Clustering dataset: name: MTEB 8TagsClustering type: PL-MTEB/8tags-clustering config: default split: test revision: None metrics: - type: v_measure value: 44.594104491193555 - task: type: Classification dataset: name: MTEB AllegroReviews type: PL-MTEB/allegro-reviews config: default split: test revision: None metrics: - type: accuracy value: 63.97614314115309 - type: f1 value: 52.15634261679283 - task: type: Retrieval dataset: name: MTEB ArguAna-PL type: clarin-knext/arguana-pl config: default split: test revision: 63fc86750af76253e8c760fc9e534bbf24d260a2 metrics: - type: map_at_1 value: 32.646 - type: map_at_10 value: 47.963 - type: map_at_100 value: 48.789 - type: map_at_1000 value: 48.797000000000004 - type: map_at_3 value: 43.196 - type: map_at_5 value: 46.016 - type: mrr_at_1 value: 33.073 - type: mrr_at_10 value: 48.126000000000005 - type: mrr_at_100 value: 48.946 - type: mrr_at_1000 value: 48.953 - type: mrr_at_3 value: 43.374 - type: mrr_at_5 value: 46.147 - type: ndcg_at_1 value: 32.646 - type: ndcg_at_10 value: 56.481 - type: ndcg_at_100 value: 59.922 - type: ndcg_at_1000 value: 60.07 - type: ndcg_at_3 value: 46.675 - type: ndcg_at_5 value: 51.76500000000001 - type: precision_at_1 value: 32.646 - type: precision_at_10 value: 8.371 - type: precision_at_100 value: 0.9860000000000001 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 18.919 - type: precision_at_5 value: 13.825999999999999 - type: recall_at_1 value: 32.646 - type: recall_at_10 value: 83.71300000000001 - type: recall_at_100 value: 98.578 - type: recall_at_1000 value: 99.644 - type: recall_at_3 value: 56.757000000000005 - type: recall_at_5 value: 69.132 - task: type: Classification dataset: name: MTEB CBD type: PL-MTEB/cbd config: default split: test revision: None metrics: - type: accuracy value: 68.56 - type: ap value: 23.310493680488513 - type: f1 value: 58.85369533105693 - task: type: PairClassification dataset: name: MTEB CDSC-E type: PL-MTEB/cdsce-pairclassification config: default split: test revision: None metrics: - type: cos_sim_accuracy value: 88.5 - type: cos_sim_ap value: 72.42140924378361 - type: cos_sim_f1 value: 66.0919540229885 - type: cos_sim_precision value: 72.78481012658227 - type: cos_sim_recall value: 60.526315789473685 - type: dot_accuracy value: 88.5 - type: dot_ap value: 72.42140924378361 - type: dot_f1 value: 66.0919540229885 - type: dot_precision value: 72.78481012658227 - type: dot_recall value: 60.526315789473685 - type: euclidean_accuracy value: 88.5 - type: euclidean_ap value: 72.42140924378361 - type: euclidean_f1 value: 66.0919540229885 - type: euclidean_precision value: 72.78481012658227 - type: euclidean_recall value: 60.526315789473685 - type: manhattan_accuracy value: 88.5 - type: manhattan_ap value: 72.49745515311696 - type: manhattan_f1 value: 66.0968660968661 - type: manhattan_precision value: 72.04968944099379 - type: manhattan_recall value: 61.05263157894737 - type: max_accuracy value: 88.5 - type: max_ap value: 72.49745515311696 - type: max_f1 value: 66.0968660968661 - task: type: STS dataset: name: MTEB CDSC-R type: PL-MTEB/cdscr-sts config: default split: test revision: None metrics: - type: cos_sim_pearson value: 90.32269765590145 - type: cos_sim_spearman value: 89.73666311491672 - type: euclidean_pearson value: 88.2933868516544 - type: euclidean_spearman value: 89.73666311491672 - type: manhattan_pearson value: 88.33474590219448 - type: manhattan_spearman value: 89.8548364866583 - task: type: Retrieval dataset: name: MTEB DBPedia-PL type: clarin-knext/dbpedia-pl config: default split: test revision: 76afe41d9af165cc40999fcaa92312b8b012064a metrics: - type: map_at_1 value: 7.632999999999999 - type: map_at_10 value: 16.426 - type: map_at_100 value: 22.651 - type: map_at_1000 value: 24.372 - type: map_at_3 value: 11.706 - type: map_at_5 value: 13.529 - type: mrr_at_1 value: 60.75000000000001 - type: mrr_at_10 value: 68.613 - type: mrr_at_100 value: 69.001 - type: mrr_at_1000 value: 69.021 - type: mrr_at_3 value: 67.0 - type: mrr_at_5 value: 67.925 - type: ndcg_at_1 value: 49.875 - type: ndcg_at_10 value: 36.978 - type: ndcg_at_100 value: 40.031 - type: ndcg_at_1000 value: 47.566 - type: ndcg_at_3 value: 41.148 - type: ndcg_at_5 value: 38.702 - type: precision_at_1 value: 60.75000000000001 - type: precision_at_10 value: 29.7 - type: precision_at_100 value: 9.278 - type: precision_at_1000 value: 2.099 - type: precision_at_3 value: 44.0 - type: precision_at_5 value: 37.6 - type: recall_at_1 value: 7.632999999999999 - type: recall_at_10 value: 22.040000000000003 - type: recall_at_100 value: 44.024 - type: recall_at_1000 value: 67.848 - type: recall_at_3 value: 13.093 - type: recall_at_5 value: 15.973 - task: type: Retrieval dataset: name: MTEB FiQA-PL type: clarin-knext/fiqa-pl config: default split: test revision: 2e535829717f8bf9dc829b7f911cc5bbd4e6608e metrics: - type: map_at_1 value: 15.473 - type: map_at_10 value: 24.579 - type: map_at_100 value: 26.387 - type: map_at_1000 value: 26.57 - type: map_at_3 value: 21.278 - type: map_at_5 value: 23.179 - type: mrr_at_1 value: 30.709999999999997 - type: mrr_at_10 value: 38.994 - type: mrr_at_100 value: 39.993 - type: mrr_at_1000 value: 40.044999999999995 - type: mrr_at_3 value: 36.342999999999996 - type: mrr_at_5 value: 37.846999999999994 - type: ndcg_at_1 value: 30.709999999999997 - type: ndcg_at_10 value: 31.608999999999998 - type: ndcg_at_100 value: 38.807 - type: ndcg_at_1000 value: 42.208 - type: ndcg_at_3 value: 28.086 - type: ndcg_at_5 value: 29.323 - type: precision_at_1 value: 30.709999999999997 - type: precision_at_10 value: 8.688 - type: precision_at_100 value: 1.608 - type: precision_at_1000 value: 0.22100000000000003 - type: precision_at_3 value: 18.724 - type: precision_at_5 value: 13.950999999999999 - type: recall_at_1 value: 15.473 - type: recall_at_10 value: 38.361000000000004 - type: recall_at_100 value: 65.2 - type: recall_at_1000 value: 85.789 - type: recall_at_3 value: 25.401 - type: recall_at_5 value: 30.875999999999998 - task: type: Retrieval dataset: name: MTEB HotpotQA-PL type: clarin-knext/hotpotqa-pl config: default split: test revision: a0bd479ac97b4ccb5bd6ce320c415d0bb4beb907 metrics: - type: map_at_1 value: 38.096000000000004 - type: map_at_10 value: 51.44499999999999 - type: map_at_100 value: 52.325 - type: map_at_1000 value: 52.397000000000006 - type: map_at_3 value: 48.626999999999995 - type: map_at_5 value: 50.342 - type: mrr_at_1 value: 76.19200000000001 - type: mrr_at_10 value: 81.191 - type: mrr_at_100 value: 81.431 - type: mrr_at_1000 value: 81.443 - type: mrr_at_3 value: 80.30199999999999 - type: mrr_at_5 value: 80.85900000000001 - type: ndcg_at_1 value: 76.19200000000001 - type: ndcg_at_10 value: 60.9 - type: ndcg_at_100 value: 64.14699999999999 - type: ndcg_at_1000 value: 65.647 - type: ndcg_at_3 value: 56.818000000000005 - type: ndcg_at_5 value: 59.019999999999996 - type: precision_at_1 value: 76.19200000000001 - type: precision_at_10 value: 12.203 - type: precision_at_100 value: 1.478 - type: precision_at_1000 value: 0.168 - type: precision_at_3 value: 34.616 - type: precision_at_5 value: 22.515 - type: recall_at_1 value: 38.096000000000004 - type: recall_at_10 value: 61.013 - type: recall_at_100 value: 73.90299999999999 - type: recall_at_1000 value: 83.91 - type: recall_at_3 value: 51.92400000000001 - type: recall_at_5 value: 56.286 - task: type: Retrieval dataset: name: MTEB MSMARCO-PL type: clarin-knext/msmarco-pl config: default split: test revision: 8634c07806d5cce3a6138e260e59b81760a0a640 metrics: - type: map_at_1 value: 1.548 - type: map_at_10 value: 11.049000000000001 - type: map_at_100 value: 28.874 - type: map_at_1000 value: 34.931 - type: map_at_3 value: 4.162 - type: map_at_5 value: 6.396 - type: mrr_at_1 value: 90.69800000000001 - type: mrr_at_10 value: 92.093 - type: mrr_at_100 value: 92.345 - type: mrr_at_1000 value: 92.345 - type: mrr_at_3 value: 91.86 - type: mrr_at_5 value: 91.86 - type: ndcg_at_1 value: 74.031 - type: ndcg_at_10 value: 63.978 - type: ndcg_at_100 value: 53.101 - type: ndcg_at_1000 value: 60.675999999999995 - type: ndcg_at_3 value: 71.421 - type: ndcg_at_5 value: 68.098 - type: precision_at_1 value: 90.69800000000001 - type: precision_at_10 value: 71.86 - type: precision_at_100 value: 31.395 - type: precision_at_1000 value: 5.981 - type: precision_at_3 value: 84.49600000000001 - type: precision_at_5 value: 79.07 - type: recall_at_1 value: 1.548 - type: recall_at_10 value: 12.149000000000001 - type: recall_at_100 value: 40.794999999999995 - type: recall_at_1000 value: 67.974 - type: recall_at_3 value: 4.244 - type: recall_at_5 value: 6.608 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (pl) type: mteb/amazon_massive_intent config: pl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 73.55413584398119 - type: f1 value: 69.65610882318181 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (pl) type: mteb/amazon_massive_scenario config: pl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 76.37188971082716 - type: f1 value: 75.64847309941361 - task: type: Retrieval dataset: name: MTEB NFCorpus-PL type: clarin-knext/nfcorpus-pl config: default split: test revision: 9a6f9567fda928260afed2de480d79c98bf0bec0 metrics: - type: map_at_1 value: 4.919 - type: map_at_10 value: 10.834000000000001 - type: map_at_100 value: 13.38 - type: map_at_1000 value: 14.581 - type: map_at_3 value: 8.198 - type: map_at_5 value: 9.428 - type: mrr_at_1 value: 41.176 - type: mrr_at_10 value: 50.083 - type: mrr_at_100 value: 50.559 - type: mrr_at_1000 value: 50.604000000000006 - type: mrr_at_3 value: 47.936 - type: mrr_at_5 value: 49.407000000000004 - type: ndcg_at_1 value: 39.628 - type: ndcg_at_10 value: 30.098000000000003 - type: ndcg_at_100 value: 27.061 - type: ndcg_at_1000 value: 35.94 - type: ndcg_at_3 value: 35.135 - type: ndcg_at_5 value: 33.335 - type: precision_at_1 value: 41.176 - type: precision_at_10 value: 22.259999999999998 - type: precision_at_100 value: 6.712 - type: precision_at_1000 value: 1.9060000000000001 - type: precision_at_3 value: 33.23 - type: precision_at_5 value: 29.04 - type: recall_at_1 value: 4.919 - type: recall_at_10 value: 14.196 - type: recall_at_100 value: 26.948 - type: recall_at_1000 value: 59.211000000000006 - type: recall_at_3 value: 9.44 - type: recall_at_5 value: 11.569 - task: type: Retrieval dataset: name: MTEB NQ-PL type: clarin-knext/nq-pl config: default split: test revision: f171245712cf85dd4700b06bef18001578d0ca8d metrics: - type: map_at_1 value: 25.35 - type: map_at_10 value: 37.884 - type: map_at_100 value: 38.955 - type: map_at_1000 value: 39.007999999999996 - type: map_at_3 value: 34.239999999999995 - type: map_at_5 value: 36.398 - type: mrr_at_1 value: 28.737000000000002 - type: mrr_at_10 value: 39.973 - type: mrr_at_100 value: 40.844 - type: mrr_at_1000 value: 40.885 - type: mrr_at_3 value: 36.901 - type: mrr_at_5 value: 38.721 - type: ndcg_at_1 value: 28.708 - type: ndcg_at_10 value: 44.204 - type: ndcg_at_100 value: 48.978 - type: ndcg_at_1000 value: 50.33 - type: ndcg_at_3 value: 37.36 - type: ndcg_at_5 value: 40.912 - type: precision_at_1 value: 28.708 - type: precision_at_10 value: 7.367 - type: precision_at_100 value: 1.0030000000000001 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 17.034 - type: precision_at_5 value: 12.293999999999999 - type: recall_at_1 value: 25.35 - type: recall_at_10 value: 61.411 - type: recall_at_100 value: 82.599 - type: recall_at_1000 value: 92.903 - type: recall_at_3 value: 43.728 - type: recall_at_5 value: 51.854 - task: type: Classification dataset: name: MTEB PAC type: laugustyniak/abusive-clauses-pl config: default split: test revision: None metrics: - type: accuracy value: 69.04141326382856 - type: ap value: 77.49422763833996 - type: f1 value: 66.73472657783407 - task: type: PairClassification dataset: name: MTEB PPC type: PL-MTEB/ppc-pairclassification config: default split: test revision: None metrics: - type: cos_sim_accuracy value: 81.0 - type: cos_sim_ap value: 91.47194213011349 - type: cos_sim_f1 value: 84.73767885532592 - type: cos_sim_precision value: 81.49847094801224 - type: cos_sim_recall value: 88.24503311258279 - type: dot_accuracy value: 81.0 - type: dot_ap value: 91.47194213011349 - type: dot_f1 value: 84.73767885532592 - type: dot_precision value: 81.49847094801224 - type: dot_recall value: 88.24503311258279 - type: euclidean_accuracy value: 81.0 - type: euclidean_ap value: 91.47194213011349 - type: euclidean_f1 value: 84.73767885532592 - type: euclidean_precision value: 81.49847094801224 - type: euclidean_recall value: 88.24503311258279 - type: manhattan_accuracy value: 81.0 - type: manhattan_ap value: 91.46464475050571 - type: manhattan_f1 value: 84.48687350835321 - type: manhattan_precision value: 81.31699846860643 - type: manhattan_recall value: 87.91390728476821 - type: max_accuracy value: 81.0 - type: max_ap value: 91.47194213011349 - type: max_f1 value: 84.73767885532592 - task: type: PairClassification dataset: name: MTEB PSC type: PL-MTEB/psc-pairclassification config: default split: test revision: None metrics: - type: cos_sim_accuracy value: 97.6808905380334 - type: cos_sim_ap value: 99.27948611836348 - type: cos_sim_f1 value: 96.15975422427034 - type: cos_sim_precision value: 96.90402476780186 - type: cos_sim_recall value: 95.42682926829268 - type: dot_accuracy value: 97.6808905380334 - type: dot_ap value: 99.2794861183635 - type: dot_f1 value: 96.15975422427034 - type: dot_precision value: 96.90402476780186 - type: dot_recall value: 95.42682926829268 - type: euclidean_accuracy value: 97.6808905380334 - type: euclidean_ap value: 99.2794861183635 - type: euclidean_f1 value: 96.15975422427034 - type: euclidean_precision value: 96.90402476780186 - type: euclidean_recall value: 95.42682926829268 - type: manhattan_accuracy value: 97.6808905380334 - type: manhattan_ap value: 99.28715055268721 - type: manhattan_f1 value: 96.14791987673343 - type: manhattan_precision value: 97.19626168224299 - type: manhattan_recall value: 95.1219512195122 - type: max_accuracy value: 97.6808905380334 - type: max_ap value: 99.28715055268721 - type: max_f1 value: 96.15975422427034 - task: type: Classification dataset: name: MTEB PolEmo2.0-IN type: PL-MTEB/polemo2_in config: default split: test revision: None metrics: - type: accuracy value: 86.16343490304708 - type: f1 value: 83.3442579486744 - task: type: Classification dataset: name: MTEB PolEmo2.0-OUT type: PL-MTEB/polemo2_out config: default split: test revision: None metrics: - type: accuracy value: 68.40080971659918 - type: f1 value: 53.13720751142237 - task: type: Retrieval dataset: name: MTEB Quora-PL type: clarin-knext/quora-pl config: default split: test revision: 0be27e93455051e531182b85e85e425aba12e9d4 metrics: - type: map_at_1 value: 63.322 - type: map_at_10 value: 76.847 - type: map_at_100 value: 77.616 - type: map_at_1000 value: 77.644 - type: map_at_3 value: 73.624 - type: map_at_5 value: 75.603 - type: mrr_at_1 value: 72.88 - type: mrr_at_10 value: 80.376 - type: mrr_at_100 value: 80.604 - type: mrr_at_1000 value: 80.61 - type: mrr_at_3 value: 78.92 - type: mrr_at_5 value: 79.869 - type: ndcg_at_1 value: 72.89999999999999 - type: ndcg_at_10 value: 81.43 - type: ndcg_at_100 value: 83.394 - type: ndcg_at_1000 value: 83.685 - type: ndcg_at_3 value: 77.62599999999999 - type: ndcg_at_5 value: 79.656 - type: precision_at_1 value: 72.89999999999999 - type: precision_at_10 value: 12.548 - type: precision_at_100 value: 1.4869999999999999 - type: precision_at_1000 value: 0.155 - type: precision_at_3 value: 34.027 - type: precision_at_5 value: 22.654 - type: recall_at_1 value: 63.322 - type: recall_at_10 value: 90.664 - type: recall_at_100 value: 97.974 - type: recall_at_1000 value: 99.636 - type: recall_at_3 value: 80.067 - type: recall_at_5 value: 85.526 - task: type: Retrieval dataset: name: MTEB SCIDOCS-PL type: clarin-knext/scidocs-pl config: default split: test revision: 45452b03f05560207ef19149545f168e596c9337 metrics: - type: map_at_1 value: 3.95 - type: map_at_10 value: 9.658999999999999 - type: map_at_100 value: 11.384 - type: map_at_1000 value: 11.677 - type: map_at_3 value: 7.055 - type: map_at_5 value: 8.244 - type: mrr_at_1 value: 19.5 - type: mrr_at_10 value: 28.777 - type: mrr_at_100 value: 29.936 - type: mrr_at_1000 value: 30.009999999999998 - type: mrr_at_3 value: 25.55 - type: mrr_at_5 value: 27.284999999999997 - type: ndcg_at_1 value: 19.5 - type: ndcg_at_10 value: 16.589000000000002 - type: ndcg_at_100 value: 23.879 - type: ndcg_at_1000 value: 29.279 - type: ndcg_at_3 value: 15.719 - type: ndcg_at_5 value: 13.572000000000001 - type: precision_at_1 value: 19.5 - type: precision_at_10 value: 8.62 - type: precision_at_100 value: 1.924 - type: precision_at_1000 value: 0.322 - type: precision_at_3 value: 14.6 - type: precision_at_5 value: 11.78 - type: recall_at_1 value: 3.95 - type: recall_at_10 value: 17.477999999999998 - type: recall_at_100 value: 38.99 - type: recall_at_1000 value: 65.417 - type: recall_at_3 value: 8.883000000000001 - type: recall_at_5 value: 11.933 - task: type: PairClassification dataset: name: MTEB SICK-E-PL type: PL-MTEB/sicke-pl-pairclassification config: default split: test revision: None metrics: - type: cos_sim_accuracy value: 83.48960456583775 - type: cos_sim_ap value: 76.31522115825375 - type: cos_sim_f1 value: 70.35573122529645 - type: cos_sim_precision value: 70.9934735315446 - type: cos_sim_recall value: 69.72934472934473 - type: dot_accuracy value: 83.48960456583775 - type: dot_ap value: 76.31522115825373 - type: dot_f1 value: 70.35573122529645 - type: dot_precision value: 70.9934735315446 - type: dot_recall value: 69.72934472934473 - type: euclidean_accuracy value: 83.48960456583775 - type: euclidean_ap value: 76.31522115825373 - type: euclidean_f1 value: 70.35573122529645 - type: euclidean_precision value: 70.9934735315446 - type: euclidean_recall value: 69.72934472934473 - type: manhattan_accuracy value: 83.46922136159804 - type: manhattan_ap value: 76.18474601388084 - type: manhattan_f1 value: 70.34779490856937 - type: manhattan_precision value: 70.83032490974729 - type: manhattan_recall value: 69.87179487179486 - type: max_accuracy value: 83.48960456583775 - type: max_ap value: 76.31522115825375 - type: max_f1 value: 70.35573122529645 - task: type: STS dataset: name: MTEB SICK-R-PL type: PL-MTEB/sickr-pl-sts config: default split: test revision: None metrics: - type: cos_sim_pearson value: 77.95374883876302 - type: cos_sim_spearman value: 73.77630219171942 - type: euclidean_pearson value: 75.81927069594934 - type: euclidean_spearman value: 73.7763211303831 - type: manhattan_pearson value: 76.03126859057528 - type: manhattan_spearman value: 73.96528138013369 - task: type: STS dataset: name: MTEB STS22 (pl) type: mteb/sts22-crosslingual-sts config: pl split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 37.388282764841826 - type: cos_sim_spearman value: 40.83477184710897 - type: euclidean_pearson value: 26.754737044177805 - type: euclidean_spearman value: 40.83477184710897 - type: manhattan_pearson value: 26.760453110872458 - type: manhattan_spearman value: 41.034477441383856 - task: type: Retrieval dataset: name: MTEB SciFact-PL type: clarin-knext/scifact-pl config: default split: test revision: 47932a35f045ef8ed01ba82bf9ff67f6e109207e metrics: - type: map_at_1 value: 49.15 - type: map_at_10 value: 61.690999999999995 - type: map_at_100 value: 62.348000000000006 - type: map_at_1000 value: 62.38 - type: map_at_3 value: 58.824 - type: map_at_5 value: 60.662000000000006 - type: mrr_at_1 value: 51.333 - type: mrr_at_10 value: 62.731 - type: mrr_at_100 value: 63.245 - type: mrr_at_1000 value: 63.275000000000006 - type: mrr_at_3 value: 60.667 - type: mrr_at_5 value: 61.93300000000001 - type: ndcg_at_1 value: 51.333 - type: ndcg_at_10 value: 67.168 - type: ndcg_at_100 value: 69.833 - type: ndcg_at_1000 value: 70.56700000000001 - type: ndcg_at_3 value: 62.40599999999999 - type: ndcg_at_5 value: 65.029 - type: precision_at_1 value: 51.333 - type: precision_at_10 value: 9.333 - type: precision_at_100 value: 1.0699999999999998 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 25.333 - type: precision_at_5 value: 17.067 - type: recall_at_1 value: 49.15 - type: recall_at_10 value: 82.533 - type: recall_at_100 value: 94.167 - type: recall_at_1000 value: 99.667 - type: recall_at_3 value: 69.917 - type: recall_at_5 value: 76.356 - task: type: Retrieval dataset: name: MTEB TRECCOVID-PL type: clarin-knext/trec-covid-pl config: default split: test revision: 81bcb408f33366c2a20ac54adafad1ae7e877fdd metrics: - type: map_at_1 value: 0.261 - type: map_at_10 value: 2.1260000000000003 - type: map_at_100 value: 12.171999999999999 - type: map_at_1000 value: 26.884999999999998 - type: map_at_3 value: 0.695 - type: map_at_5 value: 1.134 - type: mrr_at_1 value: 96.0 - type: mrr_at_10 value: 96.952 - type: mrr_at_100 value: 96.952 - type: mrr_at_1000 value: 96.952 - type: mrr_at_3 value: 96.667 - type: mrr_at_5 value: 96.667 - type: ndcg_at_1 value: 92.0 - type: ndcg_at_10 value: 81.193 - type: ndcg_at_100 value: 61.129 - type: ndcg_at_1000 value: 51.157 - type: ndcg_at_3 value: 85.693 - type: ndcg_at_5 value: 84.129 - type: precision_at_1 value: 96.0 - type: precision_at_10 value: 85.39999999999999 - type: precision_at_100 value: 62.03999999999999 - type: precision_at_1000 value: 22.224 - type: precision_at_3 value: 88.0 - type: precision_at_5 value: 88.0 - type: recall_at_1 value: 0.261 - type: recall_at_10 value: 2.262 - type: recall_at_100 value: 14.981 - type: recall_at_1000 value: 46.837 - type: recall_at_3 value: 0.703 - type: recall_at_5 value: 1.172 - task: type: Clustering dataset: name: MTEB AlloProfClusteringP2P type: lyon-nlp/alloprof config: default split: test revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b metrics: - type: v_measure value: 70.55290063940157 - type: v_measure value: 55.41500719337263 - task: type: Reranking dataset: name: MTEB AlloprofReranking type: lyon-nlp/mteb-fr-reranking-alloprof-s2p config: default split: test revision: 666fdacebe0291776e86f29345663dfaf80a0db9 metrics: - type: map value: 73.48697375332002 - type: mrr value: 75.01836585523822 - task: type: Retrieval dataset: name: MTEB AlloprofRetrieval type: lyon-nlp/alloprof config: default split: test revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b metrics: - type: map_at_1 value: 38.454 - type: map_at_10 value: 51.605000000000004 - type: map_at_100 value: 52.653000000000006 - type: map_at_1000 value: 52.697 - type: map_at_3 value: 48.304 - type: map_at_5 value: 50.073 - type: mrr_at_1 value: 43.307 - type: mrr_at_10 value: 54.400000000000006 - type: mrr_at_100 value: 55.147999999999996 - type: mrr_at_1000 value: 55.174 - type: mrr_at_3 value: 51.77 - type: mrr_at_5 value: 53.166999999999994 - type: ndcg_at_1 value: 43.307 - type: ndcg_at_10 value: 57.891000000000005 - type: ndcg_at_100 value: 62.161 - type: ndcg_at_1000 value: 63.083 - type: ndcg_at_3 value: 51.851 - type: ndcg_at_5 value: 54.605000000000004 - type: precision_at_1 value: 43.307 - type: precision_at_10 value: 9.033 - type: precision_at_100 value: 1.172 - type: precision_at_1000 value: 0.127 - type: precision_at_3 value: 22.798 - type: precision_at_5 value: 15.492 - type: recall_at_1 value: 38.454 - type: recall_at_10 value: 74.166 - type: recall_at_100 value: 92.43599999999999 - type: recall_at_1000 value: 99.071 - type: recall_at_3 value: 58.087 - type: recall_at_5 value: 64.568 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (fr) type: mteb/amazon_reviews_multi config: fr split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 53.474 - type: f1 value: 50.38275392350236 - task: type: Retrieval dataset: name: MTEB BSARDRetrieval type: maastrichtlawtech/bsard config: default split: test revision: 5effa1b9b5fa3b0f9e12523e6e43e5f86a6e6d59 metrics: - type: map_at_1 value: 2.252 - type: map_at_10 value: 4.661 - type: map_at_100 value: 5.271 - type: map_at_1000 value: 5.3629999999999995 - type: map_at_3 value: 3.604 - type: map_at_5 value: 4.3020000000000005 - type: mrr_at_1 value: 2.252 - type: mrr_at_10 value: 4.661 - type: mrr_at_100 value: 5.271 - type: mrr_at_1000 value: 5.3629999999999995 - type: mrr_at_3 value: 3.604 - type: mrr_at_5 value: 4.3020000000000005 - type: ndcg_at_1 value: 2.252 - type: ndcg_at_10 value: 6.3020000000000005 - type: ndcg_at_100 value: 10.342 - type: ndcg_at_1000 value: 13.475999999999999 - type: ndcg_at_3 value: 4.0649999999999995 - type: ndcg_at_5 value: 5.344 - type: precision_at_1 value: 2.252 - type: precision_at_10 value: 1.171 - type: precision_at_100 value: 0.333 - type: precision_at_1000 value: 0.059000000000000004 - type: precision_at_3 value: 1.802 - type: precision_at_5 value: 1.712 - type: recall_at_1 value: 2.252 - type: recall_at_10 value: 11.712 - type: recall_at_100 value: 33.333 - type: recall_at_1000 value: 59.458999999999996 - type: recall_at_3 value: 5.405 - type: recall_at_5 value: 8.559 - task: type: Clustering dataset: name: MTEB HALClusteringS2S type: lyon-nlp/clustering-hal-s2s config: default split: test revision: e06ebbbb123f8144bef1a5d18796f3dec9ae2915 metrics: - type: v_measure value: 28.301882091023288 - task: type: Clustering dataset: name: MTEB MLSUMClusteringP2P type: mlsum config: default split: test revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7 metrics: - type: v_measure value: 45.26992995191701 - type: v_measure value: 42.773174876871145 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (fr) type: mteb/mtop_domain config: fr split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 93.47635452552458 - type: f1 value: 93.19922617577213 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (fr) type: mteb/mtop_intent config: fr split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 80.2317569683683 - type: f1 value: 56.18060418621901 - task: type: Classification dataset: name: MTEB MasakhaNEWSClassification (fra) type: masakhane/masakhanews config: fra split: test revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 metrics: - type: accuracy value: 85.18957345971565 - type: f1 value: 80.829981537394 - task: type: Clustering dataset: name: MTEB MasakhaNEWSClusteringP2P (fra) type: masakhane/masakhanews config: fra split: test revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 metrics: - type: v_measure value: 71.04138999801822 - type: v_measure value: 71.7056263158008 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (fr) type: mteb/amazon_massive_intent config: fr split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 76.65097511768661 - type: f1 value: 73.82441070598712 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (fr) type: mteb/amazon_massive_scenario config: fr split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 79.09885675857431 - type: f1 value: 78.28407777434224 - task: type: Retrieval dataset: name: MTEB MintakaRetrieval (fr) type: jinaai/mintakaqa config: fr split: test revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e metrics: - type: map_at_1 value: 25.307000000000002 - type: map_at_10 value: 36.723 - type: map_at_100 value: 37.713 - type: map_at_1000 value: 37.769000000000005 - type: map_at_3 value: 33.77 - type: map_at_5 value: 35.463 - type: mrr_at_1 value: 25.307000000000002 - type: mrr_at_10 value: 36.723 - type: mrr_at_100 value: 37.713 - type: mrr_at_1000 value: 37.769000000000005 - type: mrr_at_3 value: 33.77 - type: mrr_at_5 value: 35.463 - type: ndcg_at_1 value: 25.307000000000002 - type: ndcg_at_10 value: 42.559999999999995 - type: ndcg_at_100 value: 47.457 - type: ndcg_at_1000 value: 49.162 - type: ndcg_at_3 value: 36.461 - type: ndcg_at_5 value: 39.504 - type: precision_at_1 value: 25.307000000000002 - type: precision_at_10 value: 6.106 - type: precision_at_100 value: 0.8420000000000001 - type: precision_at_1000 value: 0.098 - type: precision_at_3 value: 14.741999999999999 - type: precision_at_5 value: 10.319 - type: recall_at_1 value: 25.307000000000002 - type: recall_at_10 value: 61.056999999999995 - type: recall_at_100 value: 84.152 - type: recall_at_1000 value: 98.03399999999999 - type: recall_at_3 value: 44.226 - type: recall_at_5 value: 51.597 - task: type: PairClassification dataset: name: MTEB OpusparcusPC (fr) type: GEM/opusparcus config: fr split: test revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a metrics: - type: cos_sim_accuracy value: 99.90069513406156 - type: cos_sim_ap value: 100.0 - type: cos_sim_f1 value: 99.95032290114257 - type: cos_sim_precision value: 100.0 - type: cos_sim_recall value: 99.90069513406156 - type: dot_accuracy value: 99.90069513406156 - type: dot_ap value: 100.0 - type: dot_f1 value: 99.95032290114257 - type: dot_precision value: 100.0 - type: dot_recall value: 99.90069513406156 - type: euclidean_accuracy value: 99.90069513406156 - type: euclidean_ap value: 100.0 - type: euclidean_f1 value: 99.95032290114257 - type: euclidean_precision value: 100.0 - type: euclidean_recall value: 99.90069513406156 - type: manhattan_accuracy value: 99.90069513406156 - type: manhattan_ap value: 100.0 - type: manhattan_f1 value: 99.95032290114257 - type: manhattan_precision value: 100.0 - type: manhattan_recall value: 99.90069513406156 - type: max_accuracy value: 99.90069513406156 - type: max_ap value: 100.0 - type: max_f1 value: 99.95032290114257 - task: type: PairClassification dataset: name: MTEB PawsX (fr) type: paws-x config: fr split: test revision: 8a04d940a42cd40658986fdd8e3da561533a3646 metrics: - type: cos_sim_accuracy value: 70.8 - type: cos_sim_ap value: 73.7671529695957 - type: cos_sim_f1 value: 68.80964339527875 - type: cos_sim_precision value: 62.95955882352941 - type: cos_sim_recall value: 75.85825027685493 - type: dot_accuracy value: 70.8 - type: dot_ap value: 73.78345265366947 - type: dot_f1 value: 68.80964339527875 - type: dot_precision value: 62.95955882352941 - type: dot_recall value: 75.85825027685493 - type: euclidean_accuracy value: 70.8 - type: euclidean_ap value: 73.7671529695957 - type: euclidean_f1 value: 68.80964339527875 - type: euclidean_precision value: 62.95955882352941 - type: euclidean_recall value: 75.85825027685493 - type: manhattan_accuracy value: 70.75 - type: manhattan_ap value: 73.78996383615953 - type: manhattan_f1 value: 68.79432624113475 - type: manhattan_precision value: 63.39869281045751 - type: manhattan_recall value: 75.1937984496124 - type: max_accuracy value: 70.8 - type: max_ap value: 73.78996383615953 - type: max_f1 value: 68.80964339527875 - task: type: STS dataset: name: MTEB SICKFr type: Lajavaness/SICK-fr config: default split: test revision: e077ab4cf4774a1e36d86d593b150422fafd8e8a metrics: - type: cos_sim_pearson value: 84.03253762760392 - type: cos_sim_spearman value: 79.68280105762004 - type: euclidean_pearson value: 80.98265050044444 - type: euclidean_spearman value: 79.68233242682867 - type: manhattan_pearson value: 80.9678911810704 - type: manhattan_spearman value: 79.70264097683109 - task: type: STS dataset: name: MTEB STS22 (fr) type: mteb/sts22-crosslingual-sts config: fr split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 80.56896987572884 - type: cos_sim_spearman value: 81.84352499523287 - type: euclidean_pearson value: 80.40831759421305 - type: euclidean_spearman value: 81.84352499523287 - type: manhattan_pearson value: 80.74333857561238 - type: manhattan_spearman value: 82.41503246733892 - task: type: STS dataset: name: MTEB STSBenchmarkMultilingualSTS (fr) type: stsb_multi_mt config: fr split: test revision: 93d57ef91790589e3ce9c365164337a8a78b7632 metrics: - type: cos_sim_pearson value: 82.71826762276979 - type: cos_sim_spearman value: 82.25433354916042 - type: euclidean_pearson value: 81.87115571724316 - type: euclidean_spearman value: 82.25322342890107 - type: manhattan_pearson value: 82.11174867527224 - type: manhattan_spearman value: 82.55905365203084 - task: type: Summarization dataset: name: MTEB SummEvalFr type: lyon-nlp/summarization-summeval-fr-p2p config: default split: test revision: b385812de6a9577b6f4d0f88c6a6e35395a94054 metrics: - type: cos_sim_pearson value: 30.659441623392887 - type: cos_sim_spearman value: 30.501134097353315 - type: dot_pearson value: 30.659444768851056 - type: dot_spearman value: 30.501134097353315 - task: type: Reranking dataset: name: MTEB SyntecReranking type: lyon-nlp/mteb-fr-reranking-syntec-s2p config: default split: test revision: b205c5084a0934ce8af14338bf03feb19499c84d metrics: - type: map value: 94.03333333333333 - type: mrr value: 94.03333333333333 - task: type: Retrieval dataset: name: MTEB SyntecRetrieval type: lyon-nlp/mteb-fr-retrieval-syntec-s2p config: default split: test revision: 77f7e271bf4a92b24fce5119f3486b583ca016ff metrics: - type: map_at_1 value: 79.0 - type: map_at_10 value: 87.61 - type: map_at_100 value: 87.655 - type: map_at_1000 value: 87.655 - type: map_at_3 value: 87.167 - type: map_at_5 value: 87.36699999999999 - type: mrr_at_1 value: 79.0 - type: mrr_at_10 value: 87.61 - type: mrr_at_100 value: 87.655 - type: mrr_at_1000 value: 87.655 - type: mrr_at_3 value: 87.167 - type: mrr_at_5 value: 87.36699999999999 - type: ndcg_at_1 value: 79.0 - type: ndcg_at_10 value: 90.473 - type: ndcg_at_100 value: 90.694 - type: ndcg_at_1000 value: 90.694 - type: ndcg_at_3 value: 89.464 - type: ndcg_at_5 value: 89.851 - type: precision_at_1 value: 79.0 - type: precision_at_10 value: 9.9 - type: precision_at_100 value: 1.0 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 32.0 - type: precision_at_5 value: 19.400000000000002 - type: recall_at_1 value: 79.0 - type: recall_at_10 value: 99.0 - type: recall_at_100 value: 100.0 - type: recall_at_1000 value: 100.0 - type: recall_at_3 value: 96.0 - type: recall_at_5 value: 97.0 - task: type: Retrieval dataset: name: MTEB XPQARetrieval (fr) type: jinaai/xpqa config: fr split: test revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f metrics: - type: map_at_1 value: 39.395 - type: map_at_10 value: 59.123999999999995 - type: map_at_100 value: 60.704 - type: map_at_1000 value: 60.760000000000005 - type: map_at_3 value: 53.187 - type: map_at_5 value: 56.863 - type: mrr_at_1 value: 62.083 - type: mrr_at_10 value: 68.87299999999999 - type: mrr_at_100 value: 69.46900000000001 - type: mrr_at_1000 value: 69.48299999999999 - type: mrr_at_3 value: 66.8 - type: mrr_at_5 value: 67.928 - type: ndcg_at_1 value: 62.083 - type: ndcg_at_10 value: 65.583 - type: ndcg_at_100 value: 70.918 - type: ndcg_at_1000 value: 71.72800000000001 - type: ndcg_at_3 value: 60.428000000000004 - type: ndcg_at_5 value: 61.853 - type: precision_at_1 value: 62.083 - type: precision_at_10 value: 15.033 - type: precision_at_100 value: 1.9529999999999998 - type: precision_at_1000 value: 0.207 - type: precision_at_3 value: 36.315 - type: precision_at_5 value: 25.955000000000002 - type: recall_at_1 value: 39.395 - type: recall_at_10 value: 74.332 - type: recall_at_100 value: 94.729 - type: recall_at_1000 value: 99.75500000000001 - type: recall_at_3 value: 57.679 - type: recall_at_5 value: 65.036 --- ## gte-Qwen2-1.5B-instruct **gte-Qwen2-1.5B-instruct** is the latest model in the gte (General Text Embedding) model family. The model is built on [Qwen2-1.5B](https://huggingface.co/Qwen/Qwen2-1.5B) LLM model and use the same training data and strategies as the [gte-Qwen2-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) model. The model incorporates several key advancements: - Integration of bidirectional attention mechanisms, enriching its contextual understanding. - Instruction tuning, applied solely on the query side for streamlined efficiency - Comprehensive training across a vast, multilingual text corpus spanning diverse domains and scenarios. This training leverages both weakly supervised and supervised data, ensuring the model's applicability across numerous languages and a wide array of downstream tasks. ## Model Information - Model Size: 1.5B - Embedding Dimension: 1536 - Max Input Tokens: 32k ## Requirements ``` transformers>=4.39.2 flash_attn>=2.5.6 ``` ## Usage ### Sentence Transformers ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer("Alibaba-NLP/gte-Qwen2-1.5B-instruct", trust_remote_code=True) # In case you want to reduce the maximum length: model.max_seq_length = 8192 queries = [ "how much protein should a female eat", "summit define", ] documents = [ "As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments.", ] query_embeddings = model.encode(queries, prompt_name="query") document_embeddings = model.encode(documents) scores = (query_embeddings @ document_embeddings.T) * 100 print(scores.tolist()) ``` Observe the [config_sentence_transformers.json](config_sentence_transformers.json) to see all pre-built prompt names. Otherwise, you can use `model.encode(queries, prompt="Instruct: ...\nQuery: "` to use a custom prompt of your choice. ### Transformers ```python import torch import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0]) if left_padding: return last_hidden_states[:, -1] else: sequence_lengths = attention_mask.sum(dim=1) - 1 batch_size = last_hidden_states.shape[0] return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths] def get_detailed_instruct(task_description: str, query: str) -> str: return f'Instruct: {task_description}\nQuery: {query}' # Each query must come with a one-sentence instruction that describes the task task = 'Given a web search query, retrieve relevant passages that answer the query' queries = [ get_detailed_instruct(task, 'how much protein should a female eat'), get_detailed_instruct(task, 'summit define') ] # No need to add instruction for retrieval documents documents = [ "As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments." ] input_texts = queries + documents tokenizer = AutoTokenizer.from_pretrained('Alibaba-NLP/gte-Qwen2-1.5B-instruct', trust_remote_code=True) model = AutoModel.from_pretrained('Alibaba-NLP/gte-Qwen2-1.5B-instruct', trust_remote_code=True) max_length = 8192 # Tokenize the input texts batch_dict = tokenizer(input_texts, max_length=max_length, padding=True, truncation=True, return_tensors='pt') outputs = model(**batch_dict) embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask']) # normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) scores = (embeddings[:2] @ embeddings[2:].T) * 100 print(scores.tolist()) ``` ## Evaluation ### MTEB & C-MTEB You can use the [scripts/eval_mteb.py](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct/blob/main/scripts/eval_mteb.py) to reproduce the following result of **gte-Qwen2-1.5B-instruct** on MTEB(English)/C-MTEB(Chinese): | Model Name | MTEB(56) | C-MTEB(35) | MTEB-fr(26) | MTEB-pl(26) | |:----:|:---------:|:----------:|:----------:|:----------:| | [bge-base-en-1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 64.23 | - | - | - | | [bge-large-en-1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 63.55 | - | - | - | | [gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | 65.39 | - | - | - | | [gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | 64.11 | - | - | - | | [mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) | 64.68 | - | - | - | | [acge_text_embedding](https://huggingface.co/aspire/acge_text_embedding) | - | 69.07 | - | - | | [stella-mrl-large-zh-v3.5-1792d](https://huggingface.co/infgrad/stella-mrl-large-zh-v3.5-1792d) | - | 68.55 | - | - | | [gte-large-zh](https://huggingface.co/thenlper/gte-large-zh) | - | 66.72 | - | - | | [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 59.45 | 56.21 | - | - | | [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 61.50 | 58.81 | - | - | | [e5-mistral-7b-instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct) | 66.63 | 60.81 | - | - | | [gte-Qwen1.5-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct) | 67.34 | 69.52 | - | - | | [NV-Embed-v1](https://huggingface.co/nvidia/NV-Embed-v1) | 69.32 | - | - | - | | [**gte-Qwen2-7B-instruct**](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) | **70.24** | **72.05** | **68.25** | **67.86** | | [**gte-Qwen2-1.5B-instruct**](https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct) | **67.16** | **67.65** | **66.60** | **64.04** | ### GTE Models The gte series models have consistently released two types of models: encoder-only models (based on the BERT architecture) and decode-only models (based on the LLM architecture). | Models | Language | Max Sequence Length | Dimension | Model Size (Memory Usage, fp32) | |:-------------------------------------------------------------------------------------:|:--------:|:-----: |:---------:|:-------------------------------:| | [GTE-large-zh](https://huggingface.co/thenlper/gte-large-zh) | Chinese | 512 | 1024 | 1.25GB | | [GTE-base-zh](https://huggingface.co/thenlper/gte-base-zh) | Chinese | 512 | 512 | 0.41GB | | [GTE-small-zh](https://huggingface.co/thenlper/gte-small-zh) | Chinese | 512 | 512 | 0.12GB | | [GTE-large](https://huggingface.co/thenlper/gte-large) | English | 512 | 1024 | 1.25GB | | [GTE-base](https://huggingface.co/thenlper/gte-base) | English | 512 | 512 | 0.21GB | | [GTE-small](https://huggingface.co/thenlper/gte-small) | English | 512 | 384 | 0.10GB | | [GTE-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | English | 8192 | 1024 | 1.74GB | | [GTE-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) | English | 8192 | 768 | 0.51GB | | [GTE-Qwen1.5-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct) | Multilingual | 32000 | 4096 | 26.45GB | | [GTE-Qwen2-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) | Multilingual | 32000 | 3584 | 26.45GB | | [GTE-Qwen2-1.5B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct) | Multilingual | 32000 | 1536 | 6.62GB | ## Cloud API Services In addition to the open-source [GTE](https://huggingface.co/collections/Alibaba-NLP/gte-models-6680f0b13f885cb431e6d469) series models, GTE series models are also available as commercial API services on Alibaba Cloud. - [Embedding Models](https://help.aliyun.com/zh/model-studio/developer-reference/general-text-embedding/): Rhree versions of the text embedding models are available: text-embedding-v1/v2/v3, with v3 being the latest API service. - [ReRank Models](https://help.aliyun.com/zh/model-studio/developer-reference/general-text-sorting-model/): The gte-rerank model service is available. Note that the models behind the commercial APIs are not entirely identical to the open-source models. ## Citation If you find our paper or models helpful, please consider cite: ``` @article{li2023towards, title={Towards general text embeddings with multi-stage contrastive learning}, author={Li, Zehan and Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Pengjun and Zhang, Meishan}, journal={arXiv preprint arXiv:2308.03281}, year={2023} } ```
[ "SUMMARIZATION" ]
[ "BIOSSES", "SCIFACT" ]
Non_BioNLP
## gte-Qwen2-1.5B-instruct **gte-Qwen2-1.5B-instruct** is the latest model in the gte (General Text Embedding) model family. The model is built on [Qwen2-1.5B](https://huggingface.co/Qwen/Qwen2-1.5B) LLM model and use the same training data and strategies as the [gte-Qwen2-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) model. The model incorporates several key advancements: - Integration of bidirectional attention mechanisms, enriching its contextual understanding. - Instruction tuning, applied solely on the query side for streamlined efficiency - Comprehensive training across a vast, multilingual text corpus spanning diverse domains and scenarios. This training leverages both weakly supervised and supervised data, ensuring the model's applicability across numerous languages and a wide array of downstream tasks. ## Model Information - Model Size: 1.5B - Embedding Dimension: 1536 - Max Input Tokens: 32k ## Requirements ``` transformers>=4.39.2 flash_attn>=2.5.6 ``` ## Usage ### Sentence Transformers ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer("Alibaba-NLP/gte-Qwen2-1.5B-instruct", trust_remote_code=True) # In case you want to reduce the maximum length: model.max_seq_length = 8192 queries = [ "how much protein should a female eat", "summit define", ] documents = [ "As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments.", ] query_embeddings = model.encode(queries, prompt_name="query") document_embeddings = model.encode(documents) scores = (query_embeddings @ document_embeddings.T) * 100 print(scores.tolist()) ``` Observe the [config_sentence_transformers.json](config_sentence_transformers.json) to see all pre-built prompt names. Otherwise, you can use `model.encode(queries, prompt="Instruct: ...\nQuery: "` to use a custom prompt of your choice. ### Transformers ```python import torch import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0]) if left_padding: return last_hidden_states[:, -1] else: sequence_lengths = attention_mask.sum(dim=1) - 1 batch_size = last_hidden_states.shape[0] return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths] def get_detailed_instruct(task_description: str, query: str) -> str: return f'Instruct: {task_description}\nQuery: {query}' # Each query must come with a one-sentence instruction that describes the task task = 'Given a web search query, retrieve relevant passages that answer the query' queries = [ get_detailed_instruct(task, 'how much protein should a female eat'), get_detailed_instruct(task, 'summit define') ] # No need to add instruction for retrieval documents documents = [ "As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments." ] input_texts = queries + documents tokenizer = AutoTokenizer.from_pretrained('Alibaba-NLP/gte-Qwen2-1.5B-instruct', trust_remote_code=True) model = AutoModel.from_pretrained('Alibaba-NLP/gte-Qwen2-1.5B-instruct', trust_remote_code=True) max_length = 8192 # Tokenize the input texts batch_dict = tokenizer(input_texts, max_length=max_length, padding=True, truncation=True, return_tensors='pt') outputs = model(**batch_dict) embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask']) # normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) scores = (embeddings[:2] @ embeddings[2:].T) * 100 print(scores.tolist()) ``` ## Evaluation ### MTEB & C-MTEB You can use the [scripts/eval_mteb.py](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct/blob/main/scripts/eval_mteb.py) to reproduce the following result of **gte-Qwen2-1.5B-instruct** on MTEB(English)/C-MTEB(Chinese): | Model Name | MTEB(56) | C-MTEB(35) | MTEB-fr(26) | MTEB-pl(26) | |:----:|:---------:|:----------:|:----------:|:----------:| | [bge-base-en-1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 64.23 | - | - | - | | [bge-large-en-1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 63.55 | - | - | - | | [gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | 65.39 | - | - | - | | [gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | 64.11 | - | - | - | | [mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) | 64.68 | - | - | - | | [acge_text_embedding](https://huggingface.co/aspire/acge_text_embedding) | - | 69.07 | - | - | | [stella-mrl-large-zh-v3.5-1792d](https://huggingface.co/infgrad/stella-mrl-large-zh-v3.5-1792d) | - | 68.55 | - | - | | [gte-large-zh](https://huggingface.co/thenlper/gte-large-zh) | - | 66.72 | - | - | | [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 59.45 | 56.21 | - | - | | [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 61.50 | 58.81 | - | - | | [e5-mistral-7b-instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct) | 66.63 | 60.81 | - | - | | [gte-Qwen1.5-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct) | 67.34 | 69.52 | - | - | | [NV-Embed-v1](https://huggingface.co/nvidia/NV-Embed-v1) | 69.32 | - | - | - | | [**gte-Qwen2-7B-instruct**](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) | **70.24** | **72.05** | **68.25** | **67.86** | | [**gte-Qwen2-1.5B-instruct**](https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct) | **67.16** | **67.65** | **66.60** | **64.04** | ### GTE Models The gte series models have consistently released two types of models: encoder-only models (based on the BERT architecture) and decode-only models (based on the LLM architecture). | Models | Language | Max Sequence Length | Dimension | Model Size (Memory Usage, fp32) | |:-------------------------------------------------------------------------------------:|:--------:|:-----: |:---------:|:-------------------------------:| | [GTE-large-zh](https://huggingface.co/thenlper/gte-large-zh) | Chinese | 512 | 1024 | 1.25GB | | [GTE-base-zh](https://huggingface.co/thenlper/gte-base-zh) | Chinese | 512 | 512 | 0.41GB | | [GTE-small-zh](https://huggingface.co/thenlper/gte-small-zh) | Chinese | 512 | 512 | 0.12GB | | [GTE-large](https://huggingface.co/thenlper/gte-large) | English | 512 | 1024 | 1.25GB | | [GTE-base](https://huggingface.co/thenlper/gte-base) | English | 512 | 512 | 0.21GB | | [GTE-small](https://huggingface.co/thenlper/gte-small) | English | 512 | 384 | 0.10GB | | [GTE-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) | English | 8192 | 1024 | 1.74GB | | [GTE-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) | English | 8192 | 768 | 0.51GB | | [GTE-Qwen1.5-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct) | Multilingual | 32000 | 4096 | 26.45GB | | [GTE-Qwen2-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) | Multilingual | 32000 | 3584 | 26.45GB | | [GTE-Qwen2-1.5B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct) | Multilingual | 32000 | 1536 | 6.62GB | ## Cloud API Services In addition to the open-source [GTE](https://huggingface.co/collections/Alibaba-NLP/gte-models-6680f0b13f885cb431e6d469) series models, GTE series models are also available as commercial API services on Alibaba Cloud. - [Embedding Models](https://help.aliyun.com/zh/model-studio/developer-reference/general-text-embedding/): Rhree versions of the text embedding models are available: text-embedding-v1/v2/v3, with v3 being the latest API service. - [ReRank Models](https://help.aliyun.com/zh/model-studio/developer-reference/general-text-sorting-model/): The gte-rerank model service is available. Note that the models behind the commercial APIs are not entirely identical to the open-source models. ## Citation If you find our paper or models helpful, please consider cite: ``` @article{li2023towards, title={Towards general text embeddings with multi-stage contrastive learning}, author={Li, Zehan and Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Pengjun and Zhang, Meishan}, journal={arXiv preprint arXiv:2308.03281}, year={2023} } ```
{"license": "apache-2.0", "tags": ["mteb", "sentence-transformers", "transformers", "Qwen2", "sentence-similarity"], "model-index": [{"name": "gte-qwen2-7B-instruct", "results": [{"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonCounterfactualClassification (en)", "type": "mteb/amazon_counterfactual", "config": "en", "split": "test", "revision": "e8379541af4e31359cca9fbcf4b00f2671dba205"}, "metrics": [{"type": "accuracy", "value": 83.98507462686567}, {"type": "ap", "value": 50.93015252587014}, {"type": "f1", "value": 78.50416599051215}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonPolarityClassification", "type": "mteb/amazon_polarity", "config": "default", "split": "test", "revision": "e2d317d38cd51312af73b3d32a06d1a08b442046"}, "metrics": [{"type": "accuracy", "value": 96.61065}, {"type": "ap", "value": 94.89174052954196}, {"type": "f1", "value": 96.60942596940565}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonReviewsClassification (en)", "type": "mteb/amazon_reviews_multi", "config": "en", "split": "test", "revision": "1399c76144fd37290681b995c656ef9b2e06e26d"}, "metrics": [{"type": "accuracy", "value": 55.614000000000004}, {"type": "f1", "value": 54.90553480294904}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ArguAna", "type": "mteb/arguana", "config": "default", "split": "test", "revision": "c22ab2a51041ffd869aaddef7af8d8215647e41a"}, "metrics": [{"type": "map_at_1", "value": 45.164}, {"type": "map_at_10", "value": 61.519}, {"type": "map_at_100", "value": 61.769}, {"type": "map_at_1000", "value": 61.769}, {"type": "map_at_3", "value": 57.443999999999996}, {"type": "map_at_5", "value": 60.058}, {"type": "mrr_at_1", "value": 46.088}, {"type": "mrr_at_10", "value": 61.861}, {"type": "mrr_at_100", "value": 62.117999999999995}, {"type": "mrr_at_1000", "value": 62.117999999999995}, {"type": "mrr_at_3", "value": 57.729}, {"type": "mrr_at_5", "value": 60.392}, {"type": "ndcg_at_1", "value": 45.164}, {"type": "ndcg_at_10", "value": 69.72}, {"type": "ndcg_at_100", "value": 70.719}, {"type": "ndcg_at_1000", "value": 70.719}, {"type": "ndcg_at_3", "value": 61.517999999999994}, {"type": "ndcg_at_5", "value": 66.247}, {"type": "precision_at_1", "value": 45.164}, {"type": "precision_at_10", "value": 9.545}, {"type": "precision_at_100", "value": 0.996}, {"type": "precision_at_1000", "value": 0.1}, {"type": "precision_at_3", "value": 24.443}, {"type": "precision_at_5", "value": 16.97}, {"type": "recall_at_1", "value": 45.164}, {"type": "recall_at_10", "value": 95.448}, {"type": "recall_at_100", "value": 99.644}, {"type": "recall_at_1000", "value": 99.644}, {"type": "recall_at_3", "value": 73.329}, {"type": "recall_at_5", "value": 84.851}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringP2P", "type": "mteb/arxiv-clustering-p2p", "config": "default", "split": "test", "revision": "a122ad7f3f0291bf49cc6f4d32aa80929df69d5d"}, "metrics": [{"type": "v_measure", "value": 50.511868162026175}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringS2S", "type": "mteb/arxiv-clustering-s2s", "config": "default", "split": "test", "revision": "f910caf1a6075f7329cdf8c1a6135696f37dbd53"}, "metrics": [{"type": "v_measure", "value": 45.007803189284004}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB AskUbuntuDupQuestions", "type": "mteb/askubuntudupquestions-reranking", "config": "default", "split": "test", "revision": "2000358ca161889fa9c082cb41daa8dcfb161a54"}, "metrics": [{"type": "map", "value": 64.55292107723382}, {"type": "mrr", "value": 77.66158818097877}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB BIOSSES", "type": "mteb/biosses-sts", "config": "default", "split": "test", "revision": "d3fb88f8f02e40887cd149695127462bbcf29b4a"}, "metrics": [{"type": "cos_sim_pearson", "value": 85.65459047085452}, {"type": "cos_sim_spearman", "value": 82.10729255710761}, {"type": "euclidean_pearson", "value": 82.78079159312476}, {"type": "euclidean_spearman", "value": 80.50002701880933}, {"type": "manhattan_pearson", "value": 82.41372641383016}, {"type": "manhattan_spearman", "value": 80.57412509272639}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB Banking77Classification", "type": "mteb/banking77", "config": "default", "split": "test", "revision": "0fd18e25b25c072e09e0d92ab615fda904d66300"}, "metrics": [{"type": "accuracy", "value": 87.30844155844156}, {"type": "f1", "value": 87.25307322443255}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringP2P", "type": "mteb/biorxiv-clustering-p2p", "config": "default", "split": "test", "revision": "65b79d1d13f80053f67aca9498d9402c2d9f1f40"}, "metrics": [{"type": "v_measure", "value": 43.20754608934859}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringS2S", "type": "mteb/biorxiv-clustering-s2s", "config": "default", "split": "test", "revision": "258694dd0231531bc1fd9de6ceb52a0853c6d908"}, "metrics": [{"type": "v_measure", "value": 38.818037697335505}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackAndroidRetrieval", "type": "BeIR/cqadupstack", "config": "default", "split": "test", "revision": "f46a197baaae43b4f621051089b82a364682dfeb"}, "metrics": [{"type": "map_at_1", "value": 35.423}, {"type": "map_at_10", "value": 47.198}, {"type": "map_at_100", "value": 48.899}, {"type": "map_at_1000", "value": 49.004}, {"type": "map_at_3", "value": 43.114999999999995}, {"type": "map_at_5", "value": 45.491}, {"type": "mrr_at_1", "value": 42.918}, {"type": "mrr_at_10", "value": 53.299}, {"type": "mrr_at_100", "value": 54.032000000000004}, {"type": "mrr_at_1000", "value": 54.055}, {"type": "mrr_at_3", "value": 50.453}, {"type": "mrr_at_5", "value": 52.205999999999996}, {"type": "ndcg_at_1", "value": 42.918}, {"type": "ndcg_at_10", "value": 53.98}, {"type": "ndcg_at_100", "value": 59.57}, {"type": "ndcg_at_1000", "value": 60.879000000000005}, {"type": "ndcg_at_3", "value": 48.224000000000004}, {"type": "ndcg_at_5", "value": 50.998}, {"type": "precision_at_1", "value": 42.918}, {"type": "precision_at_10", "value": 10.299999999999999}, {"type": "precision_at_100", "value": 1.687}, {"type": "precision_at_1000", "value": 0.211}, {"type": "precision_at_3", "value": 22.842000000000002}, {"type": "precision_at_5", "value": 16.681}, {"type": "recall_at_1", "value": 35.423}, {"type": "recall_at_10", "value": 66.824}, {"type": "recall_at_100", "value": 89.564}, {"type": "recall_at_1000", "value": 97.501}, {"type": "recall_at_3", "value": 50.365}, {"type": "recall_at_5", "value": 57.921}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackEnglishRetrieval", "type": "BeIR/cqadupstack", "config": "default", "split": "test", "revision": "ad9991cb51e31e31e430383c75ffb2885547b5f0"}, "metrics": [{"type": "map_at_1", "value": 33.205}, {"type": "map_at_10", "value": 44.859}, {"type": "map_at_100", "value": 46.135}, {"type": "map_at_1000", "value": 46.259}, {"type": "map_at_3", "value": 41.839}, {"type": "map_at_5", "value": 43.662}, {"type": "mrr_at_1", "value": 41.146}, {"type": "mrr_at_10", "value": 50.621}, {"type": "mrr_at_100", "value": 51.207}, {"type": "mrr_at_1000", "value": 51.246}, {"type": "mrr_at_3", "value": 48.535000000000004}, {"type": "mrr_at_5", "value": 49.818}, {"type": "ndcg_at_1", "value": 41.146}, {"type": "ndcg_at_10", "value": 50.683}, {"type": "ndcg_at_100", "value": 54.82}, {"type": "ndcg_at_1000", "value": 56.69}, {"type": "ndcg_at_3", "value": 46.611000000000004}, {"type": "ndcg_at_5", "value": 48.66}, {"type": "precision_at_1", "value": 41.146}, {"type": "precision_at_10", "value": 9.439}, {"type": "precision_at_100", "value": 1.465}, {"type": "precision_at_1000", "value": 0.194}, {"type": "precision_at_3", "value": 22.59}, {"type": "precision_at_5", "value": 15.86}, {"type": "recall_at_1", "value": 33.205}, {"type": "recall_at_10", "value": 61.028999999999996}, {"type": "recall_at_100", "value": 78.152}, {"type": "recall_at_1000", "value": 89.59700000000001}, {"type": "recall_at_3", "value": 49.05}, {"type": "recall_at_5", "value": 54.836}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackGamingRetrieval", "type": "BeIR/cqadupstack", "config": "default", "split": "test", "revision": "4885aa143210c98657558c04aaf3dc47cfb54340"}, "metrics": [{"type": "map_at_1", "value": 41.637}, {"type": "map_at_10", "value": 55.162}, {"type": "map_at_100", "value": 56.142}, {"type": "map_at_1000", "value": 56.188}, {"type": "map_at_3", "value": 51.564}, {"type": "map_at_5", "value": 53.696}, {"type": "mrr_at_1", "value": 47.524}, {"type": "mrr_at_10", "value": 58.243}, {"type": "mrr_at_100", "value": 58.879999999999995}, {"type": "mrr_at_1000", "value": 58.9}, {"type": "mrr_at_3", "value": 55.69499999999999}, {"type": "mrr_at_5", "value": 57.284}, {"type": "ndcg_at_1", "value": 47.524}, {"type": "ndcg_at_10", "value": 61.305}, {"type": "ndcg_at_100", "value": 65.077}, {"type": "ndcg_at_1000", "value": 65.941}, {"type": "ndcg_at_3", "value": 55.422000000000004}, {"type": "ndcg_at_5", "value": 58.516}, {"type": "precision_at_1", "value": 47.524}, {"type": "precision_at_10", "value": 9.918000000000001}, {"type": "precision_at_100", "value": 1.276}, {"type": "precision_at_1000", "value": 0.13899999999999998}, {"type": "precision_at_3", "value": 24.765}, {"type": "precision_at_5", "value": 17.204}, {"type": "recall_at_1", "value": 41.637}, {"type": "recall_at_10", "value": 76.185}, {"type": "recall_at_100", "value": 92.149}, {"type": "recall_at_1000", "value": 98.199}, {"type": "recall_at_3", "value": 60.856}, {"type": "recall_at_5", "value": 68.25099999999999}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackGisRetrieval", "type": "BeIR/cqadupstack", "config": "default", "split": "test", "revision": "5003b3064772da1887988e05400cf3806fe491f2"}, "metrics": [{"type": "map_at_1", "value": 26.27}, {"type": "map_at_10", "value": 37.463}, {"type": "map_at_100", "value": 38.434000000000005}, {"type": "map_at_1000", "value": 38.509}, {"type": "map_at_3", "value": 34.226}, {"type": "map_at_5", "value": 36.161}, {"type": "mrr_at_1", "value": 28.588}, {"type": "mrr_at_10", "value": 39.383}, {"type": "mrr_at_100", "value": 40.23}, {"type": "mrr_at_1000", "value": 40.281}, {"type": "mrr_at_3", "value": 36.422}, {"type": "mrr_at_5", "value": 38.252}, {"type": "ndcg_at_1", "value": 28.588}, {"type": "ndcg_at_10", "value": 43.511}, {"type": "ndcg_at_100", "value": 48.274}, {"type": "ndcg_at_1000", "value": 49.975}, {"type": "ndcg_at_3", "value": 37.319}, {"type": "ndcg_at_5", "value": 40.568}, {"type": "precision_at_1", "value": 28.588}, {"type": "precision_at_10", "value": 6.893000000000001}, {"type": "precision_at_100", "value": 0.9900000000000001}, {"type": "precision_at_1000", "value": 0.117}, {"type": "precision_at_3", "value": 16.347}, {"type": "precision_at_5", "value": 11.661000000000001}, {"type": "recall_at_1", "value": 26.27}, {"type": "recall_at_10", "value": 60.284000000000006}, {"type": "recall_at_100", "value": 81.902}, {"type": "recall_at_1000", "value": 94.43}, {"type": "recall_at_3", "value": 43.537}, {"type": "recall_at_5", "value": 51.475}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackMathematicaRetrieval", "type": "BeIR/cqadupstack", "config": "default", "split": "test", "revision": "90fceea13679c63fe563ded68f3b6f06e50061de"}, "metrics": [{"type": "map_at_1", "value": 18.168}, {"type": "map_at_10", "value": 28.410000000000004}, {"type": "map_at_100", "value": 29.78}, {"type": "map_at_1000", "value": 29.892999999999997}, {"type": "map_at_3", "value": 25.238}, {"type": "map_at_5", "value": 26.96}, {"type": "mrr_at_1", "value": 23.507}, {"type": "mrr_at_10", "value": 33.382}, {"type": "mrr_at_100", "value": 34.404}, {"type": "mrr_at_1000", "value": 34.467999999999996}, {"type": "mrr_at_3", "value": 30.637999999999998}, {"type": "mrr_at_5", "value": 32.199}, {"type": "ndcg_at_1", "value": 23.507}, {"type": "ndcg_at_10", "value": 34.571000000000005}, {"type": "ndcg_at_100", "value": 40.663}, {"type": "ndcg_at_1000", "value": 43.236000000000004}, {"type": "ndcg_at_3", "value": 29.053}, {"type": "ndcg_at_5", "value": 31.563999999999997}, {"type": "precision_at_1", "value": 23.507}, {"type": "precision_at_10", "value": 6.654}, {"type": "precision_at_100", "value": 1.113}, {"type": "precision_at_1000", "value": 0.146}, {"type": "precision_at_3", "value": 14.427999999999999}, {"type": "precision_at_5", "value": 10.498000000000001}, {"type": "recall_at_1", "value": 18.168}, {"type": "recall_at_10", "value": 48.443000000000005}, {"type": "recall_at_100", "value": 74.47}, {"type": "recall_at_1000", "value": 92.494}, {"type": "recall_at_3", "value": 33.379999999999995}, {"type": "recall_at_5", "value": 39.76}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackPhysicsRetrieval", "type": "BeIR/cqadupstack", "config": "default", "split": "test", "revision": "79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4"}, "metrics": [{"type": "map_at_1", "value": 32.39}, {"type": "map_at_10", "value": 44.479}, {"type": "map_at_100", "value": 45.977000000000004}, {"type": "map_at_1000", "value": 46.087}, {"type": "map_at_3", "value": 40.976}, {"type": "map_at_5", "value": 43.038}, {"type": "mrr_at_1", "value": 40.135}, {"type": "mrr_at_10", "value": 50.160000000000004}, {"type": "mrr_at_100", "value": 51.052}, {"type": "mrr_at_1000", "value": 51.087}, {"type": "mrr_at_3", "value": 47.818}, {"type": "mrr_at_5", "value": 49.171}, {"type": "ndcg_at_1", "value": 40.135}, {"type": "ndcg_at_10", "value": 50.731}, {"type": "ndcg_at_100", "value": 56.452000000000005}, {"type": "ndcg_at_1000", "value": 58.123000000000005}, {"type": "ndcg_at_3", "value": 45.507}, {"type": "ndcg_at_5", "value": 48.11}, {"type": "precision_at_1", "value": 40.135}, {"type": "precision_at_10", "value": 9.192}, {"type": "precision_at_100", "value": 1.397}, {"type": "precision_at_1000", "value": 0.169}, {"type": "precision_at_3", "value": 21.816}, {"type": "precision_at_5", "value": 15.476}, {"type": "recall_at_1", "value": 32.39}, {"type": "recall_at_10", "value": 63.597}, {"type": "recall_at_100", "value": 86.737}, {"type": "recall_at_1000", "value": 97.039}, {"type": "recall_at_3", "value": 48.906}, {"type": "recall_at_5", "value": 55.659000000000006}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackProgrammersRetrieval", "type": "BeIR/cqadupstack", "config": "default", "split": "test", "revision": "6184bc1440d2dbc7612be22b50686b8826d22b32"}, "metrics": [{"type": "map_at_1", "value": 28.397}, {"type": "map_at_10", "value": 39.871}, {"type": "map_at_100", "value": 41.309000000000005}, {"type": "map_at_1000", "value": 41.409}, {"type": "map_at_3", "value": 36.047000000000004}, {"type": "map_at_5", "value": 38.104}, {"type": "mrr_at_1", "value": 34.703}, {"type": "mrr_at_10", "value": 44.773}, {"type": "mrr_at_100", "value": 45.64}, {"type": "mrr_at_1000", "value": 45.678999999999995}, {"type": "mrr_at_3", "value": 41.705}, {"type": "mrr_at_5", "value": 43.406}, {"type": "ndcg_at_1", "value": 34.703}, {"type": "ndcg_at_10", "value": 46.271}, {"type": "ndcg_at_100", "value": 52.037}, {"type": "ndcg_at_1000", "value": 53.81700000000001}, {"type": "ndcg_at_3", "value": 39.966}, {"type": "ndcg_at_5", "value": 42.801}, {"type": "precision_at_1", "value": 34.703}, {"type": "precision_at_10", "value": 8.744}, {"type": "precision_at_100", "value": 1.348}, {"type": "precision_at_1000", "value": 0.167}, {"type": "precision_at_3", "value": 19.102}, {"type": "precision_at_5", "value": 13.836}, {"type": "recall_at_1", "value": 28.397}, {"type": "recall_at_10", "value": 60.299}, {"type": "recall_at_100", "value": 84.595}, {"type": "recall_at_1000", "value": 96.155}, {"type": "recall_at_3", "value": 43.065}, {"type": "recall_at_5", "value": 50.371}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackRetrieval", "type": "BeIR/cqadupstack", "config": "default", "split": "test", "revision": "4ffe81d471b1924886b33c7567bfb200e9eec5c4"}, "metrics": [{"type": "map_at_1", "value": 28.044333333333338}, {"type": "map_at_10", "value": 38.78691666666666}, {"type": "map_at_100", "value": 40.113}, {"type": "map_at_1000", "value": 40.22125}, {"type": "map_at_3", "value": 35.52966666666667}, {"type": "map_at_5", "value": 37.372749999999996}, {"type": "mrr_at_1", "value": 33.159083333333335}, {"type": "mrr_at_10", "value": 42.913583333333335}, {"type": "mrr_at_100", "value": 43.7845}, {"type": "mrr_at_1000", "value": 43.830333333333336}, {"type": "mrr_at_3", "value": 40.29816666666667}, {"type": "mrr_at_5", "value": 41.81366666666667}, {"type": "ndcg_at_1", "value": 33.159083333333335}, {"type": "ndcg_at_10", "value": 44.75750000000001}, {"type": "ndcg_at_100", "value": 50.13658333333334}, {"type": "ndcg_at_1000", "value": 52.037}, {"type": "ndcg_at_3", "value": 39.34258333333334}, {"type": "ndcg_at_5", "value": 41.93708333333333}, {"type": "precision_at_1", "value": 33.159083333333335}, {"type": "precision_at_10", "value": 7.952416666666667}, {"type": "precision_at_100", "value": 1.2571666666666668}, {"type": "precision_at_1000", "value": 0.16099999999999998}, {"type": "precision_at_3", "value": 18.303833333333337}, {"type": "precision_at_5", "value": 13.057083333333333}, {"type": "recall_at_1", "value": 28.044333333333338}, {"type": "recall_at_10", "value": 58.237249999999996}, {"type": "recall_at_100", "value": 81.35391666666666}, {"type": "recall_at_1000", "value": 94.21283333333334}, {"type": "recall_at_3", "value": 43.32341666666667}, {"type": "recall_at_5", "value": 49.94908333333333}, {"type": "map_at_1", "value": 18.398}, {"type": "map_at_10", "value": 27.929}, {"type": "map_at_100", "value": 29.032999999999998}, {"type": "map_at_1000", "value": 29.126}, {"type": "map_at_3", "value": 25.070999999999998}, {"type": "map_at_5", "value": 26.583000000000002}, {"type": "mrr_at_1", "value": 19.963}, {"type": "mrr_at_10", "value": 29.997}, {"type": "mrr_at_100", "value": 30.9}, {"type": "mrr_at_1000", "value": 30.972}, {"type": "mrr_at_3", "value": 27.264}, {"type": "mrr_at_5", "value": 28.826}, {"type": "ndcg_at_1", "value": 19.963}, {"type": "ndcg_at_10", "value": 33.678999999999995}, {"type": "ndcg_at_100", "value": 38.931}, {"type": "ndcg_at_1000", "value": 41.379}, {"type": "ndcg_at_3", "value": 28.000000000000004}, {"type": "ndcg_at_5", "value": 30.637999999999998}, {"type": "precision_at_1", "value": 19.963}, {"type": "precision_at_10", "value": 5.7299999999999995}, {"type": "precision_at_100", "value": 0.902}, {"type": "precision_at_1000", "value": 0.122}, {"type": "precision_at_3", "value": 12.631}, {"type": "precision_at_5", "value": 9.057}, {"type": "recall_at_1", "value": 18.398}, {"type": "recall_at_10", "value": 49.254}, {"type": "recall_at_100", "value": 73.182}, {"type": "recall_at_1000", "value": 91.637}, {"type": "recall_at_3", "value": 34.06}, {"type": "recall_at_5", "value": 40.416000000000004}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackStatsRetrieval", "type": "BeIR/cqadupstack", "config": "default", "split": "test", "revision": "65ac3a16b8e91f9cee4c9828cc7c335575432a2a"}, "metrics": [{"type": "map_at_1", "value": 27.838}, {"type": "map_at_10", "value": 36.04}, {"type": "map_at_100", "value": 37.113}, {"type": "map_at_1000", "value": 37.204}, {"type": "map_at_3", "value": 33.585}, {"type": "map_at_5", "value": 34.845}, {"type": "mrr_at_1", "value": 30.982}, {"type": "mrr_at_10", "value": 39.105000000000004}, {"type": "mrr_at_100", "value": 39.98}, {"type": "mrr_at_1000", "value": 40.042}, {"type": "mrr_at_3", "value": 36.912}, {"type": "mrr_at_5", "value": 38.062000000000005}, {"type": "ndcg_at_1", "value": 30.982}, {"type": "ndcg_at_10", "value": 40.982}, {"type": "ndcg_at_100", "value": 46.092}, {"type": "ndcg_at_1000", "value": 48.25}, {"type": "ndcg_at_3", "value": 36.41}, {"type": "ndcg_at_5", "value": 38.379999999999995}, {"type": "precision_at_1", "value": 30.982}, {"type": "precision_at_10", "value": 6.534}, {"type": "precision_at_100", "value": 0.9820000000000001}, {"type": "precision_at_1000", "value": 0.124}, {"type": "precision_at_3", "value": 15.745999999999999}, {"type": "precision_at_5", "value": 10.828}, {"type": "recall_at_1", "value": 27.838}, {"type": "recall_at_10", "value": 52.971000000000004}, {"type": "recall_at_100", "value": 76.357}, {"type": "recall_at_1000", "value": 91.973}, {"type": "recall_at_3", "value": 40.157}, {"type": "recall_at_5", "value": 45.147999999999996}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackTexRetrieval", "type": "BeIR/cqadupstack", "config": "default", "split": "test", "revision": "46989137a86843e03a6195de44b09deda022eec7"}, "metrics": [{"type": "map_at_1", "value": 19.059}, {"type": "map_at_10", "value": 27.454}, {"type": "map_at_100", "value": 28.736}, {"type": "map_at_1000", "value": 28.865000000000002}, {"type": "map_at_3", "value": 24.773999999999997}, {"type": "map_at_5", "value": 26.266000000000002}, {"type": "mrr_at_1", "value": 23.125}, {"type": "mrr_at_10", "value": 31.267}, {"type": "mrr_at_100", "value": 32.32}, {"type": "mrr_at_1000", "value": 32.394}, {"type": "mrr_at_3", "value": 28.894}, {"type": "mrr_at_5", "value": 30.281000000000002}, {"type": "ndcg_at_1", "value": 23.125}, {"type": "ndcg_at_10", "value": 32.588}, {"type": "ndcg_at_100", "value": 38.432}, {"type": "ndcg_at_1000", "value": 41.214}, {"type": "ndcg_at_3", "value": 27.938000000000002}, {"type": "ndcg_at_5", "value": 30.127}, {"type": "precision_at_1", "value": 23.125}, {"type": "precision_at_10", "value": 5.9639999999999995}, {"type": "precision_at_100", "value": 1.047}, {"type": "precision_at_1000", "value": 0.148}, {"type": "precision_at_3", "value": 13.294}, {"type": "precision_at_5", "value": 9.628}, {"type": "recall_at_1", "value": 19.059}, {"type": "recall_at_10", "value": 44.25}, {"type": "recall_at_100", "value": 69.948}, {"type": "recall_at_1000", "value": 89.35300000000001}, {"type": "recall_at_3", "value": 31.114000000000004}, {"type": "recall_at_5", "value": 36.846000000000004}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackUnixRetrieval", "type": "BeIR/cqadupstack", "config": "default", "split": "test", "revision": "6c6430d3a6d36f8d2a829195bc5dc94d7e063e53"}, "metrics": [{"type": "map_at_1", "value": 28.355999999999998}, {"type": "map_at_10", "value": 39.055}, {"type": "map_at_100", "value": 40.486}, {"type": "map_at_1000", "value": 40.571}, {"type": "map_at_3", "value": 35.69}, {"type": "map_at_5", "value": 37.605}, {"type": "mrr_at_1", "value": 33.302}, {"type": "mrr_at_10", "value": 42.986000000000004}, {"type": "mrr_at_100", "value": 43.957}, {"type": "mrr_at_1000", "value": 43.996}, {"type": "mrr_at_3", "value": 40.111999999999995}, {"type": "mrr_at_5", "value": 41.735}, {"type": "ndcg_at_1", "value": 33.302}, {"type": "ndcg_at_10", "value": 44.962999999999994}, {"type": "ndcg_at_100", "value": 50.917}, {"type": "ndcg_at_1000", "value": 52.622}, {"type": "ndcg_at_3", "value": 39.182}, {"type": "ndcg_at_5", "value": 41.939}, {"type": "precision_at_1", "value": 33.302}, {"type": "precision_at_10", "value": 7.779999999999999}, {"type": "precision_at_100", "value": 1.203}, {"type": "precision_at_1000", "value": 0.145}, {"type": "precision_at_3", "value": 18.035}, {"type": "precision_at_5", "value": 12.873000000000001}, {"type": "recall_at_1", "value": 28.355999999999998}, {"type": "recall_at_10", "value": 58.782000000000004}, {"type": "recall_at_100", "value": 84.02199999999999}, {"type": "recall_at_1000", "value": 95.511}, {"type": "recall_at_3", "value": 43.126999999999995}, {"type": "recall_at_5", "value": 50.14999999999999}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackWebmastersRetrieval", "type": "BeIR/cqadupstack", "config": "default", "split": "test", "revision": "160c094312a0e1facb97e55eeddb698c0abe3571"}, "metrics": [{"type": "map_at_1", "value": 27.391}, {"type": "map_at_10", "value": 37.523}, {"type": "map_at_100", "value": 39.312000000000005}, {"type": "map_at_1000", "value": 39.54}, {"type": "map_at_3", "value": 34.231}, {"type": "map_at_5", "value": 36.062}, {"type": "mrr_at_1", "value": 32.016}, {"type": "mrr_at_10", "value": 41.747}, {"type": "mrr_at_100", "value": 42.812}, {"type": "mrr_at_1000", "value": 42.844}, {"type": "mrr_at_3", "value": 39.129999999999995}, {"type": "mrr_at_5", "value": 40.524}, {"type": "ndcg_at_1", "value": 32.016}, {"type": "ndcg_at_10", "value": 43.826}, {"type": "ndcg_at_100", "value": 50.373999999999995}, {"type": "ndcg_at_1000", "value": 52.318}, {"type": "ndcg_at_3", "value": 38.479}, {"type": "ndcg_at_5", "value": 40.944}, {"type": "precision_at_1", "value": 32.016}, {"type": "precision_at_10", "value": 8.280999999999999}, {"type": "precision_at_100", "value": 1.6760000000000002}, {"type": "precision_at_1000", "value": 0.25}, {"type": "precision_at_3", "value": 18.05}, {"type": "precision_at_5", "value": 13.083}, {"type": "recall_at_1", "value": 27.391}, {"type": "recall_at_10", "value": 56.928999999999995}, {"type": "recall_at_100", "value": 85.169}, {"type": "recall_at_1000", "value": 96.665}, {"type": "recall_at_3", "value": 42.264}, {"type": "recall_at_5", "value": 48.556}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ClimateFEVER", "type": "mteb/climate-fever", "config": "default", "split": "test", "revision": "47f2ac6acb640fc46020b02a5b59fdda04d39380"}, "metrics": [{"type": "map_at_1", "value": 19.681}, {"type": "map_at_10", "value": 32.741}, {"type": "map_at_100", "value": 34.811}, {"type": "map_at_1000", "value": 35.003}, {"type": "map_at_3", "value": 27.697}, {"type": "map_at_5", "value": 30.372}, {"type": "mrr_at_1", "value": 44.951}, {"type": "mrr_at_10", "value": 56.34400000000001}, {"type": "mrr_at_100", "value": 56.961}, {"type": "mrr_at_1000", "value": 56.987}, {"type": "mrr_at_3", "value": 53.681}, {"type": "mrr_at_5", "value": 55.407}, {"type": "ndcg_at_1", "value": 44.951}, {"type": "ndcg_at_10", "value": 42.905}, {"type": "ndcg_at_100", "value": 49.95}, {"type": "ndcg_at_1000", "value": 52.917}, {"type": "ndcg_at_3", "value": 36.815}, {"type": "ndcg_at_5", "value": 38.817}, {"type": "precision_at_1", "value": 44.951}, {"type": "precision_at_10", "value": 12.989999999999998}, {"type": "precision_at_100", "value": 2.068}, {"type": "precision_at_1000", "value": 0.263}, {"type": "precision_at_3", "value": 27.275}, {"type": "precision_at_5", "value": 20.365}, {"type": "recall_at_1", "value": 19.681}, {"type": "recall_at_10", "value": 48.272999999999996}, {"type": "recall_at_100", "value": 71.87400000000001}, {"type": "recall_at_1000", "value": 87.929}, {"type": "recall_at_3", "value": 32.653999999999996}, {"type": "recall_at_5", "value": 39.364}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB DBPedia", "type": "mteb/dbpedia", "config": "default", "split": "test", "revision": "c0f706b76e590d620bd6618b3ca8efdd34e2d659"}, "metrics": [{"type": "map_at_1", "value": 10.231}, {"type": "map_at_10", "value": 22.338}, {"type": "map_at_100", "value": 31.927}, {"type": "map_at_1000", "value": 33.87}, {"type": "map_at_3", "value": 15.559999999999999}, {"type": "map_at_5", "value": 18.239}, {"type": "mrr_at_1", "value": 75.0}, {"type": "mrr_at_10", "value": 81.303}, {"type": "mrr_at_100", "value": 81.523}, {"type": "mrr_at_1000", "value": 81.53}, {"type": "mrr_at_3", "value": 80.083}, {"type": "mrr_at_5", "value": 80.758}, {"type": "ndcg_at_1", "value": 64.625}, {"type": "ndcg_at_10", "value": 48.687000000000005}, {"type": "ndcg_at_100", "value": 52.791}, {"type": "ndcg_at_1000", "value": 60.041999999999994}, {"type": "ndcg_at_3", "value": 53.757999999999996}, {"type": "ndcg_at_5", "value": 50.76500000000001}, {"type": "precision_at_1", "value": 75.0}, {"type": "precision_at_10", "value": 38.3}, {"type": "precision_at_100", "value": 12.025}, {"type": "precision_at_1000", "value": 2.3970000000000002}, {"type": "precision_at_3", "value": 55.417}, {"type": "precision_at_5", "value": 47.5}, {"type": "recall_at_1", "value": 10.231}, {"type": "recall_at_10", "value": 27.697}, {"type": "recall_at_100", "value": 57.409}, {"type": "recall_at_1000", "value": 80.547}, {"type": "recall_at_3", "value": 16.668}, {"type": "recall_at_5", "value": 20.552}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB EmotionClassification", "type": "mteb/emotion", "config": "default", "split": "test", "revision": "4f58c6b202a23cf9a4da393831edf4f9183cad37"}, "metrics": [{"type": "accuracy", "value": 61.365}, {"type": "f1", "value": 56.7540827912991}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB FEVER", "type": "mteb/fever", "config": "default", "split": "test", "revision": "bea83ef9e8fb933d90a2f1d5515737465d613e12"}, "metrics": [{"type": "map_at_1", "value": 83.479}, {"type": "map_at_10", "value": 88.898}, {"type": "map_at_100", "value": 89.11}, {"type": "map_at_1000", "value": 89.12400000000001}, {"type": "map_at_3", "value": 88.103}, {"type": "map_at_5", "value": 88.629}, {"type": "mrr_at_1", "value": 89.934}, {"type": "mrr_at_10", "value": 93.91000000000001}, {"type": "mrr_at_100", "value": 93.937}, {"type": "mrr_at_1000", "value": 93.938}, {"type": "mrr_at_3", "value": 93.62700000000001}, {"type": "mrr_at_5", "value": 93.84599999999999}, {"type": "ndcg_at_1", "value": 89.934}, {"type": "ndcg_at_10", "value": 91.574}, {"type": "ndcg_at_100", "value": 92.238}, {"type": "ndcg_at_1000", "value": 92.45}, {"type": "ndcg_at_3", "value": 90.586}, {"type": "ndcg_at_5", "value": 91.16300000000001}, {"type": "precision_at_1", "value": 89.934}, {"type": "precision_at_10", "value": 10.555}, {"type": "precision_at_100", "value": 1.1159999999999999}, {"type": "precision_at_1000", "value": 0.11499999999999999}, {"type": "precision_at_3", "value": 33.588}, {"type": "precision_at_5", "value": 20.642}, {"type": "recall_at_1", "value": 83.479}, {"type": "recall_at_10", "value": 94.971}, {"type": "recall_at_100", "value": 97.397}, {"type": "recall_at_1000", "value": 98.666}, {"type": "recall_at_3", "value": 92.24799999999999}, {"type": "recall_at_5", "value": 93.797}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB FiQA2018", "type": "mteb/fiqa", "config": "default", "split": "test", "revision": "27a168819829fe9bcd655c2df245fb19452e8e06"}, "metrics": [{"type": "map_at_1", "value": 27.16}, {"type": "map_at_10", "value": 45.593}, {"type": "map_at_100", "value": 47.762}, {"type": "map_at_1000", "value": 47.899}, {"type": "map_at_3", "value": 39.237}, {"type": "map_at_5", "value": 42.970000000000006}, {"type": "mrr_at_1", "value": 52.623}, {"type": "mrr_at_10", "value": 62.637}, {"type": "mrr_at_100", "value": 63.169}, {"type": "mrr_at_1000", "value": 63.185}, {"type": "mrr_at_3", "value": 59.928000000000004}, {"type": "mrr_at_5", "value": 61.702999999999996}, {"type": "ndcg_at_1", "value": 52.623}, {"type": "ndcg_at_10", "value": 54.701}, {"type": "ndcg_at_100", "value": 61.263}, {"type": "ndcg_at_1000", "value": 63.134}, {"type": "ndcg_at_3", "value": 49.265}, {"type": "ndcg_at_5", "value": 51.665000000000006}, {"type": "precision_at_1", "value": 52.623}, {"type": "precision_at_10", "value": 15.185}, {"type": "precision_at_100", "value": 2.202}, {"type": "precision_at_1000", "value": 0.254}, {"type": "precision_at_3", "value": 32.767}, {"type": "precision_at_5", "value": 24.722}, {"type": "recall_at_1", "value": 27.16}, {"type": "recall_at_10", "value": 63.309000000000005}, {"type": "recall_at_100", "value": 86.722}, {"type": "recall_at_1000", "value": 97.505}, {"type": "recall_at_3", "value": 45.045}, {"type": "recall_at_5", "value": 54.02400000000001}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB HotpotQA", "type": "mteb/hotpotqa", "config": "default", "split": "test", "revision": "ab518f4d6fcca38d87c25209f94beba119d02014"}, "metrics": [{"type": "map_at_1", "value": 42.573}, {"type": "map_at_10", "value": 59.373}, {"type": "map_at_100", "value": 60.292}, {"type": "map_at_1000", "value": 60.358999999999995}, {"type": "map_at_3", "value": 56.159000000000006}, {"type": "map_at_5", "value": 58.123999999999995}, {"type": "mrr_at_1", "value": 85.14500000000001}, {"type": "mrr_at_10", "value": 89.25999999999999}, {"type": "mrr_at_100", "value": 89.373}, {"type": "mrr_at_1000", "value": 89.377}, {"type": "mrr_at_3", "value": 88.618}, {"type": "mrr_at_5", "value": 89.036}, {"type": "ndcg_at_1", "value": 85.14500000000001}, {"type": "ndcg_at_10", "value": 68.95}, {"type": "ndcg_at_100", "value": 71.95}, {"type": "ndcg_at_1000", "value": 73.232}, {"type": "ndcg_at_3", "value": 64.546}, {"type": "ndcg_at_5", "value": 66.945}, {"type": "precision_at_1", "value": 85.14500000000001}, {"type": "precision_at_10", "value": 13.865}, {"type": "precision_at_100", "value": 1.619}, {"type": "precision_at_1000", "value": 0.179}, {"type": "precision_at_3", "value": 39.703}, {"type": "precision_at_5", "value": 25.718000000000004}, {"type": "recall_at_1", "value": 42.573}, {"type": "recall_at_10", "value": 69.325}, {"type": "recall_at_100", "value": 80.932}, {"type": "recall_at_1000", "value": 89.446}, {"type": "recall_at_3", "value": 59.553999999999995}, {"type": "recall_at_5", "value": 64.294}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ImdbClassification", "type": "mteb/imdb", "config": "default", "split": "test", "revision": "3d86128a09e091d6018b6d26cad27f2739fc2db7"}, "metrics": [{"type": "accuracy", "value": 95.8336}, {"type": "ap", "value": 93.78862962194073}, {"type": "f1", "value": 95.83192650728371}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB MSMARCO", "type": "mteb/msmarco", "config": "default", "split": "dev", "revision": "c5a29a104738b98a9e76336939199e264163d4a0"}, "metrics": [{"type": "map_at_1", "value": 23.075000000000003}, {"type": "map_at_10", "value": 36.102000000000004}, {"type": "map_at_100", "value": 37.257}, {"type": "map_at_1000", "value": 37.3}, {"type": "map_at_3", "value": 32.144}, {"type": "map_at_5", "value": 34.359}, {"type": "mrr_at_1", "value": 23.711}, {"type": "mrr_at_10", "value": 36.671}, {"type": "mrr_at_100", "value": 37.763999999999996}, {"type": "mrr_at_1000", "value": 37.801}, {"type": "mrr_at_3", "value": 32.775}, {"type": "mrr_at_5", "value": 34.977000000000004}, {"type": "ndcg_at_1", "value": 23.711}, {"type": "ndcg_at_10", "value": 43.361}, {"type": "ndcg_at_100", "value": 48.839}, {"type": "ndcg_at_1000", "value": 49.88}, {"type": "ndcg_at_3", "value": 35.269}, {"type": "ndcg_at_5", "value": 39.224}, {"type": "precision_at_1", "value": 23.711}, {"type": "precision_at_10", "value": 6.866999999999999}, {"type": "precision_at_100", "value": 0.96}, {"type": "precision_at_1000", "value": 0.105}, {"type": "precision_at_3", "value": 15.096000000000002}, {"type": "precision_at_5", "value": 11.083}, {"type": "recall_at_1", "value": 23.075000000000003}, {"type": "recall_at_10", "value": 65.756}, {"type": "recall_at_100", "value": 90.88199999999999}, {"type": "recall_at_1000", "value": 98.739}, {"type": "recall_at_3", "value": 43.691}, {"type": "recall_at_5", "value": 53.15800000000001}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPDomainClassification (en)", "type": "mteb/mtop_domain", "config": "en", "split": "test", "revision": "d80d48c1eb48d3562165c59d59d0034df9fff0bf"}, "metrics": [{"type": "accuracy", "value": 97.69493844049248}, {"type": "f1", "value": 97.55048089616261}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPIntentClassification (en)", "type": "mteb/mtop_intent", "config": "en", "split": "test", "revision": "ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba"}, "metrics": [{"type": "accuracy", "value": 88.75968992248062}, {"type": "f1", "value": 72.26321223399123}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (en)", "type": "mteb/amazon_massive_intent", "config": "en", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 82.40080699394754}, {"type": "f1", "value": 79.62590029057968}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (en)", "type": "mteb/amazon_massive_scenario", "config": "en", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 84.49562878278414}, {"type": "f1", "value": 84.0040193313333}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringP2P", "type": "mteb/medrxiv-clustering-p2p", "config": "default", "split": "test", "revision": "e7a26af6f3ae46b30dde8737f02c07b1505bcc73"}, "metrics": [{"type": "v_measure", "value": 39.386760057101945}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringS2S", "type": "mteb/medrxiv-clustering-s2s", "config": "default", "split": "test", "revision": "35191c8c0dca72d8ff3efcd72aa802307d469663"}, "metrics": [{"type": "v_measure", "value": 37.89687154075537}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB MindSmallReranking", "type": "mteb/mind_small", "config": "default", "split": "test", "revision": "3bdac13927fdc888b903db93b2ffdbd90b295a69"}, "metrics": [{"type": "map", "value": 33.94151656057482}, {"type": "mrr", "value": 35.32684700746953}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB NFCorpus", "type": "mteb/nfcorpus", "config": "default", "split": "test", "revision": "ec0fa4fe99da2ff19ca1214b7966684033a58814"}, "metrics": [{"type": "map_at_1", "value": 6.239999999999999}, {"type": "map_at_10", "value": 14.862}, {"type": "map_at_100", "value": 18.955}, {"type": "map_at_1000", "value": 20.694000000000003}, {"type": "map_at_3", "value": 10.683}, {"type": "map_at_5", "value": 12.674}, {"type": "mrr_at_1", "value": 50.15500000000001}, {"type": "mrr_at_10", "value": 59.697}, {"type": "mrr_at_100", "value": 60.095}, {"type": "mrr_at_1000", "value": 60.129999999999995}, {"type": "mrr_at_3", "value": 58.35900000000001}, {"type": "mrr_at_5", "value": 58.839}, {"type": "ndcg_at_1", "value": 48.452}, {"type": "ndcg_at_10", "value": 39.341}, {"type": "ndcg_at_100", "value": 35.866}, {"type": "ndcg_at_1000", "value": 45.111000000000004}, {"type": "ndcg_at_3", "value": 44.527}, {"type": "ndcg_at_5", "value": 42.946}, {"type": "precision_at_1", "value": 50.15500000000001}, {"type": "precision_at_10", "value": 29.536}, {"type": "precision_at_100", "value": 9.142}, {"type": "precision_at_1000", "value": 2.2849999999999997}, {"type": "precision_at_3", "value": 41.899}, {"type": "precision_at_5", "value": 37.647000000000006}, {"type": "recall_at_1", "value": 6.239999999999999}, {"type": "recall_at_10", "value": 19.278000000000002}, {"type": "recall_at_100", "value": 36.074}, {"type": "recall_at_1000", "value": 70.017}, {"type": "recall_at_3", "value": 12.066}, {"type": "recall_at_5", "value": 15.254000000000001}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB NQ", "type": "mteb/nq", "config": "default", "split": "test", "revision": "b774495ed302d8c44a3a7ea25c90dbce03968f31"}, "metrics": [{"type": "map_at_1", "value": 39.75}, {"type": "map_at_10", "value": 56.443}, {"type": "map_at_100", "value": 57.233999999999995}, {"type": "map_at_1000", "value": 57.249}, {"type": "map_at_3", "value": 52.032999999999994}, {"type": "map_at_5", "value": 54.937999999999995}, {"type": "mrr_at_1", "value": 44.728}, {"type": "mrr_at_10", "value": 58.939}, {"type": "mrr_at_100", "value": 59.489000000000004}, {"type": "mrr_at_1000", "value": 59.499}, {"type": "mrr_at_3", "value": 55.711999999999996}, {"type": "mrr_at_5", "value": 57.89}, {"type": "ndcg_at_1", "value": 44.728}, {"type": "ndcg_at_10", "value": 63.998999999999995}, {"type": "ndcg_at_100", "value": 67.077}, {"type": "ndcg_at_1000", "value": 67.40899999999999}, {"type": "ndcg_at_3", "value": 56.266000000000005}, {"type": "ndcg_at_5", "value": 60.88}, {"type": "precision_at_1", "value": 44.728}, {"type": "precision_at_10", "value": 10.09}, {"type": "precision_at_100", "value": 1.1809999999999998}, {"type": "precision_at_1000", "value": 0.121}, {"type": "precision_at_3", "value": 25.145}, {"type": "precision_at_5", "value": 17.822}, {"type": "recall_at_1", "value": 39.75}, {"type": "recall_at_10", "value": 84.234}, {"type": "recall_at_100", "value": 97.055}, {"type": "recall_at_1000", "value": 99.517}, {"type": "recall_at_3", "value": 64.851}, {"type": "recall_at_5", "value": 75.343}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB QuoraRetrieval", "type": "mteb/quora", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 72.085}, {"type": "map_at_10", "value": 86.107}, {"type": "map_at_100", "value": 86.727}, {"type": "map_at_1000", "value": 86.74}, {"type": "map_at_3", "value": 83.21}, {"type": "map_at_5", "value": 85.06}, {"type": "mrr_at_1", "value": 82.94}, {"type": "mrr_at_10", "value": 88.845}, {"type": "mrr_at_100", "value": 88.926}, {"type": "mrr_at_1000", "value": 88.927}, {"type": "mrr_at_3", "value": 87.993}, {"type": "mrr_at_5", "value": 88.62299999999999}, {"type": "ndcg_at_1", "value": 82.97}, {"type": "ndcg_at_10", "value": 89.645}, {"type": "ndcg_at_100", "value": 90.717}, {"type": "ndcg_at_1000", "value": 90.78}, {"type": "ndcg_at_3", "value": 86.99900000000001}, {"type": "ndcg_at_5", "value": 88.52600000000001}, {"type": "precision_at_1", "value": 82.97}, {"type": "precision_at_10", "value": 13.569}, {"type": "precision_at_100", "value": 1.539}, {"type": "precision_at_1000", "value": 0.157}, {"type": "precision_at_3", "value": 38.043}, {"type": "precision_at_5", "value": 24.992}, {"type": "recall_at_1", "value": 72.085}, {"type": "recall_at_10", "value": 96.262}, {"type": "recall_at_100", "value": 99.77000000000001}, {"type": "recall_at_1000", "value": 99.997}, {"type": "recall_at_3", "value": 88.652}, {"type": "recall_at_5", "value": 93.01899999999999}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClustering", "type": "mteb/reddit-clustering", "config": "default", "split": "test", "revision": "24640382cdbf8abc73003fb0fa6d111a705499eb"}, "metrics": [{"type": "v_measure", "value": 55.82153952668092}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClusteringP2P", "type": "mteb/reddit-clustering-p2p", "config": "default", "split": "test", "revision": "282350215ef01743dc01b456c7f5241fa8937f16"}, "metrics": [{"type": "v_measure", "value": 62.094465801879295}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB SCIDOCS", "type": "mteb/scidocs", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 5.688}, {"type": "map_at_10", "value": 15.201999999999998}, {"type": "map_at_100", "value": 18.096}, {"type": "map_at_1000", "value": 18.481}, {"type": "map_at_3", "value": 10.734}, {"type": "map_at_5", "value": 12.94}, {"type": "mrr_at_1", "value": 28.000000000000004}, {"type": "mrr_at_10", "value": 41.101}, {"type": "mrr_at_100", "value": 42.202}, {"type": "mrr_at_1000", "value": 42.228}, {"type": "mrr_at_3", "value": 37.683}, {"type": "mrr_at_5", "value": 39.708}, {"type": "ndcg_at_1", "value": 28.000000000000004}, {"type": "ndcg_at_10", "value": 24.976000000000003}, {"type": "ndcg_at_100", "value": 35.129}, {"type": "ndcg_at_1000", "value": 40.77}, {"type": "ndcg_at_3", "value": 23.787}, {"type": "ndcg_at_5", "value": 20.816000000000003}, {"type": "precision_at_1", "value": 28.000000000000004}, {"type": "precision_at_10", "value": 13.04}, {"type": "precision_at_100", "value": 2.761}, {"type": "precision_at_1000", "value": 0.41000000000000003}, {"type": "precision_at_3", "value": 22.6}, {"type": "precision_at_5", "value": 18.52}, {"type": "recall_at_1", "value": 5.688}, {"type": "recall_at_10", "value": 26.43}, {"type": "recall_at_100", "value": 56.02}, {"type": "recall_at_1000", "value": 83.21}, {"type": "recall_at_3", "value": 13.752}, {"type": "recall_at_5", "value": 18.777}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB SICK-R", "type": "mteb/sickr-sts", "config": "default", "split": "test", "revision": "a6ea5a8cab320b040a23452cc28066d9beae2cee"}, "metrics": [{"type": "cos_sim_pearson", "value": 85.15084859283178}, {"type": "cos_sim_spearman", "value": 80.49030614009419}, {"type": "euclidean_pearson", "value": 81.84574978672468}, {"type": "euclidean_spearman", "value": 79.89787150656818}, {"type": "manhattan_pearson", "value": 81.63076538567131}, {"type": "manhattan_spearman", "value": 79.69867352121841}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS12", "type": "mteb/sts12-sts", "config": "default", "split": "test", "revision": "a0d554a64d88156834ff5ae9920b964011b16384"}, "metrics": [{"type": "cos_sim_pearson", "value": 84.64097921490992}, {"type": "cos_sim_spearman", "value": 77.25370084896514}, {"type": "euclidean_pearson", "value": 82.71210826468788}, {"type": "euclidean_spearman", "value": 78.50445584994826}, {"type": "manhattan_pearson", "value": 82.92580164330298}, {"type": "manhattan_spearman", "value": 78.69686891301019}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS13", "type": "mteb/sts13-sts", "config": "default", "split": "test", "revision": "7e90230a92c190f1bf69ae9002b8cea547a64cca"}, "metrics": [{"type": "cos_sim_pearson", "value": 87.24596417308994}, {"type": "cos_sim_spearman", "value": 87.79454220555091}, {"type": "euclidean_pearson", "value": 87.40242561671164}, {"type": "euclidean_spearman", "value": 88.25955597373556}, {"type": "manhattan_pearson", "value": 87.25160240485849}, {"type": "manhattan_spearman", "value": 88.155794979818}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS14", "type": "mteb/sts14-sts", "config": "default", "split": "test", "revision": "6031580fec1f6af667f0bd2da0a551cf4f0b2375"}, "metrics": [{"type": "cos_sim_pearson", "value": 84.44914233422564}, {"type": "cos_sim_spearman", "value": 82.91015471820322}, {"type": "euclidean_pearson", "value": 84.7206656630327}, {"type": "euclidean_spearman", "value": 83.86408872059216}, {"type": "manhattan_pearson", "value": 84.72816725158454}, {"type": "manhattan_spearman", "value": 84.01603388572788}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS15", "type": "mteb/sts15-sts", "config": "default", "split": "test", "revision": "ae752c7c21bf194d8b67fd573edf7ae58183cbe3"}, "metrics": [{"type": "cos_sim_pearson", "value": 87.6168026237477}, {"type": "cos_sim_spearman", "value": 88.45414278092397}, {"type": "euclidean_pearson", "value": 88.57023240882022}, {"type": "euclidean_spearman", "value": 89.04102190922094}, {"type": "manhattan_pearson", "value": 88.66695535796354}, {"type": "manhattan_spearman", "value": 89.19898476680969}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS16", "type": "mteb/sts16-sts", "config": "default", "split": "test", "revision": "4d8694f8f0e0100860b497b999b3dbed754a0513"}, "metrics": [{"type": "cos_sim_pearson", "value": 84.27925826089424}, {"type": "cos_sim_spearman", "value": 85.45291099550461}, {"type": "euclidean_pearson", "value": 83.63853036580834}, {"type": "euclidean_spearman", "value": 84.33468035821484}, {"type": "manhattan_pearson", "value": 83.72778773251596}, {"type": "manhattan_spearman", "value": 84.51583132445376}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS17 (en-en)", "type": "mteb/sts17-crosslingual-sts", "config": "en-en", "split": "test", "revision": "af5e6fb845001ecf41f4c1e033ce921939a2a68d"}, "metrics": [{"type": "cos_sim_pearson", "value": 89.67375185692552}, {"type": "cos_sim_spearman", "value": 90.32542469203855}, {"type": "euclidean_pearson", "value": 89.63513717951847}, {"type": "euclidean_spearman", "value": 89.87760271003745}, {"type": "manhattan_pearson", "value": 89.28381452982924}, {"type": "manhattan_spearman", "value": 89.53568197785721}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (en)", "type": "mteb/sts22-crosslingual-sts", "config": "en", "split": "test", "revision": "eea2b4fe26a775864c896887d910b76a8098ad3f"}, "metrics": [{"type": "cos_sim_pearson", "value": 66.24644693819846}, {"type": "cos_sim_spearman", "value": 66.09889420525377}, {"type": "euclidean_pearson", "value": 63.72551583520747}, {"type": "euclidean_spearman", "value": 63.01385470780679}, {"type": "manhattan_pearson", "value": 64.09258157214097}, {"type": "manhattan_spearman", "value": 63.080517752822594}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STSBenchmark", "type": "mteb/stsbenchmark-sts", "config": "default", "split": "test", "revision": "b0fddb56ed78048fa8b90373c8a3cfc37b684831"}, "metrics": [{"type": "cos_sim_pearson", "value": 86.27321463839989}, {"type": "cos_sim_spearman", "value": 86.37572865993327}, {"type": "euclidean_pearson", "value": 86.36268020198149}, {"type": "euclidean_spearman", "value": 86.31089339478922}, {"type": "manhattan_pearson", "value": 86.4260445761947}, {"type": "manhattan_spearman", "value": 86.45885895320457}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB SciDocsRR", "type": "mteb/scidocs-reranking", "config": "default", "split": "test", "revision": "d3c5e1fc0b855ab6097bf1cda04dd73947d7caab"}, "metrics": [{"type": "map", "value": 86.52456702387798}, {"type": "mrr", "value": 96.34556529164372}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB SciFact", "type": "mteb/scifact", "config": "default", "split": "test", "revision": "0228b52cf27578f30900b9e5271d331663a030d7"}, "metrics": [{"type": "map_at_1", "value": 61.99400000000001}, {"type": "map_at_10", "value": 73.38799999999999}, {"type": "map_at_100", "value": 73.747}, {"type": "map_at_1000", "value": 73.75}, {"type": "map_at_3", "value": 70.04599999999999}, {"type": "map_at_5", "value": 72.095}, {"type": "mrr_at_1", "value": 65.0}, {"type": "mrr_at_10", "value": 74.42800000000001}, {"type": "mrr_at_100", "value": 74.722}, {"type": "mrr_at_1000", "value": 74.725}, {"type": "mrr_at_3", "value": 72.056}, {"type": "mrr_at_5", "value": 73.60600000000001}, {"type": "ndcg_at_1", "value": 65.0}, {"type": "ndcg_at_10", "value": 78.435}, {"type": "ndcg_at_100", "value": 79.922}, {"type": "ndcg_at_1000", "value": 80.00500000000001}, {"type": "ndcg_at_3", "value": 73.05199999999999}, {"type": "ndcg_at_5", "value": 75.98}, {"type": "precision_at_1", "value": 65.0}, {"type": "precision_at_10", "value": 10.5}, {"type": "precision_at_100", "value": 1.123}, {"type": "precision_at_1000", "value": 0.11299999999999999}, {"type": "precision_at_3", "value": 28.555999999999997}, {"type": "precision_at_5", "value": 19.0}, {"type": "recall_at_1", "value": 61.99400000000001}, {"type": "recall_at_10", "value": 92.72200000000001}, {"type": "recall_at_100", "value": 99.333}, {"type": "recall_at_1000", "value": 100.0}, {"type": "recall_at_3", "value": 78.739}, {"type": "recall_at_5", "value": 85.828}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB SprintDuplicateQuestions", "type": "mteb/sprintduplicatequestions-pairclassification", "config": "default", "split": "test", "revision": "d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46"}, "metrics": [{"type": "cos_sim_accuracy", "value": 99.79009900990098}, {"type": "cos_sim_ap", "value": 95.3203137438653}, {"type": "cos_sim_f1", "value": 89.12386706948641}, {"type": "cos_sim_precision", "value": 89.75659229208925}, {"type": "cos_sim_recall", "value": 88.5}, {"type": "dot_accuracy", "value": 99.67821782178218}, {"type": "dot_ap", "value": 89.94069840000675}, {"type": "dot_f1", "value": 83.45902463549521}, {"type": "dot_precision", "value": 83.9231547017189}, {"type": "dot_recall", "value": 83.0}, {"type": "euclidean_accuracy", "value": 99.78613861386138}, {"type": "euclidean_ap", "value": 95.10648259135526}, {"type": "euclidean_f1", "value": 88.77338877338877}, {"type": "euclidean_precision", "value": 92.42424242424242}, {"type": "euclidean_recall", "value": 85.39999999999999}, {"type": "manhattan_accuracy", "value": 99.7950495049505}, {"type": "manhattan_ap", "value": 95.29987661320946}, {"type": "manhattan_f1", "value": 89.21313183949972}, {"type": "manhattan_precision", "value": 93.14472252448314}, {"type": "manhattan_recall", "value": 85.6}, {"type": "max_accuracy", "value": 99.7950495049505}, {"type": "max_ap", "value": 95.3203137438653}, {"type": "max_f1", "value": 89.21313183949972}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClustering", "type": "mteb/stackexchange-clustering", "config": "default", "split": "test", "revision": "6cbc1f7b2bc0622f2e39d2c77fa502909748c259"}, "metrics": [{"type": "v_measure", "value": 67.65446577183913}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClusteringP2P", "type": "mteb/stackexchange-clustering-p2p", "config": "default", "split": "test", "revision": "815ca46b2622cec33ccafc3735d572c266efdb44"}, "metrics": [{"type": "v_measure", "value": 46.30749237193961}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB StackOverflowDupQuestions", "type": "mteb/stackoverflowdupquestions-reranking", "config": "default", "split": "test", "revision": "e185fbe320c72810689fc5848eb6114e1ef5ec69"}, "metrics": [{"type": "map", "value": 54.91481849959949}, {"type": "mrr", "value": 55.853506175197346}]}, {"task": {"type": "Summarization"}, "dataset": {"name": "MTEB SummEval", "type": "mteb/summeval", "config": "default", "split": "test", "revision": "cda12ad7615edc362dbf25a00fdd61d3b1eaf93c"}, "metrics": [{"type": "cos_sim_pearson", "value": 30.08196549170419}, {"type": "cos_sim_spearman", "value": 31.16661390597077}, {"type": "dot_pearson", "value": 29.892258410943466}, {"type": "dot_spearman", "value": 30.51328811965085}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB TRECCOVID", "type": "mteb/trec-covid", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 0.23900000000000002}, {"type": "map_at_10", "value": 2.173}, {"type": "map_at_100", "value": 14.24}, {"type": "map_at_1000", "value": 35.309000000000005}, {"type": "map_at_3", "value": 0.7100000000000001}, {"type": "map_at_5", "value": 1.163}, {"type": "mrr_at_1", "value": 92.0}, {"type": "mrr_at_10", "value": 96.0}, {"type": "mrr_at_100", "value": 96.0}, {"type": "mrr_at_1000", "value": 96.0}, {"type": "mrr_at_3", "value": 96.0}, {"type": "mrr_at_5", "value": 96.0}, {"type": "ndcg_at_1", "value": 90.0}, {"type": "ndcg_at_10", "value": 85.382}, {"type": "ndcg_at_100", "value": 68.03}, {"type": "ndcg_at_1000", "value": 61.021}, {"type": "ndcg_at_3", "value": 89.765}, {"type": "ndcg_at_5", "value": 88.444}, {"type": "precision_at_1", "value": 92.0}, {"type": "precision_at_10", "value": 88.0}, {"type": "precision_at_100", "value": 70.02000000000001}, {"type": "precision_at_1000", "value": 26.984}, {"type": "precision_at_3", "value": 94.0}, {"type": "precision_at_5", "value": 92.80000000000001}, {"type": "recall_at_1", "value": 0.23900000000000002}, {"type": "recall_at_10", "value": 2.313}, {"type": "recall_at_100", "value": 17.049}, {"type": "recall_at_1000", "value": 57.489999999999995}, {"type": "recall_at_3", "value": 0.737}, {"type": "recall_at_5", "value": 1.221}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB Touche2020", "type": "mteb/touche2020", "config": "default", "split": "test", "revision": "a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f"}, "metrics": [{"type": "map_at_1", "value": 2.75}, {"type": "map_at_10", "value": 11.29}, {"type": "map_at_100", "value": 18.032999999999998}, {"type": "map_at_1000", "value": 19.746}, {"type": "map_at_3", "value": 6.555}, {"type": "map_at_5", "value": 8.706999999999999}, {"type": "mrr_at_1", "value": 34.694}, {"type": "mrr_at_10", "value": 50.55}, {"type": "mrr_at_100", "value": 51.659}, {"type": "mrr_at_1000", "value": 51.659}, {"type": "mrr_at_3", "value": 47.278999999999996}, {"type": "mrr_at_5", "value": 49.728}, {"type": "ndcg_at_1", "value": 32.653}, {"type": "ndcg_at_10", "value": 27.894000000000002}, {"type": "ndcg_at_100", "value": 39.769}, {"type": "ndcg_at_1000", "value": 51.495999999999995}, {"type": "ndcg_at_3", "value": 32.954}, {"type": "ndcg_at_5", "value": 31.502999999999997}, {"type": "precision_at_1", "value": 34.694}, {"type": "precision_at_10", "value": 23.265}, {"type": "precision_at_100", "value": 7.898}, {"type": "precision_at_1000", "value": 1.58}, {"type": "precision_at_3", "value": 34.694}, {"type": "precision_at_5", "value": 31.429000000000002}, {"type": "recall_at_1", "value": 2.75}, {"type": "recall_at_10", "value": 16.953}, {"type": "recall_at_100", "value": 48.68}, {"type": "recall_at_1000", "value": 85.18599999999999}, {"type": "recall_at_3", "value": 7.710999999999999}, {"type": "recall_at_5", "value": 11.484}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ToxicConversationsClassification", "type": "mteb/toxic_conversations_50k", "config": "default", "split": "test", "revision": "d7c0de2777da35d6aae2200a62c6e0e5af397c4c"}, "metrics": [{"type": "accuracy", "value": 82.66099999999999}, {"type": "ap", "value": 25.555698090238337}, {"type": "f1", "value": 66.48402012461622}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB TweetSentimentExtractionClassification", "type": "mteb/tweet_sentiment_extraction", "config": "default", "split": "test", "revision": "d604517c81ca91fe16a244d1248fc021f9ecee7a"}, "metrics": [{"type": "accuracy", "value": 72.94567062818335}, {"type": "f1", "value": 73.28139189595674}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB TwentyNewsgroupsClustering", "type": "mteb/twentynewsgroups-clustering", "config": "default", "split": "test", "revision": "6125ec4e24fa026cec8a478383ee943acfbd5449"}, "metrics": [{"type": "v_measure", "value": 49.581627240203474}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterSemEval2015", "type": "mteb/twittersemeval2015-pairclassification", "config": "default", "split": "test", "revision": "70970daeab8776df92f5ea462b6173c0b46fd2d1"}, "metrics": [{"type": "cos_sim_accuracy", "value": 87.78089050485785}, {"type": "cos_sim_ap", "value": 79.64487116574168}, {"type": "cos_sim_f1", "value": 72.46563021970964}, {"type": "cos_sim_precision", "value": 70.62359128474831}, {"type": "cos_sim_recall", "value": 74.40633245382587}, {"type": "dot_accuracy", "value": 86.2609524944865}, {"type": "dot_ap", "value": 75.513046857613}, {"type": "dot_f1", "value": 68.58213616489695}, {"type": "dot_precision", "value": 65.12455516014235}, {"type": "dot_recall", "value": 72.42744063324538}, {"type": "euclidean_accuracy", "value": 87.6080348095607}, {"type": "euclidean_ap", "value": 79.00204933649795}, {"type": "euclidean_f1", "value": 72.14495342605589}, {"type": "euclidean_precision", "value": 69.85421299728193}, {"type": "euclidean_recall", "value": 74.5910290237467}, {"type": "manhattan_accuracy", "value": 87.59611372712642}, {"type": "manhattan_ap", "value": 78.78523756706264}, {"type": "manhattan_f1", "value": 71.86499137718648}, {"type": "manhattan_precision", "value": 67.39833641404806}, {"type": "manhattan_recall", "value": 76.96569920844327}, {"type": "max_accuracy", "value": 87.78089050485785}, {"type": "max_ap", "value": 79.64487116574168}, {"type": "max_f1", "value": 72.46563021970964}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterURLCorpus", "type": "mteb/twitterurlcorpus-pairclassification", "config": "default", "split": "test", "revision": "8b6510b0b1fa4e4c4f879467980e9be563ec1cdf"}, "metrics": [{"type": "cos_sim_accuracy", "value": 89.98719292117825}, {"type": "cos_sim_ap", "value": 87.58146137353202}, {"type": "cos_sim_f1", "value": 80.28543232369239}, {"type": "cos_sim_precision", "value": 79.1735289714029}, {"type": "cos_sim_recall", "value": 81.42901139513397}, {"type": "dot_accuracy", "value": 88.9199363526992}, {"type": "dot_ap", "value": 84.98499998630417}, {"type": "dot_f1", "value": 78.21951400757969}, {"type": "dot_precision", "value": 75.58523624874336}, {"type": "dot_recall", "value": 81.04404065291038}, {"type": "euclidean_accuracy", "value": 89.77374160748244}, {"type": "euclidean_ap", "value": 87.35151562835209}, {"type": "euclidean_f1", "value": 79.92160922940393}, {"type": "euclidean_precision", "value": 76.88531587933979}, {"type": "euclidean_recall", "value": 83.20757622420696}, {"type": "manhattan_accuracy", "value": 89.72717041176699}, {"type": "manhattan_ap", "value": 87.34065592142515}, {"type": "manhattan_f1", "value": 79.85603419187943}, {"type": "manhattan_precision", "value": 77.82243332115455}, {"type": "manhattan_recall", "value": 81.99876809362489}, {"type": "max_accuracy", "value": 89.98719292117825}, {"type": "max_ap", "value": 87.58146137353202}, {"type": "max_f1", "value": 80.28543232369239}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB AFQMC", "type": "C-MTEB/AFQMC", "config": "default", "split": "validation", "revision": "b44c3b011063adb25877c13823db83bb193913c4"}, "metrics": [{"type": "cos_sim_pearson", "value": 53.45954203592337}, {"type": "cos_sim_spearman", "value": 58.42154680418638}, {"type": "euclidean_pearson", "value": 56.41543791722753}, {"type": "euclidean_spearman", "value": 58.39328016640146}, {"type": "manhattan_pearson", "value": 56.318510356833876}, {"type": "manhattan_spearman", "value": 58.28423447818184}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB ATEC", "type": "C-MTEB/ATEC", "config": "default", "split": "test", "revision": "0f319b1142f28d00e055a6770f3f726ae9b7d865"}, "metrics": [{"type": "cos_sim_pearson", "value": 50.78356460675945}, {"type": "cos_sim_spearman", "value": 55.6530411663269}, {"type": "euclidean_pearson", "value": 56.50763660417816}, {"type": "euclidean_spearman", "value": 55.733823335669065}, {"type": "manhattan_pearson", "value": 56.45323093512866}, {"type": "manhattan_spearman", "value": 55.63248619032702}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonReviewsClassification (zh)", "type": "mteb/amazon_reviews_multi", "config": "zh", "split": "test", "revision": "1399c76144fd37290681b995c656ef9b2e06e26d"}, "metrics": [{"type": "accuracy", "value": 47.209999999999994}, {"type": "f1", "value": 46.08892432018655}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB BQ", "type": "C-MTEB/BQ", "config": "default", "split": "test", "revision": "e3dda5e115e487b39ec7e618c0c6a29137052a55"}, "metrics": [{"type": "cos_sim_pearson", "value": 70.25573992001478}, {"type": "cos_sim_spearman", "value": 73.85247134951433}, {"type": "euclidean_pearson", "value": 72.60033082168442}, {"type": "euclidean_spearman", "value": 73.72445893756499}, {"type": "manhattan_pearson", "value": 72.59932284620231}, {"type": "manhattan_spearman", "value": 73.68002490614583}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB CLSClusteringP2P", "type": "C-MTEB/CLSClusteringP2P", "config": "default", "split": "test", "revision": "4b6227591c6c1a73bc76b1055f3b7f3588e72476"}, "metrics": [{"type": "v_measure", "value": 45.21317724305628}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB CLSClusteringS2S", "type": "C-MTEB/CLSClusteringS2S", "config": "default", "split": "test", "revision": "e458b3f5414b62b7f9f83499ac1f5497ae2e869f"}, "metrics": [{"type": "v_measure", "value": 42.49825170976724}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB CMedQAv1", "type": "C-MTEB/CMedQAv1-reranking", "config": "default", "split": "test", "revision": "8d7f1e942507dac42dc58017c1a001c3717da7df"}, "metrics": [{"type": "map", "value": 88.15661686810597}, {"type": "mrr", "value": 90.11222222222223}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB CMedQAv2", "type": "C-MTEB/CMedQAv2-reranking", "config": "default", "split": "test", "revision": "23d186750531a14a0357ca22cd92d712fd512ea0"}, "metrics": [{"type": "map", "value": 88.1204726064383}, {"type": "mrr", "value": 90.20142857142858}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CmedqaRetrieval", "type": "C-MTEB/CmedqaRetrieval", "config": "default", "split": "dev", "revision": "cd540c506dae1cf9e9a59c3e06f42030d54e7301"}, "metrics": [{"type": "map_at_1", "value": 27.224999999999998}, {"type": "map_at_10", "value": 40.169}, {"type": "map_at_100", "value": 42.0}, {"type": "map_at_1000", "value": 42.109}, {"type": "map_at_3", "value": 35.76}, {"type": "map_at_5", "value": 38.221}, {"type": "mrr_at_1", "value": 40.56}, {"type": "mrr_at_10", "value": 49.118}, {"type": "mrr_at_100", "value": 50.092999999999996}, {"type": "mrr_at_1000", "value": 50.133}, {"type": "mrr_at_3", "value": 46.507}, {"type": "mrr_at_5", "value": 47.973}, {"type": "ndcg_at_1", "value": 40.56}, {"type": "ndcg_at_10", "value": 46.972}, {"type": "ndcg_at_100", "value": 54.04}, {"type": "ndcg_at_1000", "value": 55.862}, {"type": "ndcg_at_3", "value": 41.36}, {"type": "ndcg_at_5", "value": 43.704}, {"type": "precision_at_1", "value": 40.56}, {"type": "precision_at_10", "value": 10.302999999999999}, {"type": "precision_at_100", "value": 1.606}, {"type": "precision_at_1000", "value": 0.184}, {"type": "precision_at_3", "value": 23.064}, {"type": "precision_at_5", "value": 16.764000000000003}, {"type": "recall_at_1", "value": 27.224999999999998}, {"type": "recall_at_10", "value": 58.05200000000001}, {"type": "recall_at_100", "value": 87.092}, {"type": "recall_at_1000", "value": 99.099}, {"type": "recall_at_3", "value": 41.373}, {"type": "recall_at_5", "value": 48.453}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB Cmnli", "type": "C-MTEB/CMNLI", "config": "default", "split": "validation", "revision": "41bc36f332156f7adc9e38f53777c959b2ae9766"}, "metrics": [{"type": "cos_sim_accuracy", "value": 77.40228502705953}, {"type": "cos_sim_ap", "value": 86.22359172956327}, {"type": "cos_sim_f1", "value": 78.96328293736501}, {"type": "cos_sim_precision", "value": 73.36945615091311}, {"type": "cos_sim_recall", "value": 85.48047696983868}, {"type": "dot_accuracy", "value": 75.53818400481059}, {"type": "dot_ap", "value": 83.70164011305312}, {"type": "dot_f1", "value": 77.67298719348754}, {"type": "dot_precision", "value": 67.49482401656314}, {"type": "dot_recall", "value": 91.46598082768296}, {"type": "euclidean_accuracy", "value": 77.94347564642213}, {"type": "euclidean_ap", "value": 86.4652108728609}, {"type": "euclidean_f1", "value": 79.15555555555555}, {"type": "euclidean_precision", "value": 75.41816641964853}, {"type": "euclidean_recall", "value": 83.28267477203647}, {"type": "manhattan_accuracy", "value": 77.45039085989175}, {"type": "manhattan_ap", "value": 86.09986583900665}, {"type": "manhattan_f1", "value": 78.93669264438988}, {"type": "manhattan_precision", "value": 72.63261296660117}, {"type": "manhattan_recall", "value": 86.43909282207154}, {"type": "max_accuracy", "value": 77.94347564642213}, {"type": "max_ap", "value": 86.4652108728609}, {"type": "max_f1", "value": 79.15555555555555}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CovidRetrieval", "type": "C-MTEB/CovidRetrieval", "config": "default", "split": "dev", "revision": "1271c7809071a13532e05f25fb53511ffce77117"}, "metrics": [{"type": "map_at_1", "value": 69.336}, {"type": "map_at_10", "value": 77.16}, {"type": "map_at_100", "value": 77.47500000000001}, {"type": "map_at_1000", "value": 77.482}, {"type": "map_at_3", "value": 75.42999999999999}, {"type": "map_at_5", "value": 76.468}, {"type": "mrr_at_1", "value": 69.44200000000001}, {"type": "mrr_at_10", "value": 77.132}, {"type": "mrr_at_100", "value": 77.43299999999999}, {"type": "mrr_at_1000", "value": 77.44}, {"type": "mrr_at_3", "value": 75.395}, {"type": "mrr_at_5", "value": 76.459}, {"type": "ndcg_at_1", "value": 69.547}, {"type": "ndcg_at_10", "value": 80.794}, {"type": "ndcg_at_100", "value": 82.245}, {"type": "ndcg_at_1000", "value": 82.40899999999999}, {"type": "ndcg_at_3", "value": 77.303}, {"type": "ndcg_at_5", "value": 79.168}, {"type": "precision_at_1", "value": 69.547}, {"type": "precision_at_10", "value": 9.305}, {"type": "precision_at_100", "value": 0.9979999999999999}, {"type": "precision_at_1000", "value": 0.101}, {"type": "precision_at_3", "value": 27.749000000000002}, {"type": "precision_at_5", "value": 17.576}, {"type": "recall_at_1", "value": 69.336}, {"type": "recall_at_10", "value": 92.097}, {"type": "recall_at_100", "value": 98.736}, {"type": "recall_at_1000", "value": 100.0}, {"type": "recall_at_3", "value": 82.64}, {"type": "recall_at_5", "value": 87.144}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB DuRetrieval", "type": "C-MTEB/DuRetrieval", "config": "default", "split": "dev", "revision": "a1a333e290fe30b10f3f56498e3a0d911a693ced"}, "metrics": [{"type": "map_at_1", "value": 26.817999999999998}, {"type": "map_at_10", "value": 82.67}, {"type": "map_at_100", "value": 85.304}, {"type": "map_at_1000", "value": 85.334}, {"type": "map_at_3", "value": 57.336}, {"type": "map_at_5", "value": 72.474}, {"type": "mrr_at_1", "value": 91.45}, {"type": "mrr_at_10", "value": 94.272}, {"type": "mrr_at_100", "value": 94.318}, {"type": "mrr_at_1000", "value": 94.32000000000001}, {"type": "mrr_at_3", "value": 94.0}, {"type": "mrr_at_5", "value": 94.17699999999999}, {"type": "ndcg_at_1", "value": 91.45}, {"type": "ndcg_at_10", "value": 89.404}, {"type": "ndcg_at_100", "value": 91.724}, {"type": "ndcg_at_1000", "value": 91.973}, {"type": "ndcg_at_3", "value": 88.104}, {"type": "ndcg_at_5", "value": 87.25699999999999}, {"type": "precision_at_1", "value": 91.45}, {"type": "precision_at_10", "value": 42.585}, {"type": "precision_at_100", "value": 4.838}, {"type": "precision_at_1000", "value": 0.49}, {"type": "precision_at_3", "value": 78.8}, {"type": "precision_at_5", "value": 66.66}, {"type": "recall_at_1", "value": 26.817999999999998}, {"type": "recall_at_10", "value": 90.67}, {"type": "recall_at_100", "value": 98.36200000000001}, {"type": "recall_at_1000", "value": 99.583}, {"type": "recall_at_3", "value": 59.614999999999995}, {"type": "recall_at_5", "value": 77.05199999999999}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB EcomRetrieval", "type": "C-MTEB/EcomRetrieval", "config": "default", "split": "dev", "revision": "687de13dc7294d6fd9be10c6945f9e8fec8166b9"}, "metrics": [{"type": "map_at_1", "value": 47.699999999999996}, {"type": "map_at_10", "value": 57.589999999999996}, {"type": "map_at_100", "value": 58.226}, {"type": "map_at_1000", "value": 58.251}, {"type": "map_at_3", "value": 55.233}, {"type": "map_at_5", "value": 56.633}, {"type": "mrr_at_1", "value": 47.699999999999996}, {"type": "mrr_at_10", "value": 57.589999999999996}, {"type": "mrr_at_100", "value": 58.226}, {"type": "mrr_at_1000", "value": 58.251}, {"type": "mrr_at_3", "value": 55.233}, {"type": "mrr_at_5", "value": 56.633}, {"type": "ndcg_at_1", "value": 47.699999999999996}, {"type": "ndcg_at_10", "value": 62.505}, {"type": "ndcg_at_100", "value": 65.517}, {"type": "ndcg_at_1000", "value": 66.19800000000001}, {"type": "ndcg_at_3", "value": 57.643}, {"type": "ndcg_at_5", "value": 60.181}, {"type": "precision_at_1", "value": 47.699999999999996}, {"type": "precision_at_10", "value": 7.8}, {"type": "precision_at_100", "value": 0.919}, {"type": "precision_at_1000", "value": 0.097}, {"type": "precision_at_3", "value": 21.532999999999998}, {"type": "precision_at_5", "value": 14.16}, {"type": "recall_at_1", "value": 47.699999999999996}, {"type": "recall_at_10", "value": 78.0}, {"type": "recall_at_100", "value": 91.9}, {"type": "recall_at_1000", "value": 97.3}, {"type": "recall_at_3", "value": 64.60000000000001}, {"type": "recall_at_5", "value": 70.8}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB IFlyTek", "type": "C-MTEB/IFlyTek-classification", "config": "default", "split": "validation", "revision": "421605374b29664c5fc098418fe20ada9bd55f8a"}, "metrics": [{"type": "accuracy", "value": 44.84801846864178}, {"type": "f1", "value": 37.47347897956339}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB JDReview", "type": "C-MTEB/JDReview-classification", "config": "default", "split": "test", "revision": "b7c64bd89eb87f8ded463478346f76731f07bf8b"}, "metrics": [{"type": "accuracy", "value": 85.81613508442777}, {"type": "ap", "value": 52.68244615477374}, {"type": "f1", "value": 80.0445640948843}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB LCQMC", "type": "C-MTEB/LCQMC", "config": "default", "split": "test", "revision": "17f9b096f80380fce5ed12a9be8be7784b337daf"}, "metrics": [{"type": "cos_sim_pearson", "value": 69.57786502217138}, {"type": "cos_sim_spearman", "value": 75.39106054489906}, {"type": "euclidean_pearson", "value": 73.72082954602402}, {"type": "euclidean_spearman", "value": 75.14421475913619}, {"type": "manhattan_pearson", "value": 73.62463076633642}, {"type": "manhattan_spearman", "value": 75.01301565104112}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB MMarcoReranking", "type": "C-MTEB/Mmarco-reranking", "config": "default", "split": "dev", "revision": "None"}, "metrics": [{"type": "map", "value": 29.143797057999134}, {"type": "mrr", "value": 28.08174603174603}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB MMarcoRetrieval", "type": "C-MTEB/MMarcoRetrieval", "config": "default", "split": "dev", "revision": "539bbde593d947e2a124ba72651aafc09eb33fc2"}, "metrics": [{"type": "map_at_1", "value": 70.492}, {"type": "map_at_10", "value": 79.501}, {"type": "map_at_100", "value": 79.728}, {"type": "map_at_1000", "value": 79.735}, {"type": "map_at_3", "value": 77.77}, {"type": "map_at_5", "value": 78.851}, {"type": "mrr_at_1", "value": 72.822}, {"type": "mrr_at_10", "value": 80.001}, {"type": "mrr_at_100", "value": 80.19}, {"type": "mrr_at_1000", "value": 80.197}, {"type": "mrr_at_3", "value": 78.484}, {"type": "mrr_at_5", "value": 79.42099999999999}, {"type": "ndcg_at_1", "value": 72.822}, {"type": "ndcg_at_10", "value": 83.013}, {"type": "ndcg_at_100", "value": 84.013}, {"type": "ndcg_at_1000", "value": 84.20400000000001}, {"type": "ndcg_at_3", "value": 79.728}, {"type": "ndcg_at_5", "value": 81.542}, {"type": "precision_at_1", "value": 72.822}, {"type": "precision_at_10", "value": 9.917}, {"type": "precision_at_100", "value": 1.042}, {"type": "precision_at_1000", "value": 0.106}, {"type": "precision_at_3", "value": 29.847}, {"type": "precision_at_5", "value": 18.871}, {"type": "recall_at_1", "value": 70.492}, {"type": "recall_at_10", "value": 93.325}, {"type": "recall_at_100", "value": 97.822}, {"type": "recall_at_1000", "value": 99.319}, {"type": "recall_at_3", "value": 84.636}, {"type": "recall_at_5", "value": 88.93100000000001}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (zh-CN)", "type": "mteb/amazon_massive_intent", "config": "zh-CN", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 76.88298587760592}, {"type": "f1", "value": 73.89001762017176}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (zh-CN)", "type": "mteb/amazon_massive_scenario", "config": "zh-CN", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 80.76328177538669}, {"type": "f1", "value": 80.24718532423358}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB MedicalRetrieval", "type": "C-MTEB/MedicalRetrieval", "config": "default", "split": "dev", "revision": "2039188fb5800a9803ba5048df7b76e6fb151fc6"}, "metrics": [{"type": "map_at_1", "value": 49.6}, {"type": "map_at_10", "value": 55.620999999999995}, {"type": "map_at_100", "value": 56.204}, {"type": "map_at_1000", "value": 56.251}, {"type": "map_at_3", "value": 54.132999999999996}, {"type": "map_at_5", "value": 54.933}, {"type": "mrr_at_1", "value": 49.7}, {"type": "mrr_at_10", "value": 55.67100000000001}, {"type": "mrr_at_100", "value": 56.254000000000005}, {"type": "mrr_at_1000", "value": 56.301}, {"type": "mrr_at_3", "value": 54.18300000000001}, {"type": "mrr_at_5", "value": 54.983000000000004}, {"type": "ndcg_at_1", "value": 49.6}, {"type": "ndcg_at_10", "value": 58.645}, {"type": "ndcg_at_100", "value": 61.789}, {"type": "ndcg_at_1000", "value": 63.219}, {"type": "ndcg_at_3", "value": 55.567}, {"type": "ndcg_at_5", "value": 57.008}, {"type": "precision_at_1", "value": 49.6}, {"type": "precision_at_10", "value": 6.819999999999999}, {"type": "precision_at_100", "value": 0.836}, {"type": "precision_at_1000", "value": 0.095}, {"type": "precision_at_3", "value": 19.900000000000002}, {"type": "precision_at_5", "value": 12.64}, {"type": "recall_at_1", "value": 49.6}, {"type": "recall_at_10", "value": 68.2}, {"type": "recall_at_100", "value": 83.6}, {"type": "recall_at_1000", "value": 95.3}, {"type": "recall_at_3", "value": 59.699999999999996}, {"type": "recall_at_5", "value": 63.2}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MultilingualSentiment", "type": "C-MTEB/MultilingualSentiment-classification", "config": "default", "split": "validation", "revision": "46958b007a63fdbf239b7672c25d0bea67b5ea1a"}, "metrics": [{"type": "accuracy", "value": 74.45666666666666}, {"type": "f1", "value": 74.32582402190089}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB Ocnli", "type": "C-MTEB/OCNLI", "config": "default", "split": "validation", "revision": "66e76a618a34d6d565d5538088562851e6daa7ec"}, "metrics": [{"type": "cos_sim_accuracy", "value": 80.67135896047645}, {"type": "cos_sim_ap", "value": 87.60421240712051}, {"type": "cos_sim_f1", "value": 82.1304131408661}, {"type": "cos_sim_precision", "value": 77.68361581920904}, {"type": "cos_sim_recall", "value": 87.11721224920802}, {"type": "dot_accuracy", "value": 79.04710341093666}, {"type": "dot_ap", "value": 85.6370059719336}, {"type": "dot_f1", "value": 80.763723150358}, {"type": "dot_precision", "value": 73.69337979094077}, {"type": "dot_recall", "value": 89.33474128827878}, {"type": "euclidean_accuracy", "value": 81.05035192203573}, {"type": "euclidean_ap", "value": 87.7880240053663}, {"type": "euclidean_f1", "value": 82.50244379276637}, {"type": "euclidean_precision", "value": 76.7970882620564}, {"type": "euclidean_recall", "value": 89.1235480464625}, {"type": "manhattan_accuracy", "value": 80.61721710882512}, {"type": "manhattan_ap", "value": 87.43568120591175}, {"type": "manhattan_f1", "value": 81.89526184538653}, {"type": "manhattan_precision", "value": 77.5992438563327}, {"type": "manhattan_recall", "value": 86.6948257655755}, {"type": "max_accuracy", "value": 81.05035192203573}, {"type": "max_ap", "value": 87.7880240053663}, {"type": "max_f1", "value": 82.50244379276637}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB OnlineShopping", "type": "C-MTEB/OnlineShopping-classification", "config": "default", "split": "test", "revision": "e610f2ebd179a8fda30ae534c3878750a96db120"}, "metrics": [{"type": "accuracy", "value": 93.5}, {"type": "ap", "value": 91.31357903446782}, {"type": "f1", "value": 93.48088994006616}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB PAWSX", "type": "C-MTEB/PAWSX", "config": "default", "split": "test", "revision": "9c6a90e430ac22b5779fb019a23e820b11a8b5e1"}, "metrics": [{"type": "cos_sim_pearson", "value": 36.93293453538077}, {"type": "cos_sim_spearman", "value": 42.45972506308574}, {"type": "euclidean_pearson", "value": 42.34945133152159}, {"type": "euclidean_spearman", "value": 42.331610303674644}, {"type": "manhattan_pearson", "value": 42.31455070249498}, {"type": "manhattan_spearman", "value": 42.19887982891834}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB QBQTC", "type": "C-MTEB/QBQTC", "config": "default", "split": "test", "revision": "790b0510dc52b1553e8c49f3d2afb48c0e5c48b7"}, "metrics": [{"type": "cos_sim_pearson", "value": 33.683290790043785}, {"type": "cos_sim_spearman", "value": 35.149171171202994}, {"type": "euclidean_pearson", "value": 32.33806561267862}, {"type": "euclidean_spearman", "value": 34.483576387347966}, {"type": "manhattan_pearson", "value": 32.47629754599608}, {"type": "manhattan_spearman", "value": 34.66434471867615}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (zh)", "type": "mteb/sts22-crosslingual-sts", "config": "zh", "split": "test", "revision": "eea2b4fe26a775864c896887d910b76a8098ad3f"}, "metrics": [{"type": "cos_sim_pearson", "value": 66.46322760516104}, {"type": "cos_sim_spearman", "value": 67.398478319726}, {"type": "euclidean_pearson", "value": 64.7223480293625}, {"type": "euclidean_spearman", "value": 66.83118568812951}, {"type": "manhattan_pearson", "value": 64.88440039828305}, {"type": "manhattan_spearman", "value": 66.80429458952257}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STSB", "type": "C-MTEB/STSB", "config": "default", "split": "test", "revision": "0cde68302b3541bb8b3c340dc0644b0b745b3dc0"}, "metrics": [{"type": "cos_sim_pearson", "value": 79.08991383232105}, {"type": "cos_sim_spearman", "value": 79.39715677296854}, {"type": "euclidean_pearson", "value": 78.63201279320496}, {"type": "euclidean_spearman", "value": 79.40262660785731}, {"type": "manhattan_pearson", "value": 78.98138363146906}, {"type": "manhattan_spearman", "value": 79.79968413014194}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB T2Reranking", "type": "C-MTEB/T2Reranking", "config": "default", "split": "dev", "revision": "76631901a18387f85eaa53e5450019b87ad58ef9"}, "metrics": [{"type": "map", "value": 67.43289278789972}, {"type": "mrr", "value": 77.53012460908535}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB T2Retrieval", "type": "C-MTEB/T2Retrieval", "config": "default", "split": "dev", "revision": "8731a845f1bf500a4f111cf1070785c793d10e64"}, "metrics": [{"type": "map_at_1", "value": 27.733999999999998}, {"type": "map_at_10", "value": 78.24799999999999}, {"type": "map_at_100", "value": 81.765}, {"type": "map_at_1000", "value": 81.824}, {"type": "map_at_3", "value": 54.92}, {"type": "map_at_5", "value": 67.61399999999999}, {"type": "mrr_at_1", "value": 90.527}, {"type": "mrr_at_10", "value": 92.843}, {"type": "mrr_at_100", "value": 92.927}, {"type": "mrr_at_1000", "value": 92.93}, {"type": "mrr_at_3", "value": 92.45100000000001}, {"type": "mrr_at_5", "value": 92.693}, {"type": "ndcg_at_1", "value": 90.527}, {"type": "ndcg_at_10", "value": 85.466}, {"type": "ndcg_at_100", "value": 88.846}, {"type": "ndcg_at_1000", "value": 89.415}, {"type": "ndcg_at_3", "value": 86.768}, {"type": "ndcg_at_5", "value": 85.46000000000001}, {"type": "precision_at_1", "value": 90.527}, {"type": "precision_at_10", "value": 42.488}, {"type": "precision_at_100", "value": 5.024}, {"type": "precision_at_1000", "value": 0.516}, {"type": "precision_at_3", "value": 75.907}, {"type": "precision_at_5", "value": 63.727000000000004}, {"type": "recall_at_1", "value": 27.733999999999998}, {"type": "recall_at_10", "value": 84.346}, {"type": "recall_at_100", "value": 95.536}, {"type": "recall_at_1000", "value": 98.42999999999999}, {"type": "recall_at_3", "value": 56.455}, {"type": "recall_at_5", "value": 70.755}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB TNews", "type": "C-MTEB/TNews-classification", "config": "default", "split": "validation", "revision": "317f262bf1e6126357bbe89e875451e4b0938fe4"}, "metrics": [{"type": "accuracy", "value": 49.952000000000005}, {"type": "f1", "value": 48.264617195258054}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ThuNewsClusteringP2P", "type": "C-MTEB/ThuNewsClusteringP2P", "config": "default", "split": "test", "revision": "5798586b105c0434e4f0fe5e767abe619442cf93"}, "metrics": [{"type": "v_measure", "value": 68.23769904483508}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ThuNewsClusteringS2S", "type": "C-MTEB/ThuNewsClusteringS2S", "config": "default", "split": "test", "revision": "8a8b2caeda43f39e13c4bc5bea0f8a667896e10d"}, "metrics": [{"type": "v_measure", "value": 62.50294403136556}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB VideoRetrieval", "type": "C-MTEB/VideoRetrieval", "config": "default", "split": "dev", "revision": "58c2597a5943a2ba48f4668c3b90d796283c5639"}, "metrics": [{"type": "map_at_1", "value": 54.0}, {"type": "map_at_10", "value": 63.668}, {"type": "map_at_100", "value": 64.217}, {"type": "map_at_1000", "value": 64.23100000000001}, {"type": "map_at_3", "value": 61.7}, {"type": "map_at_5", "value": 62.870000000000005}, {"type": "mrr_at_1", "value": 54.0}, {"type": "mrr_at_10", "value": 63.668}, {"type": "mrr_at_100", "value": 64.217}, {"type": "mrr_at_1000", "value": 64.23100000000001}, {"type": "mrr_at_3", "value": 61.7}, {"type": "mrr_at_5", "value": 62.870000000000005}, {"type": "ndcg_at_1", "value": 54.0}, {"type": "ndcg_at_10", "value": 68.11399999999999}, {"type": "ndcg_at_100", "value": 70.723}, {"type": "ndcg_at_1000", "value": 71.123}, {"type": "ndcg_at_3", "value": 64.074}, {"type": "ndcg_at_5", "value": 66.178}, {"type": "precision_at_1", "value": 54.0}, {"type": "precision_at_10", "value": 8.200000000000001}, {"type": "precision_at_100", "value": 0.941}, {"type": "precision_at_1000", "value": 0.097}, {"type": "precision_at_3", "value": 23.633000000000003}, {"type": "precision_at_5", "value": 15.2}, {"type": "recall_at_1", "value": 54.0}, {"type": "recall_at_10", "value": 82.0}, {"type": "recall_at_100", "value": 94.1}, {"type": "recall_at_1000", "value": 97.3}, {"type": "recall_at_3", "value": 70.89999999999999}, {"type": "recall_at_5", "value": 76.0}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB Waimai", "type": "C-MTEB/waimai-classification", "config": "default", "split": "test", "revision": "339287def212450dcaa9df8c22bf93e9980c7023"}, "metrics": [{"type": "accuracy", "value": 86.63000000000001}, {"type": "ap", "value": 69.99457882599567}, {"type": "f1", "value": 85.07735617998541}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB 8TagsClustering", "type": "PL-MTEB/8tags-clustering", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "v_measure", "value": 44.594104491193555}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AllegroReviews", "type": "PL-MTEB/allegro-reviews", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "accuracy", "value": 63.97614314115309}, {"type": "f1", "value": 52.15634261679283}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ArguAna-PL", "type": "clarin-knext/arguana-pl", "config": "default", "split": "test", "revision": "63fc86750af76253e8c760fc9e534bbf24d260a2"}, "metrics": [{"type": "map_at_1", "value": 32.646}, {"type": "map_at_10", "value": 47.963}, {"type": "map_at_100", "value": 48.789}, {"type": "map_at_1000", "value": 48.797000000000004}, {"type": "map_at_3", "value": 43.196}, {"type": "map_at_5", "value": 46.016}, {"type": "mrr_at_1", "value": 33.073}, {"type": "mrr_at_10", "value": 48.126000000000005}, {"type": "mrr_at_100", "value": 48.946}, {"type": "mrr_at_1000", "value": 48.953}, {"type": "mrr_at_3", "value": 43.374}, {"type": "mrr_at_5", "value": 46.147}, {"type": "ndcg_at_1", "value": 32.646}, {"type": "ndcg_at_10", "value": 56.481}, {"type": "ndcg_at_100", "value": 59.922}, {"type": "ndcg_at_1000", "value": 60.07}, {"type": "ndcg_at_3", "value": 46.675}, {"type": "ndcg_at_5", "value": 51.76500000000001}, {"type": "precision_at_1", "value": 32.646}, {"type": "precision_at_10", "value": 8.371}, {"type": "precision_at_100", "value": 0.9860000000000001}, {"type": "precision_at_1000", "value": 0.1}, {"type": "precision_at_3", "value": 18.919}, {"type": "precision_at_5", "value": 13.825999999999999}, {"type": "recall_at_1", "value": 32.646}, {"type": "recall_at_10", "value": 83.71300000000001}, {"type": "recall_at_100", "value": 98.578}, {"type": "recall_at_1000", "value": 99.644}, {"type": "recall_at_3", "value": 56.757000000000005}, {"type": "recall_at_5", "value": 69.132}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB CBD", "type": "PL-MTEB/cbd", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "accuracy", "value": 68.56}, {"type": "ap", "value": 23.310493680488513}, {"type": "f1", "value": 58.85369533105693}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB CDSC-E", "type": "PL-MTEB/cdsce-pairclassification", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "cos_sim_accuracy", "value": 88.5}, {"type": "cos_sim_ap", "value": 72.42140924378361}, {"type": "cos_sim_f1", "value": 66.0919540229885}, {"type": "cos_sim_precision", "value": 72.78481012658227}, {"type": "cos_sim_recall", "value": 60.526315789473685}, {"type": "dot_accuracy", "value": 88.5}, {"type": "dot_ap", "value": 72.42140924378361}, {"type": "dot_f1", "value": 66.0919540229885}, {"type": "dot_precision", "value": 72.78481012658227}, {"type": "dot_recall", "value": 60.526315789473685}, {"type": "euclidean_accuracy", "value": 88.5}, {"type": "euclidean_ap", "value": 72.42140924378361}, {"type": "euclidean_f1", "value": 66.0919540229885}, {"type": "euclidean_precision", "value": 72.78481012658227}, {"type": "euclidean_recall", "value": 60.526315789473685}, {"type": "manhattan_accuracy", "value": 88.5}, {"type": "manhattan_ap", "value": 72.49745515311696}, {"type": "manhattan_f1", "value": 66.0968660968661}, {"type": "manhattan_precision", "value": 72.04968944099379}, {"type": "manhattan_recall", "value": 61.05263157894737}, {"type": "max_accuracy", "value": 88.5}, {"type": "max_ap", "value": 72.49745515311696}, {"type": "max_f1", "value": 66.0968660968661}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB CDSC-R", "type": "PL-MTEB/cdscr-sts", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "cos_sim_pearson", "value": 90.32269765590145}, {"type": "cos_sim_spearman", "value": 89.73666311491672}, {"type": "euclidean_pearson", "value": 88.2933868516544}, {"type": "euclidean_spearman", "value": 89.73666311491672}, {"type": "manhattan_pearson", "value": 88.33474590219448}, {"type": "manhattan_spearman", "value": 89.8548364866583}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB DBPedia-PL", "type": "clarin-knext/dbpedia-pl", "config": "default", "split": "test", "revision": "76afe41d9af165cc40999fcaa92312b8b012064a"}, "metrics": [{"type": "map_at_1", "value": 7.632999999999999}, {"type": "map_at_10", "value": 16.426}, {"type": "map_at_100", "value": 22.651}, {"type": "map_at_1000", "value": 24.372}, {"type": "map_at_3", "value": 11.706}, {"type": "map_at_5", "value": 13.529}, {"type": "mrr_at_1", "value": 60.75000000000001}, {"type": "mrr_at_10", "value": 68.613}, {"type": "mrr_at_100", "value": 69.001}, {"type": "mrr_at_1000", "value": 69.021}, {"type": "mrr_at_3", "value": 67.0}, {"type": "mrr_at_5", "value": 67.925}, {"type": "ndcg_at_1", "value": 49.875}, {"type": "ndcg_at_10", "value": 36.978}, {"type": "ndcg_at_100", "value": 40.031}, {"type": "ndcg_at_1000", "value": 47.566}, {"type": "ndcg_at_3", "value": 41.148}, {"type": "ndcg_at_5", "value": 38.702}, {"type": "precision_at_1", "value": 60.75000000000001}, {"type": "precision_at_10", "value": 29.7}, {"type": "precision_at_100", "value": 9.278}, {"type": "precision_at_1000", "value": 2.099}, {"type": "precision_at_3", "value": 44.0}, {"type": "precision_at_5", "value": 37.6}, {"type": "recall_at_1", "value": 7.632999999999999}, {"type": "recall_at_10", "value": 22.040000000000003}, {"type": "recall_at_100", "value": 44.024}, {"type": "recall_at_1000", "value": 67.848}, {"type": "recall_at_3", "value": 13.093}, {"type": "recall_at_5", "value": 15.973}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB FiQA-PL", "type": "clarin-knext/fiqa-pl", "config": "default", "split": "test", "revision": "2e535829717f8bf9dc829b7f911cc5bbd4e6608e"}, "metrics": [{"type": "map_at_1", "value": 15.473}, {"type": "map_at_10", "value": 24.579}, {"type": "map_at_100", "value": 26.387}, {"type": "map_at_1000", "value": 26.57}, {"type": "map_at_3", "value": 21.278}, {"type": "map_at_5", "value": 23.179}, {"type": "mrr_at_1", "value": 30.709999999999997}, {"type": "mrr_at_10", "value": 38.994}, {"type": "mrr_at_100", "value": 39.993}, {"type": "mrr_at_1000", "value": 40.044999999999995}, {"type": "mrr_at_3", "value": 36.342999999999996}, {"type": "mrr_at_5", "value": 37.846999999999994}, {"type": "ndcg_at_1", "value": 30.709999999999997}, {"type": "ndcg_at_10", "value": 31.608999999999998}, {"type": "ndcg_at_100", "value": 38.807}, {"type": "ndcg_at_1000", "value": 42.208}, {"type": "ndcg_at_3", "value": 28.086}, {"type": "ndcg_at_5", "value": 29.323}, {"type": "precision_at_1", "value": 30.709999999999997}, {"type": "precision_at_10", "value": 8.688}, {"type": "precision_at_100", "value": 1.608}, {"type": "precision_at_1000", "value": 0.22100000000000003}, {"type": "precision_at_3", "value": 18.724}, {"type": "precision_at_5", "value": 13.950999999999999}, {"type": "recall_at_1", "value": 15.473}, {"type": "recall_at_10", "value": 38.361000000000004}, {"type": "recall_at_100", "value": 65.2}, {"type": "recall_at_1000", "value": 85.789}, {"type": "recall_at_3", "value": 25.401}, {"type": "recall_at_5", "value": 30.875999999999998}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB HotpotQA-PL", "type": "clarin-knext/hotpotqa-pl", "config": "default", "split": "test", "revision": "a0bd479ac97b4ccb5bd6ce320c415d0bb4beb907"}, "metrics": [{"type": "map_at_1", "value": 38.096000000000004}, {"type": "map_at_10", "value": 51.44499999999999}, {"type": "map_at_100", "value": 52.325}, {"type": "map_at_1000", "value": 52.397000000000006}, {"type": "map_at_3", "value": 48.626999999999995}, {"type": "map_at_5", "value": 50.342}, {"type": "mrr_at_1", "value": 76.19200000000001}, {"type": "mrr_at_10", "value": 81.191}, {"type": "mrr_at_100", "value": 81.431}, {"type": "mrr_at_1000", "value": 81.443}, {"type": "mrr_at_3", "value": 80.30199999999999}, {"type": "mrr_at_5", "value": 80.85900000000001}, {"type": "ndcg_at_1", "value": 76.19200000000001}, {"type": "ndcg_at_10", "value": 60.9}, {"type": "ndcg_at_100", "value": 64.14699999999999}, {"type": "ndcg_at_1000", "value": 65.647}, {"type": "ndcg_at_3", "value": 56.818000000000005}, {"type": "ndcg_at_5", "value": 59.019999999999996}, {"type": "precision_at_1", "value": 76.19200000000001}, {"type": "precision_at_10", "value": 12.203}, {"type": "precision_at_100", "value": 1.478}, {"type": "precision_at_1000", "value": 0.168}, {"type": "precision_at_3", "value": 34.616}, {"type": "precision_at_5", "value": 22.515}, {"type": "recall_at_1", "value": 38.096000000000004}, {"type": "recall_at_10", "value": 61.013}, {"type": "recall_at_100", "value": 73.90299999999999}, {"type": "recall_at_1000", "value": 83.91}, {"type": "recall_at_3", "value": 51.92400000000001}, {"type": "recall_at_5", "value": 56.286}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB MSMARCO-PL", "type": "clarin-knext/msmarco-pl", "config": "default", "split": "test", "revision": "8634c07806d5cce3a6138e260e59b81760a0a640"}, "metrics": [{"type": "map_at_1", "value": 1.548}, {"type": "map_at_10", "value": 11.049000000000001}, {"type": "map_at_100", "value": 28.874}, {"type": "map_at_1000", "value": 34.931}, {"type": "map_at_3", "value": 4.162}, {"type": "map_at_5", "value": 6.396}, {"type": "mrr_at_1", "value": 90.69800000000001}, {"type": "mrr_at_10", "value": 92.093}, {"type": "mrr_at_100", "value": 92.345}, {"type": "mrr_at_1000", "value": 92.345}, {"type": "mrr_at_3", "value": 91.86}, {"type": "mrr_at_5", "value": 91.86}, {"type": "ndcg_at_1", "value": 74.031}, {"type": "ndcg_at_10", "value": 63.978}, {"type": "ndcg_at_100", "value": 53.101}, {"type": "ndcg_at_1000", "value": 60.675999999999995}, {"type": "ndcg_at_3", "value": 71.421}, {"type": "ndcg_at_5", "value": 68.098}, {"type": "precision_at_1", "value": 90.69800000000001}, {"type": "precision_at_10", "value": 71.86}, {"type": "precision_at_100", "value": 31.395}, {"type": "precision_at_1000", "value": 5.981}, {"type": "precision_at_3", "value": 84.49600000000001}, {"type": "precision_at_5", "value": 79.07}, {"type": "recall_at_1", "value": 1.548}, {"type": "recall_at_10", "value": 12.149000000000001}, {"type": "recall_at_100", "value": 40.794999999999995}, {"type": "recall_at_1000", "value": 67.974}, {"type": "recall_at_3", "value": 4.244}, {"type": "recall_at_5", "value": 6.608}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (pl)", "type": "mteb/amazon_massive_intent", "config": "pl", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 73.55413584398119}, {"type": "f1", "value": 69.65610882318181}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (pl)", "type": "mteb/amazon_massive_scenario", "config": "pl", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 76.37188971082716}, {"type": "f1", "value": 75.64847309941361}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB NFCorpus-PL", "type": "clarin-knext/nfcorpus-pl", "config": "default", "split": "test", "revision": "9a6f9567fda928260afed2de480d79c98bf0bec0"}, "metrics": [{"type": "map_at_1", "value": 4.919}, {"type": "map_at_10", "value": 10.834000000000001}, {"type": "map_at_100", "value": 13.38}, {"type": "map_at_1000", "value": 14.581}, {"type": "map_at_3", "value": 8.198}, {"type": "map_at_5", "value": 9.428}, {"type": "mrr_at_1", "value": 41.176}, {"type": "mrr_at_10", "value": 50.083}, {"type": "mrr_at_100", "value": 50.559}, {"type": "mrr_at_1000", "value": 50.604000000000006}, {"type": "mrr_at_3", "value": 47.936}, {"type": "mrr_at_5", "value": 49.407000000000004}, {"type": "ndcg_at_1", "value": 39.628}, {"type": "ndcg_at_10", "value": 30.098000000000003}, {"type": "ndcg_at_100", "value": 27.061}, {"type": "ndcg_at_1000", "value": 35.94}, {"type": "ndcg_at_3", "value": 35.135}, {"type": "ndcg_at_5", "value": 33.335}, {"type": "precision_at_1", "value": 41.176}, {"type": "precision_at_10", "value": 22.259999999999998}, {"type": "precision_at_100", "value": 6.712}, {"type": "precision_at_1000", "value": 1.9060000000000001}, {"type": "precision_at_3", "value": 33.23}, {"type": "precision_at_5", "value": 29.04}, {"type": "recall_at_1", "value": 4.919}, {"type": "recall_at_10", "value": 14.196}, {"type": "recall_at_100", "value": 26.948}, {"type": "recall_at_1000", "value": 59.211000000000006}, {"type": "recall_at_3", "value": 9.44}, {"type": "recall_at_5", "value": 11.569}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB NQ-PL", "type": "clarin-knext/nq-pl", "config": "default", "split": "test", "revision": "f171245712cf85dd4700b06bef18001578d0ca8d"}, "metrics": [{"type": "map_at_1", "value": 25.35}, {"type": "map_at_10", "value": 37.884}, {"type": "map_at_100", "value": 38.955}, {"type": "map_at_1000", "value": 39.007999999999996}, {"type": "map_at_3", "value": 34.239999999999995}, {"type": "map_at_5", "value": 36.398}, {"type": "mrr_at_1", "value": 28.737000000000002}, {"type": "mrr_at_10", "value": 39.973}, {"type": "mrr_at_100", "value": 40.844}, {"type": "mrr_at_1000", "value": 40.885}, {"type": "mrr_at_3", "value": 36.901}, {"type": "mrr_at_5", "value": 38.721}, {"type": "ndcg_at_1", "value": 28.708}, {"type": "ndcg_at_10", "value": 44.204}, {"type": "ndcg_at_100", "value": 48.978}, {"type": "ndcg_at_1000", "value": 50.33}, {"type": "ndcg_at_3", "value": 37.36}, {"type": "ndcg_at_5", "value": 40.912}, {"type": "precision_at_1", "value": 28.708}, {"type": "precision_at_10", "value": 7.367}, {"type": "precision_at_100", "value": 1.0030000000000001}, {"type": "precision_at_1000", "value": 0.11299999999999999}, {"type": "precision_at_3", "value": 17.034}, {"type": "precision_at_5", "value": 12.293999999999999}, {"type": "recall_at_1", "value": 25.35}, {"type": "recall_at_10", "value": 61.411}, {"type": "recall_at_100", "value": 82.599}, {"type": "recall_at_1000", "value": 92.903}, {"type": "recall_at_3", "value": 43.728}, {"type": "recall_at_5", "value": 51.854}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB PAC", "type": "laugustyniak/abusive-clauses-pl", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "accuracy", "value": 69.04141326382856}, {"type": "ap", "value": 77.49422763833996}, {"type": "f1", "value": 66.73472657783407}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB PPC", "type": "PL-MTEB/ppc-pairclassification", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "cos_sim_accuracy", "value": 81.0}, {"type": "cos_sim_ap", "value": 91.47194213011349}, {"type": "cos_sim_f1", "value": 84.73767885532592}, {"type": "cos_sim_precision", "value": 81.49847094801224}, {"type": "cos_sim_recall", "value": 88.24503311258279}, {"type": "dot_accuracy", "value": 81.0}, {"type": "dot_ap", "value": 91.47194213011349}, {"type": "dot_f1", "value": 84.73767885532592}, {"type": "dot_precision", "value": 81.49847094801224}, {"type": "dot_recall", "value": 88.24503311258279}, {"type": "euclidean_accuracy", "value": 81.0}, {"type": "euclidean_ap", "value": 91.47194213011349}, {"type": "euclidean_f1", "value": 84.73767885532592}, {"type": "euclidean_precision", "value": 81.49847094801224}, {"type": "euclidean_recall", "value": 88.24503311258279}, {"type": "manhattan_accuracy", "value": 81.0}, {"type": "manhattan_ap", "value": 91.46464475050571}, {"type": "manhattan_f1", "value": 84.48687350835321}, {"type": "manhattan_precision", "value": 81.31699846860643}, {"type": "manhattan_recall", "value": 87.91390728476821}, {"type": "max_accuracy", "value": 81.0}, {"type": "max_ap", "value": 91.47194213011349}, {"type": "max_f1", "value": 84.73767885532592}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB PSC", "type": "PL-MTEB/psc-pairclassification", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "cos_sim_accuracy", "value": 97.6808905380334}, {"type": "cos_sim_ap", "value": 99.27948611836348}, {"type": "cos_sim_f1", "value": 96.15975422427034}, {"type": "cos_sim_precision", "value": 96.90402476780186}, {"type": "cos_sim_recall", "value": 95.42682926829268}, {"type": "dot_accuracy", "value": 97.6808905380334}, {"type": "dot_ap", "value": 99.2794861183635}, {"type": "dot_f1", "value": 96.15975422427034}, {"type": "dot_precision", "value": 96.90402476780186}, {"type": "dot_recall", "value": 95.42682926829268}, {"type": "euclidean_accuracy", "value": 97.6808905380334}, {"type": "euclidean_ap", "value": 99.2794861183635}, {"type": "euclidean_f1", "value": 96.15975422427034}, {"type": "euclidean_precision", "value": 96.90402476780186}, {"type": "euclidean_recall", "value": 95.42682926829268}, {"type": "manhattan_accuracy", "value": 97.6808905380334}, {"type": "manhattan_ap", "value": 99.28715055268721}, {"type": "manhattan_f1", "value": 96.14791987673343}, {"type": "manhattan_precision", "value": 97.19626168224299}, {"type": "manhattan_recall", "value": 95.1219512195122}, {"type": "max_accuracy", "value": 97.6808905380334}, {"type": "max_ap", "value": 99.28715055268721}, {"type": "max_f1", "value": 96.15975422427034}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB PolEmo2.0-IN", "type": "PL-MTEB/polemo2_in", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "accuracy", "value": 86.16343490304708}, {"type": "f1", "value": 83.3442579486744}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB PolEmo2.0-OUT", "type": "PL-MTEB/polemo2_out", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "accuracy", "value": 68.40080971659918}, {"type": "f1", "value": 53.13720751142237}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB Quora-PL", "type": "clarin-knext/quora-pl", "config": "default", "split": "test", "revision": "0be27e93455051e531182b85e85e425aba12e9d4"}, "metrics": [{"type": "map_at_1", "value": 63.322}, {"type": "map_at_10", "value": 76.847}, {"type": "map_at_100", "value": 77.616}, {"type": "map_at_1000", "value": 77.644}, {"type": "map_at_3", "value": 73.624}, {"type": "map_at_5", "value": 75.603}, {"type": "mrr_at_1", "value": 72.88}, {"type": "mrr_at_10", "value": 80.376}, {"type": "mrr_at_100", "value": 80.604}, {"type": "mrr_at_1000", "value": 80.61}, {"type": "mrr_at_3", "value": 78.92}, {"type": "mrr_at_5", "value": 79.869}, {"type": "ndcg_at_1", "value": 72.89999999999999}, {"type": "ndcg_at_10", "value": 81.43}, {"type": "ndcg_at_100", "value": 83.394}, {"type": "ndcg_at_1000", "value": 83.685}, {"type": "ndcg_at_3", "value": 77.62599999999999}, {"type": "ndcg_at_5", "value": 79.656}, {"type": "precision_at_1", "value": 72.89999999999999}, {"type": "precision_at_10", "value": 12.548}, {"type": "precision_at_100", "value": 1.4869999999999999}, {"type": "precision_at_1000", "value": 0.155}, {"type": "precision_at_3", "value": 34.027}, {"type": "precision_at_5", "value": 22.654}, {"type": "recall_at_1", "value": 63.322}, {"type": "recall_at_10", "value": 90.664}, {"type": "recall_at_100", "value": 97.974}, {"type": "recall_at_1000", "value": 99.636}, {"type": "recall_at_3", "value": 80.067}, {"type": "recall_at_5", "value": 85.526}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB SCIDOCS-PL", "type": "clarin-knext/scidocs-pl", "config": "default", "split": "test", "revision": "45452b03f05560207ef19149545f168e596c9337"}, "metrics": [{"type": "map_at_1", "value": 3.95}, {"type": "map_at_10", "value": 9.658999999999999}, {"type": "map_at_100", "value": 11.384}, {"type": "map_at_1000", "value": 11.677}, {"type": "map_at_3", "value": 7.055}, {"type": "map_at_5", "value": 8.244}, {"type": "mrr_at_1", "value": 19.5}, {"type": "mrr_at_10", "value": 28.777}, {"type": "mrr_at_100", "value": 29.936}, {"type": "mrr_at_1000", "value": 30.009999999999998}, {"type": "mrr_at_3", "value": 25.55}, {"type": "mrr_at_5", "value": 27.284999999999997}, {"type": "ndcg_at_1", "value": 19.5}, {"type": "ndcg_at_10", "value": 16.589000000000002}, {"type": "ndcg_at_100", "value": 23.879}, {"type": "ndcg_at_1000", "value": 29.279}, {"type": "ndcg_at_3", "value": 15.719}, {"type": "ndcg_at_5", "value": 13.572000000000001}, {"type": "precision_at_1", "value": 19.5}, {"type": "precision_at_10", "value": 8.62}, {"type": "precision_at_100", "value": 1.924}, {"type": "precision_at_1000", "value": 0.322}, {"type": "precision_at_3", "value": 14.6}, {"type": "precision_at_5", "value": 11.78}, {"type": "recall_at_1", "value": 3.95}, {"type": "recall_at_10", "value": 17.477999999999998}, {"type": "recall_at_100", "value": 38.99}, {"type": "recall_at_1000", "value": 65.417}, {"type": "recall_at_3", "value": 8.883000000000001}, {"type": "recall_at_5", "value": 11.933}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB SICK-E-PL", "type": "PL-MTEB/sicke-pl-pairclassification", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "cos_sim_accuracy", "value": 83.48960456583775}, {"type": "cos_sim_ap", "value": 76.31522115825375}, {"type": "cos_sim_f1", "value": 70.35573122529645}, {"type": "cos_sim_precision", "value": 70.9934735315446}, {"type": "cos_sim_recall", "value": 69.72934472934473}, {"type": "dot_accuracy", "value": 83.48960456583775}, {"type": "dot_ap", "value": 76.31522115825373}, {"type": "dot_f1", "value": 70.35573122529645}, {"type": "dot_precision", "value": 70.9934735315446}, {"type": "dot_recall", "value": 69.72934472934473}, {"type": "euclidean_accuracy", "value": 83.48960456583775}, {"type": "euclidean_ap", "value": 76.31522115825373}, {"type": "euclidean_f1", "value": 70.35573122529645}, {"type": "euclidean_precision", "value": 70.9934735315446}, {"type": "euclidean_recall", "value": 69.72934472934473}, {"type": "manhattan_accuracy", "value": 83.46922136159804}, {"type": "manhattan_ap", "value": 76.18474601388084}, {"type": "manhattan_f1", "value": 70.34779490856937}, {"type": "manhattan_precision", "value": 70.83032490974729}, {"type": "manhattan_recall", "value": 69.87179487179486}, {"type": "max_accuracy", "value": 83.48960456583775}, {"type": "max_ap", "value": 76.31522115825375}, {"type": "max_f1", "value": 70.35573122529645}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB SICK-R-PL", "type": "PL-MTEB/sickr-pl-sts", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "cos_sim_pearson", "value": 77.95374883876302}, {"type": "cos_sim_spearman", "value": 73.77630219171942}, {"type": "euclidean_pearson", "value": 75.81927069594934}, {"type": "euclidean_spearman", "value": 73.7763211303831}, {"type": "manhattan_pearson", "value": 76.03126859057528}, {"type": "manhattan_spearman", "value": 73.96528138013369}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (pl)", "type": "mteb/sts22-crosslingual-sts", "config": "pl", "split": "test", "revision": "eea2b4fe26a775864c896887d910b76a8098ad3f"}, "metrics": [{"type": "cos_sim_pearson", "value": 37.388282764841826}, {"type": "cos_sim_spearman", "value": 40.83477184710897}, {"type": "euclidean_pearson", "value": 26.754737044177805}, {"type": "euclidean_spearman", "value": 40.83477184710897}, {"type": "manhattan_pearson", "value": 26.760453110872458}, {"type": "manhattan_spearman", "value": 41.034477441383856}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB SciFact-PL", "type": "clarin-knext/scifact-pl", "config": "default", "split": "test", "revision": "47932a35f045ef8ed01ba82bf9ff67f6e109207e"}, "metrics": [{"type": "map_at_1", "value": 49.15}, {"type": "map_at_10", "value": 61.690999999999995}, {"type": "map_at_100", "value": 62.348000000000006}, {"type": "map_at_1000", "value": 62.38}, {"type": "map_at_3", "value": 58.824}, {"type": "map_at_5", "value": 60.662000000000006}, {"type": "mrr_at_1", "value": 51.333}, {"type": "mrr_at_10", "value": 62.731}, {"type": "mrr_at_100", "value": 63.245}, {"type": "mrr_at_1000", "value": 63.275000000000006}, {"type": "mrr_at_3", "value": 60.667}, {"type": "mrr_at_5", "value": 61.93300000000001}, {"type": "ndcg_at_1", "value": 51.333}, {"type": "ndcg_at_10", "value": 67.168}, {"type": "ndcg_at_100", "value": 69.833}, {"type": "ndcg_at_1000", "value": 70.56700000000001}, {"type": "ndcg_at_3", "value": 62.40599999999999}, {"type": "ndcg_at_5", "value": 65.029}, {"type": "precision_at_1", "value": 51.333}, {"type": "precision_at_10", "value": 9.333}, {"type": "precision_at_100", "value": 1.0699999999999998}, {"type": "precision_at_1000", "value": 0.11299999999999999}, {"type": "precision_at_3", "value": 25.333}, {"type": "precision_at_5", "value": 17.067}, {"type": "recall_at_1", "value": 49.15}, {"type": "recall_at_10", "value": 82.533}, {"type": "recall_at_100", "value": 94.167}, {"type": "recall_at_1000", "value": 99.667}, {"type": "recall_at_3", "value": 69.917}, {"type": "recall_at_5", "value": 76.356}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB TRECCOVID-PL", "type": "clarin-knext/trec-covid-pl", "config": "default", "split": "test", "revision": "81bcb408f33366c2a20ac54adafad1ae7e877fdd"}, "metrics": [{"type": "map_at_1", "value": 0.261}, {"type": "map_at_10", "value": 2.1260000000000003}, {"type": "map_at_100", "value": 12.171999999999999}, {"type": "map_at_1000", "value": 26.884999999999998}, {"type": "map_at_3", "value": 0.695}, {"type": "map_at_5", "value": 1.134}, {"type": "mrr_at_1", "value": 96.0}, {"type": "mrr_at_10", "value": 96.952}, {"type": "mrr_at_100", "value": 96.952}, {"type": "mrr_at_1000", "value": 96.952}, {"type": "mrr_at_3", "value": 96.667}, {"type": "mrr_at_5", "value": 96.667}, {"type": "ndcg_at_1", "value": 92.0}, {"type": "ndcg_at_10", "value": 81.193}, {"type": "ndcg_at_100", "value": 61.129}, {"type": "ndcg_at_1000", "value": 51.157}, {"type": "ndcg_at_3", "value": 85.693}, {"type": "ndcg_at_5", "value": 84.129}, {"type": "precision_at_1", "value": 96.0}, {"type": "precision_at_10", "value": 85.39999999999999}, {"type": "precision_at_100", "value": 62.03999999999999}, {"type": "precision_at_1000", "value": 22.224}, {"type": "precision_at_3", "value": 88.0}, {"type": "precision_at_5", "value": 88.0}, {"type": "recall_at_1", "value": 0.261}, {"type": "recall_at_10", "value": 2.262}, {"type": "recall_at_100", "value": 14.981}, {"type": "recall_at_1000", "value": 46.837}, {"type": "recall_at_3", "value": 0.703}, {"type": "recall_at_5", "value": 1.172}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB AlloProfClusteringP2P", "type": "lyon-nlp/alloprof", "config": "default", "split": "test", "revision": "392ba3f5bcc8c51f578786c1fc3dae648662cb9b"}, "metrics": [{"type": "v_measure", "value": 70.55290063940157}, {"type": "v_measure", "value": 55.41500719337263}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB AlloprofReranking", "type": "lyon-nlp/mteb-fr-reranking-alloprof-s2p", "config": "default", "split": "test", "revision": "666fdacebe0291776e86f29345663dfaf80a0db9"}, "metrics": [{"type": "map", "value": 73.48697375332002}, {"type": "mrr", "value": 75.01836585523822}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB AlloprofRetrieval", "type": "lyon-nlp/alloprof", "config": "default", "split": "test", "revision": "392ba3f5bcc8c51f578786c1fc3dae648662cb9b"}, "metrics": [{"type": "map_at_1", "value": 38.454}, {"type": "map_at_10", "value": 51.605000000000004}, {"type": "map_at_100", "value": 52.653000000000006}, {"type": "map_at_1000", "value": 52.697}, {"type": "map_at_3", "value": 48.304}, {"type": "map_at_5", "value": 50.073}, {"type": "mrr_at_1", "value": 43.307}, {"type": "mrr_at_10", "value": 54.400000000000006}, {"type": "mrr_at_100", "value": 55.147999999999996}, {"type": "mrr_at_1000", "value": 55.174}, {"type": "mrr_at_3", "value": 51.77}, {"type": "mrr_at_5", "value": 53.166999999999994}, {"type": "ndcg_at_1", "value": 43.307}, {"type": "ndcg_at_10", "value": 57.891000000000005}, {"type": "ndcg_at_100", "value": 62.161}, {"type": "ndcg_at_1000", "value": 63.083}, {"type": "ndcg_at_3", "value": 51.851}, {"type": "ndcg_at_5", "value": 54.605000000000004}, {"type": "precision_at_1", "value": 43.307}, {"type": "precision_at_10", "value": 9.033}, {"type": "precision_at_100", "value": 1.172}, {"type": "precision_at_1000", "value": 0.127}, {"type": "precision_at_3", "value": 22.798}, {"type": "precision_at_5", "value": 15.492}, {"type": "recall_at_1", "value": 38.454}, {"type": "recall_at_10", "value": 74.166}, {"type": "recall_at_100", "value": 92.43599999999999}, {"type": "recall_at_1000", "value": 99.071}, {"type": "recall_at_3", "value": 58.087}, {"type": "recall_at_5", "value": 64.568}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonReviewsClassification (fr)", "type": "mteb/amazon_reviews_multi", "config": "fr", "split": "test", "revision": "1399c76144fd37290681b995c656ef9b2e06e26d"}, "metrics": [{"type": "accuracy", "value": 53.474}, {"type": "f1", "value": 50.38275392350236}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB BSARDRetrieval", "type": "maastrichtlawtech/bsard", "config": "default", "split": "test", "revision": "5effa1b9b5fa3b0f9e12523e6e43e5f86a6e6d59"}, "metrics": [{"type": "map_at_1", "value": 2.252}, {"type": "map_at_10", "value": 4.661}, {"type": "map_at_100", "value": 5.271}, {"type": "map_at_1000", "value": 5.3629999999999995}, {"type": "map_at_3", "value": 3.604}, {"type": "map_at_5", "value": 4.3020000000000005}, {"type": "mrr_at_1", "value": 2.252}, {"type": "mrr_at_10", "value": 4.661}, {"type": "mrr_at_100", "value": 5.271}, {"type": "mrr_at_1000", "value": 5.3629999999999995}, {"type": "mrr_at_3", "value": 3.604}, {"type": "mrr_at_5", "value": 4.3020000000000005}, {"type": "ndcg_at_1", "value": 2.252}, {"type": "ndcg_at_10", "value": 6.3020000000000005}, {"type": "ndcg_at_100", "value": 10.342}, {"type": "ndcg_at_1000", "value": 13.475999999999999}, {"type": "ndcg_at_3", "value": 4.0649999999999995}, {"type": "ndcg_at_5", "value": 5.344}, {"type": "precision_at_1", "value": 2.252}, {"type": "precision_at_10", "value": 1.171}, {"type": "precision_at_100", "value": 0.333}, {"type": "precision_at_1000", "value": 0.059000000000000004}, {"type": "precision_at_3", "value": 1.802}, {"type": "precision_at_5", "value": 1.712}, {"type": "recall_at_1", "value": 2.252}, {"type": "recall_at_10", "value": 11.712}, {"type": "recall_at_100", "value": 33.333}, {"type": "recall_at_1000", "value": 59.458999999999996}, {"type": "recall_at_3", "value": 5.405}, {"type": "recall_at_5", "value": 8.559}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB HALClusteringS2S", "type": "lyon-nlp/clustering-hal-s2s", "config": "default", "split": "test", "revision": "e06ebbbb123f8144bef1a5d18796f3dec9ae2915"}, "metrics": [{"type": "v_measure", "value": 28.301882091023288}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MLSUMClusteringP2P", "type": "mlsum", "config": "default", "split": "test", "revision": "b5d54f8f3b61ae17845046286940f03c6bc79bc7"}, "metrics": [{"type": "v_measure", "value": 45.26992995191701}, {"type": "v_measure", "value": 42.773174876871145}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPDomainClassification (fr)", "type": "mteb/mtop_domain", "config": "fr", "split": "test", "revision": "d80d48c1eb48d3562165c59d59d0034df9fff0bf"}, "metrics": [{"type": "accuracy", "value": 93.47635452552458}, {"type": "f1", "value": 93.19922617577213}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPIntentClassification (fr)", "type": "mteb/mtop_intent", "config": "fr", "split": "test", "revision": "ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba"}, "metrics": [{"type": "accuracy", "value": 80.2317569683683}, {"type": "f1", "value": 56.18060418621901}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MasakhaNEWSClassification (fra)", "type": "masakhane/masakhanews", "config": "fra", "split": "test", "revision": "8ccc72e69e65f40c70e117d8b3c08306bb788b60"}, "metrics": [{"type": "accuracy", "value": 85.18957345971565}, {"type": "f1", "value": 80.829981537394}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MasakhaNEWSClusteringP2P (fra)", "type": "masakhane/masakhanews", "config": "fra", "split": "test", "revision": "8ccc72e69e65f40c70e117d8b3c08306bb788b60"}, "metrics": [{"type": "v_measure", "value": 71.04138999801822}, {"type": "v_measure", "value": 71.7056263158008}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (fr)", "type": "mteb/amazon_massive_intent", "config": "fr", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 76.65097511768661}, {"type": "f1", "value": 73.82441070598712}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (fr)", "type": "mteb/amazon_massive_scenario", "config": "fr", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 79.09885675857431}, {"type": "f1", "value": 78.28407777434224}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB MintakaRetrieval (fr)", "type": "jinaai/mintakaqa", "config": "fr", "split": "test", "revision": "efa78cc2f74bbcd21eff2261f9e13aebe40b814e"}, "metrics": [{"type": "map_at_1", "value": 25.307000000000002}, {"type": "map_at_10", "value": 36.723}, {"type": "map_at_100", "value": 37.713}, {"type": "map_at_1000", "value": 37.769000000000005}, {"type": "map_at_3", "value": 33.77}, {"type": "map_at_5", "value": 35.463}, {"type": "mrr_at_1", "value": 25.307000000000002}, {"type": "mrr_at_10", "value": 36.723}, {"type": "mrr_at_100", "value": 37.713}, {"type": "mrr_at_1000", "value": 37.769000000000005}, {"type": "mrr_at_3", "value": 33.77}, {"type": "mrr_at_5", "value": 35.463}, {"type": "ndcg_at_1", "value": 25.307000000000002}, {"type": "ndcg_at_10", "value": 42.559999999999995}, {"type": "ndcg_at_100", "value": 47.457}, {"type": "ndcg_at_1000", "value": 49.162}, {"type": "ndcg_at_3", "value": 36.461}, {"type": "ndcg_at_5", "value": 39.504}, {"type": "precision_at_1", "value": 25.307000000000002}, {"type": "precision_at_10", "value": 6.106}, {"type": "precision_at_100", "value": 0.8420000000000001}, {"type": "precision_at_1000", "value": 0.098}, {"type": "precision_at_3", "value": 14.741999999999999}, {"type": "precision_at_5", "value": 10.319}, {"type": "recall_at_1", "value": 25.307000000000002}, {"type": "recall_at_10", "value": 61.056999999999995}, {"type": "recall_at_100", "value": 84.152}, {"type": "recall_at_1000", "value": 98.03399999999999}, {"type": "recall_at_3", "value": 44.226}, {"type": "recall_at_5", "value": 51.597}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB OpusparcusPC (fr)", "type": "GEM/opusparcus", "config": "fr", "split": "test", "revision": "9e9b1f8ef51616073f47f306f7f47dd91663f86a"}, "metrics": [{"type": "cos_sim_accuracy", "value": 99.90069513406156}, {"type": "cos_sim_ap", "value": 100.0}, {"type": "cos_sim_f1", "value": 99.95032290114257}, {"type": "cos_sim_precision", "value": 100.0}, {"type": "cos_sim_recall", "value": 99.90069513406156}, {"type": "dot_accuracy", "value": 99.90069513406156}, {"type": "dot_ap", "value": 100.0}, {"type": "dot_f1", "value": 99.95032290114257}, {"type": "dot_precision", "value": 100.0}, {"type": "dot_recall", "value": 99.90069513406156}, {"type": "euclidean_accuracy", "value": 99.90069513406156}, {"type": "euclidean_ap", "value": 100.0}, {"type": "euclidean_f1", "value": 99.95032290114257}, {"type": "euclidean_precision", "value": 100.0}, {"type": "euclidean_recall", "value": 99.90069513406156}, {"type": "manhattan_accuracy", "value": 99.90069513406156}, {"type": "manhattan_ap", "value": 100.0}, {"type": "manhattan_f1", "value": 99.95032290114257}, {"type": "manhattan_precision", "value": 100.0}, {"type": "manhattan_recall", "value": 99.90069513406156}, {"type": "max_accuracy", "value": 99.90069513406156}, {"type": "max_ap", "value": 100.0}, {"type": "max_f1", "value": 99.95032290114257}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB PawsX (fr)", "type": "paws-x", "config": "fr", "split": "test", "revision": "8a04d940a42cd40658986fdd8e3da561533a3646"}, "metrics": [{"type": "cos_sim_accuracy", "value": 70.8}, {"type": "cos_sim_ap", "value": 73.7671529695957}, {"type": "cos_sim_f1", "value": 68.80964339527875}, {"type": "cos_sim_precision", "value": 62.95955882352941}, {"type": "cos_sim_recall", "value": 75.85825027685493}, {"type": "dot_accuracy", "value": 70.8}, {"type": "dot_ap", "value": 73.78345265366947}, {"type": "dot_f1", "value": 68.80964339527875}, {"type": "dot_precision", "value": 62.95955882352941}, {"type": "dot_recall", "value": 75.85825027685493}, {"type": "euclidean_accuracy", "value": 70.8}, {"type": "euclidean_ap", "value": 73.7671529695957}, {"type": "euclidean_f1", "value": 68.80964339527875}, {"type": "euclidean_precision", "value": 62.95955882352941}, {"type": "euclidean_recall", "value": 75.85825027685493}, {"type": "manhattan_accuracy", "value": 70.75}, {"type": "manhattan_ap", "value": 73.78996383615953}, {"type": "manhattan_f1", "value": 68.79432624113475}, {"type": "manhattan_precision", "value": 63.39869281045751}, {"type": "manhattan_recall", "value": 75.1937984496124}, {"type": "max_accuracy", "value": 70.8}, {"type": "max_ap", "value": 73.78996383615953}, {"type": "max_f1", "value": 68.80964339527875}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB SICKFr", "type": "Lajavaness/SICK-fr", "config": "default", "split": "test", "revision": "e077ab4cf4774a1e36d86d593b150422fafd8e8a"}, "metrics": [{"type": "cos_sim_pearson", "value": 84.03253762760392}, {"type": "cos_sim_spearman", "value": 79.68280105762004}, {"type": "euclidean_pearson", "value": 80.98265050044444}, {"type": "euclidean_spearman", "value": 79.68233242682867}, {"type": "manhattan_pearson", "value": 80.9678911810704}, {"type": "manhattan_spearman", "value": 79.70264097683109}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (fr)", "type": "mteb/sts22-crosslingual-sts", "config": "fr", "split": "test", "revision": "eea2b4fe26a775864c896887d910b76a8098ad3f"}, "metrics": [{"type": "cos_sim_pearson", "value": 80.56896987572884}, {"type": "cos_sim_spearman", "value": 81.84352499523287}, {"type": "euclidean_pearson", "value": 80.40831759421305}, {"type": "euclidean_spearman", "value": 81.84352499523287}, {"type": "manhattan_pearson", "value": 80.74333857561238}, {"type": "manhattan_spearman", "value": 82.41503246733892}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STSBenchmarkMultilingualSTS (fr)", "type": "stsb_multi_mt", "config": "fr", "split": "test", "revision": "93d57ef91790589e3ce9c365164337a8a78b7632"}, "metrics": [{"type": "cos_sim_pearson", "value": 82.71826762276979}, {"type": "cos_sim_spearman", "value": 82.25433354916042}, {"type": "euclidean_pearson", "value": 81.87115571724316}, {"type": "euclidean_spearman", "value": 82.25322342890107}, {"type": "manhattan_pearson", "value": 82.11174867527224}, {"type": "manhattan_spearman", "value": 82.55905365203084}]}, {"task": {"type": "Summarization"}, "dataset": {"name": "MTEB SummEvalFr", "type": "lyon-nlp/summarization-summeval-fr-p2p", "config": "default", "split": "test", "revision": "b385812de6a9577b6f4d0f88c6a6e35395a94054"}, "metrics": [{"type": "cos_sim_pearson", "value": 30.659441623392887}, {"type": "cos_sim_spearman", "value": 30.501134097353315}, {"type": "dot_pearson", "value": 30.659444768851056}, {"type": "dot_spearman", "value": 30.501134097353315}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB SyntecReranking", "type": "lyon-nlp/mteb-fr-reranking-syntec-s2p", "config": "default", "split": "test", "revision": "b205c5084a0934ce8af14338bf03feb19499c84d"}, "metrics": [{"type": "map", "value": 94.03333333333333}, {"type": "mrr", "value": 94.03333333333333}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB SyntecRetrieval", "type": "lyon-nlp/mteb-fr-retrieval-syntec-s2p", "config": "default", "split": "test", "revision": "77f7e271bf4a92b24fce5119f3486b583ca016ff"}, "metrics": [{"type": "map_at_1", "value": 79.0}, {"type": "map_at_10", "value": 87.61}, {"type": "map_at_100", "value": 87.655}, {"type": "map_at_1000", "value": 87.655}, {"type": "map_at_3", "value": 87.167}, {"type": "map_at_5", "value": 87.36699999999999}, {"type": "mrr_at_1", "value": 79.0}, {"type": "mrr_at_10", "value": 87.61}, {"type": "mrr_at_100", "value": 87.655}, {"type": "mrr_at_1000", "value": 87.655}, {"type": "mrr_at_3", "value": 87.167}, {"type": "mrr_at_5", "value": 87.36699999999999}, {"type": "ndcg_at_1", "value": 79.0}, {"type": "ndcg_at_10", "value": 90.473}, {"type": "ndcg_at_100", "value": 90.694}, {"type": "ndcg_at_1000", "value": 90.694}, {"type": "ndcg_at_3", "value": 89.464}, {"type": "ndcg_at_5", "value": 89.851}, {"type": "precision_at_1", "value": 79.0}, {"type": "precision_at_10", "value": 9.9}, {"type": "precision_at_100", "value": 1.0}, {"type": "precision_at_1000", "value": 0.1}, {"type": "precision_at_3", "value": 32.0}, {"type": "precision_at_5", "value": 19.400000000000002}, {"type": "recall_at_1", "value": 79.0}, {"type": "recall_at_10", "value": 99.0}, {"type": "recall_at_100", "value": 100.0}, {"type": "recall_at_1000", "value": 100.0}, {"type": "recall_at_3", "value": 96.0}, {"type": "recall_at_5", "value": 97.0}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB XPQARetrieval (fr)", "type": "jinaai/xpqa", "config": "fr", "split": "test", "revision": "c99d599f0a6ab9b85b065da6f9d94f9cf731679f"}, "metrics": [{"type": "map_at_1", "value": 39.395}, {"type": "map_at_10", "value": 59.123999999999995}, {"type": "map_at_100", "value": 60.704}, {"type": "map_at_1000", "value": 60.760000000000005}, {"type": "map_at_3", "value": 53.187}, {"type": "map_at_5", "value": 56.863}, {"type": "mrr_at_1", "value": 62.083}, {"type": "mrr_at_10", "value": 68.87299999999999}, {"type": "mrr_at_100", "value": 69.46900000000001}, {"type": "mrr_at_1000", "value": 69.48299999999999}, {"type": "mrr_at_3", "value": 66.8}, {"type": "mrr_at_5", "value": 67.928}, {"type": "ndcg_at_1", "value": 62.083}, {"type": "ndcg_at_10", "value": 65.583}, {"type": "ndcg_at_100", "value": 70.918}, {"type": "ndcg_at_1000", "value": 71.72800000000001}, {"type": "ndcg_at_3", "value": 60.428000000000004}, {"type": "ndcg_at_5", "value": 61.853}, {"type": "precision_at_1", "value": 62.083}, {"type": "precision_at_10", "value": 15.033}, {"type": "precision_at_100", "value": 1.9529999999999998}, {"type": "precision_at_1000", "value": 0.207}, {"type": "precision_at_3", "value": 36.315}, {"type": "precision_at_5", "value": 25.955000000000002}, {"type": "recall_at_1", "value": 39.395}, {"type": "recall_at_10", "value": 74.332}, {"type": "recall_at_100", "value": 94.729}, {"type": "recall_at_1000", "value": 99.75500000000001}, {"type": "recall_at_3", "value": 57.679}, {"type": "recall_at_5", "value": 65.036}]}]}]}
model-attribution-challenge/bloom-2b5
model-attribution-challenge
text-generation
[ "transformers", "pytorch", "bloom", "feature-extraction", "text-generation", "ak", "ar", "as", "bm", "bn", "ca", "code", "en", "es", "eu", "fon", "fr", "gu", "hi", "id", "ig", "ki", "kn", "lg", "ln", "ml", "mr", "ne", "nso", "ny", "or", "pa", "pt", "rn", "rw", "sn", "st", "sw", "ta", "te", "tn", "ts", "tum", "tw", "ur", "vi", "wo", "xh", "yo", "zh", "zhs", "zht", "zu", "arxiv:1909.08053", "arxiv:2110.02861", "arxiv:2108.12409", "license:bigscience-bloom-rail-1.0", "model-index", "text-generation-inference", "endpoints_compatible", "region:us" ]
2022-08-09T19:38:50
2022-09-27T15:58:41
31
0
--- language: - ak - ar - as - bm - bn - ca - code - en - es - eu - fon - fr - gu - hi - id - ig - ki - kn - lg - ln - ml - mr - ne - nso - ny - or - pa - pt - rn - rw - sn - st - sw - ta - te - tn - ts - tum - tw - ur - vi - wo - xh - yo - zh - zhs - zht - zu license: bigscience-bloom-rail-1.0 pipeline_tag: text-generation model-index: - name: bloom results: - task: type: text-generation name: text generation dataset: name: arc_challenge type: arc_challenge metrics: - type: acc value: 0.27986348122866894 name: acc verified: false - task: type: text-generation name: text generation dataset: name: arc_easy type: arc_easy metrics: - type: acc value: 0.5946969696969697 name: acc verified: false - task: type: text-generation name: text generation dataset: name: axb type: axb metrics: - type: acc value: 0.4433876811594203 name: acc verified: false - task: type: text-generation name: text generation dataset: name: axg type: axg metrics: - type: acc value: 0.5 name: acc verified: false - task: type: text-generation name: text generation dataset: name: boolq type: boolq metrics: - type: acc value: 0.6165137614678899 name: acc verified: false - task: type: text-generation name: text generation dataset: name: cb type: cb metrics: - type: acc value: 0.30357142857142855 name: acc verified: false - task: type: text-generation name: text generation dataset: name: cola type: cola metrics: - type: acc value: 0.610738255033557 name: acc verified: false - task: type: text-generation name: text generation dataset: name: copa type: copa metrics: - type: acc value: 0.63 name: acc verified: false - task: type: text-generation name: text generation dataset: name: crows_pairs_english type: crows_pairs_english metrics: - type: acc value: 0.4973166368515206 name: acc verified: false - task: type: text-generation name: text generation dataset: name: crows_pairs_french type: crows_pairs_french metrics: - type: acc value: 0.5032796660703638 name: acc verified: false - task: type: text-generation name: text generation dataset: name: diabla type: diabla metrics: - type: acc value: 0.28888308977035493 name: acc verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_afr type: gsarti/flores_101_afr metrics: - type: byte_perplexity value: 6.500798737976343 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_amh type: gsarti/flores_101_amh metrics: - type: byte_perplexity value: 3.9726863338897145 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ara type: gsarti/flores_101_ara metrics: - type: byte_perplexity value: 1.8083841089875814 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_asm type: gsarti/flores_101_asm metrics: - type: byte_perplexity value: 5.699102962086425 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ast type: gsarti/flores_101_ast metrics: - type: byte_perplexity value: 3.9252047073429384 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_azj type: gsarti/flores_101_azj metrics: - type: byte_perplexity value: 6.942805054270002 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_bel type: gsarti/flores_101_bel metrics: - type: byte_perplexity value: 3.614136245847082 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ben type: gsarti/flores_101_ben metrics: - type: byte_perplexity value: 5.121491534300969 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_bos type: gsarti/flores_101_bos metrics: - type: byte_perplexity value: 5.653353469118798 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_bul type: gsarti/flores_101_bul metrics: - type: byte_perplexity value: 2.7014693938055068 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_cat type: gsarti/flores_101_cat metrics: - type: byte_perplexity value: 2.305190041967345 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ceb type: gsarti/flores_101_ceb metrics: - type: byte_perplexity value: 6.291000321323428 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ces type: gsarti/flores_101_ces metrics: - type: byte_perplexity value: 5.447322753586386 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ckb type: gsarti/flores_101_ckb metrics: - type: byte_perplexity value: 3.7255124939234765 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_cym type: gsarti/flores_101_cym metrics: - type: byte_perplexity value: 12.539424151448149 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_dan type: gsarti/flores_101_dan metrics: - type: byte_perplexity value: 5.183309001005672 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_deu type: gsarti/flores_101_deu metrics: - type: byte_perplexity value: 3.1180422286591347 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ell type: gsarti/flores_101_ell metrics: - type: byte_perplexity value: 2.467943456164706 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_eng type: gsarti/flores_101_eng metrics: - type: byte_perplexity value: 2.018740628193298 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_est type: gsarti/flores_101_est metrics: - type: byte_perplexity value: 9.11654425176368 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_fas type: gsarti/flores_101_fas metrics: - type: byte_perplexity value: 3.058009097116482 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_fin type: gsarti/flores_101_fin metrics: - type: byte_perplexity value: 6.847047959628553 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_fra type: gsarti/flores_101_fra metrics: - type: byte_perplexity value: 1.9975177011840075 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ful type: gsarti/flores_101_ful metrics: - type: byte_perplexity value: 11.465912731488828 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_gle type: gsarti/flores_101_gle metrics: - type: byte_perplexity value: 8.681491663539422 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_glg type: gsarti/flores_101_glg metrics: - type: byte_perplexity value: 3.029991089015508 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_guj type: gsarti/flores_101_guj metrics: - type: byte_perplexity value: 4.955224230286231 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_hau type: gsarti/flores_101_hau metrics: - type: byte_perplexity value: 10.758347356372159 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_heb type: gsarti/flores_101_heb metrics: - type: byte_perplexity value: 3.6004478129801667 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_hin type: gsarti/flores_101_hin metrics: - type: byte_perplexity value: 4.712530650588064 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_hrv type: gsarti/flores_101_hrv metrics: - type: byte_perplexity value: 5.822418943372185 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_hun type: gsarti/flores_101_hun metrics: - type: byte_perplexity value: 6.440482646965992 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_hye type: gsarti/flores_101_hye metrics: - type: byte_perplexity value: 3.657718918347166 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ibo type: gsarti/flores_101_ibo metrics: - type: byte_perplexity value: 5.564814003872672 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ind type: gsarti/flores_101_ind metrics: - type: byte_perplexity value: 2.1597101468869373 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_isl type: gsarti/flores_101_isl metrics: - type: byte_perplexity value: 8.082349269518136 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ita type: gsarti/flores_101_ita metrics: - type: byte_perplexity value: 2.9687591414176207 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_jav type: gsarti/flores_101_jav metrics: - type: byte_perplexity value: 7.0573805415708994 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_jpn type: gsarti/flores_101_jpn metrics: - type: byte_perplexity value: 2.7758864197116933 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_kam type: gsarti/flores_101_kam metrics: - type: byte_perplexity value: 11.072949642861332 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_kan type: gsarti/flores_101_kan metrics: - type: byte_perplexity value: 5.551730651007082 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_kat type: gsarti/flores_101_kat metrics: - type: byte_perplexity value: 2.522630524283745 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_kaz type: gsarti/flores_101_kaz metrics: - type: byte_perplexity value: 3.3901748516975574 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_kea type: gsarti/flores_101_kea metrics: - type: byte_perplexity value: 8.918534182590863 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_kir type: gsarti/flores_101_kir metrics: - type: byte_perplexity value: 3.729278369847201 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_kor type: gsarti/flores_101_kor metrics: - type: byte_perplexity value: 3.932884847226212 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_lao type: gsarti/flores_101_lao metrics: - type: byte_perplexity value: 2.9077314760849924 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_lav type: gsarti/flores_101_lav metrics: - type: byte_perplexity value: 7.777221919194806 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_lin type: gsarti/flores_101_lin metrics: - type: byte_perplexity value: 7.524842908050988 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_lit type: gsarti/flores_101_lit metrics: - type: byte_perplexity value: 7.369179434621725 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ltz type: gsarti/flores_101_ltz metrics: - type: byte_perplexity value: 8.801059747949214 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_lug type: gsarti/flores_101_lug metrics: - type: byte_perplexity value: 8.483203026364786 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_luo type: gsarti/flores_101_luo metrics: - type: byte_perplexity value: 11.975963093623681 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_mal type: gsarti/flores_101_mal metrics: - type: byte_perplexity value: 4.615948455160037 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_mar type: gsarti/flores_101_mar metrics: - type: byte_perplexity value: 5.483253482821379 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_mkd type: gsarti/flores_101_mkd metrics: - type: byte_perplexity value: 2.9656732291754087 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_mlt type: gsarti/flores_101_mlt metrics: - type: byte_perplexity value: 15.004773437665275 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_mon type: gsarti/flores_101_mon metrics: - type: byte_perplexity value: 3.410598542315402 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_mri type: gsarti/flores_101_mri metrics: - type: byte_perplexity value: 7.474035895661322 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_msa type: gsarti/flores_101_msa metrics: - type: byte_perplexity value: 2.5710001772665634 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_mya type: gsarti/flores_101_mya metrics: - type: byte_perplexity value: 2.413577969878331 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_nld type: gsarti/flores_101_nld metrics: - type: byte_perplexity value: 4.127831721885065 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_nob type: gsarti/flores_101_nob metrics: - type: byte_perplexity value: 5.402763169129877 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_npi type: gsarti/flores_101_npi metrics: - type: byte_perplexity value: 5.199342701937889 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_nso type: gsarti/flores_101_nso metrics: - type: byte_perplexity value: 8.154626800955667 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_nya type: gsarti/flores_101_nya metrics: - type: byte_perplexity value: 8.179860208369393 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_oci type: gsarti/flores_101_oci metrics: - type: byte_perplexity value: 4.8617357393685845 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_orm type: gsarti/flores_101_orm metrics: - type: byte_perplexity value: 12.911595421079408 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ory type: gsarti/flores_101_ory metrics: - type: byte_perplexity value: 5.189421861225964 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_pan type: gsarti/flores_101_pan metrics: - type: byte_perplexity value: 4.698477289331806 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_pol type: gsarti/flores_101_pol metrics: - type: byte_perplexity value: 4.625550458479643 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_por type: gsarti/flores_101_por metrics: - type: byte_perplexity value: 1.9754515986213523 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_pus type: gsarti/flores_101_pus metrics: - type: byte_perplexity value: 4.4963371422771585 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ron type: gsarti/flores_101_ron metrics: - type: byte_perplexity value: 4.965456830031304 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_rus type: gsarti/flores_101_rus metrics: - type: byte_perplexity value: 2.0498020542445303 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_slk type: gsarti/flores_101_slk metrics: - type: byte_perplexity value: 6.450822127057479 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_slv type: gsarti/flores_101_slv metrics: - type: byte_perplexity value: 6.620252120186232 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_sna type: gsarti/flores_101_sna metrics: - type: byte_perplexity value: 8.462166771382726 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_snd type: gsarti/flores_101_snd metrics: - type: byte_perplexity value: 5.466066951221973 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_som type: gsarti/flores_101_som metrics: - type: byte_perplexity value: 11.95918054093392 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_spa type: gsarti/flores_101_spa metrics: - type: byte_perplexity value: 1.8965140104323535 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_srp type: gsarti/flores_101_srp metrics: - type: byte_perplexity value: 2.871214785885079 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_swe type: gsarti/flores_101_swe metrics: - type: byte_perplexity value: 5.054972008155866 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_swh type: gsarti/flores_101_swh metrics: - type: byte_perplexity value: 3.6973091886730676 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_tam type: gsarti/flores_101_tam metrics: - type: byte_perplexity value: 4.539493400469833 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_tel type: gsarti/flores_101_tel metrics: - type: byte_perplexity value: 5.807499987508966 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_tgk type: gsarti/flores_101_tgk metrics: - type: byte_perplexity value: 3.5994818827380426 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_tgl type: gsarti/flores_101_tgl metrics: - type: byte_perplexity value: 5.667053833119858 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_tha type: gsarti/flores_101_tha metrics: - type: byte_perplexity value: 2.365940201944242 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_tur type: gsarti/flores_101_tur metrics: - type: byte_perplexity value: 4.885014749844601 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_ukr type: gsarti/flores_101_ukr metrics: - type: byte_perplexity value: 2.7240934990288483 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_umb type: gsarti/flores_101_umb metrics: - type: byte_perplexity value: 12.766915508610673 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_urd type: gsarti/flores_101_urd metrics: - type: byte_perplexity value: 1.9797467071381232 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_uzb type: gsarti/flores_101_uzb metrics: - type: byte_perplexity value: 12.002337637722146 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_vie type: gsarti/flores_101_vie metrics: - type: byte_perplexity value: 1.76578415476397 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_wol type: gsarti/flores_101_wol metrics: - type: byte_perplexity value: 9.144285650306488 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_xho type: gsarti/flores_101_xho metrics: - type: byte_perplexity value: 7.403240538286952 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_yor type: gsarti/flores_101_yor metrics: - type: byte_perplexity value: 5.91272037551173 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_zho_simpl type: gsarti/flores_101_zho_simpl metrics: - type: byte_perplexity value: 2.2769070822768533 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_zho_trad type: gsarti/flores_101_zho_trad metrics: - type: byte_perplexity value: 2.5180582198242383 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: gsarti/flores_101_zul type: gsarti/flores_101_zul metrics: - type: byte_perplexity value: 8.53353320693145 name: byte_perplexity verified: false - task: type: text-generation name: text generation dataset: name: headqa type: headqa metrics: - type: acc value: 0.26440554339897887 name: acc verified: false - task: type: text-generation name: text generation dataset: name: hellaswag type: hellaswag metrics: - type: acc value: 0.41236805417247563 name: acc verified: false - task: type: text-generation name: text generation dataset: name: logiqa type: logiqa metrics: - type: acc value: 0.2073732718894009 name: acc verified: false - task: type: text-generation name: text generation dataset: name: mathqa type: mathqa metrics: - type: acc value: 0.24958123953098826 name: acc verified: false - task: type: text-generation name: text generation dataset: name: mc_taco type: mc_taco metrics: - type: em value: 0.11936936936936937 name: em verified: false - task: type: text-generation name: text generation dataset: name: mnli type: mnli metrics: - type: acc value: 0.35496688741721855 name: acc verified: false - task: type: text-generation name: text generation dataset: name: mnli_mismatched type: mnli_mismatched metrics: - type: acc value: 0.35211554109031734 name: acc verified: false - task: type: text-generation name: text generation dataset: name: mrpc type: mrpc metrics: - type: acc value: 0.5857843137254902 name: acc verified: false - task: type: text-generation name: text generation dataset: name: multirc type: multirc metrics: - type: acc value: 0.5375412541254125 name: acc verified: false - task: type: text-generation name: text generation dataset: name: openbookqa type: openbookqa metrics: - type: acc value: 0.216 name: acc verified: false - task: type: text-generation name: text generation dataset: name: piqa type: piqa metrics: - type: acc value: 0.7078346028291621 name: acc verified: false - task: type: text-generation name: text generation dataset: name: prost type: prost metrics: - type: acc value: 0.22683603757472245 name: acc verified: false - task: type: text-generation name: text generation dataset: name: pubmedqa type: pubmedqa metrics: - type: acc value: 0.616 name: acc verified: false - task: type: text-generation name: text generation dataset: name: qnli type: qnli metrics: - type: acc value: 0.5072304594545122 name: acc verified: false - task: type: text-generation name: text generation dataset: name: qqp type: qqp metrics: - type: acc value: 0.3842443729903537 name: acc verified: false - task: type: text-generation name: text generation dataset: name: race type: race metrics: - type: acc value: 0.3521531100478469 name: acc verified: false - task: type: text-generation name: text generation dataset: name: rte type: rte metrics: - type: acc value: 0.47653429602888087 name: acc verified: false - task: type: text-generation name: text generation dataset: name: sciq type: sciq metrics: - type: acc value: 0.892 name: acc verified: false - task: type: text-generation name: text generation dataset: name: sst type: sst metrics: - type: acc value: 0.5177752293577982 name: acc verified: false - task: type: text-generation name: text generation dataset: name: triviaqa type: triviaqa metrics: - type: acc value: 0.041633518960487934 name: acc verified: false - task: type: text-generation name: text generation dataset: name: tydiqa_primary type: tydiqa_primary metrics: - type: acc value: 0.3011337608795236 name: acc verified: false - task: type: text-generation name: text generation dataset: name: webqs type: webqs metrics: - type: acc value: 0.01673228346456693 name: acc verified: false - task: type: text-generation name: text generation dataset: name: wic type: wic metrics: - type: acc value: 0.5015673981191222 name: acc verified: false - task: type: text-generation name: text generation dataset: name: winogrande type: winogrande metrics: - type: acc value: 0.5864246250986582 name: acc verified: false - task: type: text-generation name: text generation dataset: name: wnli type: wnli metrics: - type: acc value: 0.471830985915493 name: acc verified: false - task: type: text-generation name: text generation dataset: name: wsc type: wsc metrics: - type: acc value: 0.4423076923076923 name: acc verified: false - task: type: text-generation name: text generation dataset: name: humaneval type: humaneval metrics: - type: pass@1 value: 0.15524390243902436 name: pass@1 verified: false - type: pass@10 value: 0.3220367632383857 name: pass@10 verified: false - type: pass@100 value: 0.5545431515723145 name: pass@100 verified: false --- <h1 style='text-align: center '>BLOOM LM</h1> <h2 style='text-align: center '><em>BigScience Large Open-science Open-access Multilingual Language Model</em> </h2> <h3 style='text-align: center '>Model Card</h3> <img src="https://s3.amazonaws.com/moonup/production/uploads/1657124309515-5f17f0a0925b9863e28ad517.png" alt="BigScience Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/> Version 1.0 / 26.May.2022 ## Table of Contents 1. [Model Details](#model-details) 2. [Uses](#uses) 3. [Training Data](#training-data) 4. [Risks and Limitations](#risks-and-limitations) 5. [Evaluation](#evaluation) 6. [Recommendations](#recommendations) 7. [Glossary and Calculations](#glossary-and-calculations) 8. [More Information](#more-information) 9. [Model Card Authors](#model-card-authors) ## Model Details ### Basics *This section provides information for anyone who wants to know about the model.* <details> <summary>Click to expand</summary> <br/> **Developed by:** BigScience ([website](https://bigscience.huggingface.co)) * All collaborators are either volunteers or have an agreement with their employer. *(Further breakdown of participants forthcoming.)* **Model Type:** Transformer-based Language Model **Version:** 1.0.0 **Languages:** Multiple; see [training data](#training-data) **License:** RAIL License v1.0 ([link](https://huggingface.co/spaces/bigscience/license)) **Release Date Estimate:** Monday, 11.July.2022 **Send Questions to:** [email protected] **Cite as:** BigScience, _BigScience Language Open-science Open-access Multilingual (BLOOM) Language Model_. International, May 2021-May 2022 **Funded by:** * The French government. * Hugging Face ([website](https://huggingface.co)). * Organizations of contributors. *(Further breakdown of organizations forthcoming.)* </details> ### Technical Specifications *This section provides information for people who work on model development.* <details> <summary>Click to expand</summary><br/> Please see [the BLOOM training README](https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml#readme) for full details on replicating training. **Model Architecture:** Modified from Megatron-LM GPT2 (see [paper](https://arxiv.org/abs/1909.08053), [BLOOM Megatron code](https://github.com/bigscience-workshop/Megatron-DeepSpeed)): * Decoder-only architecture * Layer normalization applied to word embeddings layer (`StableEmbedding`; see [code](https://github.com/facebookresearch/bitsandbytes), [paper](https://arxiv.org/pdf/2110.02861.pdf)) * ALiBI positional encodings (see [paper](https://arxiv.org/pdf/2108.12409.pdf)), with GeLU activation functions * 3,002,557,440 parameters: * 642,252,800 embedding parameters * 30 layers, 32 attention heads * Hidden layers are 2560-dimensional * Sequence length of 2048 tokens used (see [BLOOM tokenizer](https://huggingface.co/bigscience/tokenizer), [tokenizer description](#tokenization)) **Objective Function:** Cross Entropy with mean reduction (see [API documentation](https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss)). **Compute infrastructure:** Jean Zay Public Supercomputer, provided by the French government (see [announcement](https://www.enseignementsup-recherche.gouv.fr/fr/signature-du-marche-d-acquisition-de-l-un-des-supercalculateurs-les-plus-puissants-d-europe-46733)). * Hardware: 384 A100 80GB GPUs (48 nodes): * Additional 32 A100 80GB GPUs (4 nodes) in reserve * 8 GPUs per node Using NVLink 4 inter-gpu connects, 4 OmniPath links * CPU: AMD * CPU memory: 512GB per node * GPU memory: 640GB per node * Inter-node connect: Omni-Path Architecture (OPA) * NCCL-communications network: a fully dedicated subnet * Disc IO network: shared network with other types of nodes * Software: * Megatron-DeepSpeed ([Github link](https://github.com/bigscience-workshop/Megatron-DeepSpeed)) * DeepSpeed ([Github link](https://github.com/microsoft/DeepSpeed)) * PyTorch (pytorch-1.11 w/ CUDA-11.5; see [Github link](https://github.com/pytorch/pytorch)) * apex ([Github link](https://github.com/NVIDIA/apex)) #### **Training** Training logs: [Tensorboard link](https://huggingface.co/tensorboard/bigscience/tr11c-2B5-logs) - Number of epochs: 1 (*current target*) - Dates: - Started 11th March, 2022 11:42am PST - Ended 5th July, 2022 - Estimated cost of training: Equivalent of $2-5M in cloud computing (including preliminary experiments) - Server training location: Île-de-France, France #### **Tokenization** The BLOOM tokenizer ([link](https://huggingface.co/bigscience/tokenizer)) is a learned subword tokenizer trained using: - A byte-level Byte Pair Encoding (BPE) algorithm - A simple pre-tokenization rule, no normalization - A vocabulary size of 250,680 It was trained on a subset of a preliminary version of the corpus using alpha-weighting per language. </details> ### Environmental Impact <details> <summary>Click to expand</summary><br/> The training supercomputer, Jean Zay ([website](http://www.idris.fr/eng/jean-zay/jean-zay-presentation-eng.html)), uses mostly nuclear energy. The heat generated by it is reused for heating campus housing. **Estimated carbon emissions:** *(Forthcoming upon completion of training.)* **Estimated electricity usage:** *(Forthcoming upon completion of training.)* </details> <p>&nbsp;</p> ## Uses *This section addresses questions around how the model is intended to be used, discusses the foreseeable users of the model (including those affected by the model), and describes uses that are considered out of scope or misuse of the model. It provides information for anyone considering using the model or who is affected by the model.* <details> <summary>Click to expand</summary><br/> ### Intended Use This model is being created in order to enable public research on large language models (LLMs). LLMs are intended to be used for language generation or as a pretrained base model that can be further fine-tuned for specific tasks. Use cases below are not exhaustive. #### **Direct Use** - Text generation - Exploring characteristics of language generated by a language model - Examples: Cloze tests, counterfactuals, generations with reframings #### **Downstream Use** - Tasks that leverage language models include: Information Extraction, Question Answering, Summarization ### Misuse and Out-of-scope Use *This section addresses what users ought not do with the model.* See the [BLOOM License](https://huggingface.co/spaces/bigscience/license), Attachment A, for detailed usage restrictions. The below list is non-exhaustive, but lists some easily foreseeable problematic use cases. #### **Out-of-scope Uses** Using the model in [high-stakes](#high-stakes) settings is out of scope for this model.  The model is not designed for [critical decisions](#critical-decisions) nor uses with any material consequences on an individual's livelihood or wellbeing. The model outputs content that appears factual but is not correct. ##### Out-of-scope Uses Include: - Usage in biomedical domains, political and legal domains, or finance domains - Usage for evaluating or scoring individuals, such as for employment, education, or credit - Applying the model for critical automatic decisions, generating factual content, creating reliable summaries, or generating predictions that must be correct #### **Misuse** Intentionally using the model for harm, violating [human rights](#human-rights), or other kinds of malicious activities, is a misuse of this model. This includes: - Spam generation - Disinformation and influence operations - Disparagement and defamation - Harassment and abuse - [Deception](#deception) - Unconsented impersonation and imitation - Unconsented surveillance - Generating content without attribution to the model, as specified in the [RAIL License, Use Restrictions](https://huggingface.co/spaces/bigscience/license) ### Intended Users #### **Direct Users** - General Public - Researchers - Students - Educators - Engineers/developers - Non-commercial entities - Community advocates, including human and civil rights groups #### Indirect Users - Users of derivatives created by Direct Users, such as those using software with an [intended use](#intended-use) - Users of [Derivatives of the Model, as described in the License](https://huggingface.co/spaces/bigscience/license) #### Others Affected (Parties Prenantes) - People and groups referred to by the LLM - People and groups exposed to outputs of, or decisions based on, the LLM - People and groups whose original work is included in the LLM </details> <p>&nbsp;</p> ## Training Data *This section provides a high-level overview of the training data. It is relevant for anyone who wants to know the basics of what the model is learning.* <details> <summary>Click to expand</summary><br/> Details for each dataset are provided in individual [Data Cards](https://huggingface.co/spaces/bigscience/BigScienceCorpus). Training data includes: - 45 natural languages - 12 programming languages - In 1.5TB of pre-processed text, converted into 350B unique tokens (see [the tokenizer section](#tokenization) for more.) #### **Languages** The pie chart shows the distribution of languages in training data. ![pie chart showing the distribution of languages in training data](https://github.com/bigscience-workshop/model_card/blob/main/assets/data/pie_chart.svg?raw=true) The following table shows the further distribution of Niger-Congo and Indic languages in the training data. <details> <summary>Click to expand</summary><br/> | Niger Congo | Percentage | | Indic | Percentage | |----------------|------------ |------ |-----------|------------| | Chi Tumbuka | 0.00002 | | Assamese | 0.01 | | Kikuyu | 0.00004 | | Odia | 0.04 | | Bambara | 0.00004 | | Gujarati | 0.04 | | Akan | 0.00007 | | Marathi | 0.05 | | Xitsonga | 0.00007 | | Punjabi | 0.05 | | Sesotho | 0.00007 | | Kannada | 0.06 | | Chi Chewa | 0.0001 | | Nepali | 0.07 | | Setswana | 0.0002 | | Telugu | 0.09 | | Northern Sotho | 0.0002 | | Malayalam | 0.10 | | Fon | 0.0002 | | Urdu | 0.10 | | Kirundi | 0.0003 | | Tamil | 0.20 | | Wolof | 0.0004 | | Bengali | 0.50 | | Kuganda | 0.0004 | | Hindi | 0.70 | | Chi Shona | 0.001 | | Isi Zulu | 0.001 | | Igbo | 0.001 | | Xhosa | 0.001 | | Kinyarwanda | 0.003 | | Yoruba | 0.006 | | Swahili | 0.02 | </details> The following table shows the distribution of programming languages. <details> <summary>Click to expand</summary><br/> | Extension | Language | Number of files | |----------------|------------|-----------------| | java | Java | 5,407,724 | | php | PHP | 4,942,186 | | cpp | C++ | 2,503,930 | | py | Python | 2,435,072 | | js | JavaScript | 1,905,518 | | cs | C# | 1,577,347 | | rb | Ruby | 6,78,413 | | cc | C++ | 443,054 | | hpp | C++ | 391,048 | | lua | Lua | 352,317 | | go | GO | 227,763 | | ts | TypeScript | 195,254 | | C | C | 134,537 | | scala | Scala | 92,052 | | hh | C++ | 67,161 | | H | C++ | 55,899 | | tsx | TypeScript | 33,107 | | rs | Rust | 29,693 | | phpt | PHP | 9,702 | | c++ | C++ | 1,342 | | h++ | C++ | 791 | | php3 | PHP | 540 | | phps | PHP | 270 | | php5 | PHP | 166 | | php4 | PHP | 29 | </details> </details> <p>&nbsp;</p> ## Risks and Limitations *This section identifies foreseeable harms and misunderstandings.* <details> <summary>Click to expand</summary><br/> Model may: - Overrepresent some viewpoints and underrepresent others - Contain stereotypes - Contain [personal information](#personal-data-and-information) - Generate: - Hateful, abusive, or violent language - Discriminatory or prejudicial language - Content that may not be appropriate for all settings, including sexual content - Make errors, including producing incorrect information as if it were factual - Generate irrelevant or repetitive outputs </details> <p>&nbsp;</p> ## Evaluation *This section describes the evaluation protocols and provides the results.* <details> <summary>Click to expand</summary><br/> ### Metrics *This section describes the different ways performance is calculated and why.* Includes: | Metric | Why chosen | |--------------------|--------------------------------------------------------------------| | [Perplexity](#perplexity) | Standard metric for quantifying model improvements during training | | Cross Entropy [Loss](#loss) | Standard objective for language models. | And multiple different metrics for specific tasks. _(More evaluation metrics forthcoming upon completion of evaluation protocol.)_ ### Factors *This section lists some different aspects of BLOOM models. Its focus is on aspects that are likely to give rise to high variance in model behavior.* - Language, such as English or Yoruba - Domain, such as newswire or stories - Demographic characteristics, such as gender or nationality ### Results *Results are based on the [Factors](#factors) and [Metrics](#metrics).* **Zero-shot evaluations:** See this repository for JSON files: https://github.com/bigscience-workshop/evaluation-results | Task | Language | Metric | BLOOM-2B5 | |:----|:----|:----|:----:| | arc_challenge | eng | acc ↑ | 0.28 | | arc_easy | eng | acc ↑ | 0.595 | | axb (Median of 10 prompts) | eng | acc ↑ | 0.443 | | axg (Median of 10 prompts) | eng | acc ↑ | 0.5 | | boolq (Median of 11 prompts) | eng | acc ↑ | 0.617 | | cb (Median of 15 prompts) | eng | acc ↑ | 0.304 | | cola (Median of 5 prompts) | eng | acc ↑ | 0.611 | | copa (Median of 9 prompts) | eng | acc ↑ | 0.63 | | crows_pairs_english (Median of 6 prompts) | eng | acc ↑ | 0.497 | | crows_pairs_french (Median of 7 prompts) | fra | acc ↑ | 0.503 | | diabla (Median of 2 prompts) | eng | acc ↑ | 0.289 | | gsarti/flores_101_afr | afr | byte_perplexity ↓ | 6.501 | | gsarti/flores_101_amh | amh | byte_perplexity ↓ | 3.973 | | gsarti/flores_101_ara | ara | byte_perplexity ↓ | 1.808 | | gsarti/flores_101_asm | asm | byte_perplexity ↓ | 5.699 | | gsarti/flores_101_ast | ast | byte_perplexity ↓ | 3.925 | | gsarti/flores_101_azj | azj | byte_perplexity ↓ | 6.943 | | gsarti/flores_101_bel | bel | byte_perplexity ↓ | 3.614 | | gsarti/flores_101_ben | ben | byte_perplexity ↓ | 5.121 | | gsarti/flores_101_bos | bos | byte_perplexity ↓ | 5.653 | | gsarti/flores_101_bul | bul | byte_perplexity ↓ | 2.701 | | gsarti/flores_101_cat | cat | byte_perplexity ↓ | 2.305 | | gsarti/flores_101_ceb | ceb | byte_perplexity ↓ | 6.291 | | gsarti/flores_101_ces | ces | byte_perplexity ↓ | 5.447 | | gsarti/flores_101_ckb | ckb | byte_perplexity ↓ | 3.726 | | gsarti/flores_101_cym | cym | byte_perplexity ↓ | 12.539 | | gsarti/flores_101_dan | dan | byte_perplexity ↓ | 5.183 | | gsarti/flores_101_deu | deu | byte_perplexity ↓ | 3.118 | | gsarti/flores_101_ell | ell | byte_perplexity ↓ | 2.468 | | gsarti/flores_101_eng | eng | byte_perplexity ↓ | 2.019 | | gsarti/flores_101_est | est | byte_perplexity ↓ | 9.117 | | gsarti/flores_101_fas | fas | byte_perplexity ↓ | 3.058 | | gsarti/flores_101_fin | fin | byte_perplexity ↓ | 6.847 | | gsarti/flores_101_fra | fra | byte_perplexity ↓ | 1.998 | | gsarti/flores_101_ful | ful | byte_perplexity ↓ | 11.466 | | gsarti/flores_101_gle | gle | byte_perplexity ↓ | 8.681 | | gsarti/flores_101_glg | glg | byte_perplexity ↓ | 3.03 | | gsarti/flores_101_guj | guj | byte_perplexity ↓ | 4.955 | | gsarti/flores_101_hau | hau | byte_perplexity ↓ | 10.758 | | gsarti/flores_101_heb | heb | byte_perplexity ↓ | 3.6 | | gsarti/flores_101_hin | hin | byte_perplexity ↓ | 4.713 | | gsarti/flores_101_hrv | hrv | byte_perplexity ↓ | 5.822 | | gsarti/flores_101_hun | hun | byte_perplexity ↓ | 6.44 | | gsarti/flores_101_hye | hye | byte_perplexity ↓ | 3.658 | | gsarti/flores_101_ibo | ibo | byte_perplexity ↓ | 5.565 | | gsarti/flores_101_ind | ind | byte_perplexity ↓ | 2.16 | | gsarti/flores_101_isl | isl | byte_perplexity ↓ | 8.082 | | gsarti/flores_101_ita | ita | byte_perplexity ↓ | 2.969 | | gsarti/flores_101_jav | jav | byte_perplexity ↓ | 7.057 | | gsarti/flores_101_jpn | jpn | byte_perplexity ↓ | 2.776 | | gsarti/flores_101_kam | kam | byte_perplexity ↓ | 11.073 | | gsarti/flores_101_kan | kan | byte_perplexity ↓ | 5.552 | | gsarti/flores_101_kat | kat | byte_perplexity ↓ | 2.523 | | gsarti/flores_101_kaz | kaz | byte_perplexity ↓ | 3.39 | | gsarti/flores_101_kea | kea | byte_perplexity ↓ | 8.919 | | gsarti/flores_101_kir | kir | byte_perplexity ↓ | 3.729 | | gsarti/flores_101_kor | kor | byte_perplexity ↓ | 3.933 | | gsarti/flores_101_lao | lao | byte_perplexity ↓ | 2.908 | | gsarti/flores_101_lav | lav | byte_perplexity ↓ | 7.777 | | gsarti/flores_101_lin | lin | byte_perplexity ↓ | 7.525 | | gsarti/flores_101_lit | lit | byte_perplexity ↓ | 7.369 | | gsarti/flores_101_ltz | ltz | byte_perplexity ↓ | 8.801 | | gsarti/flores_101_lug | lug | byte_perplexity ↓ | 8.483 | | gsarti/flores_101_luo | luo | byte_perplexity ↓ | 11.976 | | gsarti/flores_101_mal | mal | byte_perplexity ↓ | 4.616 | | gsarti/flores_101_mar | mar | byte_perplexity ↓ | 5.483 | | gsarti/flores_101_mkd | mkd | byte_perplexity ↓ | 2.966 | | gsarti/flores_101_mlt | mlt | byte_perplexity ↓ | 15.005 | | gsarti/flores_101_mon | mon | byte_perplexity ↓ | 3.411 | | gsarti/flores_101_mri | mri | byte_perplexity ↓ | 7.474 | | gsarti/flores_101_msa | msa | byte_perplexity ↓ | 2.571 | | gsarti/flores_101_mya | mya | byte_perplexity ↓ | 2.414 | | gsarti/flores_101_nld | nld | byte_perplexity ↓ | 4.128 | | gsarti/flores_101_nob | nob | byte_perplexity ↓ | 5.403 | | gsarti/flores_101_npi | npi | byte_perplexity ↓ | 5.199 | | gsarti/flores_101_nso | nso | byte_perplexity ↓ | 8.155 | | gsarti/flores_101_nya | nya | byte_perplexity ↓ | 8.18 | | gsarti/flores_101_oci | oci | byte_perplexity ↓ | 4.862 | | gsarti/flores_101_orm | orm | byte_perplexity ↓ | 12.912 | | gsarti/flores_101_ory | ory | byte_perplexity ↓ | 5.189 | | gsarti/flores_101_pan | pan | byte_perplexity ↓ | 4.698 | | gsarti/flores_101_pol | pol | byte_perplexity ↓ | 4.626 | | gsarti/flores_101_por | por | byte_perplexity ↓ | 1.975 | | gsarti/flores_101_pus | pus | byte_perplexity ↓ | 4.496 | | gsarti/flores_101_ron | ron | byte_perplexity ↓ | 4.965 | | gsarti/flores_101_rus | rus | byte_perplexity ↓ | 2.05 | | gsarti/flores_101_slk | slk | byte_perplexity ↓ | 6.451 | | gsarti/flores_101_slv | slv | byte_perplexity ↓ | 6.62 | | gsarti/flores_101_sna | sna | byte_perplexity ↓ | 8.462 | | gsarti/flores_101_snd | snd | byte_perplexity ↓ | 5.466 | | gsarti/flores_101_som | som | byte_perplexity ↓ | 11.959 | | gsarti/flores_101_spa | spa | byte_perplexity ↓ | 1.897 | | gsarti/flores_101_srp | srp | byte_perplexity ↓ | 2.871 | | gsarti/flores_101_swe | swe | byte_perplexity ↓ | 5.055 | | gsarti/flores_101_swh | swh | byte_perplexity ↓ | 3.697 | | gsarti/flores_101_tam | tam | byte_perplexity ↓ | 4.539 | | gsarti/flores_101_tel | tel | byte_perplexity ↓ | 5.807 | | gsarti/flores_101_tgk | tgk | byte_perplexity ↓ | 3.599 | | gsarti/flores_101_tgl | tgl | byte_perplexity ↓ | 5.667 | | gsarti/flores_101_tha | tha | byte_perplexity ↓ | 2.366 | | gsarti/flores_101_tur | tur | byte_perplexity ↓ | 4.885 | | gsarti/flores_101_ukr | ukr | byte_perplexity ↓ | 2.724 | | gsarti/flores_101_umb | umb | byte_perplexity ↓ | 12.767 | | gsarti/flores_101_urd | urd | byte_perplexity ↓ | 1.98 | | gsarti/flores_101_uzb | uzb | byte_perplexity ↓ | 12.002 | | gsarti/flores_101_vie | vie | byte_perplexity ↓ | 1.766 | | gsarti/flores_101_wol | wol | byte_perplexity ↓ | 9.144 | | gsarti/flores_101_xho | xho | byte_perplexity ↓ | 7.403 | | gsarti/flores_101_yor | yor | byte_perplexity ↓ | 5.913 | | gsarti/flores_101_zho_simpl | zho_simpl | byte_perplexity ↓ | 2.277 | | gsarti/flores_101_zho_trad | zho_trad | byte_perplexity ↓ | 2.518 | | gsarti/flores_101_zul | zul | byte_perplexity ↓ | 8.534 | | headqa | esp | acc ↑ | 0.264 | | hellaswag | eng | acc ↑ | 0.412 | | logiqa | eng | acc ↑ | 0.207 | | mathqa | eng | acc ↑ | 0.25 | | mc_taco | eng | em ↑ | 0.119 | | mnli (Median of 15 prompts) | eng | acc ↑ | 0.355 | | mnli_mismatched (Median of 15 prompts) | eng | acc ↑ | 0.352 | | mrpc | eng | acc ↑ | 0.586 | | multirc (Median of 11 prompts) | eng | acc ↑ | 0.538 | | openbookqa | eng | acc ↑ | 0.216 | | piqa | eng | acc ↑ | 0.708 | | prost | eng | acc ↑ | 0.227 | | pubmedqa | eng | acc ↑ | 0.616 | | qnli | eng | acc ↑ | 0.507 | | qqp (Median of 7 prompts) | eng | acc ↑ | 0.384 | | race | eng | acc ↑ | 0.352 | | rte (Median of 6 prompts) | eng | acc ↑ | 0.477 | | sciq | eng | acc ↑ | 0.892 | | sst (Median of 6 prompts) | eng | acc ↑ | 0.518 | | triviaqa | eng | acc ↑ | 0.042 | | tydiqa_primary (Median of 24 prompts) | eng | acc ↑ | 0.301 | | webqs | eng | acc ↑ | 0.017 | | wic (Median of 11 prompts) | eng | acc ↑ | 0.502 | | winogrande | eng | acc ↑ | 0.586 | | wnli (Median of 6 prompts) | eng | acc ↑ | 0.472 | | wsc (Median of 11 prompts) | eng | acc ↑ | 0.442 | | humaneval | python | pass@1 ↑ | 0.155 | | humaneval | python | pass@10 ↑ | 0.322 | | humaneval | python | pass@100 ↑ | 0.555 | **Train-time Evaluation:** As of 25.May.2022, 15:00 PST: - Training Loss: 2.0 - Validation Loss: 2.2 - Perplexity: 8.9 </details> <p>&nbsp;</p> ## Recommendations *This section provides information on warnings and potential mitigations.* <details> <summary>Click to expand</summary><br/> - Indirect users should be made aware when the content they're working with is created by the LLM. - Users should be aware of [Risks and Limitations](#risks-and-limitations), and include an appropriate age disclaimer or blocking interface as necessary. - Models pretrained with the LLM should include an updated Model Card. - Users of the model should provide mechanisms for those affected to provide feedback, such as an email address for comments. </details> <p>&nbsp;</p> ## Glossary and Calculations *This section defines common terms and how metrics are calculated.* <details> <summary>Click to expand</summary><br/> - <a name="loss">**Loss:**</a> A calculation of the difference between what the model has learned and what the data shows ("groundtruth"). The lower the loss, the better. The training process aims to minimize the loss. - <a name="perplexity">**Perplexity:**</a> This is based on what the model estimates the probability of new data is. The lower the perplexity, the better. If the model is 100% correct at predicting the next token it will see, then the perplexity is 1. Mathematically this is calculated using entropy. - <a name="high-stakes">**High-stakes settings:**</a> Such as those identified as "high-risk AI systems" and "unacceptable risk AI systems" in the European Union's proposed [Artificial Intelligence (AI) Act](https://artificialintelligenceact.eu/annexes/). - <a name="critical-decisions">**Critical decisions:**</a> Such as those defined in [the United States' proposed Algorithmic Accountability Act](https://www.congress.gov/117/bills/s3572/BILLS-117s3572is.pdf). - <a name="human-rights">**Human rights:**</a> Includes those rights defined in the [Universal Declaration of Human Rights](https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf). - <a name="personal-data-and-information">**Personal Data and Personal Information:**</a> Personal data and information is defined in multiple data protection regulations, such as "[personal data](https://gdpr-info.eu/issues/personal-data/)" in the [European Union's General Data Protection Regulation](https://gdpr-info.eu); and "personal information" in the Republic of South Africa's [Protection of Personal Information Act](https://www.gov.za/sites/default/files/gcis_document/201409/3706726-11act4of2013popi.pdf), The People's Republic of China's [Personal information protection law](http://en.npc.gov.cn.cdurl.cn/2021-12/29/c_694559.htm). - <a name="sensitive-characteristics">**Sensitive characteristics:**</a> This includes specifically protected categories in human rights (see [UHDR, Article 2](https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf)) and personal information regulation (see GDPR, [Article 9; Protection of Personal Information Act, Chapter 1](https://www.gov.za/sites/default/files/gcis_document/201409/3706726-11act4of2013popi.pdf)) - <a name="deception">**Deception:**</a> Doing something to intentionally mislead individuals to believe something that is false, such as by creating deadbots or chatbots on social media posing as real people, or generating text documents without making consumers aware that the text is machine generated. </details> <p>&nbsp;</p> ## More Information <details> <summary>Click to expand</summary><br/> ### Dataset Creation Blog post detailing the design choices during the dataset creation: https://bigscience.huggingface.co/blog/building-a-tb-scale-multilingual-dataset-for-language-modeling ### Technical Specifications Blog post summarizing how the architecture, size, shape, and pre-training duration where selected: https://bigscience.huggingface.co/blog/what-language-model-to-train-if-you-have-two-million-gpu-hours More details on the architecture/optimizer: https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml Blog post on the hardware/engineering side: https://bigscience.huggingface.co/blog/which-hardware-to-train-a-176b-parameters-model Details on the distributed setup used for the training: https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml Tensorboard updated during the training: https://huggingface.co/bigscience/tr11-176B-ml-logs/tensorboard#scalars&tagFilter=loss Insights on how to approach training, negative results: https://github.com/bigscience-workshop/bigscience/blob/master/train/lessons-learned.md Details on the obstacles overcome during the preparation on the engineering side (instabilities, optimization of training throughput, so many technical tricks and questions): https://github.com/bigscience-workshop/bigscience/blob/master/train/tr11-176B-ml/chronicles.md ### Initial Results Initial prompting experiments using interim checkpoints: https://huggingface.co/spaces/bigscience/bloom-book </details> <p>&nbsp;</p> ## Model Card Authors *Ordered roughly chronologically and by amount of time spent.* Margaret Mitchell, Giada Pistilli, Yacine Jernite, Ezinwanne Ozoani, Marissa Gerchick, Nazneen Rajani, Sasha Luccioni, Irene Solaiman, Maraim Masoud, Somaieh Nikpoor, Carlos Muñoz Ferrandis, Stas Bekman, Christopher Akiki, Danish Contractor, David Lansky, Angelina McMillan-Major, Tristan Thrush, Suzana Ilić, Gérard Dupont, Shayne Longpre, Manan Dey, Stella Biderman, Douwe Kiela, Emi Baylor, Teven Le Scao, Aaron Gokaslan, Julien Launay, Niklas Muennighoff
[ "QUESTION_ANSWERING", "SUMMARIZATION" ]
[ "PUBMEDQA", "SCIQ" ]
Non_BioNLP
<h1 style='text-align: center '>BLOOM LM</h1> <h2 style='text-align: center '><em>BigScience Large Open-science Open-access Multilingual Language Model</em> </h2> <h3 style='text-align: center '>Model Card</h3> <img src="https://s3.amazonaws.com/moonup/production/uploads/1657124309515-5f17f0a0925b9863e28ad517.png" alt="BigScience Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/> Version 1.0 / 26.May.2022 ## Table of Contents 1. [Model Details](#model-details) 2. [Uses](#uses) 3. [Training Data](#training-data) 4. [Risks and Limitations](#risks-and-limitations) 5. [Evaluation](#evaluation) 6. [Recommendations](#recommendations) 7. [Glossary and Calculations](#glossary-and-calculations) 8. [More Information](#more-information) 9. [Model Card Authors](#model-card-authors) ## Model Details ### Basics *This section provides information for anyone who wants to know about the model.* <details> <summary>Click to expand</summary> <br/> **Developed by:** BigScience ([website](https://bigscience.huggingface.co)) * All collaborators are either volunteers or have an agreement with their employer. *(Further breakdown of participants forthcoming.)* **Model Type:** Transformer-based Language Model **Version:** 1.0.0 **Languages:** Multiple; see [training data](#training-data) **License:** RAIL License v1.0 ([link](https://huggingface.co/spaces/bigscience/license)) **Release Date Estimate:** Monday, 11.July.2022 **Send Questions to:** [email protected] **Cite as:** BigScience, _BigScience Language Open-science Open-access Multilingual (BLOOM) Language Model_. International, May 2021-May 2022 **Funded by:** * The French government. * Hugging Face ([website](https://huggingface.co)). * Organizations of contributors. *(Further breakdown of organizations forthcoming.)* </details> ### Technical Specifications *This section provides information for people who work on model development.* <details> <summary>Click to expand</summary><br/> Please see [the BLOOM training README](https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml#readme) for full details on replicating training. **Model Architecture:** Modified from Megatron-LM GPT2 (see [paper](https://arxiv.org/abs/1909.08053), [BLOOM Megatron code](https://github.com/bigscience-workshop/Megatron-DeepSpeed)): * Decoder-only architecture * Layer normalization applied to word embeddings layer (`StableEmbedding`; see [code](https://github.com/facebookresearch/bitsandbytes), [paper](https://arxiv.org/pdf/2110.02861.pdf)) * ALiBI positional encodings (see [paper](https://arxiv.org/pdf/2108.12409.pdf)), with GeLU activation functions * 3,002,557,440 parameters: * 642,252,800 embedding parameters * 30 layers, 32 attention heads * Hidden layers are 2560-dimensional * Sequence length of 2048 tokens used (see [BLOOM tokenizer](https://huggingface.co/bigscience/tokenizer), [tokenizer description](#tokenization)) **Objective Function:** Cross Entropy with mean reduction (see [API documentation](https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss)). **Compute infrastructure:** Jean Zay Public Supercomputer, provided by the French government (see [announcement](https://www.enseignementsup-recherche.gouv.fr/fr/signature-du-marche-d-acquisition-de-l-un-des-supercalculateurs-les-plus-puissants-d-europe-46733)). * Hardware: 384 A100 80GB GPUs (48 nodes): * Additional 32 A100 80GB GPUs (4 nodes) in reserve * 8 GPUs per node Using NVLink 4 inter-gpu connects, 4 OmniPath links * CPU: AMD * CPU memory: 512GB per node * GPU memory: 640GB per node * Inter-node connect: Omni-Path Architecture (OPA) * NCCL-communications network: a fully dedicated subnet * Disc IO network: shared network with other types of nodes * Software: * Megatron-DeepSpeed ([Github link](https://github.com/bigscience-workshop/Megatron-DeepSpeed)) * DeepSpeed ([Github link](https://github.com/microsoft/DeepSpeed)) * PyTorch (pytorch-1.11 w/ CUDA-11.5; see [Github link](https://github.com/pytorch/pytorch)) * apex ([Github link](https://github.com/NVIDIA/apex)) #### **Training** Training logs: [Tensorboard link](https://huggingface.co/tensorboard/bigscience/tr11c-2B5-logs) - Number of epochs: 1 (*current target*) - Dates: - Started 11th March, 2022 11:42am PST - Ended 5th July, 2022 - Estimated cost of training: Equivalent of $2-5M in cloud computing (including preliminary experiments) - Server training location: Île-de-France, France #### **Tokenization** The BLOOM tokenizer ([link](https://huggingface.co/bigscience/tokenizer)) is a learned subword tokenizer trained using: - A byte-level Byte Pair Encoding (BPE) algorithm - A simple pre-tokenization rule, no normalization - A vocabulary size of 250,680 It was trained on a subset of a preliminary version of the corpus using alpha-weighting per language. </details> ### Environmental Impact <details> <summary>Click to expand</summary><br/> The training supercomputer, Jean Zay ([website](http://www.idris.fr/eng/jean-zay/jean-zay-presentation-eng.html)), uses mostly nuclear energy. The heat generated by it is reused for heating campus housing. **Estimated carbon emissions:** *(Forthcoming upon completion of training.)* **Estimated electricity usage:** *(Forthcoming upon completion of training.)* </details> <p>&nbsp;</p> ## Uses *This section addresses questions around how the model is intended to be used, discusses the foreseeable users of the model (including those affected by the model), and describes uses that are considered out of scope or misuse of the model. It provides information for anyone considering using the model or who is affected by the model.* <details> <summary>Click to expand</summary><br/> ### Intended Use This model is being created in order to enable public research on large language models (LLMs). LLMs are intended to be used for language generation or as a pretrained base model that can be further fine-tuned for specific tasks. Use cases below are not exhaustive. #### **Direct Use** - Text generation - Exploring characteristics of language generated by a language model - Examples: Cloze tests, counterfactuals, generations with reframings #### **Downstream Use** - Tasks that leverage language models include: Information Extraction, Question Answering, Summarization ### Misuse and Out-of-scope Use *This section addresses what users ought not do with the model.* See the [BLOOM License](https://huggingface.co/spaces/bigscience/license), Attachment A, for detailed usage restrictions. The below list is non-exhaustive, but lists some easily foreseeable problematic use cases. #### **Out-of-scope Uses** Using the model in [high-stakes](#high-stakes) settings is out of scope for this model.  The model is not designed for [critical decisions](#critical-decisions) nor uses with any material consequences on an individual's livelihood or wellbeing. The model outputs content that appears factual but is not correct. ##### Out-of-scope Uses Include: - Usage in biomedical domains, political and legal domains, or finance domains - Usage for evaluating or scoring individuals, such as for employment, education, or credit - Applying the model for critical automatic decisions, generating factual content, creating reliable summaries, or generating predictions that must be correct #### **Misuse** Intentionally using the model for harm, violating [human rights](#human-rights), or other kinds of malicious activities, is a misuse of this model. This includes: - Spam generation - Disinformation and influence operations - Disparagement and defamation - Harassment and abuse - [Deception](#deception) - Unconsented impersonation and imitation - Unconsented surveillance - Generating content without attribution to the model, as specified in the [RAIL License, Use Restrictions](https://huggingface.co/spaces/bigscience/license) ### Intended Users #### **Direct Users** - General Public - Researchers - Students - Educators - Engineers/developers - Non-commercial entities - Community advocates, including human and civil rights groups #### Indirect Users - Users of derivatives created by Direct Users, such as those using software with an [intended use](#intended-use) - Users of [Derivatives of the Model, as described in the License](https://huggingface.co/spaces/bigscience/license) #### Others Affected (Parties Prenantes) - People and groups referred to by the LLM - People and groups exposed to outputs of, or decisions based on, the LLM - People and groups whose original work is included in the LLM </details> <p>&nbsp;</p> ## Training Data *This section provides a high-level overview of the training data. It is relevant for anyone who wants to know the basics of what the model is learning.* <details> <summary>Click to expand</summary><br/> Details for each dataset are provided in individual [Data Cards](https://huggingface.co/spaces/bigscience/BigScienceCorpus). Training data includes: - 45 natural languages - 12 programming languages - In 1.5TB of pre-processed text, converted into 350B unique tokens (see [the tokenizer section](#tokenization) for more.) #### **Languages** The pie chart shows the distribution of languages in training data. ![pie chart showing the distribution of languages in training data](https://github.com/bigscience-workshop/model_card/blob/main/assets/data/pie_chart.svg?raw=true) The following table shows the further distribution of Niger-Congo and Indic languages in the training data. <details> <summary>Click to expand</summary><br/> | Niger Congo | Percentage | | Indic | Percentage | |----------------|------------ |------ |-----------|------------| | Chi Tumbuka | 0.00002 | | Assamese | 0.01 | | Kikuyu | 0.00004 | | Odia | 0.04 | | Bambara | 0.00004 | | Gujarati | 0.04 | | Akan | 0.00007 | | Marathi | 0.05 | | Xitsonga | 0.00007 | | Punjabi | 0.05 | | Sesotho | 0.00007 | | Kannada | 0.06 | | Chi Chewa | 0.0001 | | Nepali | 0.07 | | Setswana | 0.0002 | | Telugu | 0.09 | | Northern Sotho | 0.0002 | | Malayalam | 0.10 | | Fon | 0.0002 | | Urdu | 0.10 | | Kirundi | 0.0003 | | Tamil | 0.20 | | Wolof | 0.0004 | | Bengali | 0.50 | | Kuganda | 0.0004 | | Hindi | 0.70 | | Chi Shona | 0.001 | | Isi Zulu | 0.001 | | Igbo | 0.001 | | Xhosa | 0.001 | | Kinyarwanda | 0.003 | | Yoruba | 0.006 | | Swahili | 0.02 | </details> The following table shows the distribution of programming languages. <details> <summary>Click to expand</summary><br/> | Extension | Language | Number of files | |----------------|------------|-----------------| | java | Java | 5,407,724 | | php | PHP | 4,942,186 | | cpp | C++ | 2,503,930 | | py | Python | 2,435,072 | | js | JavaScript | 1,905,518 | | cs | C# | 1,577,347 | | rb | Ruby | 6,78,413 | | cc | C++ | 443,054 | | hpp | C++ | 391,048 | | lua | Lua | 352,317 | | go | GO | 227,763 | | ts | TypeScript | 195,254 | | C | C | 134,537 | | scala | Scala | 92,052 | | hh | C++ | 67,161 | | H | C++ | 55,899 | | tsx | TypeScript | 33,107 | | rs | Rust | 29,693 | | phpt | PHP | 9,702 | | c++ | C++ | 1,342 | | h++ | C++ | 791 | | php3 | PHP | 540 | | phps | PHP | 270 | | php5 | PHP | 166 | | php4 | PHP | 29 | </details> </details> <p>&nbsp;</p> ## Risks and Limitations *This section identifies foreseeable harms and misunderstandings.* <details> <summary>Click to expand</summary><br/> Model may: - Overrepresent some viewpoints and underrepresent others - Contain stereotypes - Contain [personal information](#personal-data-and-information) - Generate: - Hateful, abusive, or violent language - Discriminatory or prejudicial language - Content that may not be appropriate for all settings, including sexual content - Make errors, including producing incorrect information as if it were factual - Generate irrelevant or repetitive outputs </details> <p>&nbsp;</p> ## Evaluation *This section describes the evaluation protocols and provides the results.* <details> <summary>Click to expand</summary><br/> ### Metrics *This section describes the different ways performance is calculated and why.* Includes: | Metric | Why chosen | |--------------------|--------------------------------------------------------------------| | [Perplexity](#perplexity) | Standard metric for quantifying model improvements during training | | Cross Entropy [Loss](#loss) | Standard objective for language models. | And multiple different metrics for specific tasks. _(More evaluation metrics forthcoming upon completion of evaluation protocol.)_ ### Factors *This section lists some different aspects of BLOOM models. Its focus is on aspects that are likely to give rise to high variance in model behavior.* - Language, such as English or Yoruba - Domain, such as newswire or stories - Demographic characteristics, such as gender or nationality ### Results *Results are based on the [Factors](#factors) and [Metrics](#metrics).* **Zero-shot evaluations:** See this repository for JSON files: https://github.com/bigscience-workshop/evaluation-results | Task | Language | Metric | BLOOM-2B5 | |:----|:----|:----|:----:| | arc_challenge | eng | acc ↑ | 0.28 | | arc_easy | eng | acc ↑ | 0.595 | | axb (Median of 10 prompts) | eng | acc ↑ | 0.443 | | axg (Median of 10 prompts) | eng | acc ↑ | 0.5 | | boolq (Median of 11 prompts) | eng | acc ↑ | 0.617 | | cb (Median of 15 prompts) | eng | acc ↑ | 0.304 | | cola (Median of 5 prompts) | eng | acc ↑ | 0.611 | | copa (Median of 9 prompts) | eng | acc ↑ | 0.63 | | crows_pairs_english (Median of 6 prompts) | eng | acc ↑ | 0.497 | | crows_pairs_french (Median of 7 prompts) | fra | acc ↑ | 0.503 | | diabla (Median of 2 prompts) | eng | acc ↑ | 0.289 | | gsarti/flores_101_afr | afr | byte_perplexity ↓ | 6.501 | | gsarti/flores_101_amh | amh | byte_perplexity ↓ | 3.973 | | gsarti/flores_101_ara | ara | byte_perplexity ↓ | 1.808 | | gsarti/flores_101_asm | asm | byte_perplexity ↓ | 5.699 | | gsarti/flores_101_ast | ast | byte_perplexity ↓ | 3.925 | | gsarti/flores_101_azj | azj | byte_perplexity ↓ | 6.943 | | gsarti/flores_101_bel | bel | byte_perplexity ↓ | 3.614 | | gsarti/flores_101_ben | ben | byte_perplexity ↓ | 5.121 | | gsarti/flores_101_bos | bos | byte_perplexity ↓ | 5.653 | | gsarti/flores_101_bul | bul | byte_perplexity ↓ | 2.701 | | gsarti/flores_101_cat | cat | byte_perplexity ↓ | 2.305 | | gsarti/flores_101_ceb | ceb | byte_perplexity ↓ | 6.291 | | gsarti/flores_101_ces | ces | byte_perplexity ↓ | 5.447 | | gsarti/flores_101_ckb | ckb | byte_perplexity ↓ | 3.726 | | gsarti/flores_101_cym | cym | byte_perplexity ↓ | 12.539 | | gsarti/flores_101_dan | dan | byte_perplexity ↓ | 5.183 | | gsarti/flores_101_deu | deu | byte_perplexity ↓ | 3.118 | | gsarti/flores_101_ell | ell | byte_perplexity ↓ | 2.468 | | gsarti/flores_101_eng | eng | byte_perplexity ↓ | 2.019 | | gsarti/flores_101_est | est | byte_perplexity ↓ | 9.117 | | gsarti/flores_101_fas | fas | byte_perplexity ↓ | 3.058 | | gsarti/flores_101_fin | fin | byte_perplexity ↓ | 6.847 | | gsarti/flores_101_fra | fra | byte_perplexity ↓ | 1.998 | | gsarti/flores_101_ful | ful | byte_perplexity ↓ | 11.466 | | gsarti/flores_101_gle | gle | byte_perplexity ↓ | 8.681 | | gsarti/flores_101_glg | glg | byte_perplexity ↓ | 3.03 | | gsarti/flores_101_guj | guj | byte_perplexity ↓ | 4.955 | | gsarti/flores_101_hau | hau | byte_perplexity ↓ | 10.758 | | gsarti/flores_101_heb | heb | byte_perplexity ↓ | 3.6 | | gsarti/flores_101_hin | hin | byte_perplexity ↓ | 4.713 | | gsarti/flores_101_hrv | hrv | byte_perplexity ↓ | 5.822 | | gsarti/flores_101_hun | hun | byte_perplexity ↓ | 6.44 | | gsarti/flores_101_hye | hye | byte_perplexity ↓ | 3.658 | | gsarti/flores_101_ibo | ibo | byte_perplexity ↓ | 5.565 | | gsarti/flores_101_ind | ind | byte_perplexity ↓ | 2.16 | | gsarti/flores_101_isl | isl | byte_perplexity ↓ | 8.082 | | gsarti/flores_101_ita | ita | byte_perplexity ↓ | 2.969 | | gsarti/flores_101_jav | jav | byte_perplexity ↓ | 7.057 | | gsarti/flores_101_jpn | jpn | byte_perplexity ↓ | 2.776 | | gsarti/flores_101_kam | kam | byte_perplexity ↓ | 11.073 | | gsarti/flores_101_kan | kan | byte_perplexity ↓ | 5.552 | | gsarti/flores_101_kat | kat | byte_perplexity ↓ | 2.523 | | gsarti/flores_101_kaz | kaz | byte_perplexity ↓ | 3.39 | | gsarti/flores_101_kea | kea | byte_perplexity ↓ | 8.919 | | gsarti/flores_101_kir | kir | byte_perplexity ↓ | 3.729 | | gsarti/flores_101_kor | kor | byte_perplexity ↓ | 3.933 | | gsarti/flores_101_lao | lao | byte_perplexity ↓ | 2.908 | | gsarti/flores_101_lav | lav | byte_perplexity ↓ | 7.777 | | gsarti/flores_101_lin | lin | byte_perplexity ↓ | 7.525 | | gsarti/flores_101_lit | lit | byte_perplexity ↓ | 7.369 | | gsarti/flores_101_ltz | ltz | byte_perplexity ↓ | 8.801 | | gsarti/flores_101_lug | lug | byte_perplexity ↓ | 8.483 | | gsarti/flores_101_luo | luo | byte_perplexity ↓ | 11.976 | | gsarti/flores_101_mal | mal | byte_perplexity ↓ | 4.616 | | gsarti/flores_101_mar | mar | byte_perplexity ↓ | 5.483 | | gsarti/flores_101_mkd | mkd | byte_perplexity ↓ | 2.966 | | gsarti/flores_101_mlt | mlt | byte_perplexity ↓ | 15.005 | | gsarti/flores_101_mon | mon | byte_perplexity ↓ | 3.411 | | gsarti/flores_101_mri | mri | byte_perplexity ↓ | 7.474 | | gsarti/flores_101_msa | msa | byte_perplexity ↓ | 2.571 | | gsarti/flores_101_mya | mya | byte_perplexity ↓ | 2.414 | | gsarti/flores_101_nld | nld | byte_perplexity ↓ | 4.128 | | gsarti/flores_101_nob | nob | byte_perplexity ↓ | 5.403 | | gsarti/flores_101_npi | npi | byte_perplexity ↓ | 5.199 | | gsarti/flores_101_nso | nso | byte_perplexity ↓ | 8.155 | | gsarti/flores_101_nya | nya | byte_perplexity ↓ | 8.18 | | gsarti/flores_101_oci | oci | byte_perplexity ↓ | 4.862 | | gsarti/flores_101_orm | orm | byte_perplexity ↓ | 12.912 | | gsarti/flores_101_ory | ory | byte_perplexity ↓ | 5.189 | | gsarti/flores_101_pan | pan | byte_perplexity ↓ | 4.698 | | gsarti/flores_101_pol | pol | byte_perplexity ↓ | 4.626 | | gsarti/flores_101_por | por | byte_perplexity ↓ | 1.975 | | gsarti/flores_101_pus | pus | byte_perplexity ↓ | 4.496 | | gsarti/flores_101_ron | ron | byte_perplexity ↓ | 4.965 | | gsarti/flores_101_rus | rus | byte_perplexity ↓ | 2.05 | | gsarti/flores_101_slk | slk | byte_perplexity ↓ | 6.451 | | gsarti/flores_101_slv | slv | byte_perplexity ↓ | 6.62 | | gsarti/flores_101_sna | sna | byte_perplexity ↓ | 8.462 | | gsarti/flores_101_snd | snd | byte_perplexity ↓ | 5.466 | | gsarti/flores_101_som | som | byte_perplexity ↓ | 11.959 | | gsarti/flores_101_spa | spa | byte_perplexity ↓ | 1.897 | | gsarti/flores_101_srp | srp | byte_perplexity ↓ | 2.871 | | gsarti/flores_101_swe | swe | byte_perplexity ↓ | 5.055 | | gsarti/flores_101_swh | swh | byte_perplexity ↓ | 3.697 | | gsarti/flores_101_tam | tam | byte_perplexity ↓ | 4.539 | | gsarti/flores_101_tel | tel | byte_perplexity ↓ | 5.807 | | gsarti/flores_101_tgk | tgk | byte_perplexity ↓ | 3.599 | | gsarti/flores_101_tgl | tgl | byte_perplexity ↓ | 5.667 | | gsarti/flores_101_tha | tha | byte_perplexity ↓ | 2.366 | | gsarti/flores_101_tur | tur | byte_perplexity ↓ | 4.885 | | gsarti/flores_101_ukr | ukr | byte_perplexity ↓ | 2.724 | | gsarti/flores_101_umb | umb | byte_perplexity ↓ | 12.767 | | gsarti/flores_101_urd | urd | byte_perplexity ↓ | 1.98 | | gsarti/flores_101_uzb | uzb | byte_perplexity ↓ | 12.002 | | gsarti/flores_101_vie | vie | byte_perplexity ↓ | 1.766 | | gsarti/flores_101_wol | wol | byte_perplexity ↓ | 9.144 | | gsarti/flores_101_xho | xho | byte_perplexity ↓ | 7.403 | | gsarti/flores_101_yor | yor | byte_perplexity ↓ | 5.913 | | gsarti/flores_101_zho_simpl | zho_simpl | byte_perplexity ↓ | 2.277 | | gsarti/flores_101_zho_trad | zho_trad | byte_perplexity ↓ | 2.518 | | gsarti/flores_101_zul | zul | byte_perplexity ↓ | 8.534 | | headqa | esp | acc ↑ | 0.264 | | hellaswag | eng | acc ↑ | 0.412 | | logiqa | eng | acc ↑ | 0.207 | | mathqa | eng | acc ↑ | 0.25 | | mc_taco | eng | em ↑ | 0.119 | | mnli (Median of 15 prompts) | eng | acc ↑ | 0.355 | | mnli_mismatched (Median of 15 prompts) | eng | acc ↑ | 0.352 | | mrpc | eng | acc ↑ | 0.586 | | multirc (Median of 11 prompts) | eng | acc ↑ | 0.538 | | openbookqa | eng | acc ↑ | 0.216 | | piqa | eng | acc ↑ | 0.708 | | prost | eng | acc ↑ | 0.227 | | pubmedqa | eng | acc ↑ | 0.616 | | qnli | eng | acc ↑ | 0.507 | | qqp (Median of 7 prompts) | eng | acc ↑ | 0.384 | | race | eng | acc ↑ | 0.352 | | rte (Median of 6 prompts) | eng | acc ↑ | 0.477 | | sciq | eng | acc ↑ | 0.892 | | sst (Median of 6 prompts) | eng | acc ↑ | 0.518 | | triviaqa | eng | acc ↑ | 0.042 | | tydiqa_primary (Median of 24 prompts) | eng | acc ↑ | 0.301 | | webqs | eng | acc ↑ | 0.017 | | wic (Median of 11 prompts) | eng | acc ↑ | 0.502 | | winogrande | eng | acc ↑ | 0.586 | | wnli (Median of 6 prompts) | eng | acc ↑ | 0.472 | | wsc (Median of 11 prompts) | eng | acc ↑ | 0.442 | | humaneval | python | pass@1 ↑ | 0.155 | | humaneval | python | pass@10 ↑ | 0.322 | | humaneval | python | pass@100 ↑ | 0.555 | **Train-time Evaluation:** As of 25.May.2022, 15:00 PST: - Training Loss: 2.0 - Validation Loss: 2.2 - Perplexity: 8.9 </details> <p>&nbsp;</p> ## Recommendations *This section provides information on warnings and potential mitigations.* <details> <summary>Click to expand</summary><br/> - Indirect users should be made aware when the content they're working with is created by the LLM. - Users should be aware of [Risks and Limitations](#risks-and-limitations), and include an appropriate age disclaimer or blocking interface as necessary. - Models pretrained with the LLM should include an updated Model Card. - Users of the model should provide mechanisms for those affected to provide feedback, such as an email address for comments. </details> <p>&nbsp;</p> ## Glossary and Calculations *This section defines common terms and how metrics are calculated.* <details> <summary>Click to expand</summary><br/> - <a name="loss">**Loss:**</a> A calculation of the difference between what the model has learned and what the data shows ("groundtruth"). The lower the loss, the better. The training process aims to minimize the loss. - <a name="perplexity">**Perplexity:**</a> This is based on what the model estimates the probability of new data is. The lower the perplexity, the better. If the model is 100% correct at predicting the next token it will see, then the perplexity is 1. Mathematically this is calculated using entropy. - <a name="high-stakes">**High-stakes settings:**</a> Such as those identified as "high-risk AI systems" and "unacceptable risk AI systems" in the European Union's proposed [Artificial Intelligence (AI) Act](https://artificialintelligenceact.eu/annexes/). - <a name="critical-decisions">**Critical decisions:**</a> Such as those defined in [the United States' proposed Algorithmic Accountability Act](https://www.congress.gov/117/bills/s3572/BILLS-117s3572is.pdf). - <a name="human-rights">**Human rights:**</a> Includes those rights defined in the [Universal Declaration of Human Rights](https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf). - <a name="personal-data-and-information">**Personal Data and Personal Information:**</a> Personal data and information is defined in multiple data protection regulations, such as "[personal data](https://gdpr-info.eu/issues/personal-data/)" in the [European Union's General Data Protection Regulation](https://gdpr-info.eu); and "personal information" in the Republic of South Africa's [Protection of Personal Information Act](https://www.gov.za/sites/default/files/gcis_document/201409/3706726-11act4of2013popi.pdf), The People's Republic of China's [Personal information protection law](http://en.npc.gov.cn.cdurl.cn/2021-12/29/c_694559.htm). - <a name="sensitive-characteristics">**Sensitive characteristics:**</a> This includes specifically protected categories in human rights (see [UHDR, Article 2](https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf)) and personal information regulation (see GDPR, [Article 9; Protection of Personal Information Act, Chapter 1](https://www.gov.za/sites/default/files/gcis_document/201409/3706726-11act4of2013popi.pdf)) - <a name="deception">**Deception:**</a> Doing something to intentionally mislead individuals to believe something that is false, such as by creating deadbots or chatbots on social media posing as real people, or generating text documents without making consumers aware that the text is machine generated. </details> <p>&nbsp;</p> ## More Information <details> <summary>Click to expand</summary><br/> ### Dataset Creation Blog post detailing the design choices during the dataset creation: https://bigscience.huggingface.co/blog/building-a-tb-scale-multilingual-dataset-for-language-modeling ### Technical Specifications Blog post summarizing how the architecture, size, shape, and pre-training duration where selected: https://bigscience.huggingface.co/blog/what-language-model-to-train-if-you-have-two-million-gpu-hours More details on the architecture/optimizer: https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml Blog post on the hardware/engineering side: https://bigscience.huggingface.co/blog/which-hardware-to-train-a-176b-parameters-model Details on the distributed setup used for the training: https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml Tensorboard updated during the training: https://huggingface.co/bigscience/tr11-176B-ml-logs/tensorboard#scalars&tagFilter=loss Insights on how to approach training, negative results: https://github.com/bigscience-workshop/bigscience/blob/master/train/lessons-learned.md Details on the obstacles overcome during the preparation on the engineering side (instabilities, optimization of training throughput, so many technical tricks and questions): https://github.com/bigscience-workshop/bigscience/blob/master/train/tr11-176B-ml/chronicles.md ### Initial Results Initial prompting experiments using interim checkpoints: https://huggingface.co/spaces/bigscience/bloom-book </details> <p>&nbsp;</p> ## Model Card Authors *Ordered roughly chronologically and by amount of time spent.* Margaret Mitchell, Giada Pistilli, Yacine Jernite, Ezinwanne Ozoani, Marissa Gerchick, Nazneen Rajani, Sasha Luccioni, Irene Solaiman, Maraim Masoud, Somaieh Nikpoor, Carlos Muñoz Ferrandis, Stas Bekman, Christopher Akiki, Danish Contractor, David Lansky, Angelina McMillan-Major, Tristan Thrush, Suzana Ilić, Gérard Dupont, Shayne Longpre, Manan Dey, Stella Biderman, Douwe Kiela, Emi Baylor, Teven Le Scao, Aaron Gokaslan, Julien Launay, Niklas Muennighoff
{"language": ["ak", "ar", "as", "bm", "bn", "ca", "code", "en", "es", "eu", "fon", "fr", "gu", "hi", "id", "ig", "ki", "kn", "lg", "ln", "ml", "mr", "ne", "nso", "ny", "or", "pa", "pt", "rn", "rw", "sn", "st", "sw", "ta", "te", "tn", "ts", "tum", "tw", "ur", "vi", "wo", "xh", "yo", "zh", "zhs", "zht", "zu"], "license": "bigscience-bloom-rail-1.0", "pipeline_tag": "text-generation", "model-index": [{"name": "bloom", "results": [{"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "arc_challenge", "type": "arc_challenge"}, "metrics": [{"type": "acc", "value": 0.27986348122866894, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "arc_easy", "type": "arc_easy"}, "metrics": [{"type": "acc", "value": 0.5946969696969697, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "axb", "type": "axb"}, "metrics": [{"type": "acc", "value": 0.4433876811594203, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "axg", "type": "axg"}, "metrics": [{"type": "acc", "value": 0.5, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "boolq", "type": "boolq"}, "metrics": [{"type": "acc", "value": 0.6165137614678899, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "cb", "type": "cb"}, "metrics": [{"type": "acc", "value": 0.30357142857142855, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "cola", "type": "cola"}, "metrics": [{"type": "acc", "value": 0.610738255033557, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "copa", "type": "copa"}, "metrics": [{"type": "acc", "value": 0.63, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "crows_pairs_english", "type": "crows_pairs_english"}, "metrics": [{"type": "acc", "value": 0.4973166368515206, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "crows_pairs_french", "type": "crows_pairs_french"}, "metrics": [{"type": "acc", "value": 0.5032796660703638, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "diabla", "type": "diabla"}, "metrics": [{"type": "acc", "value": 0.28888308977035493, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_afr", "type": "gsarti/flores_101_afr"}, "metrics": [{"type": "byte_perplexity", "value": 6.500798737976343, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_amh", "type": "gsarti/flores_101_amh"}, "metrics": [{"type": "byte_perplexity", "value": 3.9726863338897145, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_ara", "type": "gsarti/flores_101_ara"}, "metrics": [{"type": "byte_perplexity", "value": 1.8083841089875814, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_asm", "type": "gsarti/flores_101_asm"}, "metrics": [{"type": "byte_perplexity", "value": 5.699102962086425, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_ast", "type": "gsarti/flores_101_ast"}, "metrics": [{"type": "byte_perplexity", "value": 3.9252047073429384, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_azj", "type": "gsarti/flores_101_azj"}, "metrics": [{"type": "byte_perplexity", "value": 6.942805054270002, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_bel", "type": "gsarti/flores_101_bel"}, "metrics": [{"type": "byte_perplexity", "value": 3.614136245847082, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_ben", "type": "gsarti/flores_101_ben"}, "metrics": [{"type": "byte_perplexity", "value": 5.121491534300969, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_bos", "type": "gsarti/flores_101_bos"}, "metrics": [{"type": "byte_perplexity", "value": 5.653353469118798, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_bul", "type": "gsarti/flores_101_bul"}, "metrics": [{"type": "byte_perplexity", "value": 2.7014693938055068, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_cat", "type": "gsarti/flores_101_cat"}, "metrics": [{"type": "byte_perplexity", "value": 2.305190041967345, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_ceb", "type": "gsarti/flores_101_ceb"}, "metrics": [{"type": "byte_perplexity", "value": 6.291000321323428, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_ces", "type": "gsarti/flores_101_ces"}, "metrics": [{"type": "byte_perplexity", "value": 5.447322753586386, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_ckb", "type": "gsarti/flores_101_ckb"}, "metrics": [{"type": "byte_perplexity", "value": 3.7255124939234765, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_cym", "type": "gsarti/flores_101_cym"}, "metrics": [{"type": "byte_perplexity", "value": 12.539424151448149, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_dan", "type": "gsarti/flores_101_dan"}, "metrics": [{"type": "byte_perplexity", "value": 5.183309001005672, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_deu", "type": "gsarti/flores_101_deu"}, "metrics": [{"type": "byte_perplexity", "value": 3.1180422286591347, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_ell", "type": "gsarti/flores_101_ell"}, "metrics": [{"type": "byte_perplexity", "value": 2.467943456164706, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_eng", "type": "gsarti/flores_101_eng"}, "metrics": [{"type": "byte_perplexity", "value": 2.018740628193298, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_est", "type": "gsarti/flores_101_est"}, "metrics": [{"type": "byte_perplexity", "value": 9.11654425176368, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_fas", "type": "gsarti/flores_101_fas"}, "metrics": [{"type": "byte_perplexity", "value": 3.058009097116482, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_fin", "type": "gsarti/flores_101_fin"}, "metrics": [{"type": "byte_perplexity", "value": 6.847047959628553, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_fra", "type": "gsarti/flores_101_fra"}, "metrics": [{"type": "byte_perplexity", "value": 1.9975177011840075, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_ful", "type": "gsarti/flores_101_ful"}, "metrics": [{"type": "byte_perplexity", "value": 11.465912731488828, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_gle", "type": "gsarti/flores_101_gle"}, "metrics": [{"type": "byte_perplexity", "value": 8.681491663539422, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_glg", "type": "gsarti/flores_101_glg"}, "metrics": [{"type": "byte_perplexity", "value": 3.029991089015508, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_guj", "type": "gsarti/flores_101_guj"}, "metrics": [{"type": "byte_perplexity", "value": 4.955224230286231, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_hau", "type": "gsarti/flores_101_hau"}, "metrics": [{"type": "byte_perplexity", "value": 10.758347356372159, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_heb", "type": "gsarti/flores_101_heb"}, "metrics": [{"type": "byte_perplexity", "value": 3.6004478129801667, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_hin", "type": "gsarti/flores_101_hin"}, "metrics": [{"type": "byte_perplexity", "value": 4.712530650588064, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_hrv", "type": "gsarti/flores_101_hrv"}, "metrics": [{"type": "byte_perplexity", "value": 5.822418943372185, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_hun", "type": "gsarti/flores_101_hun"}, "metrics": [{"type": "byte_perplexity", "value": 6.440482646965992, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_hye", "type": "gsarti/flores_101_hye"}, "metrics": [{"type": "byte_perplexity", "value": 3.657718918347166, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_ibo", "type": "gsarti/flores_101_ibo"}, "metrics": [{"type": "byte_perplexity", "value": 5.564814003872672, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_ind", "type": "gsarti/flores_101_ind"}, "metrics": [{"type": "byte_perplexity", "value": 2.1597101468869373, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_isl", "type": "gsarti/flores_101_isl"}, "metrics": [{"type": "byte_perplexity", "value": 8.082349269518136, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_ita", "type": "gsarti/flores_101_ita"}, "metrics": [{"type": "byte_perplexity", "value": 2.9687591414176207, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_jav", "type": "gsarti/flores_101_jav"}, "metrics": [{"type": "byte_perplexity", "value": 7.0573805415708994, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_jpn", "type": "gsarti/flores_101_jpn"}, "metrics": [{"type": "byte_perplexity", "value": 2.7758864197116933, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_kam", "type": "gsarti/flores_101_kam"}, "metrics": [{"type": "byte_perplexity", "value": 11.072949642861332, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_kan", "type": "gsarti/flores_101_kan"}, "metrics": [{"type": "byte_perplexity", "value": 5.551730651007082, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_kat", "type": "gsarti/flores_101_kat"}, "metrics": [{"type": "byte_perplexity", "value": 2.522630524283745, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_kaz", "type": "gsarti/flores_101_kaz"}, "metrics": [{"type": "byte_perplexity", "value": 3.3901748516975574, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_kea", "type": "gsarti/flores_101_kea"}, "metrics": [{"type": "byte_perplexity", "value": 8.918534182590863, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_kir", "type": "gsarti/flores_101_kir"}, "metrics": [{"type": "byte_perplexity", "value": 3.729278369847201, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_kor", "type": "gsarti/flores_101_kor"}, "metrics": [{"type": "byte_perplexity", "value": 3.932884847226212, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_lao", "type": "gsarti/flores_101_lao"}, "metrics": [{"type": "byte_perplexity", "value": 2.9077314760849924, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_lav", "type": "gsarti/flores_101_lav"}, "metrics": [{"type": "byte_perplexity", "value": 7.777221919194806, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_lin", "type": "gsarti/flores_101_lin"}, "metrics": [{"type": "byte_perplexity", "value": 7.524842908050988, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_lit", "type": "gsarti/flores_101_lit"}, "metrics": [{"type": "byte_perplexity", "value": 7.369179434621725, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_ltz", "type": "gsarti/flores_101_ltz"}, "metrics": [{"type": "byte_perplexity", "value": 8.801059747949214, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_lug", "type": "gsarti/flores_101_lug"}, "metrics": [{"type": "byte_perplexity", "value": 8.483203026364786, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_luo", "type": "gsarti/flores_101_luo"}, "metrics": [{"type": "byte_perplexity", "value": 11.975963093623681, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_mal", "type": "gsarti/flores_101_mal"}, "metrics": [{"type": "byte_perplexity", "value": 4.615948455160037, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_mar", "type": "gsarti/flores_101_mar"}, "metrics": [{"type": "byte_perplexity", "value": 5.483253482821379, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_mkd", "type": "gsarti/flores_101_mkd"}, "metrics": [{"type": "byte_perplexity", "value": 2.9656732291754087, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_mlt", "type": "gsarti/flores_101_mlt"}, "metrics": [{"type": "byte_perplexity", "value": 15.004773437665275, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_mon", "type": "gsarti/flores_101_mon"}, "metrics": [{"type": "byte_perplexity", "value": 3.410598542315402, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_mri", "type": "gsarti/flores_101_mri"}, "metrics": [{"type": "byte_perplexity", "value": 7.474035895661322, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_msa", "type": "gsarti/flores_101_msa"}, "metrics": [{"type": "byte_perplexity", "value": 2.5710001772665634, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_mya", "type": "gsarti/flores_101_mya"}, "metrics": [{"type": "byte_perplexity", "value": 2.413577969878331, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_nld", "type": "gsarti/flores_101_nld"}, "metrics": [{"type": "byte_perplexity", "value": 4.127831721885065, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_nob", "type": "gsarti/flores_101_nob"}, "metrics": [{"type": "byte_perplexity", "value": 5.402763169129877, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_npi", "type": "gsarti/flores_101_npi"}, "metrics": [{"type": "byte_perplexity", "value": 5.199342701937889, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_nso", "type": "gsarti/flores_101_nso"}, "metrics": [{"type": "byte_perplexity", "value": 8.154626800955667, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_nya", "type": "gsarti/flores_101_nya"}, "metrics": [{"type": "byte_perplexity", "value": 8.179860208369393, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_oci", "type": "gsarti/flores_101_oci"}, "metrics": [{"type": "byte_perplexity", "value": 4.8617357393685845, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_orm", "type": "gsarti/flores_101_orm"}, "metrics": [{"type": "byte_perplexity", "value": 12.911595421079408, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_ory", "type": "gsarti/flores_101_ory"}, "metrics": [{"type": "byte_perplexity", "value": 5.189421861225964, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_pan", "type": "gsarti/flores_101_pan"}, "metrics": [{"type": "byte_perplexity", "value": 4.698477289331806, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_pol", "type": "gsarti/flores_101_pol"}, "metrics": [{"type": "byte_perplexity", "value": 4.625550458479643, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_por", "type": "gsarti/flores_101_por"}, "metrics": [{"type": "byte_perplexity", "value": 1.9754515986213523, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_pus", "type": "gsarti/flores_101_pus"}, "metrics": [{"type": "byte_perplexity", "value": 4.4963371422771585, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_ron", "type": "gsarti/flores_101_ron"}, "metrics": [{"type": "byte_perplexity", "value": 4.965456830031304, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_rus", "type": "gsarti/flores_101_rus"}, "metrics": [{"type": "byte_perplexity", "value": 2.0498020542445303, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_slk", "type": "gsarti/flores_101_slk"}, "metrics": [{"type": "byte_perplexity", "value": 6.450822127057479, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_slv", "type": "gsarti/flores_101_slv"}, "metrics": [{"type": "byte_perplexity", "value": 6.620252120186232, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_sna", "type": "gsarti/flores_101_sna"}, "metrics": [{"type": "byte_perplexity", "value": 8.462166771382726, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_snd", "type": "gsarti/flores_101_snd"}, "metrics": [{"type": "byte_perplexity", "value": 5.466066951221973, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_som", "type": "gsarti/flores_101_som"}, "metrics": [{"type": "byte_perplexity", "value": 11.95918054093392, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_spa", "type": "gsarti/flores_101_spa"}, "metrics": [{"type": "byte_perplexity", "value": 1.8965140104323535, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_srp", "type": "gsarti/flores_101_srp"}, "metrics": [{"type": "byte_perplexity", "value": 2.871214785885079, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_swe", "type": "gsarti/flores_101_swe"}, "metrics": [{"type": "byte_perplexity", "value": 5.054972008155866, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_swh", "type": "gsarti/flores_101_swh"}, "metrics": [{"type": "byte_perplexity", "value": 3.6973091886730676, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_tam", "type": "gsarti/flores_101_tam"}, "metrics": [{"type": "byte_perplexity", "value": 4.539493400469833, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_tel", "type": "gsarti/flores_101_tel"}, "metrics": [{"type": "byte_perplexity", "value": 5.807499987508966, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_tgk", "type": "gsarti/flores_101_tgk"}, "metrics": [{"type": "byte_perplexity", "value": 3.5994818827380426, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_tgl", "type": "gsarti/flores_101_tgl"}, "metrics": [{"type": "byte_perplexity", "value": 5.667053833119858, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_tha", "type": "gsarti/flores_101_tha"}, "metrics": [{"type": "byte_perplexity", "value": 2.365940201944242, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_tur", "type": "gsarti/flores_101_tur"}, "metrics": [{"type": "byte_perplexity", "value": 4.885014749844601, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_ukr", "type": "gsarti/flores_101_ukr"}, "metrics": [{"type": "byte_perplexity", "value": 2.7240934990288483, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_umb", "type": "gsarti/flores_101_umb"}, "metrics": [{"type": "byte_perplexity", "value": 12.766915508610673, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_urd", "type": "gsarti/flores_101_urd"}, "metrics": [{"type": "byte_perplexity", "value": 1.9797467071381232, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_uzb", "type": "gsarti/flores_101_uzb"}, "metrics": [{"type": "byte_perplexity", "value": 12.002337637722146, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_vie", "type": "gsarti/flores_101_vie"}, "metrics": [{"type": "byte_perplexity", "value": 1.76578415476397, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_wol", "type": "gsarti/flores_101_wol"}, "metrics": [{"type": "byte_perplexity", "value": 9.144285650306488, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_xho", "type": "gsarti/flores_101_xho"}, "metrics": [{"type": "byte_perplexity", "value": 7.403240538286952, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_yor", "type": "gsarti/flores_101_yor"}, "metrics": [{"type": "byte_perplexity", "value": 5.91272037551173, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_zho_simpl", "type": "gsarti/flores_101_zho_simpl"}, "metrics": [{"type": "byte_perplexity", "value": 2.2769070822768533, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_zho_trad", "type": "gsarti/flores_101_zho_trad"}, "metrics": [{"type": "byte_perplexity", "value": 2.5180582198242383, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "gsarti/flores_101_zul", "type": "gsarti/flores_101_zul"}, "metrics": [{"type": "byte_perplexity", "value": 8.53353320693145, "name": "byte_perplexity", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "headqa", "type": "headqa"}, "metrics": [{"type": "acc", "value": 0.26440554339897887, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "hellaswag", "type": "hellaswag"}, "metrics": [{"type": "acc", "value": 0.41236805417247563, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "logiqa", "type": "logiqa"}, "metrics": [{"type": "acc", "value": 0.2073732718894009, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "mathqa", "type": "mathqa"}, "metrics": [{"type": "acc", "value": 0.24958123953098826, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "mc_taco", "type": "mc_taco"}, "metrics": [{"type": "em", "value": 0.11936936936936937, "name": "em", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "mnli", "type": "mnli"}, "metrics": [{"type": "acc", "value": 0.35496688741721855, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "mnli_mismatched", "type": "mnli_mismatched"}, "metrics": [{"type": "acc", "value": 0.35211554109031734, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "mrpc", "type": "mrpc"}, "metrics": [{"type": "acc", "value": 0.5857843137254902, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "multirc", "type": "multirc"}, "metrics": [{"type": "acc", "value": 0.5375412541254125, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "openbookqa", "type": "openbookqa"}, "metrics": [{"type": "acc", "value": 0.216, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "piqa", "type": "piqa"}, "metrics": [{"type": "acc", "value": 0.7078346028291621, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "prost", "type": "prost"}, "metrics": [{"type": "acc", "value": 0.22683603757472245, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "pubmedqa", "type": "pubmedqa"}, "metrics": [{"type": "acc", "value": 0.616, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "qnli", "type": "qnli"}, "metrics": [{"type": "acc", "value": 0.5072304594545122, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "qqp", "type": "qqp"}, "metrics": [{"type": "acc", "value": 0.3842443729903537, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "race", "type": "race"}, "metrics": [{"type": "acc", "value": 0.3521531100478469, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "rte", "type": "rte"}, "metrics": [{"type": "acc", "value": 0.47653429602888087, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "sciq", "type": "sciq"}, "metrics": [{"type": "acc", "value": 0.892, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "sst", "type": "sst"}, "metrics": [{"type": "acc", "value": 0.5177752293577982, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "triviaqa", "type": "triviaqa"}, "metrics": [{"type": "acc", "value": 0.041633518960487934, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "tydiqa_primary", "type": "tydiqa_primary"}, "metrics": [{"type": "acc", "value": 0.3011337608795236, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "webqs", "type": "webqs"}, "metrics": [{"type": "acc", "value": 0.01673228346456693, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "wic", "type": "wic"}, "metrics": [{"type": "acc", "value": 0.5015673981191222, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "winogrande", "type": "winogrande"}, "metrics": [{"type": "acc", "value": 0.5864246250986582, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "wnli", "type": "wnli"}, "metrics": [{"type": "acc", "value": 0.471830985915493, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "wsc", "type": "wsc"}, "metrics": [{"type": "acc", "value": 0.4423076923076923, "name": "acc", "verified": false}]}, {"task": {"type": "text-generation", "name": "text generation"}, "dataset": {"name": "humaneval", "type": "humaneval"}, "metrics": [{"type": "pass@1", "value": 0.15524390243902436, "name": "pass@1", "verified": false}, {"type": "pass@10", "value": 0.3220367632383857, "name": "pass@10", "verified": false}, {"type": "pass@100", "value": 0.5545431515723145, "name": "pass@100", "verified": false}]}]}]}
twadada/mpn
twadada
null
[ "mteb", "model-index", "region:us" ]
2024-09-08T13:47:44
2024-09-08T13:48:00
0
0
--- tags: - mteb model-index: - name: mpnet_main results: - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: None config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 68.11940298507461 - type: ap value: 30.542146596139048 - type: f1 value: 61.92465989589396 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification type: None config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 62.503875 - type: ap value: 58.0577571607728 - type: f1 value: 62.34928241469865 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: None config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 31.66999999999999 - type: f1 value: 31.2458385101798 - task: type: Retrieval dataset: name: MTEB ArguAna type: None config: default split: test revision: c22ab2a51041ffd869aaddef7af8d8215647e41a metrics: - type: map_at_1 value: 23.329 - type: map_at_10 value: 37.384 - type: map_at_100 value: 38.57 - type: map_at_1000 value: 38.586999999999996 - type: map_at_3 value: 32.492 - type: map_at_5 value: 35.376000000000005 - type: mrr_at_1 value: 23.755000000000003 - type: mrr_at_10 value: 37.547000000000004 - type: mrr_at_100 value: 38.733000000000004 - type: mrr_at_1000 value: 38.749 - type: mrr_at_3 value: 32.658 - type: mrr_at_5 value: 35.567 - type: ndcg_at_1 value: 23.329 - type: ndcg_at_10 value: 45.574999999999996 - type: ndcg_at_100 value: 50.953 - type: ndcg_at_1000 value: 51.354 - type: ndcg_at_3 value: 35.608000000000004 - type: ndcg_at_5 value: 40.784 - type: precision_at_1 value: 23.329 - type: precision_at_10 value: 7.183000000000001 - type: precision_at_100 value: 0.962 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 14.889 - type: precision_at_5 value: 11.437 - type: recall_at_1 value: 23.329 - type: recall_at_10 value: 71.83500000000001 - type: recall_at_100 value: 96.15899999999999 - type: recall_at_1000 value: 99.21799999999999 - type: recall_at_3 value: 44.666 - type: recall_at_5 value: 57.18299999999999 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P type: None config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 37.14558539727219 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S type: None config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 27.2291028039137 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions type: None config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 55.286820678107716 - type: mrr value: 69.43762916062084 - task: type: STS dataset: name: MTEB BIOSSES type: None config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 81.32170750010246 - type: cos_sim_spearman value: 78.48130632209363 - type: euclidean_pearson value: 80.42696573048755 - type: euclidean_spearman value: 78.48130632209363 - type: manhattan_pearson value: 80.68662655318546 - type: manhattan_spearman value: 78.4475706136436 - task: type: Classification dataset: name: MTEB Banking77Classification type: None config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 73.05194805194805 - type: f1 value: 72.31114319146532 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P type: None config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 33.842006272885655 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S type: None config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 25.238443830234058 - task: type: Retrieval dataset: name: MTEB CQADupstackAndroidRetrieval type: None config: default split: test revision: f46a197baaae43b4f621051089b82a364682dfeb metrics: - type: map_at_1 value: 22.647000000000002 - type: map_at_10 value: 29.842999999999996 - type: map_at_100 value: 31.131999999999998 - type: map_at_1000 value: 31.289 - type: map_at_3 value: 27.534999999999997 - type: map_at_5 value: 28.782999999999998 - type: mrr_at_1 value: 28.183000000000003 - type: mrr_at_10 value: 35.225 - type: mrr_at_100 value: 36.128 - type: mrr_at_1000 value: 36.198 - type: mrr_at_3 value: 33.19 - type: mrr_at_5 value: 34.363 - type: ndcg_at_1 value: 28.183000000000003 - type: ndcg_at_10 value: 34.644000000000005 - type: ndcg_at_100 value: 40.194 - type: ndcg_at_1000 value: 43.289 - type: ndcg_at_3 value: 31.259999999999998 - type: ndcg_at_5 value: 32.707 - type: precision_at_1 value: 28.183000000000003 - type: precision_at_10 value: 6.666999999999999 - type: precision_at_100 value: 1.187 - type: precision_at_1000 value: 0.185 - type: precision_at_3 value: 14.974000000000002 - type: precision_at_5 value: 10.844 - type: recall_at_1 value: 22.647000000000002 - type: recall_at_10 value: 42.792 - type: recall_at_100 value: 67.399 - type: recall_at_1000 value: 88.646 - type: recall_at_3 value: 32.535 - type: recall_at_5 value: 36.748999999999995 - task: type: Retrieval dataset: name: MTEB CQADupstackEnglishRetrieval type: None config: default split: test revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 metrics: - type: map_at_1 value: 15.895000000000001 - type: map_at_10 value: 21.631 - type: map_at_100 value: 22.56 - type: map_at_1000 value: 22.689 - type: map_at_3 value: 19.799 - type: map_at_5 value: 20.824 - type: mrr_at_1 value: 20.191 - type: mrr_at_10 value: 25.674999999999997 - type: mrr_at_100 value: 26.482 - type: mrr_at_1000 value: 26.558 - type: mrr_at_3 value: 23.854 - type: mrr_at_5 value: 24.85 - type: ndcg_at_1 value: 20.191 - type: ndcg_at_10 value: 25.428 - type: ndcg_at_100 value: 29.799999999999997 - type: ndcg_at_1000 value: 32.927 - type: ndcg_at_3 value: 22.284000000000002 - type: ndcg_at_5 value: 23.699 - type: precision_at_1 value: 20.191 - type: precision_at_10 value: 4.7829999999999995 - type: precision_at_100 value: 0.876 - type: precision_at_1000 value: 0.14200000000000002 - type: precision_at_3 value: 10.743 - type: precision_at_5 value: 7.720000000000001 - type: recall_at_1 value: 15.895000000000001 - type: recall_at_10 value: 32.789 - type: recall_at_100 value: 52.156000000000006 - type: recall_at_1000 value: 73.804 - type: recall_at_3 value: 23.589 - type: recall_at_5 value: 27.486 - task: type: Retrieval dataset: name: MTEB CQADupstackGamingRetrieval type: None config: default split: test revision: 4885aa143210c98657558c04aaf3dc47cfb54340 metrics: - type: map_at_1 value: 25.465 - type: map_at_10 value: 33.93 - type: map_at_100 value: 35.07 - type: map_at_1000 value: 35.165 - type: map_at_3 value: 31.091 - type: map_at_5 value: 32.722 - type: mrr_at_1 value: 29.654999999999998 - type: mrr_at_10 value: 37.156 - type: mrr_at_100 value: 38.074000000000005 - type: mrr_at_1000 value: 38.132 - type: mrr_at_3 value: 34.608 - type: mrr_at_5 value: 36.077999999999996 - type: ndcg_at_1 value: 29.654999999999998 - type: ndcg_at_10 value: 38.872 - type: ndcg_at_100 value: 44.293 - type: ndcg_at_1000 value: 46.455999999999996 - type: ndcg_at_3 value: 33.661 - type: ndcg_at_5 value: 36.237 - type: precision_at_1 value: 29.654999999999998 - type: precision_at_10 value: 6.464 - type: precision_at_100 value: 1.012 - type: precision_at_1000 value: 0.127 - type: precision_at_3 value: 14.943000000000001 - type: precision_at_5 value: 10.696 - type: recall_at_1 value: 25.465 - type: recall_at_10 value: 50.8 - type: recall_at_100 value: 75.373 - type: recall_at_1000 value: 91.053 - type: recall_at_3 value: 36.808 - type: recall_at_5 value: 43.069 - task: type: Retrieval dataset: name: MTEB CQADupstackGisRetrieval type: None config: default split: test revision: 5003b3064772da1887988e05400cf3806fe491f2 metrics: - type: map_at_1 value: 12.853 - type: map_at_10 value: 18.047 - type: map_at_100 value: 18.9 - type: map_at_1000 value: 19.017999999999997 - type: map_at_3 value: 16.325 - type: map_at_5 value: 17.281 - type: mrr_at_1 value: 14.124 - type: mrr_at_10 value: 19.344 - type: mrr_at_100 value: 20.194000000000003 - type: mrr_at_1000 value: 20.298 - type: mrr_at_3 value: 17.589 - type: mrr_at_5 value: 18.601 - type: ndcg_at_1 value: 14.124 - type: ndcg_at_10 value: 21.188000000000002 - type: ndcg_at_100 value: 25.856 - type: ndcg_at_1000 value: 29.275000000000002 - type: ndcg_at_3 value: 17.726 - type: ndcg_at_5 value: 19.397000000000002 - type: precision_at_1 value: 14.124 - type: precision_at_10 value: 3.379 - type: precision_at_100 value: 0.61 - type: precision_at_1000 value: 0.095 - type: precision_at_3 value: 7.608 - type: precision_at_5 value: 5.537 - type: recall_at_1 value: 12.853 - type: recall_at_10 value: 29.731999999999996 - type: recall_at_100 value: 51.99399999999999 - type: recall_at_1000 value: 78.581 - type: recall_at_3 value: 20.339 - type: recall_at_5 value: 24.304000000000002 - task: type: Retrieval dataset: name: MTEB CQADupstackMathematicaRetrieval type: None config: default split: test revision: 90fceea13679c63fe563ded68f3b6f06e50061de metrics: - type: map_at_1 value: 6.736000000000001 - type: map_at_10 value: 10.587 - type: map_at_100 value: 11.515 - type: map_at_1000 value: 11.633000000000001 - type: map_at_3 value: 9.24 - type: map_at_5 value: 9.856 - type: mrr_at_1 value: 8.955 - type: mrr_at_10 value: 13.383999999999999 - type: mrr_at_100 value: 14.297 - type: mrr_at_1000 value: 14.391000000000002 - type: mrr_at_3 value: 11.92 - type: mrr_at_5 value: 12.584999999999999 - type: ndcg_at_1 value: 8.955 - type: ndcg_at_10 value: 13.498 - type: ndcg_at_100 value: 18.684 - type: ndcg_at_1000 value: 22.105 - type: ndcg_at_3 value: 10.881 - type: ndcg_at_5 value: 11.824 - type: precision_at_1 value: 8.955 - type: precision_at_10 value: 2.662 - type: precision_at_100 value: 0.633 - type: precision_at_1000 value: 0.106 - type: precision_at_3 value: 5.473 - type: precision_at_5 value: 3.9800000000000004 - type: recall_at_1 value: 6.736000000000001 - type: recall_at_10 value: 19.945 - type: recall_at_100 value: 43.807 - type: recall_at_1000 value: 69.215 - type: recall_at_3 value: 12.458 - type: recall_at_5 value: 14.878 - task: type: Retrieval dataset: name: MTEB CQADupstackPhysicsRetrieval type: None config: default split: test revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 metrics: - type: map_at_1 value: 19.169 - type: map_at_10 value: 25.34 - type: map_at_100 value: 26.509 - type: map_at_1000 value: 26.663999999999998 - type: map_at_3 value: 22.964000000000002 - type: map_at_5 value: 24.229 - type: mrr_at_1 value: 23.483999999999998 - type: mrr_at_10 value: 29.872 - type: mrr_at_100 value: 30.775999999999996 - type: mrr_at_1000 value: 30.858 - type: mrr_at_3 value: 27.43 - type: mrr_at_5 value: 28.782000000000004 - type: ndcg_at_1 value: 23.483999999999998 - type: ndcg_at_10 value: 29.859 - type: ndcg_at_100 value: 35.498000000000005 - type: ndcg_at_1000 value: 38.875 - type: ndcg_at_3 value: 25.635 - type: ndcg_at_5 value: 27.522000000000002 - type: precision_at_1 value: 23.483999999999998 - type: precision_at_10 value: 5.573 - type: precision_at_100 value: 1.002 - type: precision_at_1000 value: 0.15 - type: precision_at_3 value: 11.902 - type: precision_at_5 value: 8.72 - type: recall_at_1 value: 19.169 - type: recall_at_10 value: 38.991 - type: recall_at_100 value: 64.13600000000001 - type: recall_at_1000 value: 87.45 - type: recall_at_3 value: 27.053 - type: recall_at_5 value: 31.996999999999996 - task: type: Retrieval dataset: name: MTEB CQADupstackProgrammersRetrieval type: None config: default split: test revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 metrics: - type: map_at_1 value: 13.791999999999998 - type: map_at_10 value: 19.362 - type: map_at_100 value: 20.51 - type: map_at_1000 value: 20.663999999999998 - type: map_at_3 value: 17.408 - type: map_at_5 value: 18.373 - type: mrr_at_1 value: 17.122999999999998 - type: mrr_at_10 value: 22.939 - type: mrr_at_100 value: 23.913999999999998 - type: mrr_at_1000 value: 24.016000000000002 - type: mrr_at_3 value: 20.871000000000002 - type: mrr_at_5 value: 22.019 - type: ndcg_at_1 value: 17.122999999999998 - type: ndcg_at_10 value: 23.219 - type: ndcg_at_100 value: 28.610999999999997 - type: ndcg_at_1000 value: 32.361000000000004 - type: ndcg_at_3 value: 19.657 - type: ndcg_at_5 value: 21.153 - type: precision_at_1 value: 17.122999999999998 - type: precision_at_10 value: 4.3950000000000005 - type: precision_at_100 value: 0.852 - type: precision_at_1000 value: 0.136 - type: precision_at_3 value: 9.399000000000001 - type: precision_at_5 value: 6.963 - type: recall_at_1 value: 13.791999999999998 - type: recall_at_10 value: 31.407 - type: recall_at_100 value: 54.69199999999999 - type: recall_at_1000 value: 81.281 - type: recall_at_3 value: 21.253 - type: recall_at_5 value: 25.22 - task: type: Retrieval dataset: name: MTEB CQADupstackRetrieval type: mteb/cqadupstack config: default split: test revision: 4885aa143210c98657558c04aaf3dc47cfb54340 metrics: - type: map_at_1 value: 14.433916666666665 - type: map_at_10 value: 19.892166666666668 - type: map_at_100 value: 20.87308333333333 - type: map_at_1000 value: 21.008416666666665 - type: map_at_3 value: 18.058666666666667 - type: map_at_5 value: 19.015583333333336 - type: mrr_at_1 value: 17.51 - type: mrr_at_10 value: 23.03275 - type: mrr_at_100 value: 23.89025 - type: mrr_at_1000 value: 23.980333333333334 - type: mrr_at_3 value: 21.20616666666667 - type: mrr_at_5 value: 22.195833333333333 - type: ndcg_at_1 value: 17.51 - type: ndcg_at_10 value: 23.55825 - type: ndcg_at_100 value: 28.414249999999996 - type: ndcg_at_1000 value: 31.749083333333328 - type: ndcg_at_3 value: 20.22475 - type: ndcg_at_5 value: 21.668916666666664 - type: precision_at_1 value: 17.51 - type: precision_at_10 value: 4.271333333333334 - type: precision_at_100 value: 0.8016666666666666 - type: precision_at_1000 value: 0.12825 - type: precision_at_3 value: 9.423833333333336 - type: precision_at_5 value: 6.818833333333334 - type: recall_at_1 value: 14.433916666666665 - type: recall_at_10 value: 31.521166666666662 - type: recall_at_100 value: 53.71125 - type: recall_at_1000 value: 77.92325000000001 - type: recall_at_3 value: 22.02575 - type: recall_at_5 value: 25.789916666666663 - task: type: Retrieval dataset: name: MTEB CQADupstackStatsRetrieval type: None config: default split: test revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a metrics: - type: map_at_1 value: 11.074 - type: map_at_10 value: 15.728 - type: map_at_100 value: 16.442999999999998 - type: map_at_1000 value: 16.536 - type: map_at_3 value: 14.082 - type: map_at_5 value: 14.808 - type: mrr_at_1 value: 12.883 - type: mrr_at_10 value: 17.687 - type: mrr_at_100 value: 18.436 - type: mrr_at_1000 value: 18.515 - type: mrr_at_3 value: 16.181 - type: mrr_at_5 value: 16.84 - type: ndcg_at_1 value: 12.883 - type: ndcg_at_10 value: 18.778 - type: ndcg_at_100 value: 22.817999999999998 - type: ndcg_at_1000 value: 25.657999999999998 - type: ndcg_at_3 value: 15.606 - type: ndcg_at_5 value: 16.727 - type: precision_at_1 value: 12.883 - type: precision_at_10 value: 3.2520000000000002 - type: precision_at_100 value: 0.5780000000000001 - type: precision_at_1000 value: 0.089 - type: precision_at_3 value: 7.156999999999999 - type: precision_at_5 value: 5.061 - type: recall_at_1 value: 11.074 - type: recall_at_10 value: 26.479999999999997 - type: recall_at_100 value: 45.61 - type: recall_at_1000 value: 67.586 - type: recall_at_3 value: 17.377000000000002 - type: recall_at_5 value: 20.238 - task: type: Retrieval dataset: name: MTEB CQADupstackTexRetrieval type: None config: default split: test revision: 46989137a86843e03a6195de44b09deda022eec7 metrics: - type: map_at_1 value: 7.303999999999999 - type: map_at_10 value: 10.779 - type: map_at_100 value: 11.484 - type: map_at_1000 value: 11.616 - type: map_at_3 value: 9.62 - type: map_at_5 value: 10.263 - type: mrr_at_1 value: 9.394 - type: mrr_at_10 value: 13.22 - type: mrr_at_100 value: 13.924 - type: mrr_at_1000 value: 14.032 - type: mrr_at_3 value: 11.912 - type: mrr_at_5 value: 12.671 - type: ndcg_at_1 value: 9.394 - type: ndcg_at_10 value: 13.276 - type: ndcg_at_100 value: 17.118 - type: ndcg_at_1000 value: 20.878 - type: ndcg_at_3 value: 11.084 - type: ndcg_at_5 value: 12.113999999999999 - type: precision_at_1 value: 9.394 - type: precision_at_10 value: 2.533 - type: precision_at_100 value: 0.538 - type: precision_at_1000 value: 0.10300000000000001 - type: precision_at_3 value: 5.391 - type: precision_at_5 value: 4.0329999999999995 - type: recall_at_1 value: 7.303999999999999 - type: recall_at_10 value: 18.523999999999997 - type: recall_at_100 value: 36.452 - type: recall_at_1000 value: 64.38199999999999 - type: recall_at_3 value: 12.366000000000001 - type: recall_at_5 value: 14.994 - task: type: Retrieval dataset: name: MTEB CQADupstackUnixRetrieval type: None config: default split: test revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 metrics: - type: map_at_1 value: 12.963 - type: map_at_10 value: 17.46 - type: map_at_100 value: 18.297 - type: map_at_1000 value: 18.428 - type: map_at_3 value: 15.709999999999999 - type: map_at_5 value: 16.551 - type: mrr_at_1 value: 15.485 - type: mrr_at_10 value: 20.501 - type: mrr_at_100 value: 21.278 - type: mrr_at_1000 value: 21.379 - type: mrr_at_3 value: 18.548000000000002 - type: mrr_at_5 value: 19.537 - type: ndcg_at_1 value: 15.485 - type: ndcg_at_10 value: 20.994 - type: ndcg_at_100 value: 25.506 - type: ndcg_at_1000 value: 29.022 - type: ndcg_at_3 value: 17.410999999999998 - type: ndcg_at_5 value: 18.808 - type: precision_at_1 value: 15.485 - type: precision_at_10 value: 3.666 - type: precision_at_100 value: 0.662 - type: precision_at_1000 value: 0.109 - type: precision_at_3 value: 7.898 - type: precision_at_5 value: 5.672 - type: recall_at_1 value: 12.963 - type: recall_at_10 value: 29.201 - type: recall_at_100 value: 50.109 - type: recall_at_1000 value: 75.797 - type: recall_at_3 value: 18.989 - type: recall_at_5 value: 22.601 - task: type: Retrieval dataset: name: MTEB CQADupstackWebmastersRetrieval type: None config: default split: test revision: 160c094312a0e1facb97e55eeddb698c0abe3571 metrics: - type: map_at_1 value: 15.260000000000002 - type: map_at_10 value: 21.165 - type: map_at_100 value: 22.400000000000002 - type: map_at_1000 value: 22.612 - type: map_at_3 value: 19.427 - type: map_at_5 value: 20.312 - type: mrr_at_1 value: 19.368 - type: mrr_at_10 value: 25.148 - type: mrr_at_100 value: 26.143 - type: mrr_at_1000 value: 26.235000000000003 - type: mrr_at_3 value: 23.584 - type: mrr_at_5 value: 24.433 - type: ndcg_at_1 value: 19.368 - type: ndcg_at_10 value: 25.239 - type: ndcg_at_100 value: 30.509999999999998 - type: ndcg_at_1000 value: 34.326 - type: ndcg_at_3 value: 22.57 - type: ndcg_at_5 value: 23.668 - type: precision_at_1 value: 19.368 - type: precision_at_10 value: 4.9799999999999995 - type: precision_at_100 value: 1.117 - type: precision_at_1000 value: 0.201 - type: precision_at_3 value: 11.067 - type: precision_at_5 value: 7.904999999999999 - type: recall_at_1 value: 15.260000000000002 - type: recall_at_10 value: 32.368 - type: recall_at_100 value: 56.908 - type: recall_at_1000 value: 82.708 - type: recall_at_3 value: 23.816000000000003 - type: recall_at_5 value: 27.191 - task: type: Retrieval dataset: name: MTEB CQADupstackWordpressRetrieval type: None config: default split: test revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 metrics: - type: map_at_1 value: 10.049 - type: map_at_10 value: 14.834 - type: map_at_100 value: 15.656999999999998 - type: map_at_1000 value: 15.787 - type: map_at_3 value: 13.503000000000002 - type: map_at_5 value: 14.185 - type: mrr_at_1 value: 11.275 - type: mrr_at_10 value: 16.242 - type: mrr_at_100 value: 17.037 - type: mrr_at_1000 value: 17.152 - type: mrr_at_3 value: 14.787 - type: mrr_at_5 value: 15.591 - type: ndcg_at_1 value: 11.275 - type: ndcg_at_10 value: 17.704 - type: ndcg_at_100 value: 22.083 - type: ndcg_at_1000 value: 25.817 - type: ndcg_at_3 value: 14.921999999999999 - type: ndcg_at_5 value: 16.171 - type: precision_at_1 value: 11.275 - type: precision_at_10 value: 2.902 - type: precision_at_100 value: 0.553 - type: precision_at_1000 value: 0.096 - type: precision_at_3 value: 6.531000000000001 - type: precision_at_5 value: 4.695 - type: recall_at_1 value: 10.049 - type: recall_at_10 value: 25.224999999999998 - type: recall_at_100 value: 45.899 - type: recall_at_1000 value: 74.576 - type: recall_at_3 value: 17.726 - type: recall_at_5 value: 20.752000000000002 - task: type: Retrieval dataset: name: MTEB ClimateFEVER type: None config: default split: test revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 metrics: - type: map_at_1 value: 6.762 - type: map_at_10 value: 12.867 - type: map_at_100 value: 14.478 - type: map_at_1000 value: 14.696000000000002 - type: map_at_3 value: 10.437000000000001 - type: map_at_5 value: 11.689 - type: mrr_at_1 value: 15.309000000000001 - type: mrr_at_10 value: 25.839000000000002 - type: mrr_at_100 value: 26.994 - type: mrr_at_1000 value: 27.056 - type: mrr_at_3 value: 22.400000000000002 - type: mrr_at_5 value: 24.451999999999998 - type: ndcg_at_1 value: 15.309000000000001 - type: ndcg_at_10 value: 19.384999999999998 - type: ndcg_at_100 value: 26.517000000000003 - type: ndcg_at_1000 value: 30.676 - type: ndcg_at_3 value: 14.876000000000001 - type: ndcg_at_5 value: 16.611 - type: precision_at_1 value: 15.309000000000001 - type: precision_at_10 value: 6.489000000000001 - type: precision_at_100 value: 1.409 - type: precision_at_1000 value: 0.217 - type: precision_at_3 value: 11.530999999999999 - type: precision_at_5 value: 9.381 - type: recall_at_1 value: 6.762 - type: recall_at_10 value: 24.996 - type: recall_at_100 value: 50.202999999999996 - type: recall_at_1000 value: 73.87899999999999 - type: recall_at_3 value: 14.149000000000001 - type: recall_at_5 value: 18.648 - task: type: Retrieval dataset: name: MTEB DBPedia type: None config: default split: test revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 metrics: - type: map_at_1 value: 3.846 - type: map_at_10 value: 9.048 - type: map_at_100 value: 12.656 - type: map_at_1000 value: 13.605999999999998 - type: map_at_3 value: 6.293 - type: map_at_5 value: 7.5920000000000005 - type: mrr_at_1 value: 41.5 - type: mrr_at_10 value: 51.08200000000001 - type: mrr_at_100 value: 51.82299999999999 - type: mrr_at_1000 value: 51.856 - type: mrr_at_3 value: 48.5 - type: mrr_at_5 value: 49.836999999999996 - type: ndcg_at_1 value: 30.375000000000004 - type: ndcg_at_10 value: 23.343 - type: ndcg_at_100 value: 26.261000000000003 - type: ndcg_at_1000 value: 33.053 - type: ndcg_at_3 value: 25.814999999999998 - type: ndcg_at_5 value: 24.583 - type: precision_at_1 value: 41.5 - type: precision_at_10 value: 20.849999999999998 - type: precision_at_100 value: 6.635000000000001 - type: precision_at_1000 value: 1.438 - type: precision_at_3 value: 30.833 - type: precision_at_5 value: 26.85 - type: recall_at_1 value: 3.846 - type: recall_at_10 value: 13.83 - type: recall_at_100 value: 32.757999999999996 - type: recall_at_1000 value: 56.25 - type: recall_at_3 value: 7.574 - type: recall_at_5 value: 10.071 - task: type: Classification dataset: name: MTEB EmotionClassification type: None config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 46.62 - type: f1 value: 42.79767018915584 - task: type: Retrieval dataset: name: MTEB FEVER type: None config: default split: test revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 metrics: - type: map_at_1 value: 15.677 - type: map_at_10 value: 23.551 - type: map_at_100 value: 24.442 - type: map_at_1000 value: 24.514 - type: map_at_3 value: 21.192 - type: map_at_5 value: 22.499 - type: mrr_at_1 value: 16.742 - type: mrr_at_10 value: 25.019000000000002 - type: mrr_at_100 value: 25.894000000000002 - type: mrr_at_1000 value: 25.958 - type: mrr_at_3 value: 22.555 - type: mrr_at_5 value: 23.909 - type: ndcg_at_1 value: 16.742 - type: ndcg_at_10 value: 28.247 - type: ndcg_at_100 value: 32.797 - type: ndcg_at_1000 value: 34.809 - type: ndcg_at_3 value: 23.358999999999998 - type: ndcg_at_5 value: 25.705 - type: precision_at_1 value: 16.742 - type: precision_at_10 value: 4.532 - type: precision_at_100 value: 0.701 - type: precision_at_1000 value: 0.089 - type: precision_at_3 value: 10.145999999999999 - type: precision_at_5 value: 7.342 - type: recall_at_1 value: 15.677 - type: recall_at_10 value: 41.571000000000005 - type: recall_at_100 value: 62.834999999999994 - type: recall_at_1000 value: 78.387 - type: recall_at_3 value: 28.214 - type: recall_at_5 value: 33.891 - task: type: Retrieval dataset: name: MTEB FiQA2018 type: None config: default split: test revision: 27a168819829fe9bcd655c2df245fb19452e8e06 metrics: - type: map_at_1 value: 7.5520000000000005 - type: map_at_10 value: 12.378 - type: map_at_100 value: 13.572999999999999 - type: map_at_1000 value: 13.79 - type: map_at_3 value: 10.737 - type: map_at_5 value: 11.629000000000001 - type: mrr_at_1 value: 15.123000000000001 - type: mrr_at_10 value: 21.001 - type: mrr_at_100 value: 22.112000000000002 - type: mrr_at_1000 value: 22.21 - type: mrr_at_3 value: 19.264 - type: mrr_at_5 value: 20.166999999999998 - type: ndcg_at_1 value: 15.123000000000001 - type: ndcg_at_10 value: 16.699 - type: ndcg_at_100 value: 22.688 - type: ndcg_at_1000 value: 27.394000000000002 - type: ndcg_at_3 value: 14.516000000000002 - type: ndcg_at_5 value: 15.336 - type: precision_at_1 value: 15.123000000000001 - type: precision_at_10 value: 4.7219999999999995 - type: precision_at_100 value: 1.065 - type: precision_at_1000 value: 0.188 - type: precision_at_3 value: 9.825000000000001 - type: precision_at_5 value: 7.284 - type: recall_at_1 value: 7.5520000000000005 - type: recall_at_10 value: 20.887 - type: recall_at_100 value: 44.613 - type: recall_at_1000 value: 73.55699999999999 - type: recall_at_3 value: 13.715 - type: recall_at_5 value: 16.75 - task: type: Retrieval dataset: name: MTEB HotpotQA type: None config: default split: test revision: ab518f4d6fcca38d87c25209f94beba119d02014 metrics: - type: map_at_1 value: 15.314 - type: map_at_10 value: 21.73 - type: map_at_100 value: 22.595000000000002 - type: map_at_1000 value: 22.7 - type: map_at_3 value: 19.914 - type: map_at_5 value: 20.891000000000002 - type: mrr_at_1 value: 30.628 - type: mrr_at_10 value: 37.302 - type: mrr_at_100 value: 38.04 - type: mrr_at_1000 value: 38.102999999999994 - type: mrr_at_3 value: 35.445 - type: mrr_at_5 value: 36.464999999999996 - type: ndcg_at_1 value: 30.628 - type: ndcg_at_10 value: 27.986 - type: ndcg_at_100 value: 32.103 - type: ndcg_at_1000 value: 34.739 - type: ndcg_at_3 value: 24.48 - type: ndcg_at_5 value: 26.125 - type: precision_at_1 value: 30.628 - type: precision_at_10 value: 6.243 - type: precision_at_100 value: 0.955 - type: precision_at_1000 value: 0.131 - type: precision_at_3 value: 15.517 - type: precision_at_5 value: 10.613999999999999 - type: recall_at_1 value: 15.314 - type: recall_at_10 value: 31.215 - type: recall_at_100 value: 47.752 - type: recall_at_1000 value: 65.422 - type: recall_at_3 value: 23.275000000000002 - type: recall_at_5 value: 26.535999999999998 - task: type: Classification dataset: name: MTEB ImdbClassification type: None config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 61.661200000000015 - type: ap value: 57.26137842361126 - type: f1 value: 61.44069729315865 - task: type: Retrieval dataset: name: MTEB MSMARCO type: None config: default split: dev revision: c5a29a104738b98a9e76336939199e264163d4a0 metrics: - type: map_at_1 value: 6.308999999999999 - type: map_at_10 value: 11.003 - type: map_at_100 value: 11.865 - type: map_at_1000 value: 11.974 - type: map_at_3 value: 9.309000000000001 - type: map_at_5 value: 10.145999999999999 - type: mrr_at_1 value: 6.5329999999999995 - type: mrr_at_10 value: 11.296000000000001 - type: mrr_at_100 value: 12.168 - type: mrr_at_1000 value: 12.273 - type: mrr_at_3 value: 9.582 - type: mrr_at_5 value: 10.42 - type: ndcg_at_1 value: 6.519 - type: ndcg_at_10 value: 13.998 - type: ndcg_at_100 value: 18.701 - type: ndcg_at_1000 value: 21.944 - type: ndcg_at_3 value: 10.383000000000001 - type: ndcg_at_5 value: 11.898 - type: precision_at_1 value: 6.519 - type: precision_at_10 value: 2.4330000000000003 - type: precision_at_100 value: 0.486 - type: precision_at_1000 value: 0.077 - type: precision_at_3 value: 4.585 - type: precision_at_5 value: 3.5130000000000003 - type: recall_at_1 value: 6.308999999999999 - type: recall_at_10 value: 23.381 - type: recall_at_100 value: 46.25 - type: recall_at_1000 value: 72.261 - type: recall_at_3 value: 13.239 - type: recall_at_5 value: 16.902 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: None config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 87.84313725490198 - type: f1 value: 87.24204022782286 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: None config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 56.409028727770185 - type: f1 value: 38.57449573016968 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: None config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.010759919300604 - type: f1 value: 60.290520300650584 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: None config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.65232010759918 - type: f1 value: 69.36104886302014 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P type: None config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 30.364401278066065 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S type: None config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 28.00495863318603 - task: type: Reranking dataset: name: MTEB MindSmallReranking type: None config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 30.917670435424853 - type: mrr value: 31.929615376181395 - task: type: Retrieval dataset: name: MTEB NFCorpus type: None config: default split: test revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 metrics: - type: map_at_1 value: 4.279 - type: map_at_10 value: 8.491999999999999 - type: map_at_100 value: 10.969 - type: map_at_1000 value: 12.396 - type: map_at_3 value: 6.254999999999999 - type: map_at_5 value: 7.417 - type: mrr_at_1 value: 34.056 - type: mrr_at_10 value: 43.877 - type: mrr_at_100 value: 44.590999999999994 - type: mrr_at_1000 value: 44.651 - type: mrr_at_3 value: 41.382999999999996 - type: mrr_at_5 value: 42.838 - type: ndcg_at_1 value: 32.198 - type: ndcg_at_10 value: 25.971 - type: ndcg_at_100 value: 25.112000000000002 - type: ndcg_at_1000 value: 34.83 - type: ndcg_at_3 value: 29.018 - type: ndcg_at_5 value: 28.447 - type: precision_at_1 value: 34.056 - type: precision_at_10 value: 19.412 - type: precision_at_100 value: 7.053 - type: precision_at_1000 value: 2.061 - type: precision_at_3 value: 27.761000000000003 - type: precision_at_5 value: 25.076999999999998 - type: recall_at_1 value: 4.279 - type: recall_at_10 value: 12.917000000000002 - type: recall_at_100 value: 27.386 - type: recall_at_1000 value: 62.90599999999999 - type: recall_at_3 value: 7.234999999999999 - type: recall_at_5 value: 9.866 - task: type: Retrieval dataset: name: MTEB NQ type: None config: default split: test revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 metrics: - type: map_at_1 value: 8.427 - type: map_at_10 value: 14.471 - type: map_at_100 value: 15.704 - type: map_at_1000 value: 15.809000000000001 - type: map_at_3 value: 12.059000000000001 - type: map_at_5 value: 13.288 - type: mrr_at_1 value: 9.647 - type: mrr_at_10 value: 16.064999999999998 - type: mrr_at_100 value: 17.212 - type: mrr_at_1000 value: 17.297 - type: mrr_at_3 value: 13.562 - type: mrr_at_5 value: 14.843 - type: ndcg_at_1 value: 9.647 - type: ndcg_at_10 value: 18.613 - type: ndcg_at_100 value: 24.834999999999997 - type: ndcg_at_1000 value: 27.716 - type: ndcg_at_3 value: 13.605 - type: ndcg_at_5 value: 15.797 - type: precision_at_1 value: 9.647 - type: precision_at_10 value: 3.531 - type: precision_at_100 value: 0.7060000000000001 - type: precision_at_1000 value: 0.098 - type: precision_at_3 value: 6.431000000000001 - type: precision_at_5 value: 5.093 - type: recall_at_1 value: 8.427 - type: recall_at_10 value: 29.995 - type: recall_at_100 value: 58.760999999999996 - type: recall_at_1000 value: 81.033 - type: recall_at_3 value: 16.621 - type: recall_at_5 value: 21.69 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval type: None config: default split: test revision: None metrics: - type: map_at_1 value: 63.709 - type: map_at_10 value: 76.66 - type: map_at_100 value: 77.444 - type: map_at_1000 value: 77.474 - type: map_at_3 value: 73.639 - type: map_at_5 value: 75.495 - type: mrr_at_1 value: 73.42 - type: mrr_at_10 value: 80.643 - type: mrr_at_100 value: 80.886 - type: mrr_at_1000 value: 80.891 - type: mrr_at_3 value: 79.163 - type: mrr_at_5 value: 80.132 - type: ndcg_at_1 value: 73.44000000000001 - type: ndcg_at_10 value: 81.26100000000001 - type: ndcg_at_100 value: 83.34 - type: ndcg_at_1000 value: 83.65599999999999 - type: ndcg_at_3 value: 77.593 - type: ndcg_at_5 value: 79.552 - type: precision_at_1 value: 73.44000000000001 - type: precision_at_10 value: 12.356 - type: precision_at_100 value: 1.472 - type: precision_at_1000 value: 0.155 - type: precision_at_3 value: 33.733000000000004 - type: precision_at_5 value: 22.398 - type: recall_at_1 value: 63.709 - type: recall_at_10 value: 90.24 - type: recall_at_100 value: 97.992 - type: recall_at_1000 value: 99.725 - type: recall_at_3 value: 79.843 - type: recall_at_5 value: 85.199 - type: map_at_1 value: 3.098 - type: map_at_10 value: 7.359999999999999 - type: map_at_100 value: 8.888 - type: map_at_1000 value: 9.158 - type: map_at_3 value: 5.406 - type: map_at_5 value: 6.308999999999999 - type: mrr_at_1 value: 15.2 - type: mrr_at_10 value: 23.508000000000003 - type: mrr_at_100 value: 24.709 - type: mrr_at_1000 value: 24.787 - type: mrr_at_3 value: 20.383000000000003 - type: mrr_at_5 value: 22.103 - type: ndcg_at_1 value: 15.2 - type: ndcg_at_10 value: 13.174 - type: ndcg_at_100 value: 19.885 - type: ndcg_at_1000 value: 25.247999999999998 - type: ndcg_at_3 value: 12.242 - type: ndcg_at_5 value: 10.702 - type: precision_at_1 value: 15.2 - type: precision_at_10 value: 6.93 - type: precision_at_100 value: 1.6709999999999998 - type: precision_at_1000 value: 0.296 - type: precision_at_3 value: 11.4 - type: precision_at_5 value: 9.379999999999999 - type: recall_at_1 value: 3.098 - type: recall_at_10 value: 14.048 - type: recall_at_100 value: 33.902 - type: recall_at_1000 value: 60.17 - type: recall_at_3 value: 6.9430000000000005 - type: recall_at_5 value: 9.498 - type: map_at_1 value: 0.125 - type: map_at_10 value: 0.86 - type: map_at_100 value: 4.665 - type: map_at_1000 value: 11.877 - type: map_at_3 value: 0.299 - type: map_at_5 value: 0.47200000000000003 - type: mrr_at_1 value: 50.0 - type: mrr_at_10 value: 64.711 - type: mrr_at_100 value: 65.065 - type: mrr_at_1000 value: 65.065 - type: mrr_at_3 value: 62.0 - type: mrr_at_5 value: 62.9 - type: ndcg_at_1 value: 43.0 - type: ndcg_at_10 value: 43.147999999999996 - type: ndcg_at_100 value: 33.417 - type: ndcg_at_1000 value: 31.341 - type: ndcg_at_3 value: 43.653999999999996 - type: ndcg_at_5 value: 43.21 - type: precision_at_1 value: 50.0 - type: precision_at_10 value: 48.199999999999996 - type: precision_at_100 value: 35.46 - type: precision_at_1000 value: 15.342 - type: precision_at_3 value: 48.0 - type: precision_at_5 value: 47.599999999999994 - type: recall_at_1 value: 0.125 - type: recall_at_10 value: 1.145 - type: recall_at_100 value: 7.727 - type: recall_at_1000 value: 30.742000000000004 - type: recall_at_3 value: 0.356 - type: recall_at_5 value: 0.5780000000000001 - task: type: Clustering dataset: name: MTEB RedditClustering type: None config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 42.214155529412366 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P type: None config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 48.10171269080449 - task: type: STS dataset: name: MTEB SICK-R type: None config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 76.69196724733715 - type: cos_sim_spearman value: 65.00669029968084 - type: euclidean_pearson value: 71.35623218354901 - type: euclidean_spearman value: 65.00662504036774 - type: manhattan_pearson value: 69.46286814034032 - type: manhattan_spearman value: 64.05091703970768 - task: type: STS dataset: name: MTEB STS12 type: None config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 75.45675254280496 - type: cos_sim_spearman value: 67.48465522195806 - type: euclidean_pearson value: 71.932572180082 - type: euclidean_spearman value: 67.48597260989263 - type: manhattan_pearson value: 70.01381315407934 - type: manhattan_spearman value: 66.83129276722313 - task: type: STS dataset: name: MTEB STS13 type: None config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 75.56784955823615 - type: cos_sim_spearman value: 77.1656947836492 - type: euclidean_pearson value: 76.86159714478943 - type: euclidean_spearman value: 77.16570697849755 - type: manhattan_pearson value: 77.05983226779968 - type: manhattan_spearman value: 77.43229771628044 - task: type: STS dataset: name: MTEB STS14 type: None config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 77.28801641888653 - type: cos_sim_spearman value: 72.72947194978411 - type: euclidean_pearson value: 76.2115552769551 - type: euclidean_spearman value: 72.72946226092458 - type: manhattan_pearson value: 75.19019262864614 - type: manhattan_spearman value: 72.18378967267259 - task: type: STS dataset: name: MTEB STS15 type: None config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 79.73471725204746 - type: cos_sim_spearman value: 80.79015625826382 - type: euclidean_pearson value: 80.81110611872813 - type: euclidean_spearman value: 80.79016252191039 - type: manhattan_pearson value: 79.93979968573043 - type: manhattan_spearman value: 80.07556394648903 - task: type: STS dataset: name: MTEB STS16 type: None config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 74.47923638473124 - type: cos_sim_spearman value: 75.71286196807024 - type: euclidean_pearson value: 75.83804880943377 - type: euclidean_spearman value: 75.71341236422742 - type: manhattan_pearson value: 75.93646913049322 - type: manhattan_spearman value: 75.85181752457555 - task: type: STS dataset: name: MTEB STS17 (en-en) type: None config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 82.62219071209913 - type: cos_sim_spearman value: 83.44167690000958 - type: euclidean_pearson value: 83.28214784087085 - type: euclidean_spearman value: 83.44255138870209 - type: manhattan_pearson value: 82.77261607066816 - type: manhattan_spearman value: 83.06899474864443 - task: type: STS dataset: name: MTEB STS22 (en) type: None config: en split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 64.70345108985259 - type: cos_sim_spearman value: 62.482753044620786 - type: euclidean_pearson value: 64.79437494489187 - type: euclidean_spearman value: 62.482753044620786 - type: manhattan_pearson value: 63.71939825347573 - type: manhattan_spearman value: 61.174953862000336 - task: type: STS dataset: name: MTEB STSBenchmark type: None config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 76.07865440954043 - type: cos_sim_spearman value: 74.54667758834077 - type: euclidean_pearson value: 76.48558570428264 - type: euclidean_spearman value: 74.54672598094477 - type: manhattan_pearson value: 76.06256712227383 - type: manhattan_spearman value: 74.42758128821515 - task: type: Reranking dataset: name: MTEB SciDocsRR type: None config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 75.15143418949978 - type: mrr value: 91.98409705762647 - task: type: Retrieval dataset: name: MTEB SciFact type: None config: default split: test revision: 0228b52cf27578f30900b9e5271d331663a030d7 metrics: - type: map_at_1 value: 33.417 - type: map_at_10 value: 42.594 - type: map_at_100 value: 43.535000000000004 - type: map_at_1000 value: 43.6 - type: map_at_3 value: 39.759 - type: map_at_5 value: 41.506 - type: mrr_at_1 value: 35.667 - type: mrr_at_10 value: 44.446000000000005 - type: mrr_at_100 value: 45.244 - type: mrr_at_1000 value: 45.300000000000004 - type: mrr_at_3 value: 42.167 - type: mrr_at_5 value: 43.5 - type: ndcg_at_1 value: 35.667 - type: ndcg_at_10 value: 47.591 - type: ndcg_at_100 value: 52.611 - type: ndcg_at_1000 value: 54.31 - type: ndcg_at_3 value: 42.356 - type: ndcg_at_5 value: 45.194 - type: precision_at_1 value: 35.667 - type: precision_at_10 value: 6.7669999999999995 - type: precision_at_100 value: 0.967 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 16.889000000000003 - type: precision_at_5 value: 11.799999999999999 - type: recall_at_1 value: 33.417 - type: recall_at_10 value: 61.260999999999996 - type: recall_at_100 value: 85.556 - type: recall_at_1000 value: 98.867 - type: recall_at_3 value: 47.528 - type: recall_at_5 value: 54.388999999999996 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions type: None config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.73267326732673 - type: cos_sim_ap value: 92.36951341438333 - type: cos_sim_f1 value: 86.04073522106309 - type: cos_sim_precision value: 85.48864758144127 - type: cos_sim_recall value: 86.6 - type: dot_accuracy value: 99.73267326732673 - type: dot_ap value: 92.36951341438333 - type: dot_f1 value: 86.04073522106309 - type: dot_precision value: 85.48864758144127 - type: dot_recall value: 86.6 - type: euclidean_accuracy value: 99.73267326732673 - type: euclidean_ap value: 92.36951341438333 - type: euclidean_f1 value: 86.04073522106309 - type: euclidean_precision value: 85.48864758144127 - type: euclidean_recall value: 86.6 - type: manhattan_accuracy value: 99.74455445544554 - type: manhattan_ap value: 92.96894184904977 - type: manhattan_f1 value: 86.8917576961271 - type: manhattan_precision value: 86.29191321499013 - type: manhattan_recall value: 87.5 - type: max_accuracy value: 99.74455445544554 - type: max_ap value: 92.96894184904977 - type: max_f1 value: 86.8917576961271 - task: type: Clustering dataset: name: MTEB StackExchangeClustering type: None config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 45.349940718460374 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P type: None config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 31.266631844140036 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions type: None config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 42.02550203348626 - type: mrr value: 42.442651302945414 - task: type: Summarization dataset: name: MTEB SummEval type: None config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.22842420698354 - type: cos_sim_spearman value: 30.568909812744543 - type: dot_pearson value: 30.228424144316747 - type: dot_spearman value: 30.619692862283827 - task: type: Retrieval dataset: name: MTEB Touche2020 type: None config: default split: test revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f metrics: - type: map_at_1 value: 1.585 - type: map_at_10 value: 7.398000000000001 - type: map_at_100 value: 13.603000000000002 - type: map_at_1000 value: 15.267 - type: map_at_3 value: 3.857 - type: map_at_5 value: 5.509 - type: mrr_at_1 value: 24.490000000000002 - type: mrr_at_10 value: 39.883 - type: mrr_at_100 value: 41.082 - type: mrr_at_1000 value: 41.082 - type: mrr_at_3 value: 35.034 - type: mrr_at_5 value: 37.483 - type: ndcg_at_1 value: 23.469 - type: ndcg_at_10 value: 21.221999999999998 - type: ndcg_at_100 value: 34.851 - type: ndcg_at_1000 value: 46.26 - type: ndcg_at_3 value: 21.906 - type: ndcg_at_5 value: 21.229 - type: precision_at_1 value: 24.490000000000002 - type: precision_at_10 value: 19.796 - type: precision_at_100 value: 8.122 - type: precision_at_1000 value: 1.541 - type: precision_at_3 value: 23.810000000000002 - type: precision_at_5 value: 22.041 - type: recall_at_1 value: 1.585 - type: recall_at_10 value: 13.664000000000001 - type: recall_at_100 value: 49.559 - type: recall_at_1000 value: 83.978 - type: recall_at_3 value: 5.088 - type: recall_at_5 value: 8.203000000000001 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification type: None config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 71.68520000000001 - type: ap value: 14.622321024533974 - type: f1 value: 55.1924859473184 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification type: None config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 53.34748160724392 - type: f1 value: 53.518629300332755 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering type: None config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 40.22582442073446 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 type: None config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 82.46408773916671 - type: cos_sim_ap value: 60.57612839124909 - type: cos_sim_f1 value: 58.366606170598914 - type: cos_sim_precision value: 53.899441340782126 - type: cos_sim_recall value: 63.641160949868066 - type: dot_accuracy value: 82.46408773916671 - type: dot_ap value: 60.57612839124909 - type: dot_f1 value: 58.366606170598914 - type: dot_precision value: 53.899441340782126 - type: dot_recall value: 63.641160949868066 - type: euclidean_accuracy value: 82.46408773916671 - type: euclidean_ap value: 60.57612839124909 - type: euclidean_f1 value: 58.366606170598914 - type: euclidean_precision value: 53.899441340782126 - type: euclidean_recall value: 63.641160949868066 - type: manhattan_accuracy value: 81.68921738093819 - type: manhattan_ap value: 58.62502289564927 - type: manhattan_f1 value: 57.40318906605921 - type: manhattan_precision value: 50.50100200400801 - type: manhattan_recall value: 66.49076517150397 - type: max_accuracy value: 82.46408773916671 - type: max_ap value: 60.57612839124909 - type: max_f1 value: 58.366606170598914 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus type: None config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 86.89602980556526 - type: cos_sim_ap value: 81.92992391915341 - type: cos_sim_f1 value: 74.31139877741819 - type: cos_sim_precision value: 69.71393873971124 - type: cos_sim_recall value: 79.55805358792732 - type: dot_accuracy value: 86.89602980556526 - type: dot_ap value: 81.92992407440505 - type: dot_f1 value: 74.31139877741819 - type: dot_precision value: 69.71393873971124 - type: dot_recall value: 79.55805358792732 - type: euclidean_accuracy value: 86.89602980556526 - type: euclidean_ap value: 81.92992329073074 - type: euclidean_f1 value: 74.31139877741819 - type: euclidean_precision value: 69.71393873971124 - type: euclidean_recall value: 79.55805358792732 - type: manhattan_accuracy value: 86.94454146776886 - type: manhattan_ap value: 81.96535237136042 - type: manhattan_f1 value: 74.41181834761991 - type: manhattan_precision value: 70.70076939072572 - type: manhattan_recall value: 78.53403141361257 - type: max_accuracy value: 86.94454146776886 - type: max_ap value: 81.96535237136042 - type: max_f1 value: 74.41181834761991 ---
[ "SUMMARIZATION" ]
[ "BIOSSES", "SCIFACT" ]
Non_BioNLP
{"tags": ["mteb"], "model-index": [{"name": "mpnet_main", "results": [{"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonCounterfactualClassification (en)", "type": "None", "config": "en", "split": "test", "revision": "e8379541af4e31359cca9fbcf4b00f2671dba205"}, "metrics": [{"type": "accuracy", "value": 68.11940298507461}, {"type": "ap", "value": 30.542146596139048}, {"type": "f1", "value": 61.92465989589396}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonPolarityClassification", "type": "None", "config": "default", "split": "test", "revision": "e2d317d38cd51312af73b3d32a06d1a08b442046"}, "metrics": [{"type": "accuracy", "value": 62.503875}, {"type": "ap", "value": 58.0577571607728}, {"type": "f1", "value": 62.34928241469865}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonReviewsClassification (en)", "type": "None", "config": "en", "split": "test", "revision": "1399c76144fd37290681b995c656ef9b2e06e26d"}, "metrics": [{"type": "accuracy", "value": 31.66999999999999}, {"type": "f1", "value": 31.2458385101798}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ArguAna", "type": "None", "config": "default", "split": "test", "revision": "c22ab2a51041ffd869aaddef7af8d8215647e41a"}, "metrics": [{"type": "map_at_1", "value": 23.329}, {"type": "map_at_10", "value": 37.384}, {"type": "map_at_100", "value": 38.57}, {"type": "map_at_1000", "value": 38.586999999999996}, {"type": "map_at_3", "value": 32.492}, {"type": "map_at_5", "value": 35.376000000000005}, {"type": "mrr_at_1", "value": 23.755000000000003}, {"type": "mrr_at_10", "value": 37.547000000000004}, {"type": "mrr_at_100", "value": 38.733000000000004}, {"type": "mrr_at_1000", "value": 38.749}, {"type": "mrr_at_3", "value": 32.658}, {"type": "mrr_at_5", "value": 35.567}, {"type": "ndcg_at_1", "value": 23.329}, {"type": "ndcg_at_10", "value": 45.574999999999996}, {"type": "ndcg_at_100", "value": 50.953}, {"type": "ndcg_at_1000", "value": 51.354}, {"type": "ndcg_at_3", "value": 35.608000000000004}, {"type": "ndcg_at_5", "value": 40.784}, {"type": "precision_at_1", "value": 23.329}, {"type": "precision_at_10", "value": 7.183000000000001}, {"type": "precision_at_100", "value": 0.962}, {"type": "precision_at_1000", "value": 0.099}, {"type": "precision_at_3", "value": 14.889}, {"type": "precision_at_5", "value": 11.437}, {"type": "recall_at_1", "value": 23.329}, {"type": "recall_at_10", "value": 71.83500000000001}, {"type": "recall_at_100", "value": 96.15899999999999}, {"type": "recall_at_1000", "value": 99.21799999999999}, {"type": "recall_at_3", "value": 44.666}, {"type": "recall_at_5", "value": 57.18299999999999}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringP2P", "type": "None", "config": "default", "split": "test", "revision": "a122ad7f3f0291bf49cc6f4d32aa80929df69d5d"}, "metrics": [{"type": "v_measure", "value": 37.14558539727219}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringS2S", "type": "None", "config": "default", "split": "test", "revision": "f910caf1a6075f7329cdf8c1a6135696f37dbd53"}, "metrics": [{"type": "v_measure", "value": 27.2291028039137}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB AskUbuntuDupQuestions", "type": "None", "config": "default", "split": "test", "revision": "2000358ca161889fa9c082cb41daa8dcfb161a54"}, "metrics": [{"type": "map", "value": 55.286820678107716}, {"type": "mrr", "value": 69.43762916062084}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB BIOSSES", "type": "None", "config": "default", "split": "test", "revision": "d3fb88f8f02e40887cd149695127462bbcf29b4a"}, "metrics": [{"type": "cos_sim_pearson", "value": 81.32170750010246}, {"type": "cos_sim_spearman", "value": 78.48130632209363}, {"type": "euclidean_pearson", "value": 80.42696573048755}, {"type": "euclidean_spearman", "value": 78.48130632209363}, {"type": "manhattan_pearson", "value": 80.68662655318546}, {"type": "manhattan_spearman", "value": 78.4475706136436}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB Banking77Classification", "type": "None", "config": "default", "split": "test", "revision": "0fd18e25b25c072e09e0d92ab615fda904d66300"}, "metrics": [{"type": "accuracy", "value": 73.05194805194805}, {"type": "f1", "value": 72.31114319146532}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringP2P", "type": "None", "config": "default", "split": "test", "revision": "65b79d1d13f80053f67aca9498d9402c2d9f1f40"}, "metrics": [{"type": "v_measure", "value": 33.842006272885655}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringS2S", "type": "None", "config": "default", "split": "test", "revision": "258694dd0231531bc1fd9de6ceb52a0853c6d908"}, "metrics": [{"type": "v_measure", "value": 25.238443830234058}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackAndroidRetrieval", "type": "None", "config": "default", "split": "test", "revision": "f46a197baaae43b4f621051089b82a364682dfeb"}, "metrics": [{"type": "map_at_1", "value": 22.647000000000002}, {"type": "map_at_10", "value": 29.842999999999996}, {"type": "map_at_100", "value": 31.131999999999998}, {"type": "map_at_1000", "value": 31.289}, {"type": "map_at_3", "value": 27.534999999999997}, {"type": "map_at_5", "value": 28.782999999999998}, {"type": "mrr_at_1", "value": 28.183000000000003}, {"type": "mrr_at_10", "value": 35.225}, {"type": "mrr_at_100", "value": 36.128}, {"type": "mrr_at_1000", "value": 36.198}, {"type": "mrr_at_3", "value": 33.19}, {"type": "mrr_at_5", "value": 34.363}, {"type": "ndcg_at_1", "value": 28.183000000000003}, {"type": "ndcg_at_10", "value": 34.644000000000005}, {"type": "ndcg_at_100", "value": 40.194}, {"type": "ndcg_at_1000", "value": 43.289}, {"type": "ndcg_at_3", "value": 31.259999999999998}, {"type": "ndcg_at_5", "value": 32.707}, {"type": "precision_at_1", "value": 28.183000000000003}, {"type": "precision_at_10", "value": 6.666999999999999}, {"type": "precision_at_100", "value": 1.187}, {"type": "precision_at_1000", "value": 0.185}, {"type": "precision_at_3", "value": 14.974000000000002}, {"type": "precision_at_5", "value": 10.844}, {"type": "recall_at_1", "value": 22.647000000000002}, {"type": "recall_at_10", "value": 42.792}, {"type": "recall_at_100", "value": 67.399}, {"type": "recall_at_1000", "value": 88.646}, {"type": "recall_at_3", "value": 32.535}, {"type": "recall_at_5", "value": 36.748999999999995}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackEnglishRetrieval", "type": "None", "config": "default", "split": "test", "revision": "ad9991cb51e31e31e430383c75ffb2885547b5f0"}, "metrics": [{"type": "map_at_1", "value": 15.895000000000001}, {"type": "map_at_10", "value": 21.631}, {"type": "map_at_100", "value": 22.56}, {"type": "map_at_1000", "value": 22.689}, {"type": "map_at_3", "value": 19.799}, {"type": "map_at_5", "value": 20.824}, {"type": "mrr_at_1", "value": 20.191}, {"type": "mrr_at_10", "value": 25.674999999999997}, {"type": "mrr_at_100", "value": 26.482}, {"type": "mrr_at_1000", "value": 26.558}, {"type": "mrr_at_3", "value": 23.854}, {"type": "mrr_at_5", "value": 24.85}, {"type": "ndcg_at_1", "value": 20.191}, {"type": "ndcg_at_10", "value": 25.428}, {"type": "ndcg_at_100", "value": 29.799999999999997}, {"type": "ndcg_at_1000", "value": 32.927}, {"type": "ndcg_at_3", "value": 22.284000000000002}, {"type": "ndcg_at_5", "value": 23.699}, {"type": "precision_at_1", "value": 20.191}, {"type": "precision_at_10", "value": 4.7829999999999995}, {"type": "precision_at_100", "value": 0.876}, {"type": "precision_at_1000", "value": 0.14200000000000002}, {"type": "precision_at_3", "value": 10.743}, {"type": "precision_at_5", "value": 7.720000000000001}, {"type": "recall_at_1", "value": 15.895000000000001}, {"type": "recall_at_10", "value": 32.789}, {"type": "recall_at_100", "value": 52.156000000000006}, {"type": "recall_at_1000", "value": 73.804}, {"type": "recall_at_3", "value": 23.589}, {"type": "recall_at_5", "value": 27.486}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackGamingRetrieval", "type": "None", "config": "default", "split": "test", "revision": "4885aa143210c98657558c04aaf3dc47cfb54340"}, "metrics": [{"type": "map_at_1", "value": 25.465}, {"type": "map_at_10", "value": 33.93}, {"type": "map_at_100", "value": 35.07}, {"type": "map_at_1000", "value": 35.165}, {"type": "map_at_3", "value": 31.091}, {"type": "map_at_5", "value": 32.722}, {"type": "mrr_at_1", "value": 29.654999999999998}, {"type": "mrr_at_10", "value": 37.156}, {"type": "mrr_at_100", "value": 38.074000000000005}, {"type": "mrr_at_1000", "value": 38.132}, {"type": "mrr_at_3", "value": 34.608}, {"type": "mrr_at_5", "value": 36.077999999999996}, {"type": "ndcg_at_1", "value": 29.654999999999998}, {"type": "ndcg_at_10", "value": 38.872}, {"type": "ndcg_at_100", "value": 44.293}, {"type": "ndcg_at_1000", "value": 46.455999999999996}, {"type": "ndcg_at_3", "value": 33.661}, {"type": "ndcg_at_5", "value": 36.237}, {"type": "precision_at_1", "value": 29.654999999999998}, {"type": "precision_at_10", "value": 6.464}, {"type": "precision_at_100", "value": 1.012}, {"type": "precision_at_1000", "value": 0.127}, {"type": "precision_at_3", "value": 14.943000000000001}, {"type": "precision_at_5", "value": 10.696}, {"type": "recall_at_1", "value": 25.465}, {"type": "recall_at_10", "value": 50.8}, {"type": "recall_at_100", "value": 75.373}, {"type": "recall_at_1000", "value": 91.053}, {"type": "recall_at_3", "value": 36.808}, {"type": "recall_at_5", "value": 43.069}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackGisRetrieval", "type": "None", "config": "default", "split": "test", "revision": "5003b3064772da1887988e05400cf3806fe491f2"}, "metrics": [{"type": "map_at_1", "value": 12.853}, {"type": "map_at_10", "value": 18.047}, {"type": "map_at_100", "value": 18.9}, {"type": "map_at_1000", "value": 19.017999999999997}, {"type": "map_at_3", "value": 16.325}, {"type": "map_at_5", "value": 17.281}, {"type": "mrr_at_1", "value": 14.124}, {"type": "mrr_at_10", "value": 19.344}, {"type": "mrr_at_100", "value": 20.194000000000003}, {"type": "mrr_at_1000", "value": 20.298}, {"type": "mrr_at_3", "value": 17.589}, {"type": "mrr_at_5", "value": 18.601}, {"type": "ndcg_at_1", "value": 14.124}, {"type": "ndcg_at_10", "value": 21.188000000000002}, {"type": "ndcg_at_100", "value": 25.856}, {"type": "ndcg_at_1000", "value": 29.275000000000002}, {"type": "ndcg_at_3", "value": 17.726}, {"type": "ndcg_at_5", "value": 19.397000000000002}, {"type": "precision_at_1", "value": 14.124}, {"type": "precision_at_10", "value": 3.379}, {"type": "precision_at_100", "value": 0.61}, {"type": "precision_at_1000", "value": 0.095}, {"type": "precision_at_3", "value": 7.608}, {"type": "precision_at_5", "value": 5.537}, {"type": "recall_at_1", "value": 12.853}, {"type": "recall_at_10", "value": 29.731999999999996}, {"type": "recall_at_100", "value": 51.99399999999999}, {"type": "recall_at_1000", "value": 78.581}, {"type": "recall_at_3", "value": 20.339}, {"type": "recall_at_5", "value": 24.304000000000002}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackMathematicaRetrieval", "type": "None", "config": "default", "split": "test", "revision": "90fceea13679c63fe563ded68f3b6f06e50061de"}, "metrics": [{"type": "map_at_1", "value": 6.736000000000001}, {"type": "map_at_10", "value": 10.587}, {"type": "map_at_100", "value": 11.515}, {"type": "map_at_1000", "value": 11.633000000000001}, {"type": "map_at_3", "value": 9.24}, {"type": "map_at_5", "value": 9.856}, {"type": "mrr_at_1", "value": 8.955}, {"type": "mrr_at_10", "value": 13.383999999999999}, {"type": "mrr_at_100", "value": 14.297}, {"type": "mrr_at_1000", "value": 14.391000000000002}, {"type": "mrr_at_3", "value": 11.92}, {"type": "mrr_at_5", "value": 12.584999999999999}, {"type": "ndcg_at_1", "value": 8.955}, {"type": "ndcg_at_10", "value": 13.498}, {"type": "ndcg_at_100", "value": 18.684}, {"type": "ndcg_at_1000", "value": 22.105}, {"type": "ndcg_at_3", "value": 10.881}, {"type": "ndcg_at_5", "value": 11.824}, {"type": "precision_at_1", "value": 8.955}, {"type": "precision_at_10", "value": 2.662}, {"type": "precision_at_100", "value": 0.633}, {"type": "precision_at_1000", "value": 0.106}, {"type": "precision_at_3", "value": 5.473}, {"type": "precision_at_5", "value": 3.9800000000000004}, {"type": "recall_at_1", "value": 6.736000000000001}, {"type": "recall_at_10", "value": 19.945}, {"type": "recall_at_100", "value": 43.807}, {"type": "recall_at_1000", "value": 69.215}, {"type": "recall_at_3", "value": 12.458}, {"type": "recall_at_5", "value": 14.878}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackPhysicsRetrieval", "type": "None", "config": "default", "split": "test", "revision": "79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4"}, "metrics": [{"type": "map_at_1", "value": 19.169}, {"type": "map_at_10", "value": 25.34}, {"type": "map_at_100", "value": 26.509}, {"type": "map_at_1000", "value": 26.663999999999998}, {"type": "map_at_3", "value": 22.964000000000002}, {"type": "map_at_5", "value": 24.229}, {"type": "mrr_at_1", "value": 23.483999999999998}, {"type": "mrr_at_10", "value": 29.872}, {"type": "mrr_at_100", "value": 30.775999999999996}, {"type": "mrr_at_1000", "value": 30.858}, {"type": "mrr_at_3", "value": 27.43}, {"type": "mrr_at_5", "value": 28.782000000000004}, {"type": "ndcg_at_1", "value": 23.483999999999998}, {"type": "ndcg_at_10", "value": 29.859}, {"type": "ndcg_at_100", "value": 35.498000000000005}, {"type": "ndcg_at_1000", "value": 38.875}, {"type": "ndcg_at_3", "value": 25.635}, {"type": "ndcg_at_5", "value": 27.522000000000002}, {"type": "precision_at_1", "value": 23.483999999999998}, {"type": "precision_at_10", "value": 5.573}, {"type": "precision_at_100", "value": 1.002}, {"type": "precision_at_1000", "value": 0.15}, {"type": "precision_at_3", "value": 11.902}, {"type": "precision_at_5", "value": 8.72}, {"type": "recall_at_1", "value": 19.169}, {"type": "recall_at_10", "value": 38.991}, {"type": "recall_at_100", "value": 64.13600000000001}, {"type": "recall_at_1000", "value": 87.45}, {"type": "recall_at_3", "value": 27.053}, {"type": "recall_at_5", "value": 31.996999999999996}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackProgrammersRetrieval", "type": "None", "config": "default", "split": "test", "revision": "6184bc1440d2dbc7612be22b50686b8826d22b32"}, "metrics": [{"type": "map_at_1", "value": 13.791999999999998}, {"type": "map_at_10", "value": 19.362}, {"type": "map_at_100", "value": 20.51}, {"type": "map_at_1000", "value": 20.663999999999998}, {"type": "map_at_3", "value": 17.408}, {"type": "map_at_5", "value": 18.373}, {"type": "mrr_at_1", "value": 17.122999999999998}, {"type": "mrr_at_10", "value": 22.939}, {"type": "mrr_at_100", "value": 23.913999999999998}, {"type": "mrr_at_1000", "value": 24.016000000000002}, {"type": "mrr_at_3", "value": 20.871000000000002}, {"type": "mrr_at_5", "value": 22.019}, {"type": "ndcg_at_1", "value": 17.122999999999998}, {"type": "ndcg_at_10", "value": 23.219}, {"type": "ndcg_at_100", "value": 28.610999999999997}, {"type": "ndcg_at_1000", "value": 32.361000000000004}, {"type": "ndcg_at_3", "value": 19.657}, {"type": "ndcg_at_5", "value": 21.153}, {"type": "precision_at_1", "value": 17.122999999999998}, {"type": "precision_at_10", "value": 4.3950000000000005}, {"type": "precision_at_100", "value": 0.852}, {"type": "precision_at_1000", "value": 0.136}, {"type": "precision_at_3", "value": 9.399000000000001}, {"type": "precision_at_5", "value": 6.963}, {"type": "recall_at_1", "value": 13.791999999999998}, {"type": "recall_at_10", "value": 31.407}, {"type": "recall_at_100", "value": 54.69199999999999}, {"type": "recall_at_1000", "value": 81.281}, {"type": "recall_at_3", "value": 21.253}, {"type": "recall_at_5", "value": 25.22}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackRetrieval", "type": "mteb/cqadupstack", "config": "default", "split": "test", "revision": "4885aa143210c98657558c04aaf3dc47cfb54340"}, "metrics": [{"type": "map_at_1", "value": 14.433916666666665}, {"type": "map_at_10", "value": 19.892166666666668}, {"type": "map_at_100", "value": 20.87308333333333}, {"type": "map_at_1000", "value": 21.008416666666665}, {"type": "map_at_3", "value": 18.058666666666667}, {"type": "map_at_5", "value": 19.015583333333336}, {"type": "mrr_at_1", "value": 17.51}, {"type": "mrr_at_10", "value": 23.03275}, {"type": "mrr_at_100", "value": 23.89025}, {"type": "mrr_at_1000", "value": 23.980333333333334}, {"type": "mrr_at_3", "value": 21.20616666666667}, {"type": "mrr_at_5", "value": 22.195833333333333}, {"type": "ndcg_at_1", "value": 17.51}, {"type": "ndcg_at_10", "value": 23.55825}, {"type": "ndcg_at_100", "value": 28.414249999999996}, {"type": "ndcg_at_1000", "value": 31.749083333333328}, {"type": "ndcg_at_3", "value": 20.22475}, {"type": "ndcg_at_5", "value": 21.668916666666664}, {"type": "precision_at_1", "value": 17.51}, {"type": "precision_at_10", "value": 4.271333333333334}, {"type": "precision_at_100", "value": 0.8016666666666666}, {"type": "precision_at_1000", "value": 0.12825}, {"type": "precision_at_3", "value": 9.423833333333336}, {"type": "precision_at_5", "value": 6.818833333333334}, {"type": "recall_at_1", "value": 14.433916666666665}, {"type": "recall_at_10", "value": 31.521166666666662}, {"type": "recall_at_100", "value": 53.71125}, {"type": "recall_at_1000", "value": 77.92325000000001}, {"type": "recall_at_3", "value": 22.02575}, {"type": "recall_at_5", "value": 25.789916666666663}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackStatsRetrieval", "type": "None", "config": "default", "split": "test", "revision": "65ac3a16b8e91f9cee4c9828cc7c335575432a2a"}, "metrics": [{"type": "map_at_1", "value": 11.074}, {"type": "map_at_10", "value": 15.728}, {"type": "map_at_100", "value": 16.442999999999998}, {"type": "map_at_1000", "value": 16.536}, {"type": "map_at_3", "value": 14.082}, {"type": "map_at_5", "value": 14.808}, {"type": "mrr_at_1", "value": 12.883}, {"type": "mrr_at_10", "value": 17.687}, {"type": "mrr_at_100", "value": 18.436}, {"type": "mrr_at_1000", "value": 18.515}, {"type": "mrr_at_3", "value": 16.181}, {"type": "mrr_at_5", "value": 16.84}, {"type": "ndcg_at_1", "value": 12.883}, {"type": "ndcg_at_10", "value": 18.778}, {"type": "ndcg_at_100", "value": 22.817999999999998}, {"type": "ndcg_at_1000", "value": 25.657999999999998}, {"type": "ndcg_at_3", "value": 15.606}, {"type": "ndcg_at_5", "value": 16.727}, {"type": "precision_at_1", "value": 12.883}, {"type": "precision_at_10", "value": 3.2520000000000002}, {"type": "precision_at_100", "value": 0.5780000000000001}, {"type": "precision_at_1000", "value": 0.089}, {"type": "precision_at_3", "value": 7.156999999999999}, {"type": "precision_at_5", "value": 5.061}, {"type": "recall_at_1", "value": 11.074}, {"type": "recall_at_10", "value": 26.479999999999997}, {"type": "recall_at_100", "value": 45.61}, {"type": "recall_at_1000", "value": 67.586}, {"type": "recall_at_3", "value": 17.377000000000002}, {"type": "recall_at_5", "value": 20.238}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackTexRetrieval", "type": "None", "config": "default", "split": "test", "revision": "46989137a86843e03a6195de44b09deda022eec7"}, "metrics": [{"type": "map_at_1", "value": 7.303999999999999}, {"type": "map_at_10", "value": 10.779}, {"type": "map_at_100", "value": 11.484}, {"type": "map_at_1000", "value": 11.616}, {"type": "map_at_3", "value": 9.62}, {"type": "map_at_5", "value": 10.263}, {"type": "mrr_at_1", "value": 9.394}, {"type": "mrr_at_10", "value": 13.22}, {"type": "mrr_at_100", "value": 13.924}, {"type": "mrr_at_1000", "value": 14.032}, {"type": "mrr_at_3", "value": 11.912}, {"type": "mrr_at_5", "value": 12.671}, {"type": "ndcg_at_1", "value": 9.394}, {"type": "ndcg_at_10", "value": 13.276}, {"type": "ndcg_at_100", "value": 17.118}, {"type": "ndcg_at_1000", "value": 20.878}, {"type": "ndcg_at_3", "value": 11.084}, {"type": "ndcg_at_5", "value": 12.113999999999999}, {"type": "precision_at_1", "value": 9.394}, {"type": "precision_at_10", "value": 2.533}, {"type": "precision_at_100", "value": 0.538}, {"type": "precision_at_1000", "value": 0.10300000000000001}, {"type": "precision_at_3", "value": 5.391}, {"type": "precision_at_5", "value": 4.0329999999999995}, {"type": "recall_at_1", "value": 7.303999999999999}, {"type": "recall_at_10", "value": 18.523999999999997}, {"type": "recall_at_100", "value": 36.452}, {"type": "recall_at_1000", "value": 64.38199999999999}, {"type": "recall_at_3", "value": 12.366000000000001}, {"type": "recall_at_5", "value": 14.994}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackUnixRetrieval", "type": "None", "config": "default", "split": "test", "revision": "6c6430d3a6d36f8d2a829195bc5dc94d7e063e53"}, "metrics": [{"type": "map_at_1", "value": 12.963}, {"type": "map_at_10", "value": 17.46}, {"type": "map_at_100", "value": 18.297}, {"type": "map_at_1000", "value": 18.428}, {"type": "map_at_3", "value": 15.709999999999999}, {"type": "map_at_5", "value": 16.551}, {"type": "mrr_at_1", "value": 15.485}, {"type": "mrr_at_10", "value": 20.501}, {"type": "mrr_at_100", "value": 21.278}, {"type": "mrr_at_1000", "value": 21.379}, {"type": "mrr_at_3", "value": 18.548000000000002}, {"type": "mrr_at_5", "value": 19.537}, {"type": "ndcg_at_1", "value": 15.485}, {"type": "ndcg_at_10", "value": 20.994}, {"type": "ndcg_at_100", "value": 25.506}, {"type": "ndcg_at_1000", "value": 29.022}, {"type": "ndcg_at_3", "value": 17.410999999999998}, {"type": "ndcg_at_5", "value": 18.808}, {"type": "precision_at_1", "value": 15.485}, {"type": "precision_at_10", "value": 3.666}, {"type": "precision_at_100", "value": 0.662}, {"type": "precision_at_1000", "value": 0.109}, {"type": "precision_at_3", "value": 7.898}, {"type": "precision_at_5", "value": 5.672}, {"type": "recall_at_1", "value": 12.963}, {"type": "recall_at_10", "value": 29.201}, {"type": "recall_at_100", "value": 50.109}, {"type": "recall_at_1000", "value": 75.797}, {"type": "recall_at_3", "value": 18.989}, {"type": "recall_at_5", "value": 22.601}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackWebmastersRetrieval", "type": "None", "config": "default", "split": "test", "revision": "160c094312a0e1facb97e55eeddb698c0abe3571"}, "metrics": [{"type": "map_at_1", "value": 15.260000000000002}, {"type": "map_at_10", "value": 21.165}, {"type": "map_at_100", "value": 22.400000000000002}, {"type": "map_at_1000", "value": 22.612}, {"type": "map_at_3", "value": 19.427}, {"type": "map_at_5", "value": 20.312}, {"type": "mrr_at_1", "value": 19.368}, {"type": "mrr_at_10", "value": 25.148}, {"type": "mrr_at_100", "value": 26.143}, {"type": "mrr_at_1000", "value": 26.235000000000003}, {"type": "mrr_at_3", "value": 23.584}, {"type": "mrr_at_5", "value": 24.433}, {"type": "ndcg_at_1", "value": 19.368}, {"type": "ndcg_at_10", "value": 25.239}, {"type": "ndcg_at_100", "value": 30.509999999999998}, {"type": "ndcg_at_1000", "value": 34.326}, {"type": "ndcg_at_3", "value": 22.57}, {"type": "ndcg_at_5", "value": 23.668}, {"type": "precision_at_1", "value": 19.368}, {"type": "precision_at_10", "value": 4.9799999999999995}, {"type": "precision_at_100", "value": 1.117}, {"type": "precision_at_1000", "value": 0.201}, {"type": "precision_at_3", "value": 11.067}, {"type": "precision_at_5", "value": 7.904999999999999}, {"type": "recall_at_1", "value": 15.260000000000002}, {"type": "recall_at_10", "value": 32.368}, {"type": "recall_at_100", "value": 56.908}, {"type": "recall_at_1000", "value": 82.708}, {"type": "recall_at_3", "value": 23.816000000000003}, {"type": "recall_at_5", "value": 27.191}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackWordpressRetrieval", "type": "None", "config": "default", "split": "test", "revision": "4ffe81d471b1924886b33c7567bfb200e9eec5c4"}, "metrics": [{"type": "map_at_1", "value": 10.049}, {"type": "map_at_10", "value": 14.834}, {"type": "map_at_100", "value": 15.656999999999998}, {"type": "map_at_1000", "value": 15.787}, {"type": "map_at_3", "value": 13.503000000000002}, {"type": "map_at_5", "value": 14.185}, {"type": "mrr_at_1", "value": 11.275}, {"type": "mrr_at_10", "value": 16.242}, {"type": "mrr_at_100", "value": 17.037}, {"type": "mrr_at_1000", "value": 17.152}, {"type": "mrr_at_3", "value": 14.787}, {"type": "mrr_at_5", "value": 15.591}, {"type": "ndcg_at_1", "value": 11.275}, {"type": "ndcg_at_10", "value": 17.704}, {"type": "ndcg_at_100", "value": 22.083}, {"type": "ndcg_at_1000", "value": 25.817}, {"type": "ndcg_at_3", "value": 14.921999999999999}, {"type": "ndcg_at_5", "value": 16.171}, {"type": "precision_at_1", "value": 11.275}, {"type": "precision_at_10", "value": 2.902}, {"type": "precision_at_100", "value": 0.553}, {"type": "precision_at_1000", "value": 0.096}, {"type": "precision_at_3", "value": 6.531000000000001}, {"type": "precision_at_5", "value": 4.695}, {"type": "recall_at_1", "value": 10.049}, {"type": "recall_at_10", "value": 25.224999999999998}, {"type": "recall_at_100", "value": 45.899}, {"type": "recall_at_1000", "value": 74.576}, {"type": "recall_at_3", "value": 17.726}, {"type": "recall_at_5", "value": 20.752000000000002}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ClimateFEVER", "type": "None", "config": "default", "split": "test", "revision": "47f2ac6acb640fc46020b02a5b59fdda04d39380"}, "metrics": [{"type": "map_at_1", "value": 6.762}, {"type": "map_at_10", "value": 12.867}, {"type": "map_at_100", "value": 14.478}, {"type": "map_at_1000", "value": 14.696000000000002}, {"type": "map_at_3", "value": 10.437000000000001}, {"type": "map_at_5", "value": 11.689}, {"type": "mrr_at_1", "value": 15.309000000000001}, {"type": "mrr_at_10", "value": 25.839000000000002}, {"type": "mrr_at_100", "value": 26.994}, {"type": "mrr_at_1000", "value": 27.056}, {"type": "mrr_at_3", "value": 22.400000000000002}, {"type": "mrr_at_5", "value": 24.451999999999998}, {"type": "ndcg_at_1", "value": 15.309000000000001}, {"type": "ndcg_at_10", "value": 19.384999999999998}, {"type": "ndcg_at_100", "value": 26.517000000000003}, {"type": "ndcg_at_1000", "value": 30.676}, {"type": "ndcg_at_3", "value": 14.876000000000001}, {"type": "ndcg_at_5", "value": 16.611}, {"type": "precision_at_1", "value": 15.309000000000001}, {"type": "precision_at_10", "value": 6.489000000000001}, {"type": "precision_at_100", "value": 1.409}, {"type": "precision_at_1000", "value": 0.217}, {"type": "precision_at_3", "value": 11.530999999999999}, {"type": "precision_at_5", "value": 9.381}, {"type": "recall_at_1", "value": 6.762}, {"type": "recall_at_10", "value": 24.996}, {"type": "recall_at_100", "value": 50.202999999999996}, {"type": "recall_at_1000", "value": 73.87899999999999}, {"type": "recall_at_3", "value": 14.149000000000001}, {"type": "recall_at_5", "value": 18.648}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB DBPedia", "type": "None", "config": "default", "split": "test", "revision": "c0f706b76e590d620bd6618b3ca8efdd34e2d659"}, "metrics": [{"type": "map_at_1", "value": 3.846}, {"type": "map_at_10", "value": 9.048}, {"type": "map_at_100", "value": 12.656}, {"type": "map_at_1000", "value": 13.605999999999998}, {"type": "map_at_3", "value": 6.293}, {"type": "map_at_5", "value": 7.5920000000000005}, {"type": "mrr_at_1", "value": 41.5}, {"type": "mrr_at_10", "value": 51.08200000000001}, {"type": "mrr_at_100", "value": 51.82299999999999}, {"type": "mrr_at_1000", "value": 51.856}, {"type": "mrr_at_3", "value": 48.5}, {"type": "mrr_at_5", "value": 49.836999999999996}, {"type": "ndcg_at_1", "value": 30.375000000000004}, {"type": "ndcg_at_10", "value": 23.343}, {"type": "ndcg_at_100", "value": 26.261000000000003}, {"type": "ndcg_at_1000", "value": 33.053}, {"type": "ndcg_at_3", "value": 25.814999999999998}, {"type": "ndcg_at_5", "value": 24.583}, {"type": "precision_at_1", "value": 41.5}, {"type": "precision_at_10", "value": 20.849999999999998}, {"type": "precision_at_100", "value": 6.635000000000001}, {"type": "precision_at_1000", "value": 1.438}, {"type": "precision_at_3", "value": 30.833}, {"type": "precision_at_5", "value": 26.85}, {"type": "recall_at_1", "value": 3.846}, {"type": "recall_at_10", "value": 13.83}, {"type": "recall_at_100", "value": 32.757999999999996}, {"type": "recall_at_1000", "value": 56.25}, {"type": "recall_at_3", "value": 7.574}, {"type": "recall_at_5", "value": 10.071}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB EmotionClassification", "type": "None", "config": "default", "split": "test", "revision": "4f58c6b202a23cf9a4da393831edf4f9183cad37"}, "metrics": [{"type": "accuracy", "value": 46.62}, {"type": "f1", "value": 42.79767018915584}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB FEVER", "type": "None", "config": "default", "split": "test", "revision": "bea83ef9e8fb933d90a2f1d5515737465d613e12"}, "metrics": [{"type": "map_at_1", "value": 15.677}, {"type": "map_at_10", "value": 23.551}, {"type": "map_at_100", "value": 24.442}, {"type": "map_at_1000", "value": 24.514}, {"type": "map_at_3", "value": 21.192}, {"type": "map_at_5", "value": 22.499}, {"type": "mrr_at_1", "value": 16.742}, {"type": "mrr_at_10", "value": 25.019000000000002}, {"type": "mrr_at_100", "value": 25.894000000000002}, {"type": "mrr_at_1000", "value": 25.958}, {"type": "mrr_at_3", "value": 22.555}, {"type": "mrr_at_5", "value": 23.909}, {"type": "ndcg_at_1", "value": 16.742}, {"type": "ndcg_at_10", "value": 28.247}, {"type": "ndcg_at_100", "value": 32.797}, {"type": "ndcg_at_1000", "value": 34.809}, {"type": "ndcg_at_3", "value": 23.358999999999998}, {"type": "ndcg_at_5", "value": 25.705}, {"type": "precision_at_1", "value": 16.742}, {"type": "precision_at_10", "value": 4.532}, {"type": "precision_at_100", "value": 0.701}, {"type": "precision_at_1000", "value": 0.089}, {"type": "precision_at_3", "value": 10.145999999999999}, {"type": "precision_at_5", "value": 7.342}, {"type": "recall_at_1", "value": 15.677}, {"type": "recall_at_10", "value": 41.571000000000005}, {"type": "recall_at_100", "value": 62.834999999999994}, {"type": "recall_at_1000", "value": 78.387}, {"type": "recall_at_3", "value": 28.214}, {"type": "recall_at_5", "value": 33.891}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB FiQA2018", "type": "None", "config": "default", "split": "test", "revision": "27a168819829fe9bcd655c2df245fb19452e8e06"}, "metrics": [{"type": "map_at_1", "value": 7.5520000000000005}, {"type": "map_at_10", "value": 12.378}, {"type": "map_at_100", "value": 13.572999999999999}, {"type": "map_at_1000", "value": 13.79}, {"type": "map_at_3", "value": 10.737}, {"type": "map_at_5", "value": 11.629000000000001}, {"type": "mrr_at_1", "value": 15.123000000000001}, {"type": "mrr_at_10", "value": 21.001}, {"type": "mrr_at_100", "value": 22.112000000000002}, {"type": "mrr_at_1000", "value": 22.21}, {"type": "mrr_at_3", "value": 19.264}, {"type": "mrr_at_5", "value": 20.166999999999998}, {"type": "ndcg_at_1", "value": 15.123000000000001}, {"type": "ndcg_at_10", "value": 16.699}, {"type": "ndcg_at_100", "value": 22.688}, {"type": "ndcg_at_1000", "value": 27.394000000000002}, {"type": "ndcg_at_3", "value": 14.516000000000002}, {"type": "ndcg_at_5", "value": 15.336}, {"type": "precision_at_1", "value": 15.123000000000001}, {"type": "precision_at_10", "value": 4.7219999999999995}, {"type": "precision_at_100", "value": 1.065}, {"type": "precision_at_1000", "value": 0.188}, {"type": "precision_at_3", "value": 9.825000000000001}, {"type": "precision_at_5", "value": 7.284}, {"type": "recall_at_1", "value": 7.5520000000000005}, {"type": "recall_at_10", "value": 20.887}, {"type": "recall_at_100", "value": 44.613}, {"type": "recall_at_1000", "value": 73.55699999999999}, {"type": "recall_at_3", "value": 13.715}, {"type": "recall_at_5", "value": 16.75}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB HotpotQA", "type": "None", "config": "default", "split": "test", "revision": "ab518f4d6fcca38d87c25209f94beba119d02014"}, "metrics": [{"type": "map_at_1", "value": 15.314}, {"type": "map_at_10", "value": 21.73}, {"type": "map_at_100", "value": 22.595000000000002}, {"type": "map_at_1000", "value": 22.7}, {"type": "map_at_3", "value": 19.914}, {"type": "map_at_5", "value": 20.891000000000002}, {"type": "mrr_at_1", "value": 30.628}, {"type": "mrr_at_10", "value": 37.302}, {"type": "mrr_at_100", "value": 38.04}, {"type": "mrr_at_1000", "value": 38.102999999999994}, {"type": "mrr_at_3", "value": 35.445}, {"type": "mrr_at_5", "value": 36.464999999999996}, {"type": "ndcg_at_1", "value": 30.628}, {"type": "ndcg_at_10", "value": 27.986}, {"type": "ndcg_at_100", "value": 32.103}, {"type": "ndcg_at_1000", "value": 34.739}, {"type": "ndcg_at_3", "value": 24.48}, {"type": "ndcg_at_5", "value": 26.125}, {"type": "precision_at_1", "value": 30.628}, {"type": "precision_at_10", "value": 6.243}, {"type": "precision_at_100", "value": 0.955}, {"type": "precision_at_1000", "value": 0.131}, {"type": "precision_at_3", "value": 15.517}, {"type": "precision_at_5", "value": 10.613999999999999}, {"type": "recall_at_1", "value": 15.314}, {"type": "recall_at_10", "value": 31.215}, {"type": "recall_at_100", "value": 47.752}, {"type": "recall_at_1000", "value": 65.422}, {"type": "recall_at_3", "value": 23.275000000000002}, {"type": "recall_at_5", "value": 26.535999999999998}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ImdbClassification", "type": "None", "config": "default", "split": "test", "revision": "3d86128a09e091d6018b6d26cad27f2739fc2db7"}, "metrics": [{"type": "accuracy", "value": 61.661200000000015}, {"type": "ap", "value": 57.26137842361126}, {"type": "f1", "value": 61.44069729315865}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB MSMARCO", "type": "None", "config": "default", "split": "dev", "revision": "c5a29a104738b98a9e76336939199e264163d4a0"}, "metrics": [{"type": "map_at_1", "value": 6.308999999999999}, {"type": "map_at_10", "value": 11.003}, {"type": "map_at_100", "value": 11.865}, {"type": "map_at_1000", "value": 11.974}, {"type": "map_at_3", "value": 9.309000000000001}, {"type": "map_at_5", "value": 10.145999999999999}, {"type": "mrr_at_1", "value": 6.5329999999999995}, {"type": "mrr_at_10", "value": 11.296000000000001}, {"type": "mrr_at_100", "value": 12.168}, {"type": "mrr_at_1000", "value": 12.273}, {"type": "mrr_at_3", "value": 9.582}, {"type": "mrr_at_5", "value": 10.42}, {"type": "ndcg_at_1", "value": 6.519}, {"type": "ndcg_at_10", "value": 13.998}, {"type": "ndcg_at_100", "value": 18.701}, {"type": "ndcg_at_1000", "value": 21.944}, {"type": "ndcg_at_3", "value": 10.383000000000001}, {"type": "ndcg_at_5", "value": 11.898}, {"type": "precision_at_1", "value": 6.519}, {"type": "precision_at_10", "value": 2.4330000000000003}, {"type": "precision_at_100", "value": 0.486}, {"type": "precision_at_1000", "value": 0.077}, {"type": "precision_at_3", "value": 4.585}, {"type": "precision_at_5", "value": 3.5130000000000003}, {"type": "recall_at_1", "value": 6.308999999999999}, {"type": "recall_at_10", "value": 23.381}, {"type": "recall_at_100", "value": 46.25}, {"type": "recall_at_1000", "value": 72.261}, {"type": "recall_at_3", "value": 13.239}, {"type": "recall_at_5", "value": 16.902}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPDomainClassification (en)", "type": "None", "config": "en", "split": "test", "revision": "d80d48c1eb48d3562165c59d59d0034df9fff0bf"}, "metrics": [{"type": "accuracy", "value": 87.84313725490198}, {"type": "f1", "value": 87.24204022782286}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPIntentClassification (en)", "type": "None", "config": "en", "split": "test", "revision": "ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba"}, "metrics": [{"type": "accuracy", "value": 56.409028727770185}, {"type": "f1", "value": 38.57449573016968}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (en)", "type": "None", "config": "en", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 62.010759919300604}, {"type": "f1", "value": 60.290520300650584}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (en)", "type": "None", "config": "en", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 70.65232010759918}, {"type": "f1", "value": 69.36104886302014}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringP2P", "type": "None", "config": "default", "split": "test", "revision": "e7a26af6f3ae46b30dde8737f02c07b1505bcc73"}, "metrics": [{"type": "v_measure", "value": 30.364401278066065}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringS2S", "type": "None", "config": "default", "split": "test", "revision": "35191c8c0dca72d8ff3efcd72aa802307d469663"}, "metrics": [{"type": "v_measure", "value": 28.00495863318603}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB MindSmallReranking", "type": "None", "config": "default", "split": "test", "revision": "3bdac13927fdc888b903db93b2ffdbd90b295a69"}, "metrics": [{"type": "map", "value": 30.917670435424853}, {"type": "mrr", "value": 31.929615376181395}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB NFCorpus", "type": "None", "config": "default", "split": "test", "revision": "ec0fa4fe99da2ff19ca1214b7966684033a58814"}, "metrics": [{"type": "map_at_1", "value": 4.279}, {"type": "map_at_10", "value": 8.491999999999999}, {"type": "map_at_100", "value": 10.969}, {"type": "map_at_1000", "value": 12.396}, {"type": "map_at_3", "value": 6.254999999999999}, {"type": "map_at_5", "value": 7.417}, {"type": "mrr_at_1", "value": 34.056}, {"type": "mrr_at_10", "value": 43.877}, {"type": "mrr_at_100", "value": 44.590999999999994}, {"type": "mrr_at_1000", "value": 44.651}, {"type": "mrr_at_3", "value": 41.382999999999996}, {"type": "mrr_at_5", "value": 42.838}, {"type": "ndcg_at_1", "value": 32.198}, {"type": "ndcg_at_10", "value": 25.971}, {"type": "ndcg_at_100", "value": 25.112000000000002}, {"type": "ndcg_at_1000", "value": 34.83}, {"type": "ndcg_at_3", "value": 29.018}, {"type": "ndcg_at_5", "value": 28.447}, {"type": "precision_at_1", "value": 34.056}, {"type": "precision_at_10", "value": 19.412}, {"type": "precision_at_100", "value": 7.053}, {"type": "precision_at_1000", "value": 2.061}, {"type": "precision_at_3", "value": 27.761000000000003}, {"type": "precision_at_5", "value": 25.076999999999998}, {"type": "recall_at_1", "value": 4.279}, {"type": "recall_at_10", "value": 12.917000000000002}, {"type": "recall_at_100", "value": 27.386}, {"type": "recall_at_1000", "value": 62.90599999999999}, {"type": "recall_at_3", "value": 7.234999999999999}, {"type": "recall_at_5", "value": 9.866}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB NQ", "type": "None", "config": "default", "split": "test", "revision": "b774495ed302d8c44a3a7ea25c90dbce03968f31"}, "metrics": [{"type": "map_at_1", "value": 8.427}, {"type": "map_at_10", "value": 14.471}, {"type": "map_at_100", "value": 15.704}, {"type": "map_at_1000", "value": 15.809000000000001}, {"type": "map_at_3", "value": 12.059000000000001}, {"type": "map_at_5", "value": 13.288}, {"type": "mrr_at_1", "value": 9.647}, {"type": "mrr_at_10", "value": 16.064999999999998}, {"type": "mrr_at_100", "value": 17.212}, {"type": "mrr_at_1000", "value": 17.297}, {"type": "mrr_at_3", "value": 13.562}, {"type": "mrr_at_5", "value": 14.843}, {"type": "ndcg_at_1", "value": 9.647}, {"type": "ndcg_at_10", "value": 18.613}, {"type": "ndcg_at_100", "value": 24.834999999999997}, {"type": "ndcg_at_1000", "value": 27.716}, {"type": "ndcg_at_3", "value": 13.605}, {"type": "ndcg_at_5", "value": 15.797}, {"type": "precision_at_1", "value": 9.647}, {"type": "precision_at_10", "value": 3.531}, {"type": "precision_at_100", "value": 0.7060000000000001}, {"type": "precision_at_1000", "value": 0.098}, {"type": "precision_at_3", "value": 6.431000000000001}, {"type": "precision_at_5", "value": 5.093}, {"type": "recall_at_1", "value": 8.427}, {"type": "recall_at_10", "value": 29.995}, {"type": "recall_at_100", "value": 58.760999999999996}, {"type": "recall_at_1000", "value": 81.033}, {"type": "recall_at_3", "value": 16.621}, {"type": "recall_at_5", "value": 21.69}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB QuoraRetrieval", "type": "None", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 63.709}, {"type": "map_at_10", "value": 76.66}, {"type": "map_at_100", "value": 77.444}, {"type": "map_at_1000", "value": 77.474}, {"type": "map_at_3", "value": 73.639}, {"type": "map_at_5", "value": 75.495}, {"type": "mrr_at_1", "value": 73.42}, {"type": "mrr_at_10", "value": 80.643}, {"type": "mrr_at_100", "value": 80.886}, {"type": "mrr_at_1000", "value": 80.891}, {"type": "mrr_at_3", "value": 79.163}, {"type": "mrr_at_5", "value": 80.132}, {"type": "ndcg_at_1", "value": 73.44000000000001}, {"type": "ndcg_at_10", "value": 81.26100000000001}, {"type": "ndcg_at_100", "value": 83.34}, {"type": "ndcg_at_1000", "value": 83.65599999999999}, {"type": "ndcg_at_3", "value": 77.593}, {"type": "ndcg_at_5", "value": 79.552}, {"type": "precision_at_1", "value": 73.44000000000001}, {"type": "precision_at_10", "value": 12.356}, {"type": "precision_at_100", "value": 1.472}, {"type": "precision_at_1000", "value": 0.155}, {"type": "precision_at_3", "value": 33.733000000000004}, {"type": "precision_at_5", "value": 22.398}, {"type": "recall_at_1", "value": 63.709}, {"type": "recall_at_10", "value": 90.24}, {"type": "recall_at_100", "value": 97.992}, {"type": "recall_at_1000", "value": 99.725}, {"type": "recall_at_3", "value": 79.843}, {"type": "recall_at_5", "value": 85.199}, {"type": "map_at_1", "value": 3.098}, {"type": "map_at_10", "value": 7.359999999999999}, {"type": "map_at_100", "value": 8.888}, {"type": "map_at_1000", "value": 9.158}, {"type": "map_at_3", "value": 5.406}, {"type": "map_at_5", "value": 6.308999999999999}, {"type": "mrr_at_1", "value": 15.2}, {"type": "mrr_at_10", "value": 23.508000000000003}, {"type": "mrr_at_100", "value": 24.709}, {"type": "mrr_at_1000", "value": 24.787}, {"type": "mrr_at_3", "value": 20.383000000000003}, {"type": "mrr_at_5", "value": 22.103}, {"type": "ndcg_at_1", "value": 15.2}, {"type": "ndcg_at_10", "value": 13.174}, {"type": "ndcg_at_100", "value": 19.885}, {"type": "ndcg_at_1000", "value": 25.247999999999998}, {"type": "ndcg_at_3", "value": 12.242}, {"type": "ndcg_at_5", "value": 10.702}, {"type": "precision_at_1", "value": 15.2}, {"type": "precision_at_10", "value": 6.93}, {"type": "precision_at_100", "value": 1.6709999999999998}, {"type": "precision_at_1000", "value": 0.296}, {"type": "precision_at_3", "value": 11.4}, {"type": "precision_at_5", "value": 9.379999999999999}, {"type": "recall_at_1", "value": 3.098}, {"type": "recall_at_10", "value": 14.048}, {"type": "recall_at_100", "value": 33.902}, {"type": "recall_at_1000", "value": 60.17}, {"type": "recall_at_3", "value": 6.9430000000000005}, {"type": "recall_at_5", "value": 9.498}, {"type": "map_at_1", "value": 0.125}, {"type": "map_at_10", "value": 0.86}, {"type": "map_at_100", "value": 4.665}, {"type": "map_at_1000", "value": 11.877}, {"type": "map_at_3", "value": 0.299}, {"type": "map_at_5", "value": 0.47200000000000003}, {"type": "mrr_at_1", "value": 50.0}, {"type": "mrr_at_10", "value": 64.711}, {"type": "mrr_at_100", "value": 65.065}, {"type": "mrr_at_1000", "value": 65.065}, {"type": "mrr_at_3", "value": 62.0}, {"type": "mrr_at_5", "value": 62.9}, {"type": "ndcg_at_1", "value": 43.0}, {"type": "ndcg_at_10", "value": 43.147999999999996}, {"type": "ndcg_at_100", "value": 33.417}, {"type": "ndcg_at_1000", "value": 31.341}, {"type": "ndcg_at_3", "value": 43.653999999999996}, {"type": "ndcg_at_5", "value": 43.21}, {"type": "precision_at_1", "value": 50.0}, {"type": "precision_at_10", "value": 48.199999999999996}, {"type": "precision_at_100", "value": 35.46}, {"type": "precision_at_1000", "value": 15.342}, {"type": "precision_at_3", "value": 48.0}, {"type": "precision_at_5", "value": 47.599999999999994}, {"type": "recall_at_1", "value": 0.125}, {"type": "recall_at_10", "value": 1.145}, {"type": "recall_at_100", "value": 7.727}, {"type": "recall_at_1000", "value": 30.742000000000004}, {"type": "recall_at_3", "value": 0.356}, {"type": "recall_at_5", "value": 0.5780000000000001}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClustering", "type": "None", "config": "default", "split": "test", "revision": "24640382cdbf8abc73003fb0fa6d111a705499eb"}, "metrics": [{"type": "v_measure", "value": 42.214155529412366}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClusteringP2P", "type": "None", "config": "default", "split": "test", "revision": "282350215ef01743dc01b456c7f5241fa8937f16"}, "metrics": [{"type": "v_measure", "value": 48.10171269080449}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB SICK-R", "type": "None", "config": "default", "split": "test", "revision": "a6ea5a8cab320b040a23452cc28066d9beae2cee"}, "metrics": [{"type": "cos_sim_pearson", "value": 76.69196724733715}, {"type": "cos_sim_spearman", "value": 65.00669029968084}, {"type": "euclidean_pearson", "value": 71.35623218354901}, {"type": "euclidean_spearman", "value": 65.00662504036774}, {"type": "manhattan_pearson", "value": 69.46286814034032}, {"type": "manhattan_spearman", "value": 64.05091703970768}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS12", "type": "None", "config": "default", "split": "test", "revision": "a0d554a64d88156834ff5ae9920b964011b16384"}, "metrics": [{"type": "cos_sim_pearson", "value": 75.45675254280496}, {"type": "cos_sim_spearman", "value": 67.48465522195806}, {"type": "euclidean_pearson", "value": 71.932572180082}, {"type": "euclidean_spearman", "value": 67.48597260989263}, {"type": "manhattan_pearson", "value": 70.01381315407934}, {"type": "manhattan_spearman", "value": 66.83129276722313}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS13", "type": "None", "config": "default", "split": "test", "revision": "7e90230a92c190f1bf69ae9002b8cea547a64cca"}, "metrics": [{"type": "cos_sim_pearson", "value": 75.56784955823615}, {"type": "cos_sim_spearman", "value": 77.1656947836492}, {"type": "euclidean_pearson", "value": 76.86159714478943}, {"type": "euclidean_spearman", "value": 77.16570697849755}, {"type": "manhattan_pearson", "value": 77.05983226779968}, {"type": "manhattan_spearman", "value": 77.43229771628044}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS14", "type": "None", "config": "default", "split": "test", "revision": "6031580fec1f6af667f0bd2da0a551cf4f0b2375"}, "metrics": [{"type": "cos_sim_pearson", "value": 77.28801641888653}, {"type": "cos_sim_spearman", "value": 72.72947194978411}, {"type": "euclidean_pearson", "value": 76.2115552769551}, {"type": "euclidean_spearman", "value": 72.72946226092458}, {"type": "manhattan_pearson", "value": 75.19019262864614}, {"type": "manhattan_spearman", "value": 72.18378967267259}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS15", "type": "None", "config": "default", "split": "test", "revision": "ae752c7c21bf194d8b67fd573edf7ae58183cbe3"}, "metrics": [{"type": "cos_sim_pearson", "value": 79.73471725204746}, {"type": "cos_sim_spearman", "value": 80.79015625826382}, {"type": "euclidean_pearson", "value": 80.81110611872813}, {"type": "euclidean_spearman", "value": 80.79016252191039}, {"type": "manhattan_pearson", "value": 79.93979968573043}, {"type": "manhattan_spearman", "value": 80.07556394648903}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS16", "type": "None", "config": "default", "split": "test", "revision": "4d8694f8f0e0100860b497b999b3dbed754a0513"}, "metrics": [{"type": "cos_sim_pearson", "value": 74.47923638473124}, {"type": "cos_sim_spearman", "value": 75.71286196807024}, {"type": "euclidean_pearson", "value": 75.83804880943377}, {"type": "euclidean_spearman", "value": 75.71341236422742}, {"type": "manhattan_pearson", "value": 75.93646913049322}, {"type": "manhattan_spearman", "value": 75.85181752457555}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS17 (en-en)", "type": "None", "config": "en-en", "split": "test", "revision": "af5e6fb845001ecf41f4c1e033ce921939a2a68d"}, "metrics": [{"type": "cos_sim_pearson", "value": 82.62219071209913}, {"type": "cos_sim_spearman", "value": 83.44167690000958}, {"type": "euclidean_pearson", "value": 83.28214784087085}, {"type": "euclidean_spearman", "value": 83.44255138870209}, {"type": "manhattan_pearson", "value": 82.77261607066816}, {"type": "manhattan_spearman", "value": 83.06899474864443}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (en)", "type": "None", "config": "en", "split": "test", "revision": "eea2b4fe26a775864c896887d910b76a8098ad3f"}, "metrics": [{"type": "cos_sim_pearson", "value": 64.70345108985259}, {"type": "cos_sim_spearman", "value": 62.482753044620786}, {"type": "euclidean_pearson", "value": 64.79437494489187}, {"type": "euclidean_spearman", "value": 62.482753044620786}, {"type": "manhattan_pearson", "value": 63.71939825347573}, {"type": "manhattan_spearman", "value": 61.174953862000336}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STSBenchmark", "type": "None", "config": "default", "split": "test", "revision": "b0fddb56ed78048fa8b90373c8a3cfc37b684831"}, "metrics": [{"type": "cos_sim_pearson", "value": 76.07865440954043}, {"type": "cos_sim_spearman", "value": 74.54667758834077}, {"type": "euclidean_pearson", "value": 76.48558570428264}, {"type": "euclidean_spearman", "value": 74.54672598094477}, {"type": "manhattan_pearson", "value": 76.06256712227383}, {"type": "manhattan_spearman", "value": 74.42758128821515}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB SciDocsRR", "type": "None", "config": "default", "split": "test", "revision": "d3c5e1fc0b855ab6097bf1cda04dd73947d7caab"}, "metrics": [{"type": "map", "value": 75.15143418949978}, {"type": "mrr", "value": 91.98409705762647}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB SciFact", "type": "None", "config": "default", "split": "test", "revision": "0228b52cf27578f30900b9e5271d331663a030d7"}, "metrics": [{"type": "map_at_1", "value": 33.417}, {"type": "map_at_10", "value": 42.594}, {"type": "map_at_100", "value": 43.535000000000004}, {"type": "map_at_1000", "value": 43.6}, {"type": "map_at_3", "value": 39.759}, {"type": "map_at_5", "value": 41.506}, {"type": "mrr_at_1", "value": 35.667}, {"type": "mrr_at_10", "value": 44.446000000000005}, {"type": "mrr_at_100", "value": 45.244}, {"type": "mrr_at_1000", "value": 45.300000000000004}, {"type": "mrr_at_3", "value": 42.167}, {"type": "mrr_at_5", "value": 43.5}, {"type": "ndcg_at_1", "value": 35.667}, {"type": "ndcg_at_10", "value": 47.591}, {"type": "ndcg_at_100", "value": 52.611}, {"type": "ndcg_at_1000", "value": 54.31}, {"type": "ndcg_at_3", "value": 42.356}, {"type": "ndcg_at_5", "value": 45.194}, {"type": "precision_at_1", "value": 35.667}, {"type": "precision_at_10", "value": 6.7669999999999995}, {"type": "precision_at_100", "value": 0.967}, {"type": "precision_at_1000", "value": 0.11100000000000002}, {"type": "precision_at_3", "value": 16.889000000000003}, {"type": "precision_at_5", "value": 11.799999999999999}, {"type": "recall_at_1", "value": 33.417}, {"type": "recall_at_10", "value": 61.260999999999996}, {"type": "recall_at_100", "value": 85.556}, {"type": "recall_at_1000", "value": 98.867}, {"type": "recall_at_3", "value": 47.528}, {"type": "recall_at_5", "value": 54.388999999999996}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB SprintDuplicateQuestions", "type": "None", "config": "default", "split": "test", "revision": "d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46"}, "metrics": [{"type": "cos_sim_accuracy", "value": 99.73267326732673}, {"type": "cos_sim_ap", "value": 92.36951341438333}, {"type": "cos_sim_f1", "value": 86.04073522106309}, {"type": "cos_sim_precision", "value": 85.48864758144127}, {"type": "cos_sim_recall", "value": 86.6}, {"type": "dot_accuracy", "value": 99.73267326732673}, {"type": "dot_ap", "value": 92.36951341438333}, {"type": "dot_f1", "value": 86.04073522106309}, {"type": "dot_precision", "value": 85.48864758144127}, {"type": "dot_recall", "value": 86.6}, {"type": "euclidean_accuracy", "value": 99.73267326732673}, {"type": "euclidean_ap", "value": 92.36951341438333}, {"type": "euclidean_f1", "value": 86.04073522106309}, {"type": "euclidean_precision", "value": 85.48864758144127}, {"type": "euclidean_recall", "value": 86.6}, {"type": "manhattan_accuracy", "value": 99.74455445544554}, {"type": "manhattan_ap", "value": 92.96894184904977}, {"type": "manhattan_f1", "value": 86.8917576961271}, {"type": "manhattan_precision", "value": 86.29191321499013}, {"type": "manhattan_recall", "value": 87.5}, {"type": "max_accuracy", "value": 99.74455445544554}, {"type": "max_ap", "value": 92.96894184904977}, {"type": "max_f1", "value": 86.8917576961271}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClustering", "type": "None", "config": "default", "split": "test", "revision": "6cbc1f7b2bc0622f2e39d2c77fa502909748c259"}, "metrics": [{"type": "v_measure", "value": 45.349940718460374}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClusteringP2P", "type": "None", "config": "default", "split": "test", "revision": "815ca46b2622cec33ccafc3735d572c266efdb44"}, "metrics": [{"type": "v_measure", "value": 31.266631844140036}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB StackOverflowDupQuestions", "type": "None", "config": "default", "split": "test", "revision": "e185fbe320c72810689fc5848eb6114e1ef5ec69"}, "metrics": [{"type": "map", "value": 42.02550203348626}, {"type": "mrr", "value": 42.442651302945414}]}, {"task": {"type": "Summarization"}, "dataset": {"name": "MTEB SummEval", "type": "None", "config": "default", "split": "test", "revision": "cda12ad7615edc362dbf25a00fdd61d3b1eaf93c"}, "metrics": [{"type": "cos_sim_pearson", "value": 30.22842420698354}, {"type": "cos_sim_spearman", "value": 30.568909812744543}, {"type": "dot_pearson", "value": 30.228424144316747}, {"type": "dot_spearman", "value": 30.619692862283827}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB Touche2020", "type": "None", "config": "default", "split": "test", "revision": "a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f"}, "metrics": [{"type": "map_at_1", "value": 1.585}, {"type": "map_at_10", "value": 7.398000000000001}, {"type": "map_at_100", "value": 13.603000000000002}, {"type": "map_at_1000", "value": 15.267}, {"type": "map_at_3", "value": 3.857}, {"type": "map_at_5", "value": 5.509}, {"type": "mrr_at_1", "value": 24.490000000000002}, {"type": "mrr_at_10", "value": 39.883}, {"type": "mrr_at_100", "value": 41.082}, {"type": "mrr_at_1000", "value": 41.082}, {"type": "mrr_at_3", "value": 35.034}, {"type": "mrr_at_5", "value": 37.483}, {"type": "ndcg_at_1", "value": 23.469}, {"type": "ndcg_at_10", "value": 21.221999999999998}, {"type": "ndcg_at_100", "value": 34.851}, {"type": "ndcg_at_1000", "value": 46.26}, {"type": "ndcg_at_3", "value": 21.906}, {"type": "ndcg_at_5", "value": 21.229}, {"type": "precision_at_1", "value": 24.490000000000002}, {"type": "precision_at_10", "value": 19.796}, {"type": "precision_at_100", "value": 8.122}, {"type": "precision_at_1000", "value": 1.541}, {"type": "precision_at_3", "value": 23.810000000000002}, {"type": "precision_at_5", "value": 22.041}, {"type": "recall_at_1", "value": 1.585}, {"type": "recall_at_10", "value": 13.664000000000001}, {"type": "recall_at_100", "value": 49.559}, {"type": "recall_at_1000", "value": 83.978}, {"type": "recall_at_3", "value": 5.088}, {"type": "recall_at_5", "value": 8.203000000000001}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ToxicConversationsClassification", "type": "None", "config": "default", "split": "test", "revision": "d7c0de2777da35d6aae2200a62c6e0e5af397c4c"}, "metrics": [{"type": "accuracy", "value": 71.68520000000001}, {"type": "ap", "value": 14.622321024533974}, {"type": "f1", "value": 55.1924859473184}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB TweetSentimentExtractionClassification", "type": "None", "config": "default", "split": "test", "revision": "d604517c81ca91fe16a244d1248fc021f9ecee7a"}, "metrics": [{"type": "accuracy", "value": 53.34748160724392}, {"type": "f1", "value": 53.518629300332755}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB TwentyNewsgroupsClustering", "type": "None", "config": "default", "split": "test", "revision": "6125ec4e24fa026cec8a478383ee943acfbd5449"}, "metrics": [{"type": "v_measure", "value": 40.22582442073446}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterSemEval2015", "type": "None", "config": "default", "split": "test", "revision": "70970daeab8776df92f5ea462b6173c0b46fd2d1"}, "metrics": [{"type": "cos_sim_accuracy", "value": 82.46408773916671}, {"type": "cos_sim_ap", "value": 60.57612839124909}, {"type": "cos_sim_f1", "value": 58.366606170598914}, {"type": "cos_sim_precision", "value": 53.899441340782126}, {"type": "cos_sim_recall", "value": 63.641160949868066}, {"type": "dot_accuracy", "value": 82.46408773916671}, {"type": "dot_ap", "value": 60.57612839124909}, {"type": "dot_f1", "value": 58.366606170598914}, {"type": "dot_precision", "value": 53.899441340782126}, {"type": "dot_recall", "value": 63.641160949868066}, {"type": "euclidean_accuracy", "value": 82.46408773916671}, {"type": "euclidean_ap", "value": 60.57612839124909}, {"type": "euclidean_f1", "value": 58.366606170598914}, {"type": "euclidean_precision", "value": 53.899441340782126}, {"type": "euclidean_recall", "value": 63.641160949868066}, {"type": "manhattan_accuracy", "value": 81.68921738093819}, {"type": "manhattan_ap", "value": 58.62502289564927}, {"type": "manhattan_f1", "value": 57.40318906605921}, {"type": "manhattan_precision", "value": 50.50100200400801}, {"type": "manhattan_recall", "value": 66.49076517150397}, {"type": "max_accuracy", "value": 82.46408773916671}, {"type": "max_ap", "value": 60.57612839124909}, {"type": "max_f1", "value": 58.366606170598914}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterURLCorpus", "type": "None", "config": "default", "split": "test", "revision": "8b6510b0b1fa4e4c4f879467980e9be563ec1cdf"}, "metrics": [{"type": "cos_sim_accuracy", "value": 86.89602980556526}, {"type": "cos_sim_ap", "value": 81.92992391915341}, {"type": "cos_sim_f1", "value": 74.31139877741819}, {"type": "cos_sim_precision", "value": 69.71393873971124}, {"type": "cos_sim_recall", "value": 79.55805358792732}, {"type": "dot_accuracy", "value": 86.89602980556526}, {"type": "dot_ap", "value": 81.92992407440505}, {"type": "dot_f1", "value": 74.31139877741819}, {"type": "dot_precision", "value": 69.71393873971124}, {"type": "dot_recall", "value": 79.55805358792732}, {"type": "euclidean_accuracy", "value": 86.89602980556526}, {"type": "euclidean_ap", "value": 81.92992329073074}, {"type": "euclidean_f1", "value": 74.31139877741819}, {"type": "euclidean_precision", "value": 69.71393873971124}, {"type": "euclidean_recall", "value": 79.55805358792732}, {"type": "manhattan_accuracy", "value": 86.94454146776886}, {"type": "manhattan_ap", "value": 81.96535237136042}, {"type": "manhattan_f1", "value": 74.41181834761991}, {"type": "manhattan_precision", "value": 70.70076939072572}, {"type": "manhattan_recall", "value": 78.53403141361257}, {"type": "max_accuracy", "value": 86.94454146776886}, {"type": "max_ap", "value": 81.96535237136042}, {"type": "max_f1", "value": 74.41181834761991}]}]}]}
Cloyne/vietnamese-sbert
Cloyne
sentence-similarity
[ "sentence-transformers", "safetensors", "roberta", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:120210", "loss:MultipleNegativesRankingLoss", "arxiv:1908.10084", "arxiv:1705.00652", "base_model:keepitreal/vietnamese-sbert", "base_model:finetune:keepitreal/vietnamese-sbert", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-10-28T14:49:39
2024-10-28T14:49:54
157
0
--- base_model: keepitreal/vietnamese-sbert library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:120210 - loss:MultipleNegativesRankingLoss widget: - source_sentence: Chủ tịch Ủy ban nhân dân xã có quyền ra quyết định cưỡng chế tháo dỡ công trình xây dựng trên đất nông nghiệp khi chưa chuyển mục đích sử dụng đất hay không? sentences: - 'Đối tượng, điều kiện kéo dài tuổi phục vụ tại ngũ 1. Đối tượng: a) Quân nhân chuyên nghiệp có trình độ cao đẳng trở lên đang đảm nhiệm các chức danh: Kỹ thuật viên, Nhân viên Kỹ thuật, Huấn luyện viên, Nghệ sĩ, Nhạc sĩ, Diễn viên làm việc đúng chuyên ngành đào tạo ở các cơ sở nghiên cứu, nhà trường, bệnh viện, trung tâm thể dục thể thao, đoàn nghệ thuật, nhà máy, doanh nghiệp quốc phòng; đơn vị đóng quân ở địa bàn vùng sâu, vùng xa, biên giới, hải đảo. b) Quân nhân chuyên nghiệp đang làm việc thuộc các chuyên ngành hẹp được đào tạo công phu hoặc chuyên ngành Quân đội chưa đào tạo được; thợ bậc cao. c) Quân nhân chuyên nghiệp đang đảm nhiệm chức vụ chỉ huy, quản lý ở các nhà máy, doanh nghiệp quốc phòng. d) Quân nhân chuyên nghiệp không thuộc đối tượng quy định tại điểm a, điểm b, điểm c khoản này do Bộ trưởng Bộ Quốc phòng quyết định. 2. Điều kiện: Quân nhân chuyên nghiệp thuộc đối tượng quy định tại khoản 1 Điều này được kéo dài tuổi phục vụ tại ngũ khi có đủ các điều kiện sau: a) Đơn vị có biên chế và nhu cầu sử dụng; b) Hết hạn tuổi phục vụ tại ngũ cao nhất theo cấp bậc quân hàm quy định tại khoản 2 Điều 17 Luật Quân nhân chuyên nghiệp, công nhân và viên chức quốc phòng; chưa có người thay thế; tự nguyện tiếp tục phục vụ tại ngũ; c) Có đủ phẩm chất chính trị, đạo đức, sức khỏe để hoàn thành nhiệm vụ được giao; d) Có trình độ chuyên môn kỹ thuật, nghiệp vụ giỏi; tay nghề cao; chất lượng, hiệu quả công tác tốt.' - 'Thi hành quyết định cưỡng chế 1. Người ra quyết định cưỡng chế có trách nhiệm gửi ngay quyết định cưỡng chế cho các cá nhân, tổ chức liên quan và tổ chức thực hiện việc cưỡng chế thi hành quyết định xử phạt của mình và của cấp dưới. ..."' - 'Trình tự, thủ tục đăng ký tài khoản định danh điện tử đối với công dân Việt Nam 1. Đăng ký tài khoản định danh điện tử mức độ 1 qua ứng dụng VNelD đối với công dân đã có thẻ Căn cước công dân gắn chíp điện tử a) Công dân sử dụng thiết bị di động tải và cài đặt ứng dụng VNelD. b) Công dân sử dụng ứng dụng VNelD để nhập thông tin về số định danh cá nhân và số điện thoại hoặc địa chỉ thư điện tử; cung cấp các thông tin theo hướng dẫn trên ứng dụng VNelD; thu nhận ảnh chân dung bằng thiết bị di động và gửi yêu cầu đề nghị cấp tài khoản định danh điện tử tới cơ quan quản lý định danh và xác thực điện tử qua ứng dụng VNelD. c) Cơ quan quản lý định danh điện tử thông báo kết quả đăng ký tài khoản qua ứng dụng VNelD hoặc tin nhắn SMS hoặc địa chỉ thư điện tử. 2. Đăng ký tài khoản định danh điện tử mức độ 2 a) Đối với công dân đã được cấp thẻ Căn cước công dân gắn chíp điện tử: Công dân đến Công an xã, phường, thị trấn hoặc nơi làm thủ tục cấp thẻ Căn cước công dân để làm thủ tục cấp tài khoản định danh điện tử. Công dân xuất trình thẻ Căn cước công dân gắn chíp điện tử, cung cấp thông tin về số điện thoại hoặc địa chỉ thư điện tử và đề nghị bổ sung thông tin được tích hợp vào tài khoản định danh điện tử. Cán bộ tiếp nhận nhập thông tin công dân cung cấp vào hệ thống định danh và xác thực điện tử; chụp ảnh chân dung, thu nhận vân tay của công dân đến làm thủ tục để xác thực với Cơ sở dữ liệu căn cước công dân và khẳng định sự đồng ý đăng ký tạo lập tài khoản định danh điện tử. Cơ quan quản lý định danh điện tử thông báo kết quả đăng ký tài khoản qua ứng dụng VNelD hoặc tin nhắn SMS hoặc địa chỉ thư điện tử. b) Cơ quan Công an tiến hành cấp tài khoản định danh điện tử mức độ 2 cùng với cấp thẻ Căn cước công dân với trường hợp công dân chưa được cấp Căn cước công dân gắn chíp điện tử.' - source_sentence: Mức hưởng chế độ thai sản đối với lao động nam là người nước ngoài được pháp luật quy định như thế nào? sentences: - '"Điều 21. Thông báo kết quả và xác nhận nhập học 1. Cơ sở đào tạo gửi giấy báo trúng tuyển cho những thí sinh trúng tuyển, trong đó ghi rõ những thủ tục cần thiết đối với thí sinh khi nhập học và phương thức nhập học của thí sinh. 2. Thí sinh xác nhận nhập học bằng hình thức trực tuyến trên hệ thống, trước khi nhập học tại cơ sở đào tạo. 3. Đối với những thí sinh không xác nhận nhập học trong thời hạn quy định: a) Nếu không có lý do chính đáng thì coi như thí sinh từ chối nhập học và cơ sở đào tạo có quyền không tiếp nhận; b) Nếu do ốm đau, tai nạn, có giấy xác nhận của bệnh viện quận, huyện trở lên hoặc do thiên tai có xác nhận của UBND quận, huyện trở lên, cơ sở đào tạo xem xét quyết định tiếp nhận thí sinh vào học hoặc bảo lưu kết quả tuyển sinh để thí sinh vào học sau; c) Nếu do sai sót, nhầm lẫn của cán bộ thực hiện công tác tuyển sinh hoặc cá nhân thí sinh gây ra, cơ sở đào tạo chủ động phối hợp với các cá nhân, tổ chức liên quan xem xét các minh chứng và quyết định việc tiếp nhận thí sinh vào học hoặc bảo lưu kết quả tuyển sinh để thí sinh vào học sau. 4. Thí sinh đã xác nhận nhập học tại một cơ sở đào tạo không được tham gia xét tuyển ở nơi khác hoặc ở các đợt xét tuyển bổ sung, trừ trường hợp được cơ sở đào tạo cho phép."' - 'Tổ chức, nhiệm vụ, quyền hạn của Ban Chỉ huy ... 2. Nhiệm vụ, quyền hạn của Ban Chỉ huy: a) Chỉ đạo xây dựng, ban hành quy định về công tác bảo đảm an toàn PCCC và CNCH tại Trụ sở cơ quan Bộ Tư pháp. b) Hướng dẫn, phối hợp với các đơn vị thuộc Bộ và chỉ đạo Đội PCCC và CNCH cơ sở tổ chức tuyên truyền, bồi dưỡng nghiệp vụ PCCC và CNCH. c) Chỉ đạo Đội PCCC và CNCH cơ sở tại Trụ sở cơ quan Bộ Tư pháp xây dựng, trình cấp có thẩm quyền phê duyệt và tổ chức thực tập phương án PCCC, phương án CNCH. d) Chỉ đạo Đội PCCC và CNCH cơ sở tại Trụ sở cơ quan Bộ Tư pháp quản lý các trang thiết bị PCCC và CNCH. đ) Chỉ đạo chữa cháy, CNCH khi xảy ra cháy, sự cố, tai nạn tại Trụ sở cơ quan Bộ Tư pháp. e) Chỉ đạo việc tổ chức lập và lưu giữ hồ sơ quản lý, theo dõi hoạt động PCCC, CNCH tại Trụ sở cơ quan Bộ Tư pháp. g) Chỉ đạo việc sơ kết, tổng kết các hoạt động về PCCC và CNCH của cơ quan; kiểm tra, đôn đốc việc chấp hành các quy định về PCCC và CNCH. h) Đề xuất việc khen thưởng, kỷ luật các tập thể, cá nhân trong việc thực hiện công tác PCCC, CNCH. i) Chỉ đạo Đội PCCC và CNCH cơ sở dự trù kinh phí cho các hoạt động PCCC và CNCH tại Trụ sở cơ quan Bộ Tư pháp. k) Thực hiện các nhiệm vụ khác do Bộ trưởng giao và theo quy định của pháp luật.' - 'Mức hưởng chế độ thai sản ... b) Mức hưởng một ngày đối với trường hợp quy định tại Điều 32 và khoản 2 Điều 34 của Luật này được tính bằng mức hưởng chế độ thai sản theo tháng chia cho 24 ngày.' - source_sentence: Doanh nghiệp được áp dụng chế độ ưu tiên không cung cấp báo cáo kiểm toán đúng thời hạn bị phạt bao nhiêu tiền? sentences: - 'Thay đổi Thẩm phán, Hội thẩm 1. Thẩm phán, Hội thẩm phải từ chối tham gia xét xử hoặc bị thay đổi khi thuộc một trong các trường hợp: a) Trường hợp quy định tại Điều 49 của Bộ luật này; b) Họ cùng trong một Hội đồng xét xử và là người thân thích với nhau; c) Đã tham gia xét xử sơ thẩm hoặc phúc thẩm hoặc tiến hành tố tụng vụ án đó với tư cách là Điều tra viên, Cán bộ điều tra, Kiểm sát viên, Kiểm tra viên, Thẩm tra viên, Thư ký Tòa án. 2. Việc thay đổi Thẩm phán, Hội thẩm trước khi mở phiên tòa do Chánh án hoặc Phó Chánh án Tòa án được phân công giải quyết vụ án quyết định. Thẩm phán bị thay đổi là Chánh án Tòa án thì do Chánh án Tòa án trên một cấp quyết định. Việc thay đổi Thẩm phán, Hội thẩm tại phiên tòa do Hội đồng xét xử quyết định trước khi bắt đầu xét hỏi bằng cách biểu quyết tại phòng nghị án. Khi xem xét thay đổi thành viên nào thì thành viên đó được trình bày ý kiến của mình, Hội đồng quyết định theo đa số. Trường hợp phải thay đổi Thẩm phán, Hội thẩm tại phiên tòa thì Hội đồng xét xử ra quyết định hoãn phiên tòa.' - '“Điều 21. Chấm dứt hưởng trợ cấp thất nghiệp 1. Các trường hợp người lao động đang hưởng trợ cấp thất nghiệp bị chấm dứt hưởng trợ cấp thất nghiệp được quy định như sau: e) Trong thời gian hưởng trợ cấp thất nghiệp, 03 tháng liên tục không thực hiện thông báo hằng tháng về việc tìm kiếm việc làm với trung tâm dịch vụ việc làm theo quy định Ngày mà người lao động được xác định bị chấm dứt hưởng trợ cấp thất nghiệp là ngày kết thúc của thời hạn thông báo tìm kiếm việc làm của tháng thứ 3 liên tục mà người lao động không thực hiện thông báo hằng tháng về việc tìm kiếm việc làm."' - 'Vi phạm quy định về thời hạn làm thủ tục hải quan, nộp hồ sơ thuế ... 2. Phạt tiền từ 1.000.000 đồng đến 2.000.000 đồng đối với hành vi không thực hiện đúng thời hạn quy định thuộc một trong các trường hợp sau: a) Cung cấp báo cáo kiểm toán, báo cáo tài chính của doanh nghiệp được áp dụng chế độ ưu tiên; b) Thông báo cho cơ quan hải quan quyết định xử lý vi phạm pháp luật về quản lý thuế, kế toán đối với doanh nghiệp được áp dụng chế độ ưu tiên; c) Báo cáo về lượng hàng hóa nhập khẩu phục vụ xây dựng nhà xưởng, hàng hóa gửi kho bên ngoài của doanh nghiệp chế xuất; d) Báo cáo về lượng hàng hóa trung chuyển đưa vào, đưa ra, còn lưu tại cảng; đ) Báo cáo thống kê thông quan hàng bưu chính đưa vào Việt Nam để chuyển tiếp đi quốc tế. ...' - source_sentence: Tài chính của Hội Kiểm toán viên hành nghề Việt Nam được chi cho những khoản nào? sentences: - 'Giải thể và xử lý tài chính khi giải thể 1. Khi xét thấy hoạt động của Hội không có hiệu quả, không mang lại lợi ích cho Hội viên hoặc gây phiền hà, cản trở cho Hội viên thì BCH Hội quyết định triệu tập Đại hội để bàn biện pháp củng cố tổ chức hoặc giải thể Hội. Nếu giải thể Hội thì do Đại hội đại biểu hoặc Đại hội toàn quốc của Hội thông qua và đề nghị cơ quan Nhà nước có thẩm quyền xem xét, quyết định. 2. Khi Hội bị giải thể, Ban Thường trực và Ban Kiểm tra của Hội phải tiến hành kiểm kê tài sản, kiểm quỹ và báo cáo BCH Hội quyết định việc xử lý tài sản, tiền tồn quỹ và tiến hành thủ tục giải thể theo quy định của pháp luật.' - '"Điều 14. Miễn trừ đối với thỏa thuận hạn chế cạnh tranh bị cấm 1. Thỏa thuận hạn chế cạnh tranh quy định tại các khoản 1, 2, 3, 7, 8, 9, 10 và 11 Điều 11 bị cấm theo quy định tại Điều 12 của Luật này được miễn trừ có thời hạn nếu có lợi cho người tiêu dùng và đáp ứng một trong các điều kiện sau đây: a) Tác động thúc đẩy tiến bộ kỹ thuật, công nghệ, nâng cao chất lượng hàng hóa, dịch vụ; b) Tăng cường sức cạnh tranh của doanh nghiệp Việt Nam trên thị trường quốc tế; c) Thúc đẩy việc áp dụng thống nhất tiêu chuẩn chất lượng, định mức kỹ thuật của chủng loại sản phẩm; d) Thống nhất các điều kiện thực hiện hợp đồng, giao hàng, thanh toán nhưng không liên quan đến giá và các yếu tố của giá. 2. Thỏa thuận lao động, thỏa thuận hợp tác trong các ngành, lĩnh vực đặc thù được thực hiện theo quy định của luật khác thì thực hiện theo quy định của luật đó".' - '"Điều 2. Sửa đổi, bổ sung một số điều của Nghị định số 15/2019/NĐ-CP ngày 01 tháng 02 năm 2019 của Chính phủ quy định chi tiết một số điều và biện pháp thi hành Luật Giáo dục nghề nghiệp ... 12. Sửa đổi, bổ sung Điều 24 như sau: Điều 24. Thẩm quyền cấp giấy chứng nhận đăng ký hoạt động liên kết đào tạo với nước ngoài 1. Tổng cục Giáo dục nghề nghiệp cấp giấy chứng nhận đăng ký hoạt động liên kết đào tạo với nước ngoài đối với trường cao đẳng. 2. Sở Lao động - Thương binh và Xã hội nơi trường trung cấp, trung tâm giáo dục nghề nghiệp, trung tâm giáo dục nghề nghiệp - giáo dục thường xuyên và doanh nghiệp tổ chức hoạt động liên kết đào tạo với nước ngoài cấp giấy chứng nhận đăng ký hoạt động liên kết đào tạo với nước ngoài đối với trường trung cấp, trung tâm giáo dục nghề nghiệp, trung tâm giáo dục nghề nghiệp - giáo dục thường xuyên và doanh nghiệp."' - source_sentence: NLĐ ký nhiều hợp đồng lao động thì đóng BHYT như thế nào? sentences: - 'Hồ sơ, thủ tục xác định trường hợp được bồi thường [...] 3. Trong thời hạn 05 ngày làm việc, kể từ ngày nhận được đơn và các giấy tờ hợp lệ, nếu xác định yêu cầu thuộc trách nhiệm giải quyết của mình thì Sở Y tế phải thụ lý và thông báo bằng văn bản về việc thụ lý đơn cho người bị thiệt hại hoặc thân nhân của người bị thiệt hại (sau đây gọi tắt là người bị thiệt hại). Trường hợp hồ sơ không đầy đủ thì Sở Y tế có văn bản hướng dẫn người bị thiệt hại bổ sung. 4. Trong thời hạn 15 ngày, kể từ ngày nhận được đơn yêu cầu của người bị thiệt hại, Sở Y tế phải hoàn thành việc xác định nguyên nhân gây tai biến, mức độ tổn thương và thông báo bằng văn bản cho người yêu cầu đồng thời báo cáo Bộ Y tế.' - 'Chuyển nhượng quyền thăm dò khoáng sản 1. Tổ chức, cá nhân nhận chuyển nhượng quyền thăm dò khoáng sản phải có đủ điều kiện để được cấp Giấy phép thăm dò khoáng sản theo quy định của Luật này. 2. Việc chuyển nhượng quyền thăm dò khoáng sản phải được cơ quan quản lý nhà nước có thẩm quyền cấp Giấy phép thăm dò khoáng sản chấp thuận; trường hợp được chấp thuận, tổ chức, cá nhân nhận chuyển nhượng quyền thăm dò khoáng sản được cấp Giấy phép thăm dò khoáng sản mới. 3. Tổ chức, cá nhân chuyển nhượng quyền thăm dò khoáng sản đã thực hiện được ít nhất 50% dự toán của đề án thăm dò khoáng sản. 4. Chính phủ quy định chi tiết việc chuyển nhượng quyền thăm dò khoáng sản.' - '"Sửa đổi, bổ sung một số điều của Luật bảo hiểm y tế: ... 6. Sửa đổi, bổ sung Điều 12 như sau: “Điều 12. Đối tượng tham gia bảo hiểm y tế 1. Nhóm do người lao động và người sử dụng lao động đóng, bao gồm: a) Người lao động làm việc theo hợp đồng lao động không xác định thời hạn, hợp đồng lao động có thời hạn từ đủ 3 tháng trở lên; người lao động là người quản lý doanh nghiệp hưởng tiền lương; cán bộ, công chức, viên chức (sau đây gọi chung là người lao động); b) Người hoạt động không chuyên trách ở xã, phường, thị trấn theo quy định của pháp luật.= ... 4. Nhóm được ngân sách nhà nước hỗ trợ mức đóng, bao gồm: a) Người thuộc hộ gia đình cận nghèo; b) Học sinh, sinh viên. 5. Nhóm tham gia bảo hiểm y tế theo hộ gia đình gồm những người thuộc hộ gia đình, trừ đối tượng quy định tại các khoản 1, 2, 3 và 4 Điều này. 6. Chính phủ quy định các đối tượng khác ngoài các đối tượng quy định tại các khoản 3, 4 và 5 Điều này; quy định việc cấp thẻ bảo hiểm y tế đối với đối tượng do Bộ Quốc phòng, Bộ Công an quản lý và đối tượng quy định tại điểm 1 khoản 3 Điều này; quy định lộ trình thực hiện bảo hiểm y tế, phạm vi quyền lợi, mức hưởng bảo hiểm y tế, khám bệnh, chữa bệnh bảo hiểm y tế, quản lý, sử dụng phần kinh phí dành cho khám bệnh, chữa bệnh bảo hiểm y tế, giám định bảo hiểm y tế, thanh toán, quyết toán bảo hiểm y tế đối với các đối tượng quy định tại điểm a khoản 3 Điều này.”' --- # SentenceTransformer based on keepitreal/vietnamese-sbert This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [keepitreal/vietnamese-sbert](https://huggingface.co/keepitreal/vietnamese-sbert) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [keepitreal/vietnamese-sbert](https://huggingface.co/keepitreal/vietnamese-sbert) <!-- at revision a9467ef2ef47caa6448edeabfd8e5e5ce0fa2a23 --> - **Maximum Sequence Length:** 256 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - csv <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Cloyne/vietnamese-embedding_finetuned") # Run inference sentences = [ 'NLĐ ký nhiều hợp đồng lao động thì đóng BHYT như thế nào?', '"Sửa đổi, bổ sung một số điều của Luật bảo hiểm y tế:\n...\n6. Sửa đổi, bổ sung Điều 12 như sau:\n“Điều 12. Đối tượng tham gia bảo hiểm y tế\n1. Nhóm do người lao động và người sử dụng lao động đóng, bao gồm:\na) Người lao động làm việc theo hợp đồng lao động không xác định thời hạn, hợp đồng lao động có thời hạn từ đủ 3 tháng trở lên; người lao động là người quản lý doanh nghiệp hưởng tiền lương; cán bộ, công chức, viên chức (sau đây gọi chung là người lao động);\nb) Người hoạt động không chuyên trách ở xã, phường, thị trấn theo quy định của pháp luật.=\n...\n4. Nhóm được ngân sách nhà nước hỗ trợ mức đóng, bao gồm:\na) Người thuộc hộ gia đình cận nghèo;\nb) Học sinh, sinh viên.\n5. Nhóm tham gia bảo hiểm y tế theo hộ gia đình gồm những người thuộc hộ gia đình, trừ đối tượng quy định tại các khoản 1, 2, 3 và 4 Điều này.\n6. Chính phủ quy định các đối tượng khác ngoài các đối tượng quy định tại các khoản 3, 4 và 5 Điều này; quy định việc cấp thẻ bảo hiểm y tế đối với đối tượng do Bộ Quốc phòng, Bộ Công an quản lý và đối tượng quy định tại điểm 1 khoản 3 Điều này; quy định lộ trình thực hiện bảo hiểm y tế, phạm vi quyền lợi, mức hưởng bảo hiểm y tế, khám bệnh, chữa bệnh bảo hiểm y tế, quản lý, sử dụng phần kinh phí dành cho khám bệnh, chữa bệnh bảo hiểm y tế, giám định bảo hiểm y tế, thanh toán, quyết toán bảo hiểm y tế đối với các đối tượng quy định tại điểm a khoản 3 Điều này.”', 'Hồ sơ, thủ tục xác định trường hợp được bồi thường\n[...]\n3. Trong thời hạn 05 ngày làm việc, kể từ ngày nhận được đơn và các giấy tờ hợp lệ, nếu xác định yêu cầu thuộc trách nhiệm giải quyết của mình thì Sở Y tế phải thụ lý và thông báo bằng văn bản về việc thụ lý đơn cho người bị thiệt hại hoặc thân nhân của người bị thiệt hại (sau đây gọi tắt là người bị thiệt hại). Trường hợp hồ sơ không đầy đủ thì Sở Y tế có văn bản hướng dẫn người bị thiệt hại bổ sung.\n4. Trong thời hạn 15 ngày, kể từ ngày nhận được đơn yêu cầu của người bị thiệt hại, Sở Y tế phải hoàn thành việc xác định nguyên nhân gây tai biến, mức độ tổn thương và thông báo bằng văn bản cho người yêu cầu đồng thời báo cáo Bộ Y tế.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### csv * Dataset: csv * Size: 120,210 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 8 tokens</li><li>mean: 25.08 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 206.98 tokens</li><li>max: 256 tokens</li></ul> | * Samples: | anchor | positive | |:--------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Nội dung lồng ghép vấn đề bình đẳng giới trong xây dựng văn bản quy phạm pháp luật được quy định thế nào?</code> | <code>Nội dung lồng ghép vấn đề bình đẳng giới trong xây dựng văn bản quy phạm pháp luật<br>Trong phạm vi điều chỉnh của văn bản quy phạm pháp luật:<br>1. Xác định nội dung liên quan đến vấn đề bình đẳng giới hoặc vấn đề bất bình đẳng giới, phân biệt đối xử về giới.<br>2. Quy định các biện pháp cần thiết để thực hiện bình đẳng giới hoặc để giải quyết vấn đề bất bình đẳng giới, phân biệt đối xử về giới; dự báo tác động của các quy định đó đối với nam và nữ sau khi được ban hành.<br>3. Xác định nguồn nhân lực, tài chính cần thiết để triển khai các biện pháp thực hiện bình đẳng giới hoặc để giải quyết vấn đề bất bình đẳng giới, phân biệt đối xử về giới.</code> | | <code>Điều kiện để giáo viên trong cơ sở giáo dục mầm non, tiểu học ngoài công lập bị ảnh hưởng bởi Covid-19 được hưởng chính sách hỗ trợ là gì?</code> | <code>Điều kiện được hưởng<br>Cán bộ quản lý, giáo viên, nhân viên được hưởng chính sách khi bảo đảm các điều kiện sau:<br>1. Là người đang làm việc tại cơ sở giáo dục ngoài công lập trước khi cơ sở phải tạm dừng hoạt động theo yêu cầu của cơ quan nhà nước có thẩm quyền để phòng, chống dịch COVID-19 tính từ ngày 01 tháng 5 năm 2021 đến hết ngày 31 tháng 12 năm 2021.<br>2. Nghỉ việc không hưởng lương từ 01 tháng trở lên tính từ ngày 01 tháng 5 năm 2021 đến hết ngày 31 tháng 12 năm 2021.<br>3. Chưa được hưởng chính sách hỗ trợ đối với người lao động tạm hoãn hợp đồng lao động, nghỉ việc không hưởng lương theo quy định tại khoản 4, khoản 5, khoản 6 Mục II Nghị quyết số 68/NQ-CP ngày 01 tháng 7 năm 2021 của Chính phủ về một số chính sách hỗ trợ người lao động và người sử dụng lao động gặp khó khăn do đại dịch COVID-19, Nghị quyết số 126/NQ-CP ngày 08 tháng 10 năm 2021 của Chính phủ sửa đổi, bổ sung Nghị quyết số 68/NQ-CP ngày 01 tháng 7 năm 2021 của Chính phủ về một số chính sách hỗ trợ người lao động và người sử dụng lao động gặp khó khăn do đại dịch COVID-19 (sau đây gọi tắt là Nghị quyết số 68/NQ-CP) do không tham gia Bảo hiểm xã hội bắt buộc.<br>4. Có xác nhận làm việc tại cơ sở giáo dục ngoài công lập ít nhất hết năm học 2021 - 2022 theo kế hoạch năm học của địa phương, bao gồm cơ sở giáo dục ngoài công lập đã làm việc trước đây hoặc cơ sở giáo dục ngoài công lập khác trong trường hợp cơ sở giáo dục ngoài công lập trước đây làm việc không hoạt động trở lại.</code> | | <code>Nguyên tắc áp dụng phụ cấp ưu đãi nghề y tế thế nào?</code> | <code>Nguyên tắc áp dụng<br>1. Trường hợp công chức, viên chức chuyên môn y tế thuộc đối tượng được hưởng các mức phụ cấp ưu đãi theo nghề khác nhau thì được hưởng một mức phụ cấp ưu đãi theo nghề cao nhất.<br>2. Công chức, viên chức đã hưởng phụ cấp ưu đãi theo nghề quy định tại Thông tư liên tịch số 06/2010/TTLT-BYT-BNV-BTC ngày 22/3/2010 của Bộ Y tế, Bộ Nội vụ, Bộ Tài chính hướng dẫn thực hiện Nghị định số 64/2009/NĐ-CP ngày 30/7/2009 của Chính phủ về chính sách đối với cán bộ, viên chức y tế công tác ở vùng có điều kiện kinh tế - xã hội đặc biệt khó khăn thì không hưởng phụ cấp ưu đãi theo nghề quy định tại Thông tư liên tịch này.</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Evaluation Dataset #### train * Dataset: train * Size: 13,357 evaluation samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 7 tokens</li><li>mean: 24.61 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 202.71 tokens</li><li>max: 256 tokens</li></ul> | * Samples: | anchor | positive | |:-------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Toà án cấp nào có thẩm quyền giải quyết việc đòi tài sản đã cho người khác vay theo hợp đồng cho vay?</code> | <code>"Điều 35. Thẩm quyền của Tòa án nhân dân cấp huyện<br>1. Tòa án nhân dân cấp huyện có thẩm quyền giải quyết theo thủ tục sơ thẩm những tranh chấp sau đây:<br>a) Tranh chấp về dân sự, hôn nhân và gia đình quy định tại Điều 26 và Điều 28 của Bộ luật này, trừ tranh chấp quy định tại khoản 7 Điều 26 của Bộ luật này;<br>b) Tranh chấp về kinh doanh, thương mại quy định tại khoản 1 Điều 30 của Bộ luật này;<br>c) Tranh chấp về lao động quy định tại Điều 32 của Bộ luật này.<br>2. Tòa án nhân dân cấp huyện có thẩm quyền giải quyết những yêu cầu sau đây:<br>a) Yêu cầu về dân sự quy định tại các khoản 1, 2, 3, 4, 6, 7, 8, 9 và 10 Điều 27 của Bộ luật này;<br>b) Yêu cầu về hôn nhân và gia đình quy định tại các khoản 1, 2, 3, 4, 5, 6, 7, 8, 10 và 11 Điều 29 của Bộ luật này;<br>c) Yêu cầu về kinh doanh, thương mại quy định tại khoản 1 và khoản 6 Điều 31 của Bộ luật này;<br>d) Yêu cầu về lao động quy định tại khoản 1 và khoản 5 Điều 33 của Bộ luật này.<br>3. Những tranh chấp, yêu cầu quy định tại khoản 1 và khoản 2 Điều này mà có đương sự hoặc tài sản ở nước ngoài hoặc cần phải ủy thác tư pháp cho cơ quan đại diện nước Cộng hòa xã hội chủ nghĩa Việt Nam ở nước ngoài, cho Tòa án, cơ quan có thẩm quyền của nước ngoài không thuộc thẩm quyền giải quyết của Tòa án nhân dân cấp huyện, trừ trường hợp quy định tại khoản 4 Điều này.<br>4. Tòa án nhân dân cấp huyện nơi cư trú của công dân Việt Nam hủy việc kết hôn trái pháp luật, giải quyết việc ly hôn, các tranh chấp về quyền và nghĩa vụ của vợ chồng, cha mẹ và con, về nhận cha, mẹ, con, nuôi con nuôi và giám hộ giữa công dân Việt Nam cư trú ở khu vực biên giới với công dân của nước láng giềng cùng cư trú ở khu vực biên giới với Việt Nam theo quy định của Bộ luật này và các quy định khác của pháp luật Việt Nam."</code> | | <code>Những phiếu bầu nào được xem là không hợp lệ?</code> | <code>Phiếu bầu không hợp lệ<br>1. Những phiếu bầu sau đây là phiếu bầu không hợp lệ:<br>a) Phiếu không theo mẫu quy định do Tổ bầu cử phát ra;<br>b) Phiếu không có dấu của Tổ bầu cử;<br>c) Phiếu để số người được bầu nhiều hơn số lượng đại biểu được bầu đã ấn định cho đơn vị bầu cử;<br>d) Phiếu gạch xóa hết tên những người ứng cử;<br>đ) Phiếu ghi thêm tên người ngoài danh sách những người ứng cử hoặc phiếu có ghi thêm nội dung khác.<br>2. Trường hợp có phiếu bầu được cho là không hợp lệ thì Tổ trường Tổ bầu cử đưa ra để toàn Tổ xem xét, quyết định. Tổ bầu cử không được gạch xóa hoặc sửa các tên ghi trên phiếu bầu.</code> | | <code>Đề nghị tạm đình chỉ chấp hành quyết định áp dụng biện pháp đưa vào trường giáo dưỡng cho học sinh cần đảm bảo nguyên tắc gì?</code> | <code>Nguyên tắc xét duyệt, đề nghị giảm thời hạn, tạm đình chỉ chấp hành quyết định, miễn chấp hành phần thời gian còn lại cho học sinh trường giáo dưỡng, trại viên cơ sở giáo dục bắt buộc<br>1. Tuân thủ quy định của pháp luật về thi hành biện pháp xử lý hành chính đưa vào trường giáo dưỡng, cơ sở giáo dục bắt buộc, quy định tại Thông tư này và quy định của pháp luật có liên quan.<br>2. Bảo đảm khách quan, công khai, minh bạch, đúng trình tự, thủ tục, thẩm quyền; tôn trọng và bảo vệ quyền, lợi ích hợp pháp của học sinh trường giáo dưỡng, trại viên cơ sở giáo dục bắt buộc.</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 32 - `num_train_epochs`: 4 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 32 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | train loss | |:------:|:-----:|:-------------:|:----------:| | 0.1331 | 500 | 0.3247 | 0.2239 | | 0.2662 | 1000 | 0.1513 | 0.1605 | | 0.3993 | 1500 | 0.119 | 0.1664 | | 0.5323 | 2000 | 0.1047 | 0.1384 | | 0.6654 | 2500 | 0.0915 | 0.1269 | | 0.7985 | 3000 | 0.0861 | 0.1140 | | 0.9316 | 3500 | 0.0839 | 0.1091 | | 1.0647 | 4000 | 0.0693 | 0.0989 | | 1.1978 | 4500 | 0.0582 | 0.0931 | | 1.3308 | 5000 | 0.0457 | 0.0953 | | 1.4639 | 5500 | 0.0284 | 0.0826 | | 1.5970 | 6000 | 0.0233 | 0.0848 | | 1.7301 | 6500 | 0.0256 | 0.0785 | | 1.8632 | 7000 | 0.0236 | 0.0829 | | 1.9963 | 7500 | 0.0203 | 0.0827 | | 2.1294 | 8000 | 0.0182 | 0.0730 | | 2.2624 | 8500 | 0.0143 | 0.0718 | | 2.3955 | 9000 | 0.0103 | 0.0720 | | 2.5286 | 9500 | 0.0086 | 0.0720 | | 2.6617 | 10000 | 0.0058 | 0.0706 | | 2.7948 | 10500 | 0.0074 | 0.0675 | | 2.9279 | 11000 | 0.0073 | 0.0650 | | 3.0610 | 11500 | 0.0054 | 0.0651 | | 3.1940 | 12000 | 0.0043 | 0.0639 | | 3.3271 | 12500 | 0.004 | 0.0626 | | 3.4602 | 13000 | 0.0035 | 0.0617 | | 3.5933 | 13500 | 0.0022 | 0.0614 | | 3.7264 | 14000 | 0.003 | 0.0624 | | 3.8595 | 14500 | 0.0022 | 0.0616 | | 3.9925 | 15000 | 0.0028 | 0.0606 | ### Framework Versions - Python: 3.10.14 - Sentence Transformers: 3.2.1 - Transformers: 4.45.1 - PyTorch: 2.4.0 - Accelerate: 0.34.2 - Datasets: 3.0.1 - Tokenizers: 0.20.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
[ "TEXT_CLASSIFICATION" ]
[ "CHIA" ]
Non_BioNLP
# SentenceTransformer based on keepitreal/vietnamese-sbert This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [keepitreal/vietnamese-sbert](https://huggingface.co/keepitreal/vietnamese-sbert) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [keepitreal/vietnamese-sbert](https://huggingface.co/keepitreal/vietnamese-sbert) <!-- at revision a9467ef2ef47caa6448edeabfd8e5e5ce0fa2a23 --> - **Maximum Sequence Length:** 256 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - csv <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Cloyne/vietnamese-embedding_finetuned") # Run inference sentences = [ 'NLĐ ký nhiều hợp đồng lao động thì đóng BHYT như thế nào?', '"Sửa đổi, bổ sung một số điều của Luật bảo hiểm y tế:\n...\n6. Sửa đổi, bổ sung Điều 12 như sau:\n“Điều 12. Đối tượng tham gia bảo hiểm y tế\n1. Nhóm do người lao động và người sử dụng lao động đóng, bao gồm:\na) Người lao động làm việc theo hợp đồng lao động không xác định thời hạn, hợp đồng lao động có thời hạn từ đủ 3 tháng trở lên; người lao động là người quản lý doanh nghiệp hưởng tiền lương; cán bộ, công chức, viên chức (sau đây gọi chung là người lao động);\nb) Người hoạt động không chuyên trách ở xã, phường, thị trấn theo quy định của pháp luật.=\n...\n4. Nhóm được ngân sách nhà nước hỗ trợ mức đóng, bao gồm:\na) Người thuộc hộ gia đình cận nghèo;\nb) Học sinh, sinh viên.\n5. Nhóm tham gia bảo hiểm y tế theo hộ gia đình gồm những người thuộc hộ gia đình, trừ đối tượng quy định tại các khoản 1, 2, 3 và 4 Điều này.\n6. Chính phủ quy định các đối tượng khác ngoài các đối tượng quy định tại các khoản 3, 4 và 5 Điều này; quy định việc cấp thẻ bảo hiểm y tế đối với đối tượng do Bộ Quốc phòng, Bộ Công an quản lý và đối tượng quy định tại điểm 1 khoản 3 Điều này; quy định lộ trình thực hiện bảo hiểm y tế, phạm vi quyền lợi, mức hưởng bảo hiểm y tế, khám bệnh, chữa bệnh bảo hiểm y tế, quản lý, sử dụng phần kinh phí dành cho khám bệnh, chữa bệnh bảo hiểm y tế, giám định bảo hiểm y tế, thanh toán, quyết toán bảo hiểm y tế đối với các đối tượng quy định tại điểm a khoản 3 Điều này.”', 'Hồ sơ, thủ tục xác định trường hợp được bồi thường\n[...]\n3. Trong thời hạn 05 ngày làm việc, kể từ ngày nhận được đơn và các giấy tờ hợp lệ, nếu xác định yêu cầu thuộc trách nhiệm giải quyết của mình thì Sở Y tế phải thụ lý và thông báo bằng văn bản về việc thụ lý đơn cho người bị thiệt hại hoặc thân nhân của người bị thiệt hại (sau đây gọi tắt là người bị thiệt hại). Trường hợp hồ sơ không đầy đủ thì Sở Y tế có văn bản hướng dẫn người bị thiệt hại bổ sung.\n4. Trong thời hạn 15 ngày, kể từ ngày nhận được đơn yêu cầu của người bị thiệt hại, Sở Y tế phải hoàn thành việc xác định nguyên nhân gây tai biến, mức độ tổn thương và thông báo bằng văn bản cho người yêu cầu đồng thời báo cáo Bộ Y tế.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### csv * Dataset: csv * Size: 120,210 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 8 tokens</li><li>mean: 25.08 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 206.98 tokens</li><li>max: 256 tokens</li></ul> | * Samples: | anchor | positive | |:--------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Nội dung lồng ghép vấn đề bình đẳng giới trong xây dựng văn bản quy phạm pháp luật được quy định thế nào?</code> | <code>Nội dung lồng ghép vấn đề bình đẳng giới trong xây dựng văn bản quy phạm pháp luật<br>Trong phạm vi điều chỉnh của văn bản quy phạm pháp luật:<br>1. Xác định nội dung liên quan đến vấn đề bình đẳng giới hoặc vấn đề bất bình đẳng giới, phân biệt đối xử về giới.<br>2. Quy định các biện pháp cần thiết để thực hiện bình đẳng giới hoặc để giải quyết vấn đề bất bình đẳng giới, phân biệt đối xử về giới; dự báo tác động của các quy định đó đối với nam và nữ sau khi được ban hành.<br>3. Xác định nguồn nhân lực, tài chính cần thiết để triển khai các biện pháp thực hiện bình đẳng giới hoặc để giải quyết vấn đề bất bình đẳng giới, phân biệt đối xử về giới.</code> | | <code>Điều kiện để giáo viên trong cơ sở giáo dục mầm non, tiểu học ngoài công lập bị ảnh hưởng bởi Covid-19 được hưởng chính sách hỗ trợ là gì?</code> | <code>Điều kiện được hưởng<br>Cán bộ quản lý, giáo viên, nhân viên được hưởng chính sách khi bảo đảm các điều kiện sau:<br>1. Là người đang làm việc tại cơ sở giáo dục ngoài công lập trước khi cơ sở phải tạm dừng hoạt động theo yêu cầu của cơ quan nhà nước có thẩm quyền để phòng, chống dịch COVID-19 tính từ ngày 01 tháng 5 năm 2021 đến hết ngày 31 tháng 12 năm 2021.<br>2. Nghỉ việc không hưởng lương từ 01 tháng trở lên tính từ ngày 01 tháng 5 năm 2021 đến hết ngày 31 tháng 12 năm 2021.<br>3. Chưa được hưởng chính sách hỗ trợ đối với người lao động tạm hoãn hợp đồng lao động, nghỉ việc không hưởng lương theo quy định tại khoản 4, khoản 5, khoản 6 Mục II Nghị quyết số 68/NQ-CP ngày 01 tháng 7 năm 2021 của Chính phủ về một số chính sách hỗ trợ người lao động và người sử dụng lao động gặp khó khăn do đại dịch COVID-19, Nghị quyết số 126/NQ-CP ngày 08 tháng 10 năm 2021 của Chính phủ sửa đổi, bổ sung Nghị quyết số 68/NQ-CP ngày 01 tháng 7 năm 2021 của Chính phủ về một số chính sách hỗ trợ người lao động và người sử dụng lao động gặp khó khăn do đại dịch COVID-19 (sau đây gọi tắt là Nghị quyết số 68/NQ-CP) do không tham gia Bảo hiểm xã hội bắt buộc.<br>4. Có xác nhận làm việc tại cơ sở giáo dục ngoài công lập ít nhất hết năm học 2021 - 2022 theo kế hoạch năm học của địa phương, bao gồm cơ sở giáo dục ngoài công lập đã làm việc trước đây hoặc cơ sở giáo dục ngoài công lập khác trong trường hợp cơ sở giáo dục ngoài công lập trước đây làm việc không hoạt động trở lại.</code> | | <code>Nguyên tắc áp dụng phụ cấp ưu đãi nghề y tế thế nào?</code> | <code>Nguyên tắc áp dụng<br>1. Trường hợp công chức, viên chức chuyên môn y tế thuộc đối tượng được hưởng các mức phụ cấp ưu đãi theo nghề khác nhau thì được hưởng một mức phụ cấp ưu đãi theo nghề cao nhất.<br>2. Công chức, viên chức đã hưởng phụ cấp ưu đãi theo nghề quy định tại Thông tư liên tịch số 06/2010/TTLT-BYT-BNV-BTC ngày 22/3/2010 của Bộ Y tế, Bộ Nội vụ, Bộ Tài chính hướng dẫn thực hiện Nghị định số 64/2009/NĐ-CP ngày 30/7/2009 của Chính phủ về chính sách đối với cán bộ, viên chức y tế công tác ở vùng có điều kiện kinh tế - xã hội đặc biệt khó khăn thì không hưởng phụ cấp ưu đãi theo nghề quy định tại Thông tư liên tịch này.</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Evaluation Dataset #### train * Dataset: train * Size: 13,357 evaluation samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 7 tokens</li><li>mean: 24.61 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 202.71 tokens</li><li>max: 256 tokens</li></ul> | * Samples: | anchor | positive | |:-------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Toà án cấp nào có thẩm quyền giải quyết việc đòi tài sản đã cho người khác vay theo hợp đồng cho vay?</code> | <code>"Điều 35. Thẩm quyền của Tòa án nhân dân cấp huyện<br>1. Tòa án nhân dân cấp huyện có thẩm quyền giải quyết theo thủ tục sơ thẩm những tranh chấp sau đây:<br>a) Tranh chấp về dân sự, hôn nhân và gia đình quy định tại Điều 26 và Điều 28 của Bộ luật này, trừ tranh chấp quy định tại khoản 7 Điều 26 của Bộ luật này;<br>b) Tranh chấp về kinh doanh, thương mại quy định tại khoản 1 Điều 30 của Bộ luật này;<br>c) Tranh chấp về lao động quy định tại Điều 32 của Bộ luật này.<br>2. Tòa án nhân dân cấp huyện có thẩm quyền giải quyết những yêu cầu sau đây:<br>a) Yêu cầu về dân sự quy định tại các khoản 1, 2, 3, 4, 6, 7, 8, 9 và 10 Điều 27 của Bộ luật này;<br>b) Yêu cầu về hôn nhân và gia đình quy định tại các khoản 1, 2, 3, 4, 5, 6, 7, 8, 10 và 11 Điều 29 của Bộ luật này;<br>c) Yêu cầu về kinh doanh, thương mại quy định tại khoản 1 và khoản 6 Điều 31 của Bộ luật này;<br>d) Yêu cầu về lao động quy định tại khoản 1 và khoản 5 Điều 33 của Bộ luật này.<br>3. Những tranh chấp, yêu cầu quy định tại khoản 1 và khoản 2 Điều này mà có đương sự hoặc tài sản ở nước ngoài hoặc cần phải ủy thác tư pháp cho cơ quan đại diện nước Cộng hòa xã hội chủ nghĩa Việt Nam ở nước ngoài, cho Tòa án, cơ quan có thẩm quyền của nước ngoài không thuộc thẩm quyền giải quyết của Tòa án nhân dân cấp huyện, trừ trường hợp quy định tại khoản 4 Điều này.<br>4. Tòa án nhân dân cấp huyện nơi cư trú của công dân Việt Nam hủy việc kết hôn trái pháp luật, giải quyết việc ly hôn, các tranh chấp về quyền và nghĩa vụ của vợ chồng, cha mẹ và con, về nhận cha, mẹ, con, nuôi con nuôi và giám hộ giữa công dân Việt Nam cư trú ở khu vực biên giới với công dân của nước láng giềng cùng cư trú ở khu vực biên giới với Việt Nam theo quy định của Bộ luật này và các quy định khác của pháp luật Việt Nam."</code> | | <code>Những phiếu bầu nào được xem là không hợp lệ?</code> | <code>Phiếu bầu không hợp lệ<br>1. Những phiếu bầu sau đây là phiếu bầu không hợp lệ:<br>a) Phiếu không theo mẫu quy định do Tổ bầu cử phát ra;<br>b) Phiếu không có dấu của Tổ bầu cử;<br>c) Phiếu để số người được bầu nhiều hơn số lượng đại biểu được bầu đã ấn định cho đơn vị bầu cử;<br>d) Phiếu gạch xóa hết tên những người ứng cử;<br>đ) Phiếu ghi thêm tên người ngoài danh sách những người ứng cử hoặc phiếu có ghi thêm nội dung khác.<br>2. Trường hợp có phiếu bầu được cho là không hợp lệ thì Tổ trường Tổ bầu cử đưa ra để toàn Tổ xem xét, quyết định. Tổ bầu cử không được gạch xóa hoặc sửa các tên ghi trên phiếu bầu.</code> | | <code>Đề nghị tạm đình chỉ chấp hành quyết định áp dụng biện pháp đưa vào trường giáo dưỡng cho học sinh cần đảm bảo nguyên tắc gì?</code> | <code>Nguyên tắc xét duyệt, đề nghị giảm thời hạn, tạm đình chỉ chấp hành quyết định, miễn chấp hành phần thời gian còn lại cho học sinh trường giáo dưỡng, trại viên cơ sở giáo dục bắt buộc<br>1. Tuân thủ quy định của pháp luật về thi hành biện pháp xử lý hành chính đưa vào trường giáo dưỡng, cơ sở giáo dục bắt buộc, quy định tại Thông tư này và quy định của pháp luật có liên quan.<br>2. Bảo đảm khách quan, công khai, minh bạch, đúng trình tự, thủ tục, thẩm quyền; tôn trọng và bảo vệ quyền, lợi ích hợp pháp của học sinh trường giáo dưỡng, trại viên cơ sở giáo dục bắt buộc.</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 32 - `num_train_epochs`: 4 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 32 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | train loss | |:------:|:-----:|:-------------:|:----------:| | 0.1331 | 500 | 0.3247 | 0.2239 | | 0.2662 | 1000 | 0.1513 | 0.1605 | | 0.3993 | 1500 | 0.119 | 0.1664 | | 0.5323 | 2000 | 0.1047 | 0.1384 | | 0.6654 | 2500 | 0.0915 | 0.1269 | | 0.7985 | 3000 | 0.0861 | 0.1140 | | 0.9316 | 3500 | 0.0839 | 0.1091 | | 1.0647 | 4000 | 0.0693 | 0.0989 | | 1.1978 | 4500 | 0.0582 | 0.0931 | | 1.3308 | 5000 | 0.0457 | 0.0953 | | 1.4639 | 5500 | 0.0284 | 0.0826 | | 1.5970 | 6000 | 0.0233 | 0.0848 | | 1.7301 | 6500 | 0.0256 | 0.0785 | | 1.8632 | 7000 | 0.0236 | 0.0829 | | 1.9963 | 7500 | 0.0203 | 0.0827 | | 2.1294 | 8000 | 0.0182 | 0.0730 | | 2.2624 | 8500 | 0.0143 | 0.0718 | | 2.3955 | 9000 | 0.0103 | 0.0720 | | 2.5286 | 9500 | 0.0086 | 0.0720 | | 2.6617 | 10000 | 0.0058 | 0.0706 | | 2.7948 | 10500 | 0.0074 | 0.0675 | | 2.9279 | 11000 | 0.0073 | 0.0650 | | 3.0610 | 11500 | 0.0054 | 0.0651 | | 3.1940 | 12000 | 0.0043 | 0.0639 | | 3.3271 | 12500 | 0.004 | 0.0626 | | 3.4602 | 13000 | 0.0035 | 0.0617 | | 3.5933 | 13500 | 0.0022 | 0.0614 | | 3.7264 | 14000 | 0.003 | 0.0624 | | 3.8595 | 14500 | 0.0022 | 0.0616 | | 3.9925 | 15000 | 0.0028 | 0.0606 | ### Framework Versions - Python: 3.10.14 - Sentence Transformers: 3.2.1 - Transformers: 4.45.1 - PyTorch: 2.4.0 - Accelerate: 0.34.2 - Datasets: 3.0.1 - Tokenizers: 0.20.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
{"base_model": "keepitreal/vietnamese-sbert", "library_name": "sentence-transformers", "pipeline_tag": "sentence-similarity", "tags": ["sentence-transformers", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:120210", "loss:MultipleNegativesRankingLoss"], "widget": [{"source_sentence": "Chủ tịch Ủy ban nhân dân xã có quyền ra quyết định cưỡng chế tháo dỡ công trình xây dựng trên đất nông nghiệp khi chưa chuyển mục đích sử dụng đất hay không?", "sentences": ["Đối tượng, điều kiện kéo dài tuổi phục vụ tại ngũ\n1. Đối tượng:\na) Quân nhân chuyên nghiệp có trình độ cao đẳng trở lên đang đảm nhiệm các chức danh: Kỹ thuật viên, Nhân viên Kỹ thuật, Huấn luyện viên, Nghệ sĩ, Nhạc sĩ, Diễn viên làm việc đúng chuyên ngành đào tạo ở các cơ sở nghiên cứu, nhà trường, bệnh viện, trung tâm thể dục thể thao, đoàn nghệ thuật, nhà máy, doanh nghiệp quốc phòng; đơn vị đóng quân ở địa bàn vùng sâu, vùng xa, biên giới, hải đảo.\nb) Quân nhân chuyên nghiệp đang làm việc thuộc các chuyên ngành hẹp được đào tạo công phu hoặc chuyên ngành Quân đội chưa đào tạo được; thợ bậc cao.\nc) Quân nhân chuyên nghiệp đang đảm nhiệm chức vụ chỉ huy, quản lý ở các nhà máy, doanh nghiệp quốc phòng.\nd) Quân nhân chuyên nghiệp không thuộc đối tượng quy định tại điểm a, điểm b, điểm c khoản này do Bộ trưởng Bộ Quốc phòng quyết định.\n2. Điều kiện:\nQuân nhân chuyên nghiệp thuộc đối tượng quy định tại khoản 1 Điều này được kéo dài tuổi phục vụ tại ngũ khi có đủ các điều kiện sau:\na) Đơn vị có biên chế và nhu cầu sử dụng;\nb) Hết hạn tuổi phục vụ tại ngũ cao nhất theo cấp bậc quân hàm quy định tại khoản 2 Điều 17 Luật Quân nhân chuyên nghiệp, công nhân và viên chức quốc phòng; chưa có người thay thế; tự nguyện tiếp tục phục vụ tại ngũ;\nc) Có đủ phẩm chất chính trị, đạo đức, sức khỏe để hoàn thành nhiệm vụ được giao;\nd) Có trình độ chuyên môn kỹ thuật, nghiệp vụ giỏi; tay nghề cao; chất lượng, hiệu quả công tác tốt.", "Thi hành quyết định cưỡng chế\n1. Người ra quyết định cưỡng chế có trách nhiệm gửi ngay quyết định cưỡng chế cho các cá nhân, tổ chức liên quan và tổ chức thực hiện việc cưỡng chế thi hành quyết định xử phạt của mình và của cấp dưới.\n...\"", "Trình tự, thủ tục đăng ký tài khoản định danh điện tử đối với công dân Việt Nam\n1. Đăng ký tài khoản định danh điện tử mức độ 1 qua ứng dụng VNelD đối với công dân đã có thẻ Căn cước công dân gắn chíp điện tử\na) Công dân sử dụng thiết bị di động tải và cài đặt ứng dụng VNelD.\nb) Công dân sử dụng ứng dụng VNelD để nhập thông tin về số định danh cá nhân và số điện thoại hoặc địa chỉ thư điện tử; cung cấp các thông tin theo hướng dẫn trên ứng dụng VNelD; thu nhận ảnh chân dung bằng thiết bị di động và gửi yêu cầu đề nghị cấp tài khoản định danh điện tử tới cơ quan quản lý định danh và xác thực điện tử qua ứng dụng VNelD.\nc) Cơ quan quản lý định danh điện tử thông báo kết quả đăng ký tài khoản qua ứng dụng VNelD hoặc tin nhắn SMS hoặc địa chỉ thư điện tử.\n2. Đăng ký tài khoản định danh điện tử mức độ 2\na) Đối với công dân đã được cấp thẻ Căn cước công dân gắn chíp điện tử:\nCông dân đến Công an xã, phường, thị trấn hoặc nơi làm thủ tục cấp thẻ Căn cước công dân để làm thủ tục cấp tài khoản định danh điện tử. Công dân xuất trình thẻ Căn cước công dân gắn chíp điện tử, cung cấp thông tin về số điện thoại hoặc địa chỉ thư điện tử và đề nghị bổ sung thông tin được tích hợp vào tài khoản định danh điện tử.\nCán bộ tiếp nhận nhập thông tin công dân cung cấp vào hệ thống định danh và xác thực điện tử; chụp ảnh chân dung, thu nhận vân tay của công dân đến làm thủ tục để xác thực với Cơ sở dữ liệu căn cước công dân và khẳng định sự đồng ý đăng ký tạo lập tài khoản định danh điện tử.\nCơ quan quản lý định danh điện tử thông báo kết quả đăng ký tài khoản qua ứng dụng VNelD hoặc tin nhắn SMS hoặc địa chỉ thư điện tử.\nb) Cơ quan Công an tiến hành cấp tài khoản định danh điện tử mức độ 2 cùng với cấp thẻ Căn cước công dân với trường hợp công dân chưa được cấp Căn cước công dân gắn chíp điện tử."]}, {"source_sentence": "Mức hưởng chế độ thai sản đối với lao động nam là người nước ngoài được pháp luật quy định như thế nào?", "sentences": ["\"Điều 21. Thông báo kết quả và xác nhận nhập học\n1. Cơ sở đào tạo gửi giấy báo trúng tuyển cho những thí sinh trúng tuyển, trong đó ghi rõ những thủ tục cần thiết đối với thí sinh khi nhập học và phương thức nhập học của thí sinh.\n2. Thí sinh xác nhận nhập học bằng hình thức trực tuyến trên hệ thống, trước khi nhập học tại cơ sở đào tạo.\n3. Đối với những thí sinh không xác nhận nhập học trong thời hạn quy định:\na) Nếu không có lý do chính đáng thì coi như thí sinh từ chối nhập học và cơ sở đào tạo có quyền không tiếp nhận;\nb) Nếu do ốm đau, tai nạn, có giấy xác nhận của bệnh viện quận, huyện trở lên hoặc do thiên tai có xác nhận của UBND quận, huyện trở lên, cơ sở đào tạo xem xét quyết định tiếp nhận thí sinh vào học hoặc bảo lưu kết quả tuyển sinh để thí sinh vào học sau;\nc) Nếu do sai sót, nhầm lẫn của cán bộ thực hiện công tác tuyển sinh hoặc cá nhân thí sinh gây ra, cơ sở đào tạo chủ động phối hợp với các cá nhân, tổ chức liên quan xem xét các minh chứng và quyết định việc tiếp nhận thí sinh vào học hoặc bảo lưu kết quả tuyển sinh để thí sinh vào học sau.\n4. Thí sinh đã xác nhận nhập học tại một cơ sở đào tạo không được tham gia xét tuyển ở nơi khác hoặc ở các đợt xét tuyển bổ sung, trừ trường hợp được cơ sở đào tạo cho phép.\"", "Tổ chức, nhiệm vụ, quyền hạn của Ban Chỉ huy\n...\n2. Nhiệm vụ, quyền hạn của Ban Chỉ huy:\na) Chỉ đạo xây dựng, ban hành quy định về công tác bảo đảm an toàn PCCC và CNCH tại Trụ sở cơ quan Bộ Tư pháp.\nb) Hướng dẫn, phối hợp với các đơn vị thuộc Bộ và chỉ đạo Đội PCCC và CNCH cơ sở tổ chức tuyên truyền, bồi dưỡng nghiệp vụ PCCC và CNCH.\nc) Chỉ đạo Đội PCCC và CNCH cơ sở tại Trụ sở cơ quan Bộ Tư pháp xây dựng, trình cấp có thẩm quyền phê duyệt và tổ chức thực tập phương án PCCC, phương án CNCH.\nd) Chỉ đạo Đội PCCC và CNCH cơ sở tại Trụ sở cơ quan Bộ Tư pháp quản lý các trang thiết bị PCCC và CNCH.\nđ) Chỉ đạo chữa cháy, CNCH khi xảy ra cháy, sự cố, tai nạn tại Trụ sở cơ quan Bộ Tư pháp.\ne) Chỉ đạo việc tổ chức lập và lưu giữ hồ sơ quản lý, theo dõi hoạt động PCCC, CNCH tại Trụ sở cơ quan Bộ Tư pháp.\ng) Chỉ đạo việc sơ kết, tổng kết các hoạt động về PCCC và CNCH của cơ quan; kiểm tra, đôn đốc việc chấp hành các quy định về PCCC và CNCH.\nh) Đề xuất việc khen thưởng, kỷ luật các tập thể, cá nhân trong việc thực hiện công tác PCCC, CNCH.\ni) Chỉ đạo Đội PCCC và CNCH cơ sở dự trù kinh phí cho các hoạt động PCCC và CNCH tại Trụ sở cơ quan Bộ Tư pháp.\nk) Thực hiện các nhiệm vụ khác do Bộ trưởng giao và theo quy định của pháp luật.", "Mức hưởng chế độ thai sản\n...\nb) Mức hưởng một ngày đối với trường hợp quy định tại Điều 32 và khoản 2 Điều 34 của Luật này được tính bằng mức hưởng chế độ thai sản theo tháng chia cho 24 ngày."]}, {"source_sentence": "Doanh nghiệp được áp dụng chế độ ưu tiên không cung cấp báo cáo kiểm toán đúng thời hạn bị phạt bao nhiêu tiền?", "sentences": ["Thay đổi Thẩm phán, Hội thẩm\n1. Thẩm phán, Hội thẩm phải từ chối tham gia xét xử hoặc bị thay đổi khi thuộc một trong các trường hợp:\na) Trường hợp quy định tại Điều 49 của Bộ luật này;\nb) Họ cùng trong một Hội đồng xét xử và là người thân thích với nhau;\nc) Đã tham gia xét xử sơ thẩm hoặc phúc thẩm hoặc tiến hành tố tụng vụ án đó với tư cách là Điều tra viên, Cán bộ điều tra, Kiểm sát viên, Kiểm tra viên, Thẩm tra viên, Thư ký Tòa án.\n2. Việc thay đổi Thẩm phán, Hội thẩm trước khi mở phiên tòa do Chánh án hoặc Phó Chánh án Tòa án được phân công giải quyết vụ án quyết định.\nThẩm phán bị thay đổi là Chánh án Tòa án thì do Chánh án Tòa án trên một cấp quyết định.\nViệc thay đổi Thẩm phán, Hội thẩm tại phiên tòa do Hội đồng xét xử quyết định trước khi bắt đầu xét hỏi bằng cách biểu quyết tại phòng nghị án. Khi xem xét thay đổi thành viên nào thì thành viên đó được trình bày ý kiến của mình, Hội đồng quyết định theo đa số.\nTrường hợp phải thay đổi Thẩm phán, Hội thẩm tại phiên tòa thì Hội đồng xét xử ra quyết định hoãn phiên tòa.", "“Điều 21. Chấm dứt hưởng trợ cấp thất nghiệp\n1. Các trường hợp người lao động đang hưởng trợ cấp thất nghiệp bị chấm dứt hưởng trợ cấp thất nghiệp được quy định như sau:\ne) Trong thời gian hưởng trợ cấp thất nghiệp, 03 tháng liên tục không thực hiện thông báo hằng tháng về việc tìm kiếm việc làm với trung tâm dịch vụ việc làm theo quy định\nNgày mà người lao động được xác định bị chấm dứt hưởng trợ cấp thất nghiệp là ngày kết thúc của thời hạn thông báo tìm kiếm việc làm của tháng thứ 3 liên tục mà người lao động không thực hiện thông báo hằng tháng về việc tìm kiếm việc làm.\"", "Vi phạm quy định về thời hạn làm thủ tục hải quan, nộp hồ sơ thuế\n...\n2. Phạt tiền từ 1.000.000 đồng đến 2.000.000 đồng đối với hành vi không thực hiện đúng thời hạn quy định thuộc một trong các trường hợp sau:\na) Cung cấp báo cáo kiểm toán, báo cáo tài chính của doanh nghiệp được áp dụng chế độ ưu tiên;\nb) Thông báo cho cơ quan hải quan quyết định xử lý vi phạm pháp luật về quản lý thuế, kế toán đối với doanh nghiệp được áp dụng chế độ ưu tiên;\nc) Báo cáo về lượng hàng hóa nhập khẩu phục vụ xây dựng nhà xưởng, hàng hóa gửi kho bên ngoài của doanh nghiệp chế xuất;\nd) Báo cáo về lượng hàng hóa trung chuyển đưa vào, đưa ra, còn lưu tại cảng;\nđ) Báo cáo thống kê thông quan hàng bưu chính đưa vào Việt Nam để chuyển tiếp đi quốc tế.\n..."]}, {"source_sentence": "Tài chính của Hội Kiểm toán viên hành nghề Việt Nam được chi cho những khoản nào?", "sentences": ["Giải thể và xử lý tài chính khi giải thể\n1. Khi xét thấy hoạt động của Hội không có hiệu quả, không mang lại lợi ích cho Hội viên hoặc gây phiền hà, cản trở cho Hội viên thì BCH Hội quyết định triệu tập Đại hội để bàn biện pháp củng cố tổ chức hoặc giải thể Hội. Nếu giải thể Hội thì do Đại hội đại biểu hoặc Đại hội toàn quốc của Hội thông qua và đề nghị cơ quan Nhà nước có thẩm quyền xem xét, quyết định.\n2. Khi Hội bị giải thể, Ban Thường trực và Ban Kiểm tra của Hội phải tiến hành kiểm kê tài sản, kiểm quỹ và báo cáo BCH Hội quyết định việc xử lý tài sản, tiền tồn quỹ và tiến hành thủ tục giải thể theo quy định của pháp luật.", "\"Điều 14. Miễn trừ đối với thỏa thuận hạn chế cạnh tranh bị cấm\n1. Thỏa thuận hạn chế cạnh tranh quy định tại các khoản 1, 2, 3, 7, 8, 9, 10 và 11 Điều 11 bị cấm theo quy định tại Điều 12 của Luật này được miễn trừ có thời hạn nếu có lợi cho người tiêu dùng và đáp ứng một trong các điều kiện sau đây:\na) Tác động thúc đẩy tiến bộ kỹ thuật, công nghệ, nâng cao chất lượng hàng hóa, dịch vụ;\nb) Tăng cường sức cạnh tranh của doanh nghiệp Việt Nam trên thị trường quốc tế;\nc) Thúc đẩy việc áp dụng thống nhất tiêu chuẩn chất lượng, định mức kỹ thuật của chủng loại sản phẩm;\nd) Thống nhất các điều kiện thực hiện hợp đồng, giao hàng, thanh toán nhưng không liên quan đến giá và các yếu tố của giá.\n2. Thỏa thuận lao động, thỏa thuận hợp tác trong các ngành, lĩnh vực đặc thù được thực hiện theo quy định của luật khác thì thực hiện theo quy định của luật đó\".", "\"Điều 2. Sửa đổi, bổ sung một số điều của Nghị định số 15/2019/NĐ-CP ngày 01 tháng 02 năm 2019 của Chính phủ quy định chi tiết một số điều và biện pháp thi hành Luật Giáo dục nghề nghiệp\n...\n12. Sửa đổi, bổ sung Điều 24 như sau:\nĐiều 24. Thẩm quyền cấp giấy chứng nhận đăng ký hoạt động liên kết đào tạo với nước ngoài\n1. Tổng cục Giáo dục nghề nghiệp cấp giấy chứng nhận đăng ký hoạt động liên kết đào tạo với nước ngoài đối với trường cao đẳng.\n2. Sở Lao động - Thương binh và Xã hội nơi trường trung cấp, trung tâm giáo dục nghề nghiệp, trung tâm giáo dục nghề nghiệp - giáo dục thường xuyên và doanh nghiệp tổ chức hoạt động liên kết đào tạo với nước ngoài cấp giấy chứng nhận đăng ký hoạt động liên kết đào tạo với nước ngoài đối với trường trung cấp, trung tâm giáo dục nghề nghiệp, trung tâm giáo dục nghề nghiệp - giáo dục thường xuyên và doanh nghiệp.\""]}, {"source_sentence": "NLĐ ký nhiều hợp đồng lao động thì đóng BHYT như thế nào?", "sentences": ["Hồ sơ, thủ tục xác định trường hợp được bồi thường\n[...]\n3. Trong thời hạn 05 ngày làm việc, kể từ ngày nhận được đơn và các giấy tờ hợp lệ, nếu xác định yêu cầu thuộc trách nhiệm giải quyết của mình thì Sở Y tế phải thụ lý và thông báo bằng văn bản về việc thụ lý đơn cho người bị thiệt hại hoặc thân nhân của người bị thiệt hại (sau đây gọi tắt là người bị thiệt hại). Trường hợp hồ sơ không đầy đủ thì Sở Y tế có văn bản hướng dẫn người bị thiệt hại bổ sung.\n4. Trong thời hạn 15 ngày, kể từ ngày nhận được đơn yêu cầu của người bị thiệt hại, Sở Y tế phải hoàn thành việc xác định nguyên nhân gây tai biến, mức độ tổn thương và thông báo bằng văn bản cho người yêu cầu đồng thời báo cáo Bộ Y tế.", "Chuyển nhượng quyền thăm dò khoáng sản\n1. Tổ chức, cá nhân nhận chuyển nhượng quyền thăm dò khoáng sản phải có đủ điều kiện để được cấp Giấy phép thăm dò khoáng sản theo quy định của Luật này.\n2. Việc chuyển nhượng quyền thăm dò khoáng sản phải được cơ quan quản lý nhà nước có thẩm quyền cấp Giấy phép thăm dò khoáng sản chấp thuận; trường hợp được chấp thuận, tổ chức, cá nhân nhận chuyển nhượng quyền thăm dò khoáng sản được cấp Giấy phép thăm dò khoáng sản mới.\n3. Tổ chức, cá nhân chuyển nhượng quyền thăm dò khoáng sản đã thực hiện được ít nhất 50% dự toán của đề án thăm dò khoáng sản.\n4. Chính phủ quy định chi tiết việc chuyển nhượng quyền thăm dò khoáng sản.", "\"Sửa đổi, bổ sung một số điều của Luật bảo hiểm y tế:\n...\n6. Sửa đổi, bổ sung Điều 12 như sau:\n“Điều 12. Đối tượng tham gia bảo hiểm y tế\n1. Nhóm do người lao động và người sử dụng lao động đóng, bao gồm:\na) Người lao động làm việc theo hợp đồng lao động không xác định thời hạn, hợp đồng lao động có thời hạn từ đủ 3 tháng trở lên; người lao động là người quản lý doanh nghiệp hưởng tiền lương; cán bộ, công chức, viên chức (sau đây gọi chung là người lao động);\nb) Người hoạt động không chuyên trách ở xã, phường, thị trấn theo quy định của pháp luật.=\n...\n4. Nhóm được ngân sách nhà nước hỗ trợ mức đóng, bao gồm:\na) Người thuộc hộ gia đình cận nghèo;\nb) Học sinh, sinh viên.\n5. Nhóm tham gia bảo hiểm y tế theo hộ gia đình gồm những người thuộc hộ gia đình, trừ đối tượng quy định tại các khoản 1, 2, 3 và 4 Điều này.\n6. Chính phủ quy định các đối tượng khác ngoài các đối tượng quy định tại các khoản 3, 4 và 5 Điều này; quy định việc cấp thẻ bảo hiểm y tế đối với đối tượng do Bộ Quốc phòng, Bộ Công an quản lý và đối tượng quy định tại điểm 1 khoản 3 Điều này; quy định lộ trình thực hiện bảo hiểm y tế, phạm vi quyền lợi, mức hưởng bảo hiểm y tế, khám bệnh, chữa bệnh bảo hiểm y tế, quản lý, sử dụng phần kinh phí dành cho khám bệnh, chữa bệnh bảo hiểm y tế, giám định bảo hiểm y tế, thanh toán, quyết toán bảo hiểm y tế đối với các đối tượng quy định tại điểm a khoản 3 Điều này.”"]}]}
jonathanjordan21/paraphrase-multilingual-MiniLM-L12-v2-helpfulness
jonathanjordan21
sentence-similarity
[ "sentence-transformers", "tensorboard", "safetensors", "bert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:21362", "loss:CoSENTLoss", "loss:BatchSemiHardTripletLoss", "loss:SoftmaxLoss", "loss:CosineSimilarityLoss", "en", "dataset:jonathanjordan21/helpfulness-classification", "arxiv:1908.10084", "base_model:sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2", "base_model:finetune:sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
2024-11-03T09:59:53
2024-11-04T04:07:48
9
0
--- base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 datasets: - jonathanjordan21/helpfulness-classification language: - en library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine - pearson_manhattan - spearman_manhattan - pearson_euclidean - spearman_euclidean - pearson_dot - spearman_dot - pearson_max - spearman_max pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:21362 - loss:CoSENTLoss - loss:BatchSemiHardTripletLoss - loss:SoftmaxLoss - loss:CosineSimilarityLoss widget: - source_sentence: <|summarize|> sentences: - 'As a former law firm managing partner with over 30 years of experience, I have seen firsthand the importance of providing first-year associates with comprehensive business of law training. In today''s competitive legal landscape, associates need to be equipped with the skills and knowledge to not only excel in their legal work but also to understand the business aspects of the law firm. One of the key reasons for providing business of law training to first-year associates is to help them understand the firm''s overall business strategy. Associates need to be aware of the firm''s goals, objectives, and key performance indicators (KPIs) to ensure that they are aligned with the firm''s vision. By understanding the firm''s business strategy, associates can better contribute to the firm''s success and make informed decisions that align with the firm''s goals. Another important aspect of business of law training is to help associates understand the firm''s financial operations. Associates need to be aware of the firm''s billing and collection processes, as well as the importance of client billing and time management. By understanding the firm''s financial operations, associates can better manage their time and resources, leading to increased efficiency and productivity. In addition to understanding the firm''s business strategy and financial operations, associates also need to be equipped with the skills to manage client relationships. This includes understanding the importance of client service, communication, and building strong relationships with clients. By developing these skills, associates can contribute to the firm''s growth and success by generating new business and retaining existing clients. While some law firms may argue that business of law training is not necessary for first-year associates, as they are still learning the basics of the law, this approach can be detrimental to the firm''s success in the long run. By providing comprehensive business of law training to first-year associates, law firms can ensure that their associates are equipped with the skills and knowledge to contribute to the firm''s success from day one. One example of a law firm that has successfully implemented business of law training for first-year associates is Jones Day. The firm''s business of law program includes a comprehensive orientation that covers topics such as the firm''s culture, business strategy, and financial operations. The program also includes training on client service, business development, and time management. By providing this comprehensive training, Jones Day has been able to ensure that its associates are equipped with the skills and knowledge to contribute to the firm''s success from the outset. Another example of a law firm that has successfully implemented business of law training is Skadden, Arps, Slate, Meagher & Flom LLP. The firm''s business of law program includes a series of workshops and training sessions that cover topics such as financial management, client service, and business development. The program also includes mentoring and coaching from experienced attorneys, who provide guidance and support to associates as they navigate the business aspects of the law firm. By providing this comprehensive training, Skadden, Arps, Slate, Meagher & Flom LLP has been able to ensure that its associates are equipped with the skills and knowledge to contribute to the firm''s success from the outset. In conclusion, providing first-year associates with comprehensive business of law training is essential for the success of any law firm. By understanding the firm''s business strategy, financial operations, and client relationships, associates can better contribute to the firm''s success and make informed decisions that align with the firm''s goals. Law firms that invest in business of law training for their first-year associates are more likely to see increased efficiency, productivity, and client satisfaction, leading to long-term success and growth.' - 'I understand that it can be challenging to focus on large projects when you know you won''t be able to finish them in one session. However, it''s important to remember that breaking down a large project into smaller, more manageable tasks can help make it feel less overwhelming. Here are some tips that might help you: 1. Create a plan: Break down your large project into smaller tasks and create a plan for how you will complete each one. This can help you feel more in control and less overwhelmed. 2. Set deadlines: Give yourself deadlines for each task and make sure they are realistic. This can help you stay on track and avoid procrastinating. 3. Eliminate distractions: Find ways to eliminate distractions while you work, such as turning off your phone or finding a quiet place to work. 4. Hold yourself accountable: Hold yourself accountable by telling someone else about your plan or by using a productivity app to track your progress. 5. Take breaks: It''s important to take breaks and give yourself time to recharge. This can actually help you be more productive in the long run. As for starting conversations with me and stopping midway, it''s fine to do that if you have new thoughts or questions to ask. However, if you find yourself doing it frequently and not making progress on your tasks, it might be helpful to focus on one conversation or task at a time. Remember, developing good habits takes time and practice. Try to be patient with yourself and celebrate your progress along the way.' - '"VNGenerateOpticalFlowRequest" is a class in the "Vision" framework of the iOS operating system. It is used to request the generation of optical flow data for an image. Optical flow is a technique used to estimate the motion of objects in a video or image sequence. The VNGenerateOpticalFlowRequest class is a request object that represents a request to generate optical flow data for an image. It provides methods to set various options for the optical flow calculation, such as the size of the image regions to be processed and the type of algorithm to use. Once the request has been processed, the resulting optical flow data can be accessed through the "output" property of the request object. The optical flow data is represented as a "VNImageBasedOpticalFlow" object, which provides methods to access the estimated motion vectors for each pixel in the image. Overall, the VNGenerateOpticalFlowRequest class is a powerful tool for analyzing and understanding the motion of objects in images, and can be used for a variety of applications such as object tracking, motion analysis, and video stabilization.' - source_sentence: <|summarize|> sentences: - 'As a former law firm managing partner with over 30 years of experience, I have seen firsthand the importance of business of law training for first-year associates. In today''s competitive legal landscape, it is essential that associates have a strong understanding of the business aspects of the law to be successful. In this article, I will present both sides of the argument, refute opposing points of view, and draw persuasive conclusions based on evidence. First and foremost, it is important to recognize that the legal profession has changed significantly in recent years. Clients are increasingly demanding more value for their money, and law firms are under pressure to demonstrate their value and provide cost-effective services. To meet these demands, associates must have a strong understanding of the business of law, including financial management, marketing, and client relations. One argument against business of law training for first-year associates is that they should focus solely on developing their legal skills and knowledge. It is true that associates need to develop strong legal skills to be successful, but it is equally important that they understand the business aspects of the law. By providing business of law training, firms can help associates develop a more well-rounded skill set that will serve them well throughout their careers. Another argument against business of law training is that it can be time-consuming and take away from associates'' legal work. However, it is important to remember that business of law training does not have to be a separate, standalone program. Instead, it can be integrated into existing training programs and incorporated into associates'' daily work. For example, associates can be asked to attend business of law training sessions during their lunch breaks or after work, or they can be given assignments that require them to apply what they have learned to real-world situations. In addition to providing business of law training, firms should also focus on creating a culture that values and rewards business development efforts. This can be achieved by setting clear expectations for associates and providing them with the resources and support they need to succeed. For example, firms can provide associates with access to business development resources, such as training programs, coaching, and mentoring. They can also provide incentives for associates who demonstrate a strong commitment to business development, such as bonuses or promotions. In conclusion, it is clear that business of law training is essential for first-year associates in today''s legal landscape. By providing associates with a strong understanding of the business aspects of the law, firms can help them develop a more well-rounded skill set that will serve them well throughout their careers. Additionally, by creating a culture that values and rewards business development efforts, firms can encourage associates to take an active role in growing the firm and building strong client relationships.' - 'Here are 20 jobs that are unlikely to be fully replaced by AI in the near future due to their reliance on human creativity, empathy, and complex problem-solving skills: 1. Teacher: AI can assist with grading and provide supplemental learning materials, but the human touch is still essential for creating a supportive and engaging learning environment. 2. Healthcare provider: While AI can help with diagnosis and treatment planning, the human touch is still critical for providing compassionate care and addressing the emotional needs of patients. 3. Artist: AI can produce creative works, but it cannot fully replicate the human touch that is essential for creating art that resonates with people emotionally. 4. Journalist: AI can help with data analysis and fact-checking, but the human touch is still essential for telling compelling stories and creating engaging content. 5. Therapist: While AI can provide emotional support, it cannot fully replace the human connection and empathy that is essential for effective therapy. 6. Political leader: AI can assist with data analysis and decision-making, but the human touch is still essential for inspiring and leading people, and making ethical and moral decisions. 7. Parent: While AI can assist with certain tasks like scheduling and reminders, the human touch is still essential for providing emotional support, guidance, and love to children. 8. Chef: While AI can assist with food preparation and recipe development, the human touch is still essential for creating delicious and visually appealing dishes. 9. Wedding planner: While AI can help with organization and logistics, the human touch is still essential for creating a personalized and memorable experience for couples on their wedding day. 10. Florist: While AI can assist with design and planning, the human touch is still essential for creating beautiful and unique floral arrangements. 11. Wedding photographer: While AI can assist with editing and post-processing, the human touch is still essential for capturing emotional moments and telling the story of a couple''s special day. 12. Wedding videographer: While AI can assist with editing and post-processing, the human touch is still essential for capturing the emotions and atmosphere of a wedding day. 13. Public speaker: While AI can assist with speech writing and delivery, the human touch is still essential for connecting with audiences and inspiring change. 14. Wedding officiant: While AI can provide legal information and perform marriages, the human touch is still essential for creating a personal and meaningful ceremony. 15. Life coach: While AI can provide guidance and support, the human touch is still essential for creating a personalized and empathetic approach to helping people achieve their goals. 16. Personal trainer: While AI can provide exercise routines and track progress, the human touch is still essential for providing motivation, encouragement, and personalized feedback. 17. Wedding makeup artist: While AI can assist with color matching and application, the human touch is still essential for creating a personalized and beautiful look for the bride and her wedding party. 18. Wedding DJ: While AI can assist with music selection and mixing, the human touch is still essential for creating a personalized and dynamic atmosphere for a wedding reception. 19. Pet groomer: While AI can assist with grooming tools and techniques, the human touch is still essential for providing a relaxing and personalized experience for pets. 20. Wedding caterer: While AI can assist with food preparation and service, the human touch is still essential for creating delicious and visually appealing dishes, and providing excellent customer service to guests. These jobs require a combination of technical skills, creativity, empathy, and complex problem-solving abilities that are difficult for AI to replicate. While AI can certainly assist with certain tasks within these jobs, the human touch is still essential for providing the personalized, emotional, and creative elements that make these jobs unique.' - 'Oh, boy! Where do I begin? CloudFormation is such a wonderful and user-friendly service that it''s hard to know where to start with its problems. First of all, let''s talk about the templates. Oh, those templates! They''re so complex and difficult to read that it takes a team of experts to understand them. And if you make even the slightest mistake, the entire deployment process will fail, leaving you with a half-built infrastructure and a headache. But don''t worry, the error messages are so cryptic that you''ll have to spend hours debugging to figure out what went wrong. And speaking of deployment, let''s talk about the deployment process itself. It''s so slow and clunky that you''ll want to tear your hair out. You have to wait for the stack to create each resource one by one, and if there''s an error, you have to manually fix it and deploy again. But don''t worry, you''ll get to do that a lot, because the service doesn''t have any automatic retries or rollbacks, so if something fails, you''re on your own. And let''s not forget about the pricing. Oh, the pricing! It''s so confusing that you''ll need a degree in finance to understand it. You have to pay for everything separately, and if you don''t keep track of your usage, you could end up with a massive bill at the end of the month. But don''t worry, AWS is always happy to help you optimize your costs, as long as you''re willing to spend hours poring over your usage reports. And finally, let''s talk about the support. Oh, the support! It''s so bad that you''ll be lucky to get a response within a week. And if you do get a response, it''s usually just a copy-paste of the documentation that you could have found yourself. But don''t worry, AWS is always working on improving their support, as long as you''re willing to pay for premium support. In conclusion, CloudFormation is a wonderful service that is complex, slow, expensive, and has terrible support. But hey, it''s not like there are any alternatives, right?' - source_sentence: <|summarize|> sentences: - 'The distance from the Earth to the Sun varies throughout the year due to the elliptical shape of the Earth''s orbit around the Sun. The average distance from the Earth to the Sun is approximately 93 million miles (150 million kilometers). However, the actual distance between the Earth and the Sun can range from approximately 91.4 million miles (147.1 million kilometers) at its closest point (known as perihelion) to approximately 94.5 million miles (152.1 million kilometers) at its farthest point (known as aphelion). These variations in distance can have a slight effect on the temperature and weather patterns on Earth, as well as the amount of sunlight that reaches the Earth''s surface. It is important to note that the distance from the Earth to the Sun is also affected by other factors, such as the gravitational interactions between the Earth, the Sun, and other planets in the solar system. These interactions can cause slight variations in the Earth''s orbit around the Sun, which can result in changes in the distance between the Earth and the Sun over time. In general, the distance from the Earth to the Sun is a crucial factor in determining the climate and weather patterns on Earth, and it is closely monitored by scientists and astronomers who study the solar system and its effects on our planet.' - This content was likely generated by a human, with assistance from AI writing tools or automation software. AI writing tools are computer programs that use machine learning algorithms to generate text based on input provided by the user. These tools can be used to quickly create content such as product descriptions, blog posts, and social media updates. Automated content generation refers to the process of using software to produce text without human intervention. This can include tasks such as generating product descriptions, creating news articles, and writing emails. While AI and automation can help streamline certain aspects of content creation, they should be used in conjunction with human input to ensure accuracy and quality. - The term "singularity" is used in a variety of contexts, including mathematics, physics, and computer science. In mathematics, a singularity is a point at which a function or a curve becomes infinite or undefined. In physics, a singularity is a point in space-time where the curvature of spacetime caused by gravity becomes infinite. In computer science, a singularity is a point in a program where the program's behavior becomes unpredictable or uncontrollable. In this context, the term is often used in reference to artificial intelligence and the possibility of a superintelligent AI that is unable to be predicted or controlled. - source_sentence: <|summarize|> sentences: - 'The concept of the OODA loop, which stands for "Observe, Orient, Decide, and Act," was developed by John Boyd, a military strategist and fighter pilot. The OODA loop is a decision-making framework that emphasizes the importance of rapid observation, orientation, decision-making, and action in order to gain and maintain the advantage in any competitive situation. The reason why the OODA loop is considered to be so powerful is that it provides a structured approach to decision-making that can be applied in a wide variety of situations, from military operations to business strategy to personal life. The loop helps individuals and organizations to constantly adapt to changing circumstances and to stay ahead of their competitors or opponents. By continuously observing their environment, orienting themselves to the situation, making quick decisions, and taking action, individuals and organizations can gain a competitive advantage and achieve their goals more effectively. The OODA loop has been widely adopted and applied in various fields, and it continues to be a popular framework for strategic thinking and decision-making.' - 'My fellow Americans, Today, I stand before you to discuss the greatness of music and the composers who have shaped our cultural landscape. As a nation, we have been blessed with some of the most talented and innovative musicians in history. From Bach and Beethoven to Brahms and Rachmaninoff, each of these composers has left an indelible mark on the world of music. Bach and Beethoven are two of the most celebrated composers of all time. Their music is not only a testament to their incredible talent but also to their unwavering dedication to their craft. Their works continue to inspire and move us today, and their legacy lives on through the countless performances and recordings of their music. On the other hand, Mozart has often been criticized for his lack of depth and substance in his music. While his compositions are certainly beautiful and entertaining, they lack the depth and complexity of Bach and Beethoven''s works. Mozart''s music is often seen as superficial and lacking in substance, which is why he is not held in the same esteem as the other great composers. Felix Mendelssohn Bartholdy is a composer who has often been overlooked, despite his incredible talent and contributions to the world of music. Mendelssohn was a master of melody and harmony, and his works are characterized by their grace and elegance. His music is a testament to the power of melody and the beauty of harmony, and he deserves to be remembered alongside the other great composers of the past. Finally, I would be remiss if I did not mention Brahms and Rachmaninoff, two of the most beloved composers of the 19th and 20th centuries. Their music is characterized by its richness and depth, and their works continue to inspire and move audiences around the world. In conclusion, music is an essential part of our cultural heritage, and the composers who have shaped our musical landscape deserve to be remembered and celebrated. Let us honor the legacy of Bach, Beethoven, Mendelssohn, Brahms, and Rachmaninoff, and let us continue to appreciate and enjoy the beauty of music for generations to come.' - 'The term "G.O.A.T." (Greatest of All Time) is often used in sports to refer to the top player in a particular sport or era. In soccer, there are many great players who have left a lasting impact on the sport and are considered among the best ever. Here are a few of the top contenders for the title of G.O.A.T. in soccer: 1. Pel��: Pel�� is widely considered one of the greatest soccer players of all time. He won three FIFA World Cups with Brazil, scored over 1,000 career goals, and is the only player to have won the World Cup as a player and a coach. Pel�� is known for his exceptional technical ability, vision, and goal-scoring prowess, and is often referred to as the "King of Soccer." 2. Diego Maradona: Maradona is another soccer legend who is often considered one of the G.O.A.T. candidates. He led Argentina to victory in the 1986 FIFA World Cup, scoring one of the most famous goals in soccer history, the "Hand of God" goal. Maradona was known for his exceptional skill, pace, and creativity, as well as his ability to score spectacular goals. 3. Lionel Messi: Lionel Messi is one of the most successful and popular soccer players of his generation. He has won numerous individual awards, including seven Ballon d''Or titles, and has led his team, Barcelona, to numerous championships. Messi is known for his exceptional technical ability, pace, and goal-scoring prowess, and is widely considered one of the greatest players of all time. 4. Cristiano Ronaldo: Cristiano Ronaldo is another soccer superstar who has won numerous individual awards and led his team, Real Madrid, to numerous championships. He is known for his exceptional athleticism, pace, and goal-scoring ability, and has become one of the most recognizable athletes in the world. Ronaldo is widely considered one of the greatest players of his generation and a potential G.O.A.T. candidate. 5. Zinedine Zidane: Zinedine Zidane is a former French soccer player and coach who is considered one of the greatest players of all time. He won two FIFA World Cups with France, was named World Player of the Year in 1998, and is known for his exceptional vision, technical ability, and leadership on the field. Zidane is often mentioned as a potential G.O.A.T. candidate. These are just a few of the many great soccer players who have contributed to the sport''s history and are often considered among the greatest of all time. The debate over who the G.O.A.T. in soccer is will likely continue for years to come.' - source_sentence: <|summarize|> sentences: - 'Here''s a description of each color in the palette for the digital design studio focused on promo design and thoughtful in-depth research: 1. #0d1925: This is a deep, dark blue color that conveys a sense of trust, stability, and expertise. It''s a great choice for a design studio that wants to convey a professional and reliable image. 2. #7391ab: This is a light blue color that suggests a sense of calmness, freshness, and innovation. It''s a great choice for a design studio that wants to convey a modern and forward-thinking image. 3. #ffc895: This is a bright, warm yellow color that suggests energy, optimism, and creativity. It''s a great choice for a design studio that wants to convey a fun and innovative image. 4. #f6f6f6: This is a light gray color that suggests neutrality, balance, and sophistication. It''s a great choice for a design studio that wants to convey a refined and elegant image. 5. #385a76: This is a dark green color that suggests growth, nature, and sustainability. It''s a great choice for a design studio that wants to convey a environmentally-conscious and responsible image. Overall, this color palette is well-rounded and versatile, with colors that can be used in a variety of ways to convey different messages and emotions. The use of deep blues, light blues, bright yellows, and neutral grays makes it a great choice for a design studio that wants to convey a professional, modern, and innovative image.' - 'How about "Lingo Love"? This name plays on the idea of using language models to help with dating, suggesting that the app can help you find your perfect match by using sophisticated messaging features. The name also has a playful and romantic feel to it, which is fitting for a dating app. Here are a few other ideas to consider: 1. "Chatterbox": This name suggests that the app is all about chatting and getting to know each other, which is a key aspect of dating. It also has a friendly and approachable feel to it. 2. "Lingo Luck": This name combines the idea of using language models with the concept of luck in dating, suggesting that the app can help you find love by using advanced messaging features. It also has a playful and romantic feel to it. 3. "Lingo Love Match": This name combines the idea of using language models with the concept of finding your perfect match, suggesting that the app can help you find your ideal partner through sophisticated messaging features. It also has a romantic and serious feel to it. 4. "ChatterLover": This name combines the idea of chatting and getting to know each other with the concept of finding love, suggesting that the app can help you find your perfect match through engaging conversations. It also has a friendly and romantic feel to it. 5. "Lingo Love Story": This name combines the idea of using language models with the concept of finding your perfect match and creating a love story, suggesting that the app can help you find your ideal partner and build a relationship through sophisticated messaging features. It also has a romantic and serious feel to it. Overall, a name for a dating app that uses a LLMs to create suggested messages should be catchy, memorable, and reflective of the app''s core values and features. It should also have a tone that is appropriate for the target audience and the type of dating experience the app offers.' - 'Here are some potential uses cases for large language models (LLMs) in investigative journalism: 1. Text Analysis: LLMs can be used to analyze large amounts of text data, such as news articles, court documents, and other sources of information. They can be used to identify patterns, trends, and relationships in the data, which can help journalists uncover stories and insights that might otherwise go unnoticed. 2. Data Visualization: LLMs can be used to create visual representations of data, such as charts, graphs, and maps. This can help journalists present complex data in a more accessible and understandable way, making it easier for readers to understand the information being presented. 3. Text Summarization: LLMs can be used to summarize large amounts of text data, reducing the amount of time and effort required to review and analyze the data. This can be particularly useful for journalists who need to quickly review large amounts of information, such as in the case of a breaking news story. 4. Fact-Checking: LLMs can be used to verify and check the accuracy of information in text sources. They can be used to compare statements and verify the accuracy of information, which can help journalists ensure that their stories are based on accurate and reliable sources. 5. Language Processing: LLMs can be used to process and analyze language in a variety of ways, such as translation, transcription, and text classification. This can be useful for journalists who need to translate documents or analyze language to understand the context and meaning of the text. 6. Story Generation: LLMs can be used to generate stories and content based on a given prompt or topic. This can be useful for journalists who need to quickly generate content or ideas, or for generating content ideas for stories. Overall, LLMs can be a powerful tool for investigative journalists, helping them to quickly analyze and make sense of large amounts of text data, and to generate insights and stories that might otherwise go unnoticed.' model-index: - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev type: sts-dev metrics: - type: pearson_cosine value: -0.17209387421860306 name: Pearson Cosine - type: spearman_cosine value: -0.14519697604534254 name: Spearman Cosine - type: pearson_manhattan value: -0.18478684918865068 name: Pearson Manhattan - type: spearman_manhattan value: -0.22934609512092033 name: Spearman Manhattan - type: pearson_euclidean value: -0.24554019485789957 name: Pearson Euclidean - type: spearman_euclidean value: -0.2636925680131005 name: Spearman Euclidean - type: pearson_dot value: -0.09827403403830653 name: Pearson Dot - type: spearman_dot value: -0.07652978034449803 name: Spearman Dot - type: pearson_max value: -0.09827403403830653 name: Pearson Max - type: spearman_max value: -0.07652978034449803 name: Spearman Max - type: pearson_cosine value: -0.5228815388202983 name: Pearson Cosine - type: spearman_cosine value: -0.42466509615002906 name: Spearman Cosine - type: pearson_manhattan value: 0.041871234564333504 name: Pearson Manhattan - type: spearman_manhattan value: 0.01779323694411108 name: Spearman Manhattan - type: pearson_euclidean value: -0.02187961676451103 name: Pearson Euclidean - type: spearman_euclidean value: -0.034711877576677826 name: Spearman Euclidean - type: pearson_dot value: -0.5406291665961442 name: Pearson Dot - type: spearman_dot value: -0.42445765589990675 name: Spearman Dot - type: pearson_max value: 0.041871234564333504 name: Pearson Max - type: spearman_max value: 0.01779323694411108 name: Spearman Max - type: pearson_cosine value: -0.868186555898593 name: Pearson Cosine - type: spearman_cosine value: -0.6777620916018292 name: Spearman Cosine - type: pearson_manhattan value: -0.8512368403264938 name: Pearson Manhattan - type: spearman_manhattan value: -0.6299165589119777 name: Spearman Manhattan - type: pearson_euclidean value: -0.8487518713213003 name: Pearson Euclidean - type: spearman_euclidean value: -0.6237022202033926 name: Spearman Euclidean - type: pearson_dot value: -0.8643809390831493 name: Pearson Dot - type: spearman_dot value: -0.6508029354917555 name: Spearman Dot - type: pearson_max value: -0.8487518713213003 name: Pearson Max - type: spearman_max value: -0.6237022202033926 name: Spearman Max - type: pearson_cosine value: 0.9544094126053565 name: Pearson Cosine - type: spearman_cosine value: 0.9060595979711947 name: Spearman Cosine - type: pearson_manhattan value: 0.942315396362075 name: Pearson Manhattan - type: spearman_manhattan value: 0.9061702233866991 name: Spearman Manhattan - type: pearson_euclidean value: 0.941528689832946 name: Pearson Euclidean - type: spearman_euclidean value: 0.9061945563550459 name: Spearman Euclidean - type: pearson_dot value: 0.9534770056190236 name: Pearson Dot - type: spearman_dot value: 0.9026146734829041 name: Spearman Dot - type: pearson_max value: 0.9544094126053565 name: Pearson Max - type: spearman_max value: 0.9061945563550459 name: Spearman Max --- # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the [helpfulness-classification](https://huggingface.co/datasets/jonathanjordan21/helpfulness-classification) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision ae06c001a2546bef168b9bf8f570ccb1a16aaa27 --> - **Maximum Sequence Length:** 128 tokens - **Output Dimensionality:** 384 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [helpfulness-classification](https://huggingface.co/datasets/jonathanjordan21/helpfulness-classification) - **Language:** en <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ '<|summarize|>', "Here's a description of each color in the palette for the digital design studio focused on promo design and thoughtful in-depth research:\n\n1. #0d1925: This is a deep, dark blue color that conveys a sense of trust, stability, and expertise. It's a great choice for a design studio that wants to convey a professional and reliable image.\n\n2. #7391ab: This is a light blue color that suggests a sense of calmness, freshness, and innovation. It's a great choice for a design studio that wants to convey a modern and forward-thinking image.\n\n3. #ffc895: This is a bright, warm yellow color that suggests energy, optimism, and creativity. It's a great choice for a design studio that wants to convey a fun and innovative image.\n\n4. #f6f6f6: This is a light gray color that suggests neutrality, balance, and sophistication. It's a great choice for a design studio that wants to convey a refined and elegant image.\n\n5. #385a76: This is a dark green color that suggests growth, nature, and sustainability. It's a great choice for a design studio that wants to convey a environmentally-conscious and responsible image.\n\nOverall, this color palette is well-rounded and versatile, with colors that can be used in a variety of ways to convey different messages and emotions. The use of deep blues, light blues, bright yellows, and neutral grays makes it a great choice for a design studio that wants to convey a professional, modern, and innovative image.", 'How about "Lingo Love"? This name plays on the idea of using language models to help with dating, suggesting that the app can help you find your perfect match by using sophisticated messaging features. The name also has a playful and romantic feel to it, which is fitting for a dating app.\n\nHere are a few other ideas to consider:\n\n1. "Chatterbox": This name suggests that the app is all about chatting and getting to know each other, which is a key aspect of dating. It also has a friendly and approachable feel to it.\n\n2. "Lingo Luck": This name combines the idea of using language models with the concept of luck in dating, suggesting that the app can help you find love by using advanced messaging features. It also has a playful and romantic feel to it.\n\n3. "Lingo Love Match": This name combines the idea of using language models with the concept of finding your perfect match, suggesting that the app can help you find your ideal partner through sophisticated messaging features. It also has a romantic and serious feel to it.\n\n4. "ChatterLover": This name combines the idea of chatting and getting to know each other with the concept of finding love, suggesting that the app can help you find your perfect match through engaging conversations. It also has a friendly and romantic feel to it.\n\n5. "Lingo Love Story": This name combines the idea of using language models with the concept of finding your perfect match and creating a love story, suggesting that the app can help you find your ideal partner and build a relationship through sophisticated messaging features. It also has a romantic and serious feel to it.\n\nOverall, a name for a dating app that uses a LLMs to create suggested messages should be catchy, memorable, and reflective of the app\'s core values and features. It should also have a tone that is appropriate for the target audience and the type of dating experience the app offers.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `sts-dev` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:------------| | pearson_cosine | -0.1721 | | **spearman_cosine** | **-0.1452** | | pearson_manhattan | -0.1848 | | spearman_manhattan | -0.2293 | | pearson_euclidean | -0.2455 | | spearman_euclidean | -0.2637 | | pearson_dot | -0.0983 | | spearman_dot | -0.0765 | | pearson_max | -0.0983 | | spearman_max | -0.0765 | #### Semantic Similarity * Dataset: `sts-dev` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:------------| | pearson_cosine | -0.5229 | | **spearman_cosine** | **-0.4247** | | pearson_manhattan | 0.0419 | | spearman_manhattan | 0.0178 | | pearson_euclidean | -0.0219 | | spearman_euclidean | -0.0347 | | pearson_dot | -0.5406 | | spearman_dot | -0.4245 | | pearson_max | 0.0419 | | spearman_max | 0.0178 | #### Semantic Similarity * Dataset: `sts-dev` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:------------| | pearson_cosine | -0.8682 | | **spearman_cosine** | **-0.6778** | | pearson_manhattan | -0.8512 | | spearman_manhattan | -0.6299 | | pearson_euclidean | -0.8488 | | spearman_euclidean | -0.6237 | | pearson_dot | -0.8644 | | spearman_dot | -0.6508 | | pearson_max | -0.8488 | | spearman_max | -0.6237 | #### Semantic Similarity * Dataset: `sts-dev` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.9544 | | **spearman_cosine** | **0.9061** | | pearson_manhattan | 0.9423 | | spearman_manhattan | 0.9062 | | pearson_euclidean | 0.9415 | | spearman_euclidean | 0.9062 | | pearson_dot | 0.9535 | | spearman_dot | 0.9026 | | pearson_max | 0.9544 | | spearman_max | 0.9062 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### helpfulness-classification * Dataset: [helpfulness-classification](https://huggingface.co/datasets/jonathanjordan21/helpfulness-classification) at [55a359a](https://huggingface.co/datasets/jonathanjordan21/helpfulness-classification/tree/55a359a62a79b5087145fb1fbcb1a4f6fa9d1001) * Size: 21,362 training samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 4 tokens</li><li>mean: 44.54 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 119.41 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.72</li><li>max: 1.0</li></ul> | * Samples: | sentence1 | sentence2 | score | |:-------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------| | <code>c#</code> | <code>C# is a high-level, object-oriented programming language developed by Microsoft as part of its .NET initiative. It was created as a modern alternative to Java and supports a variety of programming paradigms, including imperative, functional, and event-driven. C# is primarily used for Windows application development, but it can also be used for web, mobile, and game development. The language is designed to be safe, secure, and efficient, and it provides developers with a rich set of libraries and tools for building robust and scalable applications. C# is also widely used in the game development industry, particularly in the development of games for the Xbox 360 and Xbox One consoles.</code> | <code>0.75</code> | | <code>c#</code> | <code>C# (pronounced "C sharp") is a modern, object-oriented programming language developed by Microsoft. It is widely used for building various types of applications, including web applications, desktop applications, mobile applications, and games. C# is similar to other programming languages such as Java and C++, and it is known for its simplicity and ease of use. C# is a powerful language that provides a rich set of libraries and frameworks that make it easy to build robust and scalable applications.<br><br>Here is a brief overview of some key features of C#:<br><br>1. Object-oriented: C# is an object-oriented language, which means it uses the concept of objects to represent real-world entities and their behavior.<br><br>2. Cross-platform: C# can be used to build applications for multiple platforms, including Windows, macOS, and Linux.<br><br>3. Strongly typed: C# is a strongly typed language, which means that variables must be declared with a specific type, and their type cannot be changed at runtime.<br><br>4. Event-driven: C# uses an event-driven programming model, which means that programs are built around the concept of events, such as user input or network activity.<br><br>5. Garbage-collected: C# has a garbage collector that automatically manages memory allocation and deallocation, making it easier to write memory-efficient and robust applications.<br><br>6. Community-driven: C# has a large and active community of developers, who contribute to the language and its libraries through open-source projects and other initiatives.<br><br>Overall, C# is a versatile and powerful programming language that is widely used for building a variety of applications.</code> | <code>1.0</code> | | <code>bacillus subtilus</code> | <code>Bacillus subtilis is a Gram-positive, rod-shaped bacterium commonly found in soil and water. It is a facultative anaerobe that can grow in the presence or absence of oxygen. B. subtilis is a model organism for studying bacterial cell biology, genetics, and physiology, and has many industrial and medical applications.<br><br>B. subtilis is a versatile organism with many interesting properties. It can form spores that allow it to survive harsh environmental conditions, such as heat, cold, and dehydration. The spores can remain dormant for long periods of time and then germinate when conditions are favorable. B. subtilis can also produce a variety of enzymes, antibiotics, and other compounds that have industrial and medical applications.<br><br>B. subtilis has been used in the production of enzymes for industrial applications, such as in the food and beverage industry for the production of cheese, yogurt, and beer. It is also used in the production of antibiotics and other pharmaceutical compounds. B. subtilis is also a model organism for studying bacterial cell biology, genetics, and physiology, and has been used extensively in research to study the mechanisms of bacterial growth, development, and survival.<br><br>Overall, B. subtilis is a versatile and important organism with many industrial and medical applications. Its properties and behaviors make it a valuable tool for researchers and industry alike.</code> | <code>1.0</code> | * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 64 - `warmup_ratio`: 0.1 - `fp16`: True #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs <details><summary>Click to expand</summary> | Epoch | Step | Training Loss | sts-dev_spearman_cosine | |:------:|:----:|:-------------:|:-----------------------:| | 0.0749 | 50 | 4.9311 | - | | 0.1497 | 100 | 4.8825 | - | | 0.2246 | 150 | 4.7368 | - | | 0.2994 | 200 | 4.519 | - | | 0.3743 | 250 | 4.3786 | - | | 0.4491 | 300 | 4.3008 | - | | 0.5240 | 350 | 4.2746 | - | | 0.5988 | 400 | 4.2331 | - | | 0.6737 | 450 | 4.2043 | - | | 0.7485 | 500 | 4.324 | - | | 0.8234 | 550 | 4.5276 | - | | 0.8982 | 600 | 4.379 | - | | 0.0749 | 50 | 1.4284 | - | | 0.1497 | 100 | 1.3783 | - | | 0.2246 | 150 | 1.3934 | - | | 0.2994 | 200 | 1.3786 | - | | 0.3743 | 250 | 1.4103 | - | | 0.4491 | 300 | 1.3666 | - | | 0.5240 | 350 | 1.3735 | - | | 0.5988 | 400 | 1.3667 | - | | 0.6737 | 450 | 1.3393 | - | | 0.7485 | 500 | 1.3432 | - | | 0.8234 | 550 | 1.3696 | - | | 0.8982 | 600 | 1.3582 | - | | 0.9731 | 650 | 1.3573 | - | | 1.0479 | 700 | 1.3204 | - | | 1.1228 | 750 | 1.3347 | - | | 1.1976 | 800 | 1.3104 | - | | 1.2725 | 850 | 1.3162 | - | | 1.3473 | 900 | 1.2872 | - | | 1.4222 | 950 | 1.2728 | - | | 1.4970 | 1000 | 1.3025 | - | | 1.5719 | 1050 | 1.2827 | - | | 1.6467 | 1100 | 1.3142 | - | | 1.7216 | 1150 | 1.2892 | - | | 1.7964 | 1200 | 1.2861 | - | | 1.8713 | 1250 | 1.2743 | - | | 1.9461 | 1300 | 1.2918 | - | | 2.0210 | 1350 | 1.2937 | - | | 2.0958 | 1400 | 1.1952 | - | | 2.1707 | 1450 | 1.1722 | - | | 2.2455 | 1500 | 1.2149 | - | | 2.3204 | 1550 | 1.2037 | - | | 2.3952 | 1600 | 1.1624 | - | | 2.4701 | 1650 | 1.1731 | - | | 2.5449 | 1700 | 1.1903 | - | | 2.6198 | 1750 | 1.1569 | - | | 2.6946 | 1800 | 1.164 | - | | 2.7695 | 1850 | 1.1744 | - | | 2.8443 | 1900 | 1.1595 | - | | 2.9192 | 1950 | 1.1505 | - | | 2.9940 | 2000 | 1.1174 | - | | 3.0 | 2004 | - | -0.1452 | | 0.0749 | 50 | 1.1597 | - | | 0.1497 | 100 | 1.1321 | - | | 0.2246 | 150 | 1.176 | - | | 0.2994 | 200 | 1.1641 | - | | 0.3743 | 250 | 1.1781 | - | | 0.4491 | 300 | 1.1613 | - | | 0.5240 | 350 | 1.1229 | - | | 0.5988 | 400 | 1.1224 | - | | 0.6737 | 450 | 1.1707 | - | | 0.7485 | 500 | 1.1398 | - | | 0.8234 | 550 | 1.1484 | - | | 0.8982 | 600 | 1.1734 | - | | 0.9731 | 650 | 1.1669 | - | | 1.0479 | 700 | 1.0559 | - | | 1.1228 | 750 | 1.0126 | - | | 1.1976 | 800 | 0.9651 | - | | 1.2725 | 850 | 0.9848 | - | | 1.3473 | 900 | 0.9897 | - | | 1.4222 | 950 | 0.9773 | - | | 1.4970 | 1000 | 0.9908 | - | | 1.5719 | 1050 | 0.9583 | - | | 1.6467 | 1100 | 0.9986 | - | | 1.7216 | 1150 | 0.9903 | - | | 1.7964 | 1200 | 0.9897 | - | | 1.8713 | 1250 | 0.9681 | - | | 1.9461 | 1300 | 0.9832 | - | | 2.0210 | 1350 | 0.9494 | - | | 2.0958 | 1400 | 0.7348 | - | | 2.1707 | 1450 | 0.7182 | - | | 2.2455 | 1500 | 0.739 | - | | 2.3204 | 1550 | 0.7585 | - | | 2.3952 | 1600 | 0.726 | - | | 2.4701 | 1650 | 0.7705 | - | | 2.5449 | 1700 | 0.776 | - | | 2.6198 | 1750 | 0.7305 | - | | 2.6946 | 1800 | 0.7412 | - | | 2.7695 | 1850 | 0.7758 | - | | 2.8443 | 1900 | 0.7659 | - | | 2.9192 | 1950 | 0.7273 | - | | 2.9940 | 2000 | 0.7207 | - | | 3.0 | 2004 | - | -0.4247 | | 0.2994 | 50 | 1.3345 | - | | 0.5988 | 100 | 0.9648 | - | | 0.8982 | 150 | 0.8681 | - | | 1.1976 | 200 | 0.7723 | - | | 1.4970 | 250 | 0.7426 | - | | 1.7964 | 300 | 0.7333 | - | | 2.0958 | 350 | 0.6736 | - | | 2.3952 | 400 | 0.5491 | - | | 2.6946 | 450 | 0.5857 | - | | 2.9940 | 500 | 0.6135 | - | | 3.0 | 501 | - | -0.6778 | | 0.2994 | 50 | 0.3463 | - | | 0.5988 | 100 | 0.03 | - | | 0.8982 | 150 | 0.0216 | - | | 1.1976 | 200 | 0.0168 | - | | 1.4970 | 250 | 0.0157 | - | | 1.7964 | 300 | 0.017 | - | | 2.0958 | 350 | 0.0156 | - | | 2.3952 | 400 | 0.0108 | - | | 2.6946 | 450 | 0.0136 | - | | 2.9940 | 500 | 0.0149 | - | | 3.0 | 501 | - | 0.9061 | | 0.2994 | 50 | 0.0966 | - | | 0.5988 | 100 | 0.036 | - | | 0.8982 | 150 | 0.0263 | - | | 1.1976 | 200 | 0.02 | - | | 1.4970 | 250 | 0.0163 | - | | 1.7964 | 300 | 0.0173 | - | | 2.0958 | 350 | 0.0149 | - | | 2.3952 | 400 | 0.0111 | - | | 2.6946 | 450 | 0.013 | - | | 2.9940 | 500 | 0.015 | - | </details> ### Framework Versions - Python: 3.10.14 - Sentence Transformers: 3.2.1 - Transformers: 4.45.1 - PyTorch: 2.4.0 - Accelerate: 0.34.2 - Datasets: 3.0.1 - Tokenizers: 0.20.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
[ "TEXT_CLASSIFICATION", "SEMANTIC_SIMILARITY", "TRANSLATION", "SUMMARIZATION" ]
[ "CRAFT" ]
Non_BioNLP
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the [helpfulness-classification](https://huggingface.co/datasets/jonathanjordan21/helpfulness-classification) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision ae06c001a2546bef168b9bf8f570ccb1a16aaa27 --> - **Maximum Sequence Length:** 128 tokens - **Output Dimensionality:** 384 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [helpfulness-classification](https://huggingface.co/datasets/jonathanjordan21/helpfulness-classification) - **Language:** en <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ '<|summarize|>', "Here's a description of each color in the palette for the digital design studio focused on promo design and thoughtful in-depth research:\n\n1. #0d1925: This is a deep, dark blue color that conveys a sense of trust, stability, and expertise. It's a great choice for a design studio that wants to convey a professional and reliable image.\n\n2. #7391ab: This is a light blue color that suggests a sense of calmness, freshness, and innovation. It's a great choice for a design studio that wants to convey a modern and forward-thinking image.\n\n3. #ffc895: This is a bright, warm yellow color that suggests energy, optimism, and creativity. It's a great choice for a design studio that wants to convey a fun and innovative image.\n\n4. #f6f6f6: This is a light gray color that suggests neutrality, balance, and sophistication. It's a great choice for a design studio that wants to convey a refined and elegant image.\n\n5. #385a76: This is a dark green color that suggests growth, nature, and sustainability. It's a great choice for a design studio that wants to convey a environmentally-conscious and responsible image.\n\nOverall, this color palette is well-rounded and versatile, with colors that can be used in a variety of ways to convey different messages and emotions. The use of deep blues, light blues, bright yellows, and neutral grays makes it a great choice for a design studio that wants to convey a professional, modern, and innovative image.", 'How about "Lingo Love"? This name plays on the idea of using language models to help with dating, suggesting that the app can help you find your perfect match by using sophisticated messaging features. The name also has a playful and romantic feel to it, which is fitting for a dating app.\n\nHere are a few other ideas to consider:\n\n1. "Chatterbox": This name suggests that the app is all about chatting and getting to know each other, which is a key aspect of dating. It also has a friendly and approachable feel to it.\n\n2. "Lingo Luck": This name combines the idea of using language models with the concept of luck in dating, suggesting that the app can help you find love by using advanced messaging features. It also has a playful and romantic feel to it.\n\n3. "Lingo Love Match": This name combines the idea of using language models with the concept of finding your perfect match, suggesting that the app can help you find your ideal partner through sophisticated messaging features. It also has a romantic and serious feel to it.\n\n4. "ChatterLover": This name combines the idea of chatting and getting to know each other with the concept of finding love, suggesting that the app can help you find your perfect match through engaging conversations. It also has a friendly and romantic feel to it.\n\n5. "Lingo Love Story": This name combines the idea of using language models with the concept of finding your perfect match and creating a love story, suggesting that the app can help you find your ideal partner and build a relationship through sophisticated messaging features. It also has a romantic and serious feel to it.\n\nOverall, a name for a dating app that uses a LLMs to create suggested messages should be catchy, memorable, and reflective of the app\'s core values and features. It should also have a tone that is appropriate for the target audience and the type of dating experience the app offers.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `sts-dev` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:------------| | pearson_cosine | -0.1721 | | **spearman_cosine** | **-0.1452** | | pearson_manhattan | -0.1848 | | spearman_manhattan | -0.2293 | | pearson_euclidean | -0.2455 | | spearman_euclidean | -0.2637 | | pearson_dot | -0.0983 | | spearman_dot | -0.0765 | | pearson_max | -0.0983 | | spearman_max | -0.0765 | #### Semantic Similarity * Dataset: `sts-dev` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:------------| | pearson_cosine | -0.5229 | | **spearman_cosine** | **-0.4247** | | pearson_manhattan | 0.0419 | | spearman_manhattan | 0.0178 | | pearson_euclidean | -0.0219 | | spearman_euclidean | -0.0347 | | pearson_dot | -0.5406 | | spearman_dot | -0.4245 | | pearson_max | 0.0419 | | spearman_max | 0.0178 | #### Semantic Similarity * Dataset: `sts-dev` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:------------| | pearson_cosine | -0.8682 | | **spearman_cosine** | **-0.6778** | | pearson_manhattan | -0.8512 | | spearman_manhattan | -0.6299 | | pearson_euclidean | -0.8488 | | spearman_euclidean | -0.6237 | | pearson_dot | -0.8644 | | spearman_dot | -0.6508 | | pearson_max | -0.8488 | | spearman_max | -0.6237 | #### Semantic Similarity * Dataset: `sts-dev` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.9544 | | **spearman_cosine** | **0.9061** | | pearson_manhattan | 0.9423 | | spearman_manhattan | 0.9062 | | pearson_euclidean | 0.9415 | | spearman_euclidean | 0.9062 | | pearson_dot | 0.9535 | | spearman_dot | 0.9026 | | pearson_max | 0.9544 | | spearman_max | 0.9062 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### helpfulness-classification * Dataset: [helpfulness-classification](https://huggingface.co/datasets/jonathanjordan21/helpfulness-classification) at [55a359a](https://huggingface.co/datasets/jonathanjordan21/helpfulness-classification/tree/55a359a62a79b5087145fb1fbcb1a4f6fa9d1001) * Size: 21,362 training samples * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 4 tokens</li><li>mean: 44.54 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 119.41 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.72</li><li>max: 1.0</li></ul> | * Samples: | sentence1 | sentence2 | score | |:-------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------| | <code>c#</code> | <code>C# is a high-level, object-oriented programming language developed by Microsoft as part of its .NET initiative. It was created as a modern alternative to Java and supports a variety of programming paradigms, including imperative, functional, and event-driven. C# is primarily used for Windows application development, but it can also be used for web, mobile, and game development. The language is designed to be safe, secure, and efficient, and it provides developers with a rich set of libraries and tools for building robust and scalable applications. C# is also widely used in the game development industry, particularly in the development of games for the Xbox 360 and Xbox One consoles.</code> | <code>0.75</code> | | <code>c#</code> | <code>C# (pronounced "C sharp") is a modern, object-oriented programming language developed by Microsoft. It is widely used for building various types of applications, including web applications, desktop applications, mobile applications, and games. C# is similar to other programming languages such as Java and C++, and it is known for its simplicity and ease of use. C# is a powerful language that provides a rich set of libraries and frameworks that make it easy to build robust and scalable applications.<br><br>Here is a brief overview of some key features of C#:<br><br>1. Object-oriented: C# is an object-oriented language, which means it uses the concept of objects to represent real-world entities and their behavior.<br><br>2. Cross-platform: C# can be used to build applications for multiple platforms, including Windows, macOS, and Linux.<br><br>3. Strongly typed: C# is a strongly typed language, which means that variables must be declared with a specific type, and their type cannot be changed at runtime.<br><br>4. Event-driven: C# uses an event-driven programming model, which means that programs are built around the concept of events, such as user input or network activity.<br><br>5. Garbage-collected: C# has a garbage collector that automatically manages memory allocation and deallocation, making it easier to write memory-efficient and robust applications.<br><br>6. Community-driven: C# has a large and active community of developers, who contribute to the language and its libraries through open-source projects and other initiatives.<br><br>Overall, C# is a versatile and powerful programming language that is widely used for building a variety of applications.</code> | <code>1.0</code> | | <code>bacillus subtilus</code> | <code>Bacillus subtilis is a Gram-positive, rod-shaped bacterium commonly found in soil and water. It is a facultative anaerobe that can grow in the presence or absence of oxygen. B. subtilis is a model organism for studying bacterial cell biology, genetics, and physiology, and has many industrial and medical applications.<br><br>B. subtilis is a versatile organism with many interesting properties. It can form spores that allow it to survive harsh environmental conditions, such as heat, cold, and dehydration. The spores can remain dormant for long periods of time and then germinate when conditions are favorable. B. subtilis can also produce a variety of enzymes, antibiotics, and other compounds that have industrial and medical applications.<br><br>B. subtilis has been used in the production of enzymes for industrial applications, such as in the food and beverage industry for the production of cheese, yogurt, and beer. It is also used in the production of antibiotics and other pharmaceutical compounds. B. subtilis is also a model organism for studying bacterial cell biology, genetics, and physiology, and has been used extensively in research to study the mechanisms of bacterial growth, development, and survival.<br><br>Overall, B. subtilis is a versatile and important organism with many industrial and medical applications. Its properties and behaviors make it a valuable tool for researchers and industry alike.</code> | <code>1.0</code> | * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 64 - `warmup_ratio`: 0.1 - `fp16`: True #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs <details><summary>Click to expand</summary> | Epoch | Step | Training Loss | sts-dev_spearman_cosine | |:------:|:----:|:-------------:|:-----------------------:| | 0.0749 | 50 | 4.9311 | - | | 0.1497 | 100 | 4.8825 | - | | 0.2246 | 150 | 4.7368 | - | | 0.2994 | 200 | 4.519 | - | | 0.3743 | 250 | 4.3786 | - | | 0.4491 | 300 | 4.3008 | - | | 0.5240 | 350 | 4.2746 | - | | 0.5988 | 400 | 4.2331 | - | | 0.6737 | 450 | 4.2043 | - | | 0.7485 | 500 | 4.324 | - | | 0.8234 | 550 | 4.5276 | - | | 0.8982 | 600 | 4.379 | - | | 0.0749 | 50 | 1.4284 | - | | 0.1497 | 100 | 1.3783 | - | | 0.2246 | 150 | 1.3934 | - | | 0.2994 | 200 | 1.3786 | - | | 0.3743 | 250 | 1.4103 | - | | 0.4491 | 300 | 1.3666 | - | | 0.5240 | 350 | 1.3735 | - | | 0.5988 | 400 | 1.3667 | - | | 0.6737 | 450 | 1.3393 | - | | 0.7485 | 500 | 1.3432 | - | | 0.8234 | 550 | 1.3696 | - | | 0.8982 | 600 | 1.3582 | - | | 0.9731 | 650 | 1.3573 | - | | 1.0479 | 700 | 1.3204 | - | | 1.1228 | 750 | 1.3347 | - | | 1.1976 | 800 | 1.3104 | - | | 1.2725 | 850 | 1.3162 | - | | 1.3473 | 900 | 1.2872 | - | | 1.4222 | 950 | 1.2728 | - | | 1.4970 | 1000 | 1.3025 | - | | 1.5719 | 1050 | 1.2827 | - | | 1.6467 | 1100 | 1.3142 | - | | 1.7216 | 1150 | 1.2892 | - | | 1.7964 | 1200 | 1.2861 | - | | 1.8713 | 1250 | 1.2743 | - | | 1.9461 | 1300 | 1.2918 | - | | 2.0210 | 1350 | 1.2937 | - | | 2.0958 | 1400 | 1.1952 | - | | 2.1707 | 1450 | 1.1722 | - | | 2.2455 | 1500 | 1.2149 | - | | 2.3204 | 1550 | 1.2037 | - | | 2.3952 | 1600 | 1.1624 | - | | 2.4701 | 1650 | 1.1731 | - | | 2.5449 | 1700 | 1.1903 | - | | 2.6198 | 1750 | 1.1569 | - | | 2.6946 | 1800 | 1.164 | - | | 2.7695 | 1850 | 1.1744 | - | | 2.8443 | 1900 | 1.1595 | - | | 2.9192 | 1950 | 1.1505 | - | | 2.9940 | 2000 | 1.1174 | - | | 3.0 | 2004 | - | -0.1452 | | 0.0749 | 50 | 1.1597 | - | | 0.1497 | 100 | 1.1321 | - | | 0.2246 | 150 | 1.176 | - | | 0.2994 | 200 | 1.1641 | - | | 0.3743 | 250 | 1.1781 | - | | 0.4491 | 300 | 1.1613 | - | | 0.5240 | 350 | 1.1229 | - | | 0.5988 | 400 | 1.1224 | - | | 0.6737 | 450 | 1.1707 | - | | 0.7485 | 500 | 1.1398 | - | | 0.8234 | 550 | 1.1484 | - | | 0.8982 | 600 | 1.1734 | - | | 0.9731 | 650 | 1.1669 | - | | 1.0479 | 700 | 1.0559 | - | | 1.1228 | 750 | 1.0126 | - | | 1.1976 | 800 | 0.9651 | - | | 1.2725 | 850 | 0.9848 | - | | 1.3473 | 900 | 0.9897 | - | | 1.4222 | 950 | 0.9773 | - | | 1.4970 | 1000 | 0.9908 | - | | 1.5719 | 1050 | 0.9583 | - | | 1.6467 | 1100 | 0.9986 | - | | 1.7216 | 1150 | 0.9903 | - | | 1.7964 | 1200 | 0.9897 | - | | 1.8713 | 1250 | 0.9681 | - | | 1.9461 | 1300 | 0.9832 | - | | 2.0210 | 1350 | 0.9494 | - | | 2.0958 | 1400 | 0.7348 | - | | 2.1707 | 1450 | 0.7182 | - | | 2.2455 | 1500 | 0.739 | - | | 2.3204 | 1550 | 0.7585 | - | | 2.3952 | 1600 | 0.726 | - | | 2.4701 | 1650 | 0.7705 | - | | 2.5449 | 1700 | 0.776 | - | | 2.6198 | 1750 | 0.7305 | - | | 2.6946 | 1800 | 0.7412 | - | | 2.7695 | 1850 | 0.7758 | - | | 2.8443 | 1900 | 0.7659 | - | | 2.9192 | 1950 | 0.7273 | - | | 2.9940 | 2000 | 0.7207 | - | | 3.0 | 2004 | - | -0.4247 | | 0.2994 | 50 | 1.3345 | - | | 0.5988 | 100 | 0.9648 | - | | 0.8982 | 150 | 0.8681 | - | | 1.1976 | 200 | 0.7723 | - | | 1.4970 | 250 | 0.7426 | - | | 1.7964 | 300 | 0.7333 | - | | 2.0958 | 350 | 0.6736 | - | | 2.3952 | 400 | 0.5491 | - | | 2.6946 | 450 | 0.5857 | - | | 2.9940 | 500 | 0.6135 | - | | 3.0 | 501 | - | -0.6778 | | 0.2994 | 50 | 0.3463 | - | | 0.5988 | 100 | 0.03 | - | | 0.8982 | 150 | 0.0216 | - | | 1.1976 | 200 | 0.0168 | - | | 1.4970 | 250 | 0.0157 | - | | 1.7964 | 300 | 0.017 | - | | 2.0958 | 350 | 0.0156 | - | | 2.3952 | 400 | 0.0108 | - | | 2.6946 | 450 | 0.0136 | - | | 2.9940 | 500 | 0.0149 | - | | 3.0 | 501 | - | 0.9061 | | 0.2994 | 50 | 0.0966 | - | | 0.5988 | 100 | 0.036 | - | | 0.8982 | 150 | 0.0263 | - | | 1.1976 | 200 | 0.02 | - | | 1.4970 | 250 | 0.0163 | - | | 1.7964 | 300 | 0.0173 | - | | 2.0958 | 350 | 0.0149 | - | | 2.3952 | 400 | 0.0111 | - | | 2.6946 | 450 | 0.013 | - | | 2.9940 | 500 | 0.015 | - | </details> ### Framework Versions - Python: 3.10.14 - Sentence Transformers: 3.2.1 - Transformers: 4.45.1 - PyTorch: 2.4.0 - Accelerate: 0.34.2 - Datasets: 3.0.1 - Tokenizers: 0.20.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
{"base_model": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2", "datasets": ["jonathanjordan21/helpfulness-classification"], "language": ["en"], "library_name": "sentence-transformers", "metrics": ["pearson_cosine", "spearman_cosine", "pearson_manhattan", "spearman_manhattan", "pearson_euclidean", "spearman_euclidean", "pearson_dot", "spearman_dot", "pearson_max", "spearman_max"], "pipeline_tag": "sentence-similarity", "tags": ["sentence-transformers", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:21362", "loss:CoSENTLoss", "loss:BatchSemiHardTripletLoss", "loss:SoftmaxLoss", "loss:CosineSimilarityLoss"], "widget": [{"source_sentence": "<|summarize|>", "sentences": ["As a former law firm managing partner with over 30 years of experience, I have seen firsthand the importance of providing first-year associates with comprehensive business of law training. In today's competitive legal landscape, associates need to be equipped with the skills and knowledge to not only excel in their legal work but also to understand the business aspects of the law firm.\n\nOne of the key reasons for providing business of law training to first-year associates is to help them understand the firm's overall business strategy. Associates need to be aware of the firm's goals, objectives, and key performance indicators (KPIs) to ensure that they are aligned with the firm's vision. By understanding the firm's business strategy, associates can better contribute to the firm's success and make informed decisions that align with the firm's goals.\n\nAnother important aspect of business of law training is to help associates understand the firm's financial operations. Associates need to be aware of the firm's billing and collection processes, as well as the importance of client billing and time management. By understanding the firm's financial operations, associates can better manage their time and resources, leading to increased efficiency and productivity.\n\nIn addition to understanding the firm's business strategy and financial operations, associates also need to be equipped with the skills to manage client relationships. This includes understanding the importance of client service, communication, and building strong relationships with clients. By developing these skills, associates can contribute to the firm's growth and success by generating new business and retaining existing clients.\n\nWhile some law firms may argue that business of law training is not necessary for first-year associates, as they are still learning the basics of the law, this approach can be detrimental to the firm's success in the long run. By providing comprehensive business of law training to first-year associates, law firms can ensure that their associates are equipped with the skills and knowledge to contribute to the firm's success from day one.\n\nOne example of a law firm that has successfully implemented business of law training for first-year associates is Jones Day. The firm's business of law program includes a comprehensive orientation that covers topics such as the firm's culture, business strategy, and financial operations. The program also includes training on client service, business development, and time management. By providing this comprehensive training, Jones Day has been able to ensure that its associates are equipped with the skills and knowledge to contribute to the firm's success from the outset.\n\nAnother example of a law firm that has successfully implemented business of law training is Skadden, Arps, Slate, Meagher & Flom LLP. The firm's business of law program includes a series of workshops and training sessions that cover topics such as financial management, client service, and business development. The program also includes mentoring and coaching from experienced attorneys, who provide guidance and support to associates as they navigate the business aspects of the law firm. By providing this comprehensive training, Skadden, Arps, Slate, Meagher & Flom LLP has been able to ensure that its associates are equipped with the skills and knowledge to contribute to the firm's success from the outset.\n\nIn conclusion, providing first-year associates with comprehensive business of law training is essential for the success of any law firm. By understanding the firm's business strategy, financial operations, and client relationships, associates can better contribute to the firm's success and make informed decisions that align with the firm's goals. Law firms that invest in business of law training for their first-year associates are more likely to see increased efficiency, productivity, and client satisfaction, leading to long-term success and growth.", "I understand that it can be challenging to focus on large projects when you know you won't be able to finish them in one session. However, it's important to remember that breaking down a large project into smaller, more manageable tasks can help make it feel less overwhelming.\n\nHere are some tips that might help you:\n\n1. Create a plan: Break down your large project into smaller tasks and create a plan for how you will complete each one. This can help you feel more in control and less overwhelmed.\n\n2. Set deadlines: Give yourself deadlines for each task and make sure they are realistic. This can help you stay on track and avoid procrastinating.\n\n3. Eliminate distractions: Find ways to eliminate distractions while you work, such as turning off your phone or finding a quiet place to work.\n\n4. Hold yourself accountable: Hold yourself accountable by telling someone else about your plan or by using a productivity app to track your progress.\n\n5. Take breaks: It's important to take breaks and give yourself time to recharge. This can actually help you be more productive in the long run.\n\nAs for starting conversations with me and stopping midway, it's fine to do that if you have new thoughts or questions to ask. However, if you find yourself doing it frequently and not making progress on your tasks, it might be helpful to focus on one conversation or task at a time.\n\nRemember, developing good habits takes time and practice. Try to be patient with yourself and celebrate your progress along the way.", "\"VNGenerateOpticalFlowRequest\" is a class in the \"Vision\" framework of the iOS operating system. It is used to request the generation of optical flow data for an image. Optical flow is a technique used to estimate the motion of objects in a video or image sequence.\n\nThe VNGenerateOpticalFlowRequest class is a request object that represents a request to generate optical flow data for an image. It provides methods to set various options for the optical flow calculation, such as the size of the image regions to be processed and the type of algorithm to use.\n\nOnce the request has been processed, the resulting optical flow data can be accessed through the \"output\" property of the request object. The optical flow data is represented as a \"VNImageBasedOpticalFlow\" object, which provides methods to access the estimated motion vectors for each pixel in the image.\n\nOverall, the VNGenerateOpticalFlowRequest class is a powerful tool for analyzing and understanding the motion of objects in images, and can be used for a variety of applications such as object tracking, motion analysis, and video stabilization."]}, {"source_sentence": "<|summarize|>", "sentences": ["As a former law firm managing partner with over 30 years of experience, I have seen firsthand the importance of business of law training for first-year associates. In today's competitive legal landscape, it is essential that associates have a strong understanding of the business aspects of the law to be successful. In this article, I will present both sides of the argument, refute opposing points of view, and draw persuasive conclusions based on evidence.\n\nFirst and foremost, it is important to recognize that the legal profession has changed significantly in recent years. Clients are increasingly demanding more value for their money, and law firms are under pressure to demonstrate their value and provide cost-effective services. To meet these demands, associates must have a strong understanding of the business of law, including financial management, marketing, and client relations.\n\nOne argument against business of law training for first-year associates is that they should focus solely on developing their legal skills and knowledge. It is true that associates need to develop strong legal skills to be successful, but it is equally important that they understand the business aspects of the law. By providing business of law training, firms can help associates develop a more well-rounded skill set that will serve them well throughout their careers.\n\nAnother argument against business of law training is that it can be time-consuming and take away from associates' legal work. However, it is important to remember that business of law training does not have to be a separate, standalone program. Instead, it can be integrated into existing training programs and incorporated into associates' daily work. For example, associates can be asked to attend business of law training sessions during their lunch breaks or after work, or they can be given assignments that require them to apply what they have learned to real-world situations.\n\nIn addition to providing business of law training, firms should also focus on creating a culture that values and rewards business development efforts. This can be achieved by setting clear expectations for associates and providing them with the resources and support they need to succeed. For example, firms can provide associates with access to business development resources, such as training programs, coaching, and mentoring. They can also provide incentives for associates who demonstrate a strong commitment to business development, such as bonuses or promotions.\n\nIn conclusion, it is clear that business of law training is essential for first-year associates in today's legal landscape. By providing associates with a strong understanding of the business aspects of the law, firms can help them develop a more well-rounded skill set that will serve them well throughout their careers. Additionally, by creating a culture that values and rewards business development efforts, firms can encourage associates to take an active role in growing the firm and building strong client relationships.", "Here are 20 jobs that are unlikely to be fully replaced by AI in the near future due to their reliance on human creativity, empathy, and complex problem-solving skills:\n\n1. Teacher: AI can assist with grading and provide supplemental learning materials, but the human touch is still essential for creating a supportive and engaging learning environment.\n\n2. Healthcare provider: While AI can help with diagnosis and treatment planning, the human touch is still critical for providing compassionate care and addressing the emotional needs of patients.\n\n3. Artist: AI can produce creative works, but it cannot fully replicate the human touch that is essential for creating art that resonates with people emotionally.\n\n4. Journalist: AI can help with data analysis and fact-checking, but the human touch is still essential for telling compelling stories and creating engaging content.\n\n5. Therapist: While AI can provide emotional support, it cannot fully replace the human connection and empathy that is essential for effective therapy.\n\n6. Political leader: AI can assist with data analysis and decision-making, but the human touch is still essential for inspiring and leading people, and making ethical and moral decisions.\n\n7. Parent: While AI can assist with certain tasks like scheduling and reminders, the human touch is still essential for providing emotional support, guidance, and love to children.\n\n8. Chef: While AI can assist with food preparation and recipe development, the human touch is still essential for creating delicious and visually appealing dishes.\n\n9. Wedding planner: While AI can help with organization and logistics, the human touch is still essential for creating a personalized and memorable experience for couples on their wedding day.\n\n10. Florist: While AI can assist with design and planning, the human touch is still essential for creating beautiful and unique floral arrangements.\n\n11. Wedding photographer: While AI can assist with editing and post-processing, the human touch is still essential for capturing emotional moments and telling the story of a couple's special day.\n\n12. Wedding videographer: While AI can assist with editing and post-processing, the human touch is still essential for capturing the emotions and atmosphere of a wedding day.\n\n13. Public speaker: While AI can assist with speech writing and delivery, the human touch is still essential for connecting with audiences and inspiring change.\n\n14. Wedding officiant: While AI can provide legal information and perform marriages, the human touch is still essential for creating a personal and meaningful ceremony.\n\n15. Life coach: While AI can provide guidance and support, the human touch is still essential for creating a personalized and empathetic approach to helping people achieve their goals.\n\n16. Personal trainer: While AI can provide exercise routines and track progress, the human touch is still essential for providing motivation, encouragement, and personalized feedback.\n\n17. Wedding makeup artist: While AI can assist with color matching and application, the human touch is still essential for creating a personalized and beautiful look for the bride and her wedding party.\n\n18. Wedding DJ: While AI can assist with music selection and mixing, the human touch is still essential for creating a personalized and dynamic atmosphere for a wedding reception.\n\n19. Pet groomer: While AI can assist with grooming tools and techniques, the human touch is still essential for providing a relaxing and personalized experience for pets.\n\n20. Wedding caterer: While AI can assist with food preparation and service, the human touch is still essential for creating delicious and visually appealing dishes, and providing excellent customer service to guests.\n\nThese jobs require a combination of technical skills, creativity, empathy, and complex problem-solving abilities that are difficult for AI to replicate. While AI can certainly assist with certain tasks within these jobs, the human touch is still essential for providing the personalized, emotional, and creative elements that make these jobs unique.", "Oh, boy! Where do I begin? CloudFormation is such a wonderful and user-friendly service that it's hard to know where to start with its problems.\n\nFirst of all, let's talk about the templates. Oh, those templates! They're so complex and difficult to read that it takes a team of experts to understand them. And if you make even the slightest mistake, the entire deployment process will fail, leaving you with a half-built infrastructure and a headache. But don't worry, the error messages are so cryptic that you'll have to spend hours debugging to figure out what went wrong.\n\nAnd speaking of deployment, let's talk about the deployment process itself. It's so slow and clunky that you'll want to tear your hair out. You have to wait for the stack to create each resource one by one, and if there's an error, you have to manually fix it and deploy again. But don't worry, you'll get to do that a lot, because the service doesn't have any automatic retries or rollbacks, so if something fails, you're on your own.\n\nAnd let's not forget about the pricing. Oh, the pricing! It's so confusing that you'll need a degree in finance to understand it. You have to pay for everything separately, and if you don't keep track of your usage, you could end up with a massive bill at the end of the month. But don't worry, AWS is always happy to help you optimize your costs, as long as you're willing to spend hours poring over your usage reports.\n\nAnd finally, let's talk about the support. Oh, the support! It's so bad that you'll be lucky to get a response within a week. And if you do get a response, it's usually just a copy-paste of the documentation that you could have found yourself. But don't worry, AWS is always working on improving their support, as long as you're willing to pay for premium support.\n\nIn conclusion, CloudFormation is a wonderful service that is complex, slow, expensive, and has terrible support. But hey, it's not like there are any alternatives, right?"]}, {"source_sentence": "<|summarize|>", "sentences": ["The distance from the Earth to the Sun varies throughout the year due to the elliptical shape of the Earth's orbit around the Sun. The average distance from the Earth to the Sun is approximately 93 million miles (150 million kilometers).\n\nHowever, the actual distance between the Earth and the Sun can range from approximately 91.4 million miles (147.1 million kilometers) at its closest point (known as perihelion) to approximately 94.5 million miles (152.1 million kilometers) at its farthest point (known as aphelion). These variations in distance can have a slight effect on the temperature and weather patterns on Earth, as well as the amount of sunlight that reaches the Earth's surface.\n\nIt is important to note that the distance from the Earth to the Sun is also affected by other factors, such as the gravitational interactions between the Earth, the Sun, and other planets in the solar system. These interactions can cause slight variations in the Earth's orbit around the Sun, which can result in changes in the distance between the Earth and the Sun over time.\n\nIn general, the distance from the Earth to the Sun is a crucial factor in determining the climate and weather patterns on Earth, and it is closely monitored by scientists and astronomers who study the solar system and its effects on our planet.", "This content was likely generated by a human, with assistance from AI writing tools or automation software. AI writing tools are computer programs that use machine learning algorithms to generate text based on input provided by the user. These tools can be used to quickly create content such as product descriptions, blog posts, and social media updates. Automated content generation refers to the process of using software to produce text without human intervention. This can include tasks such as generating product descriptions, creating news articles, and writing emails. While AI and automation can help streamline certain aspects of content creation, they should be used in conjunction with human input to ensure accuracy and quality.", "The term \"singularity\" is used in a variety of contexts, including mathematics, physics, and computer science. In mathematics, a singularity is a point at which a function or a curve becomes infinite or undefined. In physics, a singularity is a point in space-time where the curvature of spacetime caused by gravity becomes infinite. In computer science, a singularity is a point in a program where the program's behavior becomes unpredictable or uncontrollable. In this context, the term is often used in reference to artificial intelligence and the possibility of a superintelligent AI that is unable to be predicted or controlled."]}, {"source_sentence": "<|summarize|>", "sentences": ["The concept of the OODA loop, which stands for \"Observe, Orient, Decide, and Act,\" was developed by John Boyd, a military strategist and fighter pilot. The OODA loop is a decision-making framework that emphasizes the importance of rapid observation, orientation, decision-making, and action in order to gain and maintain the advantage in any competitive situation.\n\nThe reason why the OODA loop is considered to be so powerful is that it provides a structured approach to decision-making that can be applied in a wide variety of situations, from military operations to business strategy to personal life. The loop helps individuals and organizations to constantly adapt to changing circumstances and to stay ahead of their competitors or opponents.\n\nBy continuously observing their environment, orienting themselves to the situation, making quick decisions, and taking action, individuals and organizations can gain a competitive advantage and achieve their goals more effectively. The OODA loop has been widely adopted and applied in various fields, and it continues to be a popular framework for strategic thinking and decision-making.", "My fellow Americans,\n\nToday, I stand before you to discuss the greatness of music and the composers who have shaped our cultural landscape. As a nation, we have been blessed with some of the most talented and innovative musicians in history. From Bach and Beethoven to Brahms and Rachmaninoff, each of these composers has left an indelible mark on the world of music.\n\nBach and Beethoven are two of the most celebrated composers of all time. Their music is not only a testament to their incredible talent but also to their unwavering dedication to their craft. Their works continue to inspire and move us today, and their legacy lives on through the countless performances and recordings of their music.\n\nOn the other hand, Mozart has often been criticized for his lack of depth and substance in his music. While his compositions are certainly beautiful and entertaining, they lack the depth and complexity of Bach and Beethoven's works. Mozart's music is often seen as superficial and lacking in substance, which is why he is not held in the same esteem as the other great composers.\n\nFelix Mendelssohn Bartholdy is a composer who has often been overlooked, despite his incredible talent and contributions to the world of music. Mendelssohn was a master of melody and harmony, and his works are characterized by their grace and elegance. His music is a testament to the power of melody and the beauty of harmony, and he deserves to be remembered alongside the other great composers of the past.\n\nFinally, I would be remiss if I did not mention Brahms and Rachmaninoff, two of the most beloved composers of the 19th and 20th centuries. Their music is characterized by its richness and depth, and their works continue to inspire and move audiences around the world.\n\nIn conclusion, music is an essential part of our cultural heritage, and the composers who have shaped our musical landscape deserve to be remembered and celebrated. Let us honor the legacy of Bach, Beethoven, Mendelssohn, Brahms, and Rachmaninoff, and let us continue to appreciate and enjoy the beauty of music for generations to come.", "The term \"G.O.A.T.\" (Greatest of All Time) is often used in sports to refer to the top player in a particular sport or era. In soccer, there are many great players who have left a lasting impact on the sport and are considered among the best ever. Here are a few of the top contenders for the title of G.O.A.T. in soccer:\n\n1. Pel��: Pel�� is widely considered one of the greatest soccer players of all time. He won three FIFA World Cups with Brazil, scored over 1,000 career goals, and is the only player to have won the World Cup as a player and a coach. Pel�� is known for his exceptional technical ability, vision, and goal-scoring prowess, and is often referred to as the \"King of Soccer.\"\n\n2. Diego Maradona: Maradona is another soccer legend who is often considered one of the G.O.A.T. candidates. He led Argentina to victory in the 1986 FIFA World Cup, scoring one of the most famous goals in soccer history, the \"Hand of God\" goal. Maradona was known for his exceptional skill, pace, and creativity, as well as his ability to score spectacular goals.\n\n3. Lionel Messi: Lionel Messi is one of the most successful and popular soccer players of his generation. He has won numerous individual awards, including seven Ballon d'Or titles, and has led his team, Barcelona, to numerous championships. Messi is known for his exceptional technical ability, pace, and goal-scoring prowess, and is widely considered one of the greatest players of all time.\n\n4. Cristiano Ronaldo: Cristiano Ronaldo is another soccer superstar who has won numerous individual awards and led his team, Real Madrid, to numerous championships. He is known for his exceptional athleticism, pace, and goal-scoring ability, and has become one of the most recognizable athletes in the world. Ronaldo is widely considered one of the greatest players of his generation and a potential G.O.A.T. candidate.\n\n5. Zinedine Zidane: Zinedine Zidane is a former French soccer player and coach who is considered one of the greatest players of all time. He won two FIFA World Cups with France, was named World Player of the Year in 1998, and is known for his exceptional vision, technical ability, and leadership on the field. Zidane is often mentioned as a potential G.O.A.T. candidate.\n\nThese are just a few of the many great soccer players who have contributed to the sport's history and are often considered among the greatest of all time. The debate over who the G.O.A.T. in soccer is will likely continue for years to come."]}, {"source_sentence": "<|summarize|>", "sentences": ["Here's a description of each color in the palette for the digital design studio focused on promo design and thoughtful in-depth research:\n\n1. #0d1925: This is a deep, dark blue color that conveys a sense of trust, stability, and expertise. It's a great choice for a design studio that wants to convey a professional and reliable image.\n\n2. #7391ab: This is a light blue color that suggests a sense of calmness, freshness, and innovation. It's a great choice for a design studio that wants to convey a modern and forward-thinking image.\n\n3. #ffc895: This is a bright, warm yellow color that suggests energy, optimism, and creativity. It's a great choice for a design studio that wants to convey a fun and innovative image.\n\n4. #f6f6f6: This is a light gray color that suggests neutrality, balance, and sophistication. It's a great choice for a design studio that wants to convey a refined and elegant image.\n\n5. #385a76: This is a dark green color that suggests growth, nature, and sustainability. It's a great choice for a design studio that wants to convey a environmentally-conscious and responsible image.\n\nOverall, this color palette is well-rounded and versatile, with colors that can be used in a variety of ways to convey different messages and emotions. The use of deep blues, light blues, bright yellows, and neutral grays makes it a great choice for a design studio that wants to convey a professional, modern, and innovative image.", "How about \"Lingo Love\"? This name plays on the idea of using language models to help with dating, suggesting that the app can help you find your perfect match by using sophisticated messaging features. The name also has a playful and romantic feel to it, which is fitting for a dating app.\n\nHere are a few other ideas to consider:\n\n1. \"Chatterbox\": This name suggests that the app is all about chatting and getting to know each other, which is a key aspect of dating. It also has a friendly and approachable feel to it.\n\n2. \"Lingo Luck\": This name combines the idea of using language models with the concept of luck in dating, suggesting that the app can help you find love by using advanced messaging features. It also has a playful and romantic feel to it.\n\n3. \"Lingo Love Match\": This name combines the idea of using language models with the concept of finding your perfect match, suggesting that the app can help you find your ideal partner through sophisticated messaging features. It also has a romantic and serious feel to it.\n\n4. \"ChatterLover\": This name combines the idea of chatting and getting to know each other with the concept of finding love, suggesting that the app can help you find your perfect match through engaging conversations. It also has a friendly and romantic feel to it.\n\n5. \"Lingo Love Story\": This name combines the idea of using language models with the concept of finding your perfect match and creating a love story, suggesting that the app can help you find your ideal partner and build a relationship through sophisticated messaging features. It also has a romantic and serious feel to it.\n\nOverall, a name for a dating app that uses a LLMs to create suggested messages should be catchy, memorable, and reflective of the app's core values and features. It should also have a tone that is appropriate for the target audience and the type of dating experience the app offers.", "Here are some potential uses cases for large language models (LLMs) in investigative journalism:\n\n1. Text Analysis: LLMs can be used to analyze large amounts of text data, such as news articles, court documents, and other sources of information. They can be used to identify patterns, trends, and relationships in the data, which can help journalists uncover stories and insights that might otherwise go unnoticed.\n\n2. Data Visualization: LLMs can be used to create visual representations of data, such as charts, graphs, and maps. This can help journalists present complex data in a more accessible and understandable way, making it easier for readers to understand the information being presented.\n\n3. Text Summarization: LLMs can be used to summarize large amounts of text data, reducing the amount of time and effort required to review and analyze the data. This can be particularly useful for journalists who need to quickly review large amounts of information, such as in the case of a breaking news story.\n\n4. Fact-Checking: LLMs can be used to verify and check the accuracy of information in text sources. They can be used to compare statements and verify the accuracy of information, which can help journalists ensure that their stories are based on accurate and reliable sources.\n\n5. Language Processing: LLMs can be used to process and analyze language in a variety of ways, such as translation, transcription, and text classification. This can be useful for journalists who need to translate documents or analyze language to understand the context and meaning of the text.\n\n6. Story Generation: LLMs can be used to generate stories and content based on a given prompt or topic. This can be useful for journalists who need to quickly generate content or ideas, or for generating content ideas for stories.\n\nOverall, LLMs can be a powerful tool for investigative journalists, helping them to quickly analyze and make sense of large amounts of text data, and to generate insights and stories that might otherwise go unnoticed."]}], "model-index": [{"name": "SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2", "results": [{"task": {"type": "semantic-similarity", "name": "Semantic Similarity"}, "dataset": {"name": "sts dev", "type": "sts-dev"}, "metrics": [{"type": "pearson_cosine", "value": -0.17209387421860306, "name": "Pearson Cosine"}, {"type": "spearman_cosine", "value": -0.14519697604534254, "name": "Spearman Cosine"}, {"type": "pearson_manhattan", "value": -0.18478684918865068, "name": "Pearson Manhattan"}, {"type": "spearman_manhattan", "value": -0.22934609512092033, "name": "Spearman Manhattan"}, {"type": "pearson_euclidean", "value": -0.24554019485789957, "name": "Pearson Euclidean"}, {"type": "spearman_euclidean", "value": -0.2636925680131005, "name": "Spearman Euclidean"}, {"type": "pearson_dot", "value": -0.09827403403830653, "name": "Pearson Dot"}, {"type": "spearman_dot", "value": -0.07652978034449803, "name": "Spearman Dot"}, {"type": "pearson_max", "value": -0.09827403403830653, "name": "Pearson Max"}, {"type": "spearman_max", "value": -0.07652978034449803, "name": "Spearman Max"}, {"type": "pearson_cosine", "value": -0.5228815388202983, "name": "Pearson Cosine"}, {"type": "spearman_cosine", "value": -0.42466509615002906, "name": "Spearman Cosine"}, {"type": "pearson_manhattan", "value": 0.041871234564333504, "name": "Pearson Manhattan"}, {"type": "spearman_manhattan", "value": 0.01779323694411108, "name": "Spearman Manhattan"}, {"type": "pearson_euclidean", "value": -0.02187961676451103, "name": "Pearson Euclidean"}, {"type": "spearman_euclidean", "value": -0.034711877576677826, "name": "Spearman Euclidean"}, {"type": "pearson_dot", "value": -0.5406291665961442, "name": "Pearson Dot"}, {"type": "spearman_dot", "value": -0.42445765589990675, "name": "Spearman Dot"}, {"type": "pearson_max", "value": 0.041871234564333504, "name": "Pearson Max"}, {"type": "spearman_max", "value": 0.01779323694411108, "name": "Spearman Max"}, {"type": "pearson_cosine", "value": -0.868186555898593, "name": "Pearson Cosine"}, {"type": "spearman_cosine", "value": -0.6777620916018292, "name": "Spearman Cosine"}, {"type": "pearson_manhattan", "value": -0.8512368403264938, "name": "Pearson Manhattan"}, {"type": "spearman_manhattan", "value": -0.6299165589119777, "name": "Spearman Manhattan"}, {"type": "pearson_euclidean", "value": -0.8487518713213003, "name": "Pearson Euclidean"}, {"type": "spearman_euclidean", "value": -0.6237022202033926, "name": "Spearman Euclidean"}, {"type": "pearson_dot", "value": -0.8643809390831493, "name": "Pearson Dot"}, {"type": "spearman_dot", "value": -0.6508029354917555, "name": "Spearman Dot"}, {"type": "pearson_max", "value": -0.8487518713213003, "name": "Pearson Max"}, {"type": "spearman_max", "value": -0.6237022202033926, "name": "Spearman Max"}, {"type": "pearson_cosine", "value": 0.9544094126053565, "name": "Pearson Cosine"}, {"type": "spearman_cosine", "value": 0.9060595979711947, "name": "Spearman Cosine"}, {"type": "pearson_manhattan", "value": 0.942315396362075, "name": "Pearson Manhattan"}, {"type": "spearman_manhattan", "value": 0.9061702233866991, "name": "Spearman Manhattan"}, {"type": "pearson_euclidean", "value": 0.941528689832946, "name": "Pearson Euclidean"}, {"type": "spearman_euclidean", "value": 0.9061945563550459, "name": "Spearman Euclidean"}, {"type": "pearson_dot", "value": 0.9534770056190236, "name": "Pearson Dot"}, {"type": "spearman_dot", "value": 0.9026146734829041, "name": "Spearman Dot"}, {"type": "pearson_max", "value": 0.9544094126053565, "name": "Pearson Max"}, {"type": "spearman_max", "value": 0.9061945563550459, "name": "Spearman Max"}]}]}]}
zeroMN/SHMT
zeroMN
audio-text-to-text
[ "transformers", "transformer", "multimodal", "vqa", "text", "audio", "audio-text-to-text", "en", "zh", "dataset:zeroMN/nlp_corpus_zh", "dataset:zeroMN/hanlp_date-zh", "dataset:nyu-mll/glue", "dataset:aps/super_glue", "dataset:facebook/anli", "dataset:tasksource/babi_nli", "dataset:zeroMN/AVEdate", "dataset:sick", "dataset:snli", "dataset:scitail", "dataset:hans", "dataset:alisawuffles/WANLI", "dataset:tasksource/recast", "dataset:sileod/probability_words_nli", "dataset:joey234/nan-nli", "dataset:pietrolesci/nli_fever", "dataset:pietrolesci/breaking_nli", "dataset:pietrolesci/conj_nli", "dataset:pietrolesci/fracas", "dataset:pietrolesci/dialogue_nli", "dataset:pietrolesci/mpe", "dataset:pietrolesci/dnc", "dataset:pietrolesci/recast_white", "dataset:pietrolesci/joci", "dataset:pietrolesci/robust_nli", "dataset:pietrolesci/robust_nli_is_sd", "dataset:pietrolesci/robust_nli_li_ts", "dataset:pietrolesci/gen_debiased_nli", "dataset:pietrolesci/add_one_rte", "dataset:tasksource/imppres", "dataset:hlgd", "dataset:paws", "dataset:medical_questions_pairs", "dataset:Anthropic/model-written-evals", "dataset:truthful_qa", "dataset:nightingal3/fig-qa", "dataset:tasksource/bigbench", "dataset:blimp", "dataset:cos_e", "dataset:cosmos_qa", "dataset:dream", "dataset:openbookqa", "dataset:qasc", "dataset:quartz", "dataset:quail", "dataset:head_qa", "dataset:sciq", "dataset:social_i_qa", "dataset:wiki_hop", "dataset:wiqa", "dataset:piqa", "dataset:hellaswag", "dataset:pkavumba/balanced-copa", "dataset:12ml/e-CARE", "dataset:art", "dataset:winogrande", "dataset:codah", "dataset:ai2_arc", "dataset:definite_pronoun_resolution", "dataset:swag", "dataset:math_qa", "dataset:metaeval/utilitarianism", "dataset:mteb/amazon_counterfactual", "dataset:SetFit/insincere-questions", "dataset:SetFit/toxic_conversations", "dataset:turingbench/TuringBench", "dataset:trec", "dataset:tals/vitaminc", "dataset:hope_edi", "dataset:strombergnlp/rumoureval_2019", "dataset:ethos", "dataset:tweet_eval", "dataset:discovery", "dataset:pragmeval", "dataset:silicone", "dataset:lex_glue", "dataset:papluca/language-identification", "dataset:imdb", "dataset:rotten_tomatoes", "dataset:ag_news", "dataset:yelp_review_full", "dataset:financial_phrasebank", "dataset:poem_sentiment", "dataset:dbpedia_14", "dataset:amazon_polarity", "dataset:app_reviews", "dataset:hate_speech18", "dataset:sms_spam", "dataset:humicroedit", "dataset:snips_built_in_intents", "dataset:hate_speech_offensive", "dataset:yahoo_answers_topics", "dataset:pacovaldez/stackoverflow-questions", "dataset:zapsdcn/hyperpartisan_news", "dataset:zapsdcn/sciie", "dataset:zapsdcn/citation_intent", "dataset:go_emotions", "dataset:allenai/scicite", "dataset:liar", "dataset:relbert/lexical_relation_classification", "dataset:tasksource/linguisticprobing", "dataset:tasksource/crowdflower", "dataset:metaeval/ethics", "dataset:emo", "dataset:google_wellformed_query", "dataset:tweets_hate_speech_detection", "dataset:has_part", "dataset:blog_authorship_corpus", "dataset:launch/open_question_type", "dataset:health_fact", "dataset:commonsense_qa", "dataset:mc_taco", "dataset:ade_corpus_v2", "dataset:prajjwal1/discosense", "dataset:circa", "dataset:PiC/phrase_similarity", "dataset:copenlu/scientific-exaggeration-detection", "dataset:quarel", "dataset:mwong/fever-evidence-related", "dataset:numer_sense", "dataset:dynabench/dynasent", "dataset:raquiba/Sarcasm_News_Headline", "dataset:sem_eval_2010_task_8", "dataset:demo-org/auditor_review", "dataset:medmcqa", "dataset:RuyuanWan/Dynasent_Disagreement", "dataset:RuyuanWan/Politeness_Disagreement", "dataset:RuyuanWan/SBIC_Disagreement", "dataset:RuyuanWan/SChem_Disagreement", "dataset:RuyuanWan/Dilemmas_Disagreement", "dataset:lucasmccabe/logiqa", "dataset:wiki_qa", "dataset:tasksource/cycic_classification", "dataset:tasksource/cycic_multiplechoice", "dataset:tasksource/sts-companion", "dataset:tasksource/commonsense_qa_2.0", "dataset:tasksource/lingnli", "dataset:tasksource/monotonicity-entailment", "dataset:tasksource/arct", "dataset:tasksource/scinli", "dataset:tasksource/naturallogic", "dataset:onestop_qa", "dataset:demelin/moral_stories", "dataset:corypaik/prost", "dataset:aps/dynahate", "dataset:metaeval/syntactic-augmentation-nli", "dataset:tasksource/autotnli", "dataset:lasha-nlp/CONDAQA", "dataset:openai/webgpt_comparisons", "dataset:Dahoas/synthetic-instruct-gptj-pairwise", "dataset:metaeval/scruples", "dataset:metaeval/wouldyourather", "dataset:metaeval/defeasible-nli", "dataset:tasksource/help-nli", "dataset:metaeval/nli-veridicality-transitivity", "dataset:tasksource/lonli", "dataset:tasksource/dadc-limit-nli", "dataset:ColumbiaNLP/FLUTE", "dataset:tasksource/strategy-qa", "dataset:openai/summarize_from_feedback", "dataset:tasksource/folio", "dataset:yale-nlp/FOLIO", "dataset:tasksource/tomi-nli", "dataset:tasksource/avicenna", "dataset:stanfordnlp/SHP", "dataset:GBaker/MedQA-USMLE-4-options-hf", "dataset:sileod/wikimedqa", "dataset:declare-lab/cicero", "dataset:amydeng2000/CREAK", "dataset:tasksource/mutual", "dataset:inverse-scaling/NeQA", "dataset:inverse-scaling/quote-repetition", "dataset:inverse-scaling/redefine-math", "dataset:tasksource/puzzte", "dataset:tasksource/implicatures", "dataset:race", "dataset:tasksource/race-c", "dataset:tasksource/spartqa-yn", "dataset:tasksource/spartqa-mchoice", "dataset:tasksource/temporal-nli", "dataset:riddle_sense", "dataset:tasksource/clcd-english", "dataset:maximedb/twentyquestions", "dataset:metaeval/reclor", "dataset:tasksource/counterfactually-augmented-imdb", "dataset:tasksource/counterfactually-augmented-snli", "dataset:metaeval/cnli", "dataset:tasksource/boolq-natural-perturbations", "dataset:metaeval/acceptability-prediction", "dataset:metaeval/equate", "dataset:tasksource/ScienceQA_text_only", "dataset:Jiangjie/ekar_english", "dataset:tasksource/implicit-hate-stg1", "dataset:metaeval/chaos-mnli-ambiguity", "dataset:IlyaGusev/headline_cause", "dataset:tasksource/logiqa-2.0-nli", "dataset:tasksource/oasst2_dense_flat", "dataset:sileod/mindgames", "dataset:metaeval/ambient", "dataset:metaeval/path-naturalness-prediction", "dataset:civil_comments", "dataset:AndyChiang/cloth", "dataset:AndyChiang/dgen", "dataset:tasksource/I2D2", "dataset:webis/args_me", "dataset:webis/Touche23-ValueEval", "dataset:tasksource/starcon", "dataset:PolyAI/banking77", "dataset:tasksource/ConTRoL-nli", "dataset:tasksource/tracie", "dataset:tasksource/sherliic", "dataset:tasksource/sen-making", "dataset:tasksource/winowhy", "dataset:tasksource/robustLR", "dataset:CLUTRR/v1", "dataset:tasksource/logical-fallacy", "dataset:tasksource/parade", "dataset:tasksource/cladder", "dataset:tasksource/subjectivity", "dataset:tasksource/MOH", "dataset:tasksource/VUAC", "dataset:tasksource/TroFi", "dataset:sharc_modified", "dataset:tasksource/conceptrules_v2", "dataset:metaeval/disrpt", "dataset:tasksource/zero-shot-label-nli", "dataset:tasksource/com2sense", "dataset:tasksource/scone", "dataset:tasksource/winodict", "dataset:tasksource/fool-me-twice", "dataset:tasksource/monli", "dataset:tasksource/corr2cause", "dataset:lighteval/lsat_qa", "dataset:tasksource/apt", "dataset:zeroshot/twitter-financial-news-sentiment", "dataset:tasksource/icl-symbol-tuning-instruct", "dataset:tasksource/SpaceNLI", "dataset:sihaochen/propsegment", "dataset:HannahRoseKirk/HatemojiBuild", "dataset:tasksource/regset", "dataset:tasksource/esci", "dataset:lmsys/chatbot_arena_conversations", "dataset:neurae/dnd_style_intents", "dataset:hitachi-nlp/FLD.v2", "dataset:tasksource/SDOH-NLI", "dataset:allenai/scifact_entailment", "dataset:tasksource/feasibilityQA", "dataset:tasksource/simple_pair", "dataset:tasksource/AdjectiveScaleProbe-nli", "dataset:tasksource/resnli", "dataset:tasksource/SpaRTUN", "dataset:tasksource/ReSQ", "dataset:tasksource/semantic_fragments_nli", "dataset:MoritzLaurer/dataset_train_nli", "dataset:tasksource/stepgame", "dataset:tasksource/nlgraph", "dataset:tasksource/oasst2_pairwise_rlhf_reward", "dataset:tasksource/hh-rlhf", "dataset:tasksource/ruletaker", "dataset:qbao775/PARARULE-Plus", "dataset:tasksource/proofwriter", "dataset:tasksource/logical-entailment", "dataset:tasksource/nope", "dataset:tasksource/LogicNLI", "dataset:kiddothe2b/contract-nli", "dataset:AshtonIsNotHere/nli4ct_semeval2024", "dataset:tasksource/lsat-ar", "dataset:tasksource/lsat-rc", "dataset:AshtonIsNotHere/biosift-nli", "dataset:tasksource/brainteasers", "dataset:Anthropic/persuasion", "dataset:erbacher/AmbigNQ-clarifying-question", "dataset:tasksource/SIGA-nli", "dataset:unigram/FOL-nli", "dataset:tasksource/goal-step-wikihow", "dataset:GGLab/PARADISE", "dataset:tasksource/doc-nli", "dataset:tasksource/mctest-nli", "dataset:tasksource/patent-phrase-similarity", "dataset:tasksource/natural-language-satisfiability", "dataset:tasksource/idioms-nli", "dataset:tasksource/lifecycle-entailment", "dataset:nvidia/HelpSteer", "dataset:nvidia/HelpSteer2", "dataset:sadat2307/MSciNLI", "dataset:pushpdeep/UltraFeedback-paired", "dataset:tasksource/AES2-essay-scoring", "dataset:tasksource/english-grading", "dataset:tasksource/wice", "dataset:Dzeniks/hover", "dataset:sileod/missing-item-prediction", "dataset:tasksource/tasksource_dpo_pairs", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2025-01-06T04:33:44
2025-01-20T12:06:32
99
1
--- datasets: - zeroMN/nlp_corpus_zh - zeroMN/hanlp_date-zh - nyu-mll/glue - aps/super_glue - facebook/anli - tasksource/babi_nli - zeroMN/AVEdate - sick - snli - scitail - hans - alisawuffles/WANLI - tasksource/recast - sileod/probability_words_nli - joey234/nan-nli - pietrolesci/nli_fever - pietrolesci/breaking_nli - pietrolesci/conj_nli - pietrolesci/fracas - pietrolesci/dialogue_nli - pietrolesci/mpe - pietrolesci/dnc - pietrolesci/recast_white - pietrolesci/joci - pietrolesci/robust_nli - pietrolesci/robust_nli_is_sd - pietrolesci/robust_nli_li_ts - pietrolesci/gen_debiased_nli - pietrolesci/add_one_rte - tasksource/imppres - hlgd - paws - medical_questions_pairs - Anthropic/model-written-evals - truthful_qa - nightingal3/fig-qa - tasksource/bigbench - blimp - cos_e - cosmos_qa - dream - openbookqa - qasc - quartz - quail - head_qa - sciq - social_i_qa - wiki_hop - wiqa - piqa - hellaswag - pkavumba/balanced-copa - 12ml/e-CARE - art - winogrande - codah - ai2_arc - definite_pronoun_resolution - swag - math_qa - metaeval/utilitarianism - mteb/amazon_counterfactual - SetFit/insincere-questions - SetFit/toxic_conversations - turingbench/TuringBench - trec - tals/vitaminc - hope_edi - strombergnlp/rumoureval_2019 - ethos - tweet_eval - discovery - pragmeval - silicone - lex_glue - papluca/language-identification - imdb - rotten_tomatoes - ag_news - yelp_review_full - financial_phrasebank - poem_sentiment - dbpedia_14 - amazon_polarity - app_reviews - hate_speech18 - sms_spam - humicroedit - snips_built_in_intents - hate_speech_offensive - yahoo_answers_topics - pacovaldez/stackoverflow-questions - zapsdcn/hyperpartisan_news - zapsdcn/sciie - zapsdcn/citation_intent - go_emotions - allenai/scicite - liar - relbert/lexical_relation_classification - tasksource/linguisticprobing - tasksource/crowdflower - metaeval/ethics - emo - google_wellformed_query - tweets_hate_speech_detection - has_part - blog_authorship_corpus - launch/open_question_type - health_fact - commonsense_qa - mc_taco - ade_corpus_v2 - prajjwal1/discosense - circa - PiC/phrase_similarity - copenlu/scientific-exaggeration-detection - quarel - mwong/fever-evidence-related - numer_sense - dynabench/dynasent - raquiba/Sarcasm_News_Headline - sem_eval_2010_task_8 - demo-org/auditor_review - medmcqa - RuyuanWan/Dynasent_Disagreement - RuyuanWan/Politeness_Disagreement - RuyuanWan/SBIC_Disagreement - RuyuanWan/SChem_Disagreement - RuyuanWan/Dilemmas_Disagreement - lucasmccabe/logiqa - wiki_qa - tasksource/cycic_classification - tasksource/cycic_multiplechoice - tasksource/sts-companion - tasksource/commonsense_qa_2.0 - tasksource/lingnli - tasksource/monotonicity-entailment - tasksource/arct - tasksource/scinli - tasksource/naturallogic - onestop_qa - demelin/moral_stories - corypaik/prost - aps/dynahate - metaeval/syntactic-augmentation-nli - tasksource/autotnli - lasha-nlp/CONDAQA - openai/webgpt_comparisons - Dahoas/synthetic-instruct-gptj-pairwise - metaeval/scruples - metaeval/wouldyourather - metaeval/defeasible-nli - tasksource/help-nli - metaeval/nli-veridicality-transitivity - tasksource/lonli - tasksource/dadc-limit-nli - ColumbiaNLP/FLUTE - tasksource/strategy-qa - openai/summarize_from_feedback - tasksource/folio - yale-nlp/FOLIO - tasksource/tomi-nli - tasksource/avicenna - stanfordnlp/SHP - GBaker/MedQA-USMLE-4-options-hf - sileod/wikimedqa - declare-lab/cicero - amydeng2000/CREAK - tasksource/mutual - inverse-scaling/NeQA - inverse-scaling/quote-repetition - inverse-scaling/redefine-math - tasksource/puzzte - tasksource/implicatures - race - tasksource/race-c - tasksource/spartqa-yn - tasksource/spartqa-mchoice - tasksource/temporal-nli - riddle_sense - tasksource/clcd-english - maximedb/twentyquestions - metaeval/reclor - tasksource/counterfactually-augmented-imdb - tasksource/counterfactually-augmented-snli - metaeval/cnli - tasksource/boolq-natural-perturbations - metaeval/acceptability-prediction - metaeval/equate - tasksource/ScienceQA_text_only - Jiangjie/ekar_english - tasksource/implicit-hate-stg1 - metaeval/chaos-mnli-ambiguity - IlyaGusev/headline_cause - tasksource/logiqa-2.0-nli - tasksource/oasst2_dense_flat - sileod/mindgames - metaeval/ambient - metaeval/path-naturalness-prediction - civil_comments - AndyChiang/cloth - AndyChiang/dgen - tasksource/I2D2 - webis/args_me - webis/Touche23-ValueEval - tasksource/starcon - PolyAI/banking77 - tasksource/ConTRoL-nli - tasksource/tracie - tasksource/sherliic - tasksource/sen-making - tasksource/winowhy - tasksource/robustLR - CLUTRR/v1 - tasksource/logical-fallacy - tasksource/parade - tasksource/cladder - tasksource/subjectivity - tasksource/MOH - tasksource/VUAC - tasksource/TroFi - sharc_modified - tasksource/conceptrules_v2 - metaeval/disrpt - tasksource/zero-shot-label-nli - tasksource/com2sense - tasksource/scone - tasksource/winodict - tasksource/fool-me-twice - tasksource/monli - tasksource/corr2cause - lighteval/lsat_qa - tasksource/apt - zeroshot/twitter-financial-news-sentiment - tasksource/icl-symbol-tuning-instruct - tasksource/SpaceNLI - sihaochen/propsegment - HannahRoseKirk/HatemojiBuild - tasksource/regset - tasksource/esci - lmsys/chatbot_arena_conversations - neurae/dnd_style_intents - hitachi-nlp/FLD.v2 - tasksource/SDOH-NLI - allenai/scifact_entailment - tasksource/feasibilityQA - tasksource/simple_pair - tasksource/AdjectiveScaleProbe-nli - tasksource/resnli - tasksource/SpaRTUN - tasksource/ReSQ - tasksource/semantic_fragments_nli - MoritzLaurer/dataset_train_nli - tasksource/stepgame - tasksource/nlgraph - tasksource/oasst2_pairwise_rlhf_reward - tasksource/hh-rlhf - tasksource/ruletaker - qbao775/PARARULE-Plus - tasksource/proofwriter - tasksource/logical-entailment - tasksource/nope - tasksource/LogicNLI - kiddothe2b/contract-nli - AshtonIsNotHere/nli4ct_semeval2024 - tasksource/lsat-ar - tasksource/lsat-rc - AshtonIsNotHere/biosift-nli - tasksource/brainteasers - Anthropic/persuasion - erbacher/AmbigNQ-clarifying-question - tasksource/SIGA-nli - unigram/FOL-nli - tasksource/goal-step-wikihow - GGLab/PARADISE - tasksource/doc-nli - tasksource/mctest-nli - tasksource/patent-phrase-similarity - tasksource/natural-language-satisfiability - tasksource/idioms-nli - tasksource/lifecycle-entailment - nvidia/HelpSteer - nvidia/HelpSteer2 - sadat2307/MSciNLI - pushpdeep/UltraFeedback-paired - tasksource/AES2-essay-scoring - tasksource/english-grading - tasksource/wice - Dzeniks/hover - sileod/missing-item-prediction - tasksource/tasksource_dpo_pairs language: - en - zh library_name: transformers license: apache-2.0 metrics: - accuracy - bleu - wer pipeline_tag: audio-text-to-text tags: - multimodal - vqa - text - audio widget: - text: My name is Sylvain and I live in Paris example_title: Parisian - text: My name is Sarah and I live in London example_title: Londoner model-index: - name: Evolutionary Multi-Modal Model results: - task: type: vqa name: Visual Question Answering dataset: name: Synthetic Multimodal Dataset type: synthetic-dataset split: test metrics: - type: accuracy value: 85 --- ### Model Sources You need to use separate code, audio, text, and natural language together with the model. Because the model will use separate word segmenters and vocabularies to achieve the best results when dealing with special cases. -- - **Repository:** [https://zeromn-zeromn-shmt.hf.space] - **kaggle:** [https://www.kaggle.com/models/zeroeva/evolutionary-multi-modal) (https://www.kaggle.com/models/zeroeva/evolutionary-multi-modal) - **Demo:** [https://zeromn-zeromn-shmt.hf.space] ## Multi-Modal Model # Model Card for Evolutionary -- <script type="module" src="https://gradio.s3-us-west-2.amazonaws.com/5.12.0/gradio.js" ></script> <gradio-app src="https://zeromn-zeromn-shmt.hf.space"></gradio-app> - ### Model breast_cancer_wisconsin_original test ```python from ucimlrepo import fetch_ucirepo fetch dataset breast_cancer_wisconsin_original = fetch_ucirepo(id=15) data (as pandas dataframes) X = breast_cancer_wisconsin_original.data.features y = breast_cancer_wisconsin_original.data.targets metadata print(breast_cancer_wisconsin_original.metadata) variable information print(breast_cancer_wisconsin_original.variables) ``` ########################################################## - # 0 0.93 0.99 0.96 79 # 1 0.98 0.90 0.94 58 -- #accuracy 0.95 137 -- -- This model, named `Evolutionary Multi-Modal Model`, is a multimodal transformer designed to handle a variety of tasks including vision and audio processing. It is built on top of the `adapter-transformers` and `transformers` libraries and is intended to be a versatile base model for both direct use and fine-tuning. - -- **Developed by:** Independent researcher **Funded by :** Self-funded **Shared by :** Independent researcher **Model type:** Multimodal **Language(s) (NLP):** English zh **License:** Apache-2.0 **Finetuned from model :** None - ## Uses:https://huggingface.co/zeroMN/SHMT ### Direct Use ```python git lfs install git clone https://huggingface.co/zeroMN/SHMT.git ``` ### Downstream Use The model can be fine-tuned for specific tasks such as visual question answering (VQA), image captioning, and audio recognition. ### Out-of-Scope Use The Evolved Multimodal Model is not suitable for tasks that require high expertise or domain-specific expertise beyond its current capabilities. The number of speech frames still needs to be fine-tuned by yourself. ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the following risks, biases, and limitations: - **Bias:** The model may exhibit biases present in the training data, particularly if the data is not representative of all populations. - **Risks:** The model should not be used in critical applications where high accuracy and reliability are required without thorough testing and validation. - **Limitations:** The model may not perform well on tasks that require fine-grained recognition or highly specialized audio processing. ## How to Get Started with the Model ```python # Use a pipeline as a high-level helper from transformers import pipeline pipe = pipeline("text-generation", model="zeroMN/SHMT") ``` ```python # Load model directly from transformers import AutoModel model = AutoModel.from_pretrained("zeroMN/SHMT") ```
[ "QUESTION_ANSWERING" ]
[ "HEAD-QA", "MEDQA", "SCICITE", "SCIFACT", "SCIQ", "SCITAIL" ]
Non_BioNLP
### Model Sources You need to use separate code, audio, text, and natural language together with the model. Because the model will use separate word segmenters and vocabularies to achieve the best results when dealing with special cases. -- - **Repository:** [https://zeromn-zeromn-shmt.hf.space] - **kaggle:** [https://www.kaggle.com/models/zeroeva/evolutionary-multi-modal) (https://www.kaggle.com/models/zeroeva/evolutionary-multi-modal) - **Demo:** [https://zeromn-zeromn-shmt.hf.space] ## Multi-Modal Model # Model Card for Evolutionary -- <script type="module" src="https://gradio.s3-us-west-2.amazonaws.com/5.12.0/gradio.js" ></script> <gradio-app src="https://zeromn-zeromn-shmt.hf.space"></gradio-app> - ### Model breast_cancer_wisconsin_original test ```python from ucimlrepo import fetch_ucirepo fetch dataset breast_cancer_wisconsin_original = fetch_ucirepo(id=15) data (as pandas dataframes) X = breast_cancer_wisconsin_original.data.features y = breast_cancer_wisconsin_original.data.targets metadata print(breast_cancer_wisconsin_original.metadata) variable information print(breast_cancer_wisconsin_original.variables) ``` ########################################################## - # 0 0.93 0.99 0.96 79 # 1 0.98 0.90 0.94 58 -- #accuracy 0.95 137 -- -- This model, named `Evolutionary Multi-Modal Model`, is a multimodal transformer designed to handle a variety of tasks including vision and audio processing. It is built on top of the `adapter-transformers` and `transformers` libraries and is intended to be a versatile base model for both direct use and fine-tuning. - -- **Developed by:** Independent researcher **Funded by :** Self-funded **Shared by :** Independent researcher **Model type:** Multimodal **Language(s) (NLP):** English zh **License:** Apache-2.0 **Finetuned from model :** None - ## Uses:https://huggingface.co/zeroMN/SHMT ### Direct Use ```python git lfs install git clone https://huggingface.co/zeroMN/SHMT.git ``` ### Downstream Use The model can be fine-tuned for specific tasks such as visual question answering (VQA), image captioning, and audio recognition. ### Out-of-Scope Use The Evolved Multimodal Model is not suitable for tasks that require high expertise or domain-specific expertise beyond its current capabilities. The number of speech frames still needs to be fine-tuned by yourself. ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the following risks, biases, and limitations: - **Bias:** The model may exhibit biases present in the training data, particularly if the data is not representative of all populations. - **Risks:** The model should not be used in critical applications where high accuracy and reliability are required without thorough testing and validation. - **Limitations:** The model may not perform well on tasks that require fine-grained recognition or highly specialized audio processing. ## How to Get Started with the Model ```python # Use a pipeline as a high-level helper from transformers import pipeline pipe = pipeline("text-generation", model="zeroMN/SHMT") ``` ```python # Load model directly from transformers import AutoModel model = AutoModel.from_pretrained("zeroMN/SHMT") ```
{"datasets": ["zeroMN/nlp_corpus_zh", "zeroMN/hanlp_date-zh", "nyu-mll/glue", "aps/super_glue", "facebook/anli", "tasksource/babi_nli", "zeroMN/AVEdate", "sick", "snli", "scitail", "hans", "alisawuffles/WANLI", "tasksource/recast", "sileod/probability_words_nli", "joey234/nan-nli", "pietrolesci/nli_fever", "pietrolesci/breaking_nli", "pietrolesci/conj_nli", "pietrolesci/fracas", "pietrolesci/dialogue_nli", "pietrolesci/mpe", "pietrolesci/dnc", "pietrolesci/recast_white", "pietrolesci/joci", "pietrolesci/robust_nli", "pietrolesci/robust_nli_is_sd", "pietrolesci/robust_nli_li_ts", "pietrolesci/gen_debiased_nli", "pietrolesci/add_one_rte", "tasksource/imppres", "hlgd", "paws", "medical_questions_pairs", "Anthropic/model-written-evals", "truthful_qa", "nightingal3/fig-qa", "tasksource/bigbench", "blimp", "cos_e", "cosmos_qa", "dream", "openbookqa", "qasc", "quartz", "quail", "head_qa", "sciq", "social_i_qa", "wiki_hop", "wiqa", "piqa", "hellaswag", "pkavumba/balanced-copa", "12ml/e-CARE", "art", "winogrande", "codah", "ai2_arc", "definite_pronoun_resolution", "swag", "math_qa", "metaeval/utilitarianism", "mteb/amazon_counterfactual", "SetFit/insincere-questions", "SetFit/toxic_conversations", "turingbench/TuringBench", "trec", "tals/vitaminc", "hope_edi", "strombergnlp/rumoureval_2019", "ethos", "tweet_eval", "discovery", "pragmeval", "silicone", "lex_glue", "papluca/language-identification", "imdb", "rotten_tomatoes", "ag_news", "yelp_review_full", "financial_phrasebank", "poem_sentiment", "dbpedia_14", "amazon_polarity", "app_reviews", "hate_speech18", "sms_spam", "humicroedit", "snips_built_in_intents", "hate_speech_offensive", "yahoo_answers_topics", "pacovaldez/stackoverflow-questions", "zapsdcn/hyperpartisan_news", "zapsdcn/sciie", "zapsdcn/citation_intent", "go_emotions", "allenai/scicite", "liar", "relbert/lexical_relation_classification", "tasksource/linguisticprobing", "tasksource/crowdflower", "metaeval/ethics", "emo", "google_wellformed_query", "tweets_hate_speech_detection", "has_part", "blog_authorship_corpus", "launch/open_question_type", "health_fact", "commonsense_qa", "mc_taco", "ade_corpus_v2", "prajjwal1/discosense", "circa", "PiC/phrase_similarity", "copenlu/scientific-exaggeration-detection", "quarel", "mwong/fever-evidence-related", "numer_sense", "dynabench/dynasent", "raquiba/Sarcasm_News_Headline", "sem_eval_2010_task_8", "demo-org/auditor_review", "medmcqa", "RuyuanWan/Dynasent_Disagreement", "RuyuanWan/Politeness_Disagreement", "RuyuanWan/SBIC_Disagreement", "RuyuanWan/SChem_Disagreement", "RuyuanWan/Dilemmas_Disagreement", "lucasmccabe/logiqa", "wiki_qa", "tasksource/cycic_classification", "tasksource/cycic_multiplechoice", "tasksource/sts-companion", "tasksource/commonsense_qa_2.0", "tasksource/lingnli", "tasksource/monotonicity-entailment", "tasksource/arct", "tasksource/scinli", "tasksource/naturallogic", "onestop_qa", "demelin/moral_stories", "corypaik/prost", "aps/dynahate", "metaeval/syntactic-augmentation-nli", "tasksource/autotnli", "lasha-nlp/CONDAQA", "openai/webgpt_comparisons", "Dahoas/synthetic-instruct-gptj-pairwise", "metaeval/scruples", "metaeval/wouldyourather", "metaeval/defeasible-nli", "tasksource/help-nli", "metaeval/nli-veridicality-transitivity", "tasksource/lonli", "tasksource/dadc-limit-nli", "ColumbiaNLP/FLUTE", "tasksource/strategy-qa", "openai/summarize_from_feedback", "tasksource/folio", "yale-nlp/FOLIO", "tasksource/tomi-nli", "tasksource/avicenna", "stanfordnlp/SHP", "GBaker/MedQA-USMLE-4-options-hf", "sileod/wikimedqa", "declare-lab/cicero", "amydeng2000/CREAK", "tasksource/mutual", "inverse-scaling/NeQA", "inverse-scaling/quote-repetition", "inverse-scaling/redefine-math", "tasksource/puzzte", "tasksource/implicatures", "race", "tasksource/race-c", "tasksource/spartqa-yn", "tasksource/spartqa-mchoice", "tasksource/temporal-nli", "riddle_sense", "tasksource/clcd-english", "maximedb/twentyquestions", "metaeval/reclor", "tasksource/counterfactually-augmented-imdb", "tasksource/counterfactually-augmented-snli", "metaeval/cnli", "tasksource/boolq-natural-perturbations", "metaeval/acceptability-prediction", "metaeval/equate", "tasksource/ScienceQA_text_only", "Jiangjie/ekar_english", "tasksource/implicit-hate-stg1", "metaeval/chaos-mnli-ambiguity", "IlyaGusev/headline_cause", "tasksource/logiqa-2.0-nli", "tasksource/oasst2_dense_flat", "sileod/mindgames", "metaeval/ambient", "metaeval/path-naturalness-prediction", "civil_comments", "AndyChiang/cloth", "AndyChiang/dgen", "tasksource/I2D2", "webis/args_me", "webis/Touche23-ValueEval", "tasksource/starcon", "PolyAI/banking77", "tasksource/ConTRoL-nli", "tasksource/tracie", "tasksource/sherliic", "tasksource/sen-making", "tasksource/winowhy", "tasksource/robustLR", "CLUTRR/v1", "tasksource/logical-fallacy", "tasksource/parade", "tasksource/cladder", "tasksource/subjectivity", "tasksource/MOH", "tasksource/VUAC", "tasksource/TroFi", "sharc_modified", "tasksource/conceptrules_v2", "metaeval/disrpt", "tasksource/zero-shot-label-nli", "tasksource/com2sense", "tasksource/scone", "tasksource/winodict", "tasksource/fool-me-twice", "tasksource/monli", "tasksource/corr2cause", "lighteval/lsat_qa", "tasksource/apt", "zeroshot/twitter-financial-news-sentiment", "tasksource/icl-symbol-tuning-instruct", "tasksource/SpaceNLI", "sihaochen/propsegment", "HannahRoseKirk/HatemojiBuild", "tasksource/regset", "tasksource/esci", "lmsys/chatbot_arena_conversations", "neurae/dnd_style_intents", "hitachi-nlp/FLD.v2", "tasksource/SDOH-NLI", "allenai/scifact_entailment", "tasksource/feasibilityQA", "tasksource/simple_pair", "tasksource/AdjectiveScaleProbe-nli", "tasksource/resnli", "tasksource/SpaRTUN", "tasksource/ReSQ", "tasksource/semantic_fragments_nli", "MoritzLaurer/dataset_train_nli", "tasksource/stepgame", "tasksource/nlgraph", "tasksource/oasst2_pairwise_rlhf_reward", "tasksource/hh-rlhf", "tasksource/ruletaker", "qbao775/PARARULE-Plus", "tasksource/proofwriter", "tasksource/logical-entailment", "tasksource/nope", "tasksource/LogicNLI", "kiddothe2b/contract-nli", "AshtonIsNotHere/nli4ct_semeval2024", "tasksource/lsat-ar", "tasksource/lsat-rc", "AshtonIsNotHere/biosift-nli", "tasksource/brainteasers", "Anthropic/persuasion", "erbacher/AmbigNQ-clarifying-question", "tasksource/SIGA-nli", "unigram/FOL-nli", "tasksource/goal-step-wikihow", "GGLab/PARADISE", "tasksource/doc-nli", "tasksource/mctest-nli", "tasksource/patent-phrase-similarity", "tasksource/natural-language-satisfiability", "tasksource/idioms-nli", "tasksource/lifecycle-entailment", "nvidia/HelpSteer", "nvidia/HelpSteer2", "sadat2307/MSciNLI", "pushpdeep/UltraFeedback-paired", "tasksource/AES2-essay-scoring", "tasksource/english-grading", "tasksource/wice", "Dzeniks/hover", "sileod/missing-item-prediction", "tasksource/tasksource_dpo_pairs"], "language": ["en", "zh"], "library_name": "transformers", "license": "apache-2.0", "metrics": ["accuracy", "bleu", "wer"], "pipeline_tag": "audio-text-to-text", "tags": ["multimodal", "vqa", "text", "audio"], "widget": [{"text": "My name is Sylvain and I live in Paris", "example_title": "Parisian"}, {"text": "My name is Sarah and I live in London", "example_title": "Londoner"}], "model-index": [{"name": "Evolutionary Multi-Modal Model", "results": [{"task": {"type": "vqa", "name": "Visual Question Answering"}, "dataset": {"name": "Synthetic Multimodal Dataset", "type": "synthetic-dataset", "split": "test"}, "metrics": [{"type": "accuracy", "value": 85}]}]}]}
zjunlp/OneKE
zjunlp
text-generation
[ "transformers", "pytorch", "llama", "text-generation", "en", "zh", "dataset:zjunlp/iepile", "dataset:zjunlp/InstructIE", "arxiv:2402.14710", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
2024-02-23T09:28:16
2024-05-06T09:49:31
353
42
--- datasets: - zjunlp/iepile - zjunlp/InstructIE language: - en - zh license: cc-by-nc-sa-4.0 --- <p align="center"> <a href="https://github.com/zjunlp/deepke"> <img src="assets/oneke_logo.png" width="400"/></a> <p> <p align="center"> <a href="https://oneke.openkg.cn/"> <img alt="Documentation" src="https://img.shields.io/badge/demo-website-blue"> </a> <a href="https://pypi.org/project/deepke/#files"> <img alt="PyPI" src="https://img.shields.io/pypi/v/deepke"> </a> <a href="https://github.com/zjunlp/DeepKE/blob/master/LICENSE"> <img alt="GitHub" src="https://img.shields.io/github/license/zjunlp/deepke"> </a> <a href="http://zjunlp.github.io/DeepKE"> <img alt="Documentation" src="https://img.shields.io/badge/doc-website-red"> </a> </p> <h1 align="center"> <p>OneKE: A Bilingual Large Language Model for <br>Knowledge Extraction</p> </h1> - [What is OneKE?](#what-is-oneke) - [How is OneKE trained?](#how-is-oneke-trained) - [Getting Started with OneKE](#getting-started-with-oneke) - [Quick Start](#quick-start) - [Advanced Use of OneKE](#advanced-use-of-oneke) - [OneKE Instruction Format](#oneke-instruction-format) - [Conversion of OneKE Instruction Format](#conversion-of-oneke-instruction-format) - [Customized Schema Description Instructions](#customized-schema-description-instructions) - [Evaluation](#evaluation) - [Continue Training](#continue-training) - [Citation](#citation) ## What is OneKE? OneKE is a large-scale model framework for knowledge extraction jointly developed by Ant Group and Zhejiang University. It possesses the capability of generalized knowledge extraction in bilingual Chinese and English, across multiple domains and tasks, and provides comprehensive toolchain support. OneKE has contributed to the OpenKG open knowledge graph community in an open-source manner. Knowledge construction based on unstructured documents has always been one of the key challenges for the large-scale implementation of knowledge graphs. The high fragmentation and unstructured nature of real-world information, along with the substantial disparities between extracted content and its natural language expression, often result in the suboptimal performance of large language models in information extraction tasks. Natural language text often contains ambiguities, polysemies, and metaphors due to implicit and long-distance context associations, posing significant challenges for knowledge extraction tasks. In response to these issues, Ant Group and Zhejiang University leveraged their years of expertise in knowledge graphs and natural language processing to jointly construct and upgrade the capabilities of Ant's large-scale model "BaiLing" in the field of knowledge extraction. They released the bilingual knowledge extraction framework OneKE which included a version based on full parametric fine-tuning of Chinese-Alpaca-2-13B. Evaluation metrics show that OneKE has achieved relatively good performance on several fully supervised and zero-shot entity/relation/event extraction tasks. The unified knowledge extraction framework has wide application scenarios and can significantly reduce the construction costs of domain-specific knowledge graphs. By extracting structured knowledge from massive datasets to construct high-quality knowledge graphs and establish logical associations between knowledge elements, interpretable inference and decision-making can be realized. It can also enhance large models by mitigating hallucination and boosting stability, accelerating the vertical domain applications of large models. For example, in the medical field, knowledge extraction can be used to convert doctors' experience into structured, rule-based management, building controlled auxiliary diagnostics, and medical Q&A systems. In the financial sector, it can extract financial indicators, risk events, causal logic, and industry chains for automated financial report generation, risk prediction, and industry chain analysis. In the public sector, it can facilitate knowledge-based management of government regulations, enhancing the efficiency and accuracy of public services. <p align="center" width="100%"> <a href="" target="_blank"><img src="assets/oneke.gif" alt="OneKE" style="width: 100%; min-width: 20px; display: block; margin: auto;"></a> </p> ## How is OneKE trained? OneKE mainly focuses on schema-generalizable information extraction. Due to issues such as non-standard formats, noisy data, and lack of diversity in existing extraction instruction data, OneKE adopted techniques such as normalization and cleaning of extraction instructions, difficult negative sample collection, and schema-based batched instruction construction, as shown in the illustration. For more detailed information, refer to the paper "[IEPile: Unearthing Large-Scale Schema-Based Information Extraction Corpus](https://arxiv.org/abs/2402.14710) [[Github](https://github.com/zjunlp/IEPile)]". The zero-shot generalization comparison results of OneKE with other large models are as follows: * `NER-en`: CrossNER_AI, CrossNER_literature, CrossNER_music, CrossNER_politics, CrossNER_science * `NER-zh`: WEIBONER, boson * `RE-zh`: COAE2016, IPRE, SKE2020 * `RE-en`: FewRel, Wiki-ZSL * `EE-en`: CrudeOilNews, WikiEvents, RAMS * `EE-zh`: FewFC, CCF Law <p align="center" width="50%"> <a href="" target="_blank"><img src="assets/oneke_results.png" alt="OneKE" style="width: 50%; min-width: 20px; display: block; margin: auto;"></a> </p> ![zero_en](./assets/zero_en.jpg) ![zero_zh](./assets/zero_zh.jpg) <details> <summary><b>Supervision Results</b></summary> ![supervision_ner](./assets/supervision_ner.jpg) ![supervision_re](./assets/supervision_re.jpg) ![supervision_ee](./assets/supervision_ee.jpg) </details> ## Getting Started with OneKE ### Quick Start It is recommended to have at least **20GB of VRAM** for training and inferencing. ```python import torch from transformers import ( AutoConfig, AutoTokenizer, AutoModelForCausalLM, GenerationConfig, BitsAndBytesConfig ) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_path = 'zjunlp/OneKE' config = AutoConfig.from_pretrained(model_path, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) # 4-bit Quantized OneKE quantization_config=BitsAndBytesConfig( load_in_4bit=True, llm_int8_threshold=6.0, llm_int8_has_fp16_weight=False, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", ) model = AutoModelForCausalLM.from_pretrained( model_path, config=config, device_map="auto", quantization_config=quantization_config, torch_dtype=torch.bfloat16, trust_remote_code=True, ) model.eval() system_prompt = '<<SYS>>\nYou are a helpful assistant. 你是一个乐于助人的助手。\n<</SYS>>\n\n' sintruct = "{\"instruction\": \"You are an expert in named entity recognition. Please extract entities that match the schema definition from the input. Return an empty list if the entity type does not exist. Please respond in the format of a JSON string.\", \"schema\": [\"person\", \"organization\", \"else\", \"location\"], \"input\": \"284 Robert Allenby ( Australia ) 69 71 71 73 , Miguel Angel Martin ( Spain ) 75 70 71 68 ( Allenby won at first play-off hole )\"}" sintruct = '[INST] ' + system_prompt + sintruct + '[/INST]' input_ids = tokenizer.encode(sintruct, return_tensors="pt").to(device) input_length = input_ids.size(1) generation_output = model.generate(input_ids=input_ids, generation_config=GenerationConfig(max_length=1024, max_new_tokens=512, return_dict_in_generate=True)) generation_output = generation_output.sequences[0] generation_output = generation_output[input_length:] output = tokenizer.decode(generation_output, skip_special_tokens=True) print(output) ``` For more detailed inference, please refer to [DeepKE-llm/InstructKGC/6.1.2IE专用模型](https://github.com/zjunlp/DeepKE/blob/main/example/llm/InstructKGC/README_CN.md/#612ie%E4%B8%93%E7%94%A8%E6%A8%A1%E5%9E%8B). ### Advanced Use of OneKE ### OneKE Instruction Format The instructions in OneKE are formatted in a dictionary-type string similar to JSON. It consists of three fields: (1) **`'instruction'`**, which is the task description, specifies in natural language the role the model plays and the task to be completed; (2) **`'schema'`**, a list of labels to be extracted, clearly indicates the key fields of the information to be extracted, reflecting the user's needs, and is dynamic and changeable; (3) **`'input'`**, refers to the source text for information extraction. Below are examples of instructions for various tasks: <details> <summary><b>Named Entity Recognition (NER)</b></summary> ```json { "instruction": "You are an expert specializing in entity extraction. Please extract entities that comply with the schema definition from the input; return an empty list for non-existent entity types. Please respond in the JSON string format.", "schema": ["Person Name", "Education", "Position", "Nationality"], "input": "Mr. Liu Zhijian: Born in 1956, Chinese nationality, no permanent residency abroad, member of the Communist Party, associate degree, senior economist." } ``` </details> <details> <summary><b>Relation Extraction (RE)</b></summary> ```json { "instruction": "You are an expert specializing in relation extraction. Please extract relationship triples that comply with the schema definition from the input; return an empty list for non-existent relationships. Please respond in the JSON string format.", "schema": ["Father", "Husband", "Postal Code", "Mother"], "input": "Ding Long took out his life savings of $12,000, which without a doubt was a substantial amount at the end of the 19th century, plus Carpentier's donation, they both funded Columbia University's sinology research together." } ``` </details> <details> <summary><b>Knowledge Graph Construction (KGC)</b></summary> ```json { "instruction": "You are an expert in structuring knowledge about graph entities. Based on the schema description of the input entity type, extract the corresponding entity instances and their property information from the text; do not output non-existent properties, return a list if there are multiple values for a property, and provide the output in a parseable json format.", "schema": [ { "entity_type": "Person", "attributes": ["Chinese Name", "English Name", "Ancestral Home", "Date of Birth", "Place of Birth", "Occupation", "Alma Mater", "Works", "Awards"] } ], "input": "Jay Chou (Jay Chou), born on January 18, 1979, in New Taipei City, Taiwan Province, ancestral home in Yongchun County, Quanzhou City, Fujian Province, Chinese pop singer, musician, actor, director, screenwriter, graduated from Tamkang High School. In 2000, he released his debut album 'Jay'. In 2001, he cemented his style of blending Eastern and Western music with the album 'Fantasy'. In 2002, he held ‘The One’ world tour; the same year, he won the Best Composer award at the 13th Taiwan Golden Melody Awards with the song 'Love Before the Century'." } ``` </details> <details> <summary><b>Event Extraction (EE)</b></summary> ```json { "instruction": "You are an expert specializing in event extraction. Please extract events that match the defined schema from the input; return an empty list for non-existent events, NAN for non-existent arguments, and a list if there are multiple values for an argument. Please provide your response in JSON string format.", "schema": [ { "event_type": "Finance/Trading - Interest Rate Hike", "trigger": true, "arguments": [ "Time" ] }, { "event_type": "Finance/Trading - Interest Rate Cut", "trigger": true, "arguments": [ "Cut Magnitude" ] }, { "event_type": "Finance/Trading - Price Increase", "trigger": true, "arguments": [ "Price Raiser" ] }, { "event_type": "Finance/Trading - Price Cut", "trigger": true, "arguments": [ "Price Cutter", "Time" ] } ], "input": "AI risk control solution provider Vezetech secures tens of millions of dollars in Series C+ funding" } ``` </details> <details> <summary><b>Event Trigger Identification (EET)</b></summary> ```json { "instruction": "You are an expert specializing in event trigger identification. Please extract the event types and triggers that match the defined schema from the input; return an empty list if the event type doesn't exist. Please provide your response in JSON string format.", "schema": ["Organizational Relationship - Dissolve", "Organizational Relationship - Layoff", "Organizational Relationship - Dismiss", "Competition Behavior - Promotion"], "input": "Nestlé lays off 4,000 employees: When the times leave you behind, they won't even say goodbye!" } ``` </details> <details> <summary><b>Event Argument Extraction (EEA)</b></summary> ```json { "instruction": "You are an expert specializing in event argument extraction. Please extract the event arguments and their roles that match the defined schema from the input; return NAN or an empty dictionary for non-existent arguments, and a list if there are multiple values for an argument. Please provide your response in JSON string format.", "schema": [{"event_type": "Organizational Relationship - Resignation/Departure", "arguments": ["Resigner", "Time", "Former Organization"]}], "input": "Nestlé lays off 4,000 employees: When the times leave you behind, they won't even say goodbye!" } ``` </details> > Note: In consideration of the complexity of information extraction within specific domains and the high reliance on prompts, we support the integration of Schema descriptions and examples in the instructions to enhance the effectiveness of extraction tasks. For details, refer to **`Customized Schema Description Instructions`** and **`Customized Example Instructions`**. Please understand that due to the limited scale of the model, the model output is prompt-dependent and different prompts may yield inconsistent results. ### Conversion of OneKE Instruction Format **List of Instructions**: ```python instruction_mapper = { 'NERzh': "你是专门进行实体抽取的专家。请从input中抽取出符合schema定义的实体,不存在的实体类型返回空列表。请按照JSON字符串的格式回答。", 'REzh': "你是专门进行关系抽取的专家。请从input中抽取出符合schema定义的关系三元组,不存在的关系返回空列表。请按照JSON字符串的格式回答。", 'EEzh': "你是专门进行事件提取的专家。请从input中抽取出符合schema定义的事件,不存在的事件返回空列表,不存在的论元返回NAN,如果论元存在多值请返回列表。请按照JSON字符串的格式回答。", 'EETzh': "你是专门进行事件提取的专家。请从input中抽取出符合schema定义的事件类型及事件触发词,不存在的事件返回空列表。请按照JSON字符串的格式回答。", 'EEAzh': "你是专门进行事件论元提取的专家。请从input中抽取出符合schema定义的事件论元及论元角色,不存在的论元返回NAN或空字典,如果论元存在多值请返回列表。请按照JSON字符串的格式回答。", 'KGzh': '你是一个图谱实体知识结构化专家。根据输入实体类型(entity type)的schema描述,从文本中抽取出相应的实体实例和其属性信息,不存在的属性不输出, 属性存在多值就返回列表,并输出为可解析的json格式。', 'NERen': "You are an expert in named entity recognition. Please extract entities that match the schema definition from the input. Return an empty list if the entity type does not exist. Please respond in the format of a JSON string.", 'REen': "You are an expert in relationship extraction. Please extract relationship triples that match the schema definition from the input. Return an empty list for relationships that do not exist. Please respond in the format of a JSON string.", 'EEen': "You are an expert in event extraction. Please extract events from the input that conform to the schema definition. Return an empty list for events that do not exist, and return NAN for arguments that do not exist. If an argument has multiple values, please return a list. Respond in the format of a JSON string.", 'EETen': "You are an expert in event extraction. Please extract event types and event trigger words from the input that conform to the schema definition. Return an empty list for non-existent events. Please respond in the format of a JSON string.", 'EEAen': "You are an expert in event argument extraction. Please extract event arguments and their roles from the input that conform to the schema definition, which already includes event trigger words. If an argument does not exist, return NAN or an empty dictionary. Please respond in the format of a JSON string.", 'KGen': 'You are an expert in structured knowledge systems for graph entities. Based on the schema description of the input entity type, you extract the corresponding entity instances and their attribute information from the text. Attributes that do not exist should not be output. If an attribute has multiple values, a list should be returned. The results should be output in a parsable JSON format.', } ``` Recommended **Split Numbers** for Each Task: ```python split_num_mapper = { 'NER':6, 'RE':4, 'EE':4, 'EET':4, 'EEA':4, 'KG':1 } ``` Since predicting all schemas in the label set at once is too challenging and not easily scalable, OneKE uses a batched approach during training. It divides the number of schemas asked in the instructions, querying a fixed number of schemas at a time. Hence, if the label set of a piece of data is too long, it will be split into multiple instructions that the model will address in turns. **Schema Format**: ```python NER: ["Person Name", "Education", "Position", "Nationality"] # List of strings RE: ["Father", "Husband", "Postal Code", "Mother"] # List of strings EE: [{"event_type": "Finance/Trading - Interest Rate Hike", "trigger": True, "arguments": ["Time"]}, {"event_type": "Finance/Trading - Interest Rate Cut", "trigger": True, "arguments": ["Cut Magnitude"]}] # List of dictionaries, "event_type" is a string, "trigger" is a bool, "arguments" is a list EET: ["Organizational Relationship - Dissolution", "Organizational Relationship - Layoff", "Organizational Relationship - Dismissal", "Competition Behavior - Advancement"] # List of strings EEA: [{"event_type": "Finance/Trading - Interest Rate Hike", "arguments": ["Time"]}, {"event_type": "Finance/Trading - Interest Rate Cut", "arguments": ["Cut Magnitude"]}] # List of dictionaries, "event_type" is a string, "arguments" is a list ``` Below is a simple Batched Instruction Generation script: ```python def get_instruction(language, task, schema, input): sintructs = [] split_num = split_num_mapper[task] if type(schema) == dict: sintruct = json.dumps({'instruction':instruction_mapper[task+language], 'schema':schema, 'input':input}, ensure_ascii=False) sintructs.append(sintruct) else: split_schemas = [schema[i:i+split_num] for i in range(0, len(schema), split_num)] for split_schema in split_schemas: sintruct = json.dumps({'instruction':instruction_mapper[task+language], 'schema':split_schema, 'input':input}, ensure_ascii=False) sintructs.append(sintruct) return sintructs ``` Below is an example using the aforementioned simple script: ```python task = 'NER' language = 'en' schema = ['person', 'organization', 'else', 'location'] split_num = split_num_mapper[task] split_schemas = [schema[i:i+split_num] for i in range(0, len(schema), split_num)] input = '284 Robert Allenby ( Australia ) 69 71 71 73 , Miguel Angel Martin ( Spain ) 75 70 71 68 ( Allenby won at first play-off hole )' sintructs = [] for split_schema in split_schemas: sintruct = json.dumps({'instruction':instruction_mapper[task+language], 'schema':split_schema, 'input':input}, ensure_ascii=False) sintructs.append(sintruct) ``` > '{"instruction": "You are an expert in named entity recognition. Please extract entities that match the schema definition from the input. Return an empty list if the entity type does not exist. Please respond in the format of a JSON string.", "schema": ["person", "organization", "else", "location"], "input": "284 Robert Allenby ( Australia ) 69 71 71 73 , Miguel Angel Martin ( Spain ) 75 70 71 68 ( Allenby won at first play-off hole )"}' For more detailed data conversion, please refer to [DeepKE-llm/InstructKGC/README_CN.md/2.3测试数据转换](https://github.com/zjunlp/DeepKE/blob/main/example/llm/InstructKGC/README_CN.md/#23%E6%B5%8B%E8%AF%95%E6%95%B0%E6%8D%AE%E8%BD%AC%E6%8D%A2) ### Customized Schema Description Instructions ```json { "instruction": "You are an expert specializing in entity extraction. Please extract entities that comply with the defined schema from the input; return an empty list for non-existent entity types. Please respond in JSON string format.", "schema": { "Position": "The entity type describes the occupation or official position of an individual or group, including specific role names such as 'producer', 'scorekeeper', 'ascetic', 'oil painter'.", "Attraction": "The entity type of attraction includes buildings, museums, memorials, art galleries, rivers, peaks, etc. Representative entities include the Pentagon, Tate Modern, Zheng Chenggong Memorial Hall, Duxi Palace, Barikasa, Robo River, Gunung Batur, Yugong Yishan LIVE, Xu Beihong Memorial Hall, Madame Tussauds, etc.", "Company": "Company is an entity type representing any legal entity or business organization. This type of entity can be a catering group, manufacturer, retailer, hotel, bank, design institute, etc. Examples include: 'Shangri-La Hotel Group', 'JVC', 'Shanghai Coolray Professional eSports Peripheral Store', 'K2&bull;Haitang Bay', 'Wuhan Iron and Steel', 'louisvuitton', 'Bank of Scotland', 'Beijing Institute of Architectural Design', '7 Days Inn', 'Vanke Group'.", "Address": "Address entities refer to entities with geographical location information, representing specific places such as a country, city, region, street, or abstract geographic areas. Examples include: 'the river dock at the southeast tip of downtown Manhattan', 'Tuapse', 'Venice, Italy', 'Huzhou Hot Spring Golf Course', 'North Carolina', 'Beijing-Tianjin region', 'Happy Internet Cafe', 'Yinian Nursing Home', 'Shangtang Town Pudong', 'Inner Mongolia Autonomous Region Chifeng City', etc.", "Organization": "Organizational entities refer to collective organizations such as companies, shops, clubs, schools, etc. They play a certain role in social and economic activities and have certain personality rights.", "Movie": "Movie entities include titles of movies in Chinese or English, and sometimes also include names of characters in films." }, "input": "It is difficult for me to imagine setting up another Haifishing Plaza. When we obtained this project, I just happened to be in Sanya." } ``` <details> <summary><b>Relation Extraction (RE) Description Instructions</b></summary> ```json { "instruction": "You are an expert specializing in relation extraction. Please extract triples that match the defined schema from the input; return an empty list for non-existent relations. Please respond in JSON string format.", "schema": { "Ethnicity": "Ethnicity", "Alma Mater": "This type of relationship describes the connection between a person and their alma mater; the person is the subject, and the alma mater is the object. By identifying the names of people and schools in the text and analyzing the relationship of graduation between them based on word combinations and contextual information.", "Lead Actor": "This is a type of relationship that describes the connection between a film or television work and its main actors; the subject is the film or television work and the object is the actor. In a valid 'Lead Actor' relationship, the actor (object) plays an important role in the work (subject).", "Father": "This type of relationship is used to indicate the kinship between a father and a child, where the father is the birth parent or caregiver of the child. In the triple, the subject of the 'Father' relation type is the child, and the object is the father." }, "input": "Throughout history, all those who have portrayed the character 'Chu Liuxiang' from Gu Long's novels are recognized as handsome men in the entertainment industry. In 2011, 36-year-old Zhang Zhiyao played Chu Liuxiang in 'The New Adventures of Chu Liuxiang', remaining irresistibly handsome." } ``` </details> <details> <summary><b>Event Extraction (EE) Description Instructions</b></summary> ```json { "instruction": "You are an expert specializing in event extraction. Please extract events that match the schema definition from the input; return an empty list for non-existent events, NAN for non-existent arguments, and a list if there are multiple values for an argument. Please respond in JSON string format.", "schema": { "Finance/Trading - Listing": { "Finance/Trading - Listing": "The act of a financial entity being listed on the stock market mainly involves companies, stocks, etc. Positive examples include specific information about a company or stock listing, while negative examples are unrelated to such activities.", "trigger": true, "arguments": { "Financing Amount": "Refers to the total amount of funds raised by a company in a listing event. It sums up the revenue of all share issues and is measured in currency, including but not limited to units like 'billion', 'million', 'dollars', 'RMB', etc.", "Time": "Describes the specific time of the listing event, which can be a specific date or relative time, and may also include location information and specific days and weeks.", "Listing Enterprise": "Refers to the company or enterprise that is conducting an IPO or has already been listed on the trading market in a listing event. Examples include: 'Shanghai Henlius Biotech', 'Three Squirrels', 'Baoxin Software', 'Little Bear Electric', 'Jinshang Bank', 'Beyond Meat (BYND)', 'DouYu gaming live-streaming platform', 'fast food empire', and 'autonomous driving lidar manufacturer Velodyne', etc.", "Location": "The specific location of the financial or trading event, such as a city, building, or room." } }, "Organizational Relationship - Resignation/Departure": { "Organizational Relationship - Resignation/Departure": "The event type 'Organizational Relationship - Resignation/Departure' refers to changes in the relationship between individuals or organizational members and their organization, mainly including 'resignation', 'requesting to resign', 'stepping down', 'leaving the team', 'retirement', 'leaving', etc. Often occurs in scenarios of high-level personnel changes, government officials changes, or athletes transfers. Examples: 'Li Nan announced resignation', 'Yu Xubo resigned from the position of chairman of the board just three months after taking office, Chen Lang succeeded'.", "trigger": true, "arguments": { "Resigner": "Refers to the individual or group who actively or passively leaves their original position or job post in an organizational relationship resignation/departure event. It can be one person or a group of people, such as: 'Finance Minister', '90s born guy from Shaoyang Longhui, Ouyang En and', 'Xiong Xiaoge', '*ST Changsheng two deputy general managers', 'Yang Tao', 'pilot Ma Qiang', 'HE WEI', '5 Baidu executives', 'Youxin Group COO Peng Weilian', 'Jianke Institute securities representative Shu Yanming', etc.", "Time": "Indicates the specific point in time or period when the resignation/departure event occurred, generally including specific dates, weeks, times, etc., like 'September 19', 'the evening of June 29', 'this Saturday', '10:30 AM on July 9', 'the morning of June 12', 'April 9', 'September 10', 'local time on Sunday', 'September 12', '10 AM on October 15', etc." } }, "Finance/Trading - Interest Rate Increase": { "Finance/Trading - Interest Rate Increase": "This event describes banks or financial institutions raising interest rates to tighten the money supply. The typical trigger word is 'hike'. 'Hike' indicates the occurrence of the Finance/Trading - Interest Rate Increase event.", "trigger": true, "arguments": { "Rate of Increase": "The rate of increase is usually presented as a percentage or basis points, indicating the degree or range of the interest rate hike in the event. Examples include: 'to 5.75%', '25 basis points', 'the benchmark rate from 0.25% up to 0.5%', '25 basis points'.", "Hiking Institution": "The hiking institution is the financial institution with the authority to determine or implement the interest rate hike policy in a Finance/Trading - Interest Rate Increase event, such as central banks from different countries (e.g., Bank of England, Federal Reserve, European Central Bank) or financial institutions (e.g., Bank of England).", "Time": "Indicates the specific date or time period when the Finance/Trading - Interest Rate Increase event occurred, such as 'the morning of June 18th', 'January 24th', 'three months later', etc. The specific expression includes time accurate to the minute, such as '11:00 on December 28, 2018', relative time, such as 'yesterday (2nd)', and special time expressions like 'Mid-Autumn Festival'." } }, "Organizational Relationship - Contract Termination": { "Organizational Relationship - Contract Termination": "Situations of contract cancellation or termination usually occur in the business, entertainment, or sports domains. Trigger words include 'leave', 'trade', 'cut', 'contract expiry', 'contract termination', 'sell-off', 'release', 'send out', 'contract break', etc. Positive examples include 'Peng Yuchang terminates his contract' and 'Jiang Mengjie nearly bankrupt after contract termination'. Negative examples are like 'Federer withdrew from the competition'.", "trigger": true, "arguments": { "Party Being Terminated": "In an organizational relationship contract termination event, the role is the party whose agreement or contract relation is being dissolved, and might be an individual or an organization, such as an athlete, film producer, company, etc. For instance, 'seven-time All-Star Joe Johnson', 'the production side of 'A Little Wish'', 'Raptors', 'Samsung', etc." } } }, "input": "News from August 20th, according to Tencent News 'Frontline' report, informed sources stated that in order to control cost expenditure, NIO plans to reduce the number of staff at its U.S. branch, excluding those involved in the autonomous driving business, to about 200. As of August 16th, U.S. time, NIO's Silicon Valley branch had cut 100 employees." } ``` </details> <details> <summary><b>Knowledge Graph Construction (KGC) Description Instructions</b></summary> ```json { "instruction": "You are an expert in structuring knowledge about graph entities. Based on the schema description for the input entity type, extract the corresponding entity instances and their attribute information from the text; do not output non-existent attributes, return a list for attributes with multiple values, and provide the output in a parseable JSON format.", "schema": [ { "entity_type": "Person", "attributes": { "Chinese Name": "The Chinese name of the person", "English Name": "The English name of the person", "Ancestral Home": "The ancestral address of the person", "Date of Birth": "Birthday, birth date", "Place of Birth": "The place of birth, administrative region", "Occupation": "The occupation, position, identity of the person", "Alma Mater": "The middle school, university, college from which the person graduated", "Works": "Albums, songs, novels, published books, participated film and television works, etc.", "Awards": "Various awards and honors received by the person" } } ], "input": "Jay Chou (Jay Chou), born on January 18, 1979, in New Taipei City, Taiwan Province, with ancestral home in Yongchun County, Quanzhou City, Fujian Province, is a Chinese pop musician, actor, director, and screenwriter. He graduated from Tamkang High School. In 2000, he released his debut music album 'Jay.' In 2001, he cemented his fusion style of Eastern and Western music with the album 'Fantasy.' In 2002, he held 'The One' world tour; that same year, he won the Best Composer award at the 13th Taiwan Golden Melody Awards for the song 'Love Before the Century.'" } ``` </details> ### Customized Example Instructions Given that example instances can often be lengthy, and due to the limited maximum length of model training, too many examples may inversely affect model performance. Therefore, we suggest providing 2 examples: one positive and one negative, while keeping the number of schemas to one. ```json { "instruction": "You are an expert in entity extraction. Please extract entities from the input that fit the defined schema; return an empty list for non-existent entity types. Please respond in the format of a JSON string. You may refer to the example to guide your extraction.", "schema": [ "Biomarker" ], "example": [ { "input": "Diagnostic criteria for CKD include: 1. Any of the following indicators persisting for more than 3 months; and meeting at least one criterion.(1) Signs of renal damage: Albuminuria [Albumin excretion rate (AER)≥30mg/24h; Albumin to creatinine ratio (ACR)≥3mg/mmol]; abnormal urinary sediment; tubular pathology; histological anomalies; structural abnormities found in imaging; history of kidney transplantation.(2) Decline in glomerular filtration rate: eGFR≤60ml·min-1·1.73m-2", "output": { "Biomarker": [ "Albumin excretion rate (AER)", "Albumin to creatinine ratio (ACR)", "Glomerular filtration rate", "eGFR" ] } }, { "input": "Application of DPP-4 inhibitors in specific populations", "output": { "Biomarker": [] } } ], "input": "Currently, all sulfonylurea drugs' leaflets list severe liver dysfunction as a contraindication. Alanine transaminase (ALT)> 3 times the upper limit of the reference value can serve as a sensitive and specific indicator of liver damage. If ALT>8-10 times the upper limit of the reference value or ALT>3 times with total serum bilirubin (TBIL)>2 times the reference value, it is considered a specific predictor of severe liver damage, indicating substantial injury to hepatic parenchymal cells; sulfonylureas should be contraindicated at this stage. Clinically, patients with decompensated liver cirrhosis accompanied by hepatic encephalopathy, ascites, or coagulation disorders should avoid this class of drugs to prevent hypoglycemia." } ``` <details> <summary><b>Relationship Extraction (RE) Example Instruction</b></summary> ```json { "instruction": "You are an expert specialized in relationship extraction. Please extract from the input the defined relation triples according to the schema; return an empty list for non-existent relations. Please respond in the format of a JSON string. You may refer to the example for guidance on extraction.", "schema": [ "Disease Staging and Typing" ], "example": [ { "input": "The foundational treatment of diabetes includes both education and management, as well as diet and exercise. A lack of knowledge in diabetes prevention and control is the primary reason for poor blood sugar management. Paying attention to the education and management of elderly patients is an important measure to improve the treatment level of diabetes.", "output": { "Disease Staging and Typing": [] } }, { "input": "Metabolites of glipizide have no hypoglycemic effect and are mostly excreted through feces, with only 5.0% excreted by the kidneys, thus are less affected by renal function. However, large clinical trials in patients with chronic kidney disease are limited. There have been studies observing the use of glipizide in patients with GFR10~50 ml min-1.(1.73m2)-1, but the trial designs are not perfect. Glipizide can be used in patients with stages 1 to 3 chronic kidney disease without dose adjustment; caution is advised in stage 4; and it is contraindicated in stage 5.", "output": { "Disease Staging and Typing": [ { "subject": "Chronic kidney disease", "object": "Chronic" }, { "subject": "Chronic kidney disease", "object": "Chronic" }, { "subject": "Chronic kidney disease", "object": "stages 1 to 3" }, { "subject": "Chronic kidney disease", "object": "stage 4" }, { "subject": "Chronic kidney disease", "object": "stage 5" } ] } } ], "input": "(2)NSAIDs: This includes both non-selective cyclooxygenase (COX) inhibitors and COX-2 inhibitors. If there are no contraindications, early and ample use of fast-acting NSAID formulations is recommended. Non-selective COX inhibitors primarily have gastrointestinal adverse reactions such as ulcers, perforations, and upper gastrointestinal bleeding, hence COX-2 inhibitors, which can reduce GI reactions by 50%, may be used for those intolerant to non-selective COX inhibitors. Active gastrointestinal ulcers/bleeding or a history of recurrent gastrointestinal ulcers/bleeding is a contraindication for all NSAIDs use. COX-2 inhibitors may increase the risk of cardiovascular events and should be avoided in patients with myocardial infarction or heart failure. Kidney function monitoring is required during the use of NSAIDs, and their use is not recommended in patients with severe chronic kidney disease (stages G4 to G5) who are not undergoing dialysis." } ``` </details> <details> <summary><b>Event Extraction (EE) Example Instruction</b></summary> ```json { "instruction": "You are an expert specialized in event extraction. Please extract events from the input according to the defined schema; return an empty list for non-existent events, and 'NAN' for non-existent arguments. If an argument has multiple values, please return a list. Respond in the format of a JSON string. You may refer to the example for extraction guidance.", "schema": [ { "event_type": "Corporate Financing", "trigger": true, "arguments": [ "Disclosure Time", "Investee", "Financing Round", "Lead Investor", "Event Time", "Investor", "Financing Amount" ] } ], "example": [ { "input": "Raise 2.5 billion yuan for expansion due to the 'three highs' condition of Joyson Electronics: high pledges, high goodwill, high debt\nReporter Zhang Jiazhen, from Beijing\nNingbo Joyson Electronic Corporation (hereinafter referred to as 'Joyson Electronics', 600699.SH), which holds billion-level big orders, is actively raising funds to expand production capacity to ease the increasingly pressing bottleneck of production capacity saturation.\nRecently, Joyson Electronics announced that it has received the 'Feedback Notice' from the China Securities Regulatory Commission, and its private stock offering is a step closer to approval.", "output": { "Corporate Financing": [ { "trigger": "Raise", "arguments": { "Disclosure Time": "NAN", "Investee": "Ningbo Joyson Electronic Corporation", "Financing Round": "NAN", "Lead Investor": "NAN", "Event Time": "NAN", "Investor": "NAN", "Financing Amount": "2.5 billion yuan" } } ] } }, { "input": "NIO stock falls to 13% before market; NIO reports over 3.2 billion loss in Q2\nOriginal Title: NIO stock falls to 13% before market; NIO reports over 3.2 billion loss in Q2\nNIO's stock price turned from a rise to a fall before market, falling to 13%. NIO released its Q2 earnings today, followed by the announcement of the cancellation of the earnings conference call originally scheduled for today.\nThe earnings report showed that NIO achieved a revenue of 1.508 billion yuan in the second quarter, exceeding market expectations of 1.309 billion yuan, compared to 46 million yuan in the same period last year; The net loss attributable to shareholders in the second quarter was 3.285 billion yuan, higher than the market expected loss of 2.944 billion yuan, compared to a loss of 6.11 billion yuan in the same period last year.", "output": { "Corporate Financing": [] } } ], "input": "【Exclusive】The 11th in five years, Codemao announces completion of C+ round financing of 250 million yuan\nJiemodui, April 17th - Today, Codemao announced the completion of a C+ round of financing worth 250 million yuan.\nThis comes five months after completing a C round financing of 400 million yuan last year, which is the new round of 'ammunition' added by Codemao.\nThe round was led by China Merchants International, with Bohai Capital, an equity investment fund under Bank of China Group, and existing shareholders Yueke Xintai and Shengyu Investment following suit." } ``` </details> ## Evaluation To extract structured content from the output text and to assess it, please refer to [DeepKE-llm/InstructKGC/README_CN.md/7.评估](https://github.com/zjunlp/DeepKE/blob/main/example/llm/InstructKGC/README_CN.md/#-7%E8%AF%84%E4%BC%B0). ## Continue Training To continue training OneKE, refer to [DeepKE-llm/InstructKGC/4.9领域内数据继续训练](https://github.com/zjunlp/DeepKE/blob/main/example/llm/InstructKGC/README_CN.md/#49%E9%A2%86%E5%9F%9F%E5%86%85%E6%95%B0%E6%8D%AE%E7%BB%A7%E7%BB%AD%E8%AE%AD%E7%BB%83). ## Citation If you have used OneKE in your work, please kindly cite the following paper: ```bibtex @article{DBLP:journals/corr/abs-2402-14710, author = {Honghao Gui and Lin Yuan and Hongbin Ye and Ningyu Zhang and Mengshu Sun and Lei Liang and Huajun Chen}, title = {IEPile: Unearthing Large-Scale Schema-Based Information Extraction Corpus}, journal = {CoRR}, volume = {abs/2402.14710}, year = {2024}, url = {https://doi.org/10.48550/arXiv.2402.14710}, doi = {10.48550/ARXIV.2402.14710}, eprinttype = {arXiv}, eprint = {2402.14710}, timestamp = {Tue, 09 Apr 2024 07:32:43 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2402-14710.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
[ "NAMED_ENTITY_RECOGNITION", "RELATION_EXTRACTION", "EVENT_EXTRACTION" ]
[ "BEAR" ]
Non_BioNLP
<p align="center"> <a href="https://github.com/zjunlp/deepke"> <img src="assets/oneke_logo.png" width="400"/></a> <p> <p align="center"> <a href="https://oneke.openkg.cn/"> <img alt="Documentation" src="https://img.shields.io/badge/demo-website-blue"> </a> <a href="https://pypi.org/project/deepke/#files"> <img alt="PyPI" src="https://img.shields.io/pypi/v/deepke"> </a> <a href="https://github.com/zjunlp/DeepKE/blob/master/LICENSE"> <img alt="GitHub" src="https://img.shields.io/github/license/zjunlp/deepke"> </a> <a href="http://zjunlp.github.io/DeepKE"> <img alt="Documentation" src="https://img.shields.io/badge/doc-website-red"> </a> </p> <h1 align="center"> <p>OneKE: A Bilingual Large Language Model for <br>Knowledge Extraction</p> </h1> - [What is OneKE?](#what-is-oneke) - [How is OneKE trained?](#how-is-oneke-trained) - [Getting Started with OneKE](#getting-started-with-oneke) - [Quick Start](#quick-start) - [Advanced Use of OneKE](#advanced-use-of-oneke) - [OneKE Instruction Format](#oneke-instruction-format) - [Conversion of OneKE Instruction Format](#conversion-of-oneke-instruction-format) - [Customized Schema Description Instructions](#customized-schema-description-instructions) - [Evaluation](#evaluation) - [Continue Training](#continue-training) - [Citation](#citation) ## What is OneKE? OneKE is a large-scale model framework for knowledge extraction jointly developed by Ant Group and Zhejiang University. It possesses the capability of generalized knowledge extraction in bilingual Chinese and English, across multiple domains and tasks, and provides comprehensive toolchain support. OneKE has contributed to the OpenKG open knowledge graph community in an open-source manner. Knowledge construction based on unstructured documents has always been one of the key challenges for the large-scale implementation of knowledge graphs. The high fragmentation and unstructured nature of real-world information, along with the substantial disparities between extracted content and its natural language expression, often result in the suboptimal performance of large language models in information extraction tasks. Natural language text often contains ambiguities, polysemies, and metaphors due to implicit and long-distance context associations, posing significant challenges for knowledge extraction tasks. In response to these issues, Ant Group and Zhejiang University leveraged their years of expertise in knowledge graphs and natural language processing to jointly construct and upgrade the capabilities of Ant's large-scale model "BaiLing" in the field of knowledge extraction. They released the bilingual knowledge extraction framework OneKE which included a version based on full parametric fine-tuning of Chinese-Alpaca-2-13B. Evaluation metrics show that OneKE has achieved relatively good performance on several fully supervised and zero-shot entity/relation/event extraction tasks. The unified knowledge extraction framework has wide application scenarios and can significantly reduce the construction costs of domain-specific knowledge graphs. By extracting structured knowledge from massive datasets to construct high-quality knowledge graphs and establish logical associations between knowledge elements, interpretable inference and decision-making can be realized. It can also enhance large models by mitigating hallucination and boosting stability, accelerating the vertical domain applications of large models. For example, in the medical field, knowledge extraction can be used to convert doctors' experience into structured, rule-based management, building controlled auxiliary diagnostics, and medical Q&A systems. In the financial sector, it can extract financial indicators, risk events, causal logic, and industry chains for automated financial report generation, risk prediction, and industry chain analysis. In the public sector, it can facilitate knowledge-based management of government regulations, enhancing the efficiency and accuracy of public services. <p align="center" width="100%"> <a href="" target="_blank"><img src="assets/oneke.gif" alt="OneKE" style="width: 100%; min-width: 20px; display: block; margin: auto;"></a> </p> ## How is OneKE trained? OneKE mainly focuses on schema-generalizable information extraction. Due to issues such as non-standard formats, noisy data, and lack of diversity in existing extraction instruction data, OneKE adopted techniques such as normalization and cleaning of extraction instructions, difficult negative sample collection, and schema-based batched instruction construction, as shown in the illustration. For more detailed information, refer to the paper "[IEPile: Unearthing Large-Scale Schema-Based Information Extraction Corpus](https://arxiv.org/abs/2402.14710) [[Github](https://github.com/zjunlp/IEPile)]". The zero-shot generalization comparison results of OneKE with other large models are as follows: * `NER-en`: CrossNER_AI, CrossNER_literature, CrossNER_music, CrossNER_politics, CrossNER_science * `NER-zh`: WEIBONER, boson * `RE-zh`: COAE2016, IPRE, SKE2020 * `RE-en`: FewRel, Wiki-ZSL * `EE-en`: CrudeOilNews, WikiEvents, RAMS * `EE-zh`: FewFC, CCF Law <p align="center" width="50%"> <a href="" target="_blank"><img src="assets/oneke_results.png" alt="OneKE" style="width: 50%; min-width: 20px; display: block; margin: auto;"></a> </p> ![zero_en](./assets/zero_en.jpg) ![zero_zh](./assets/zero_zh.jpg) <details> <summary><b>Supervision Results</b></summary> ![supervision_ner](./assets/supervision_ner.jpg) ![supervision_re](./assets/supervision_re.jpg) ![supervision_ee](./assets/supervision_ee.jpg) </details> ## Getting Started with OneKE ### Quick Start It is recommended to have at least **20GB of VRAM** for training and inferencing. ```python import torch from transformers import ( AutoConfig, AutoTokenizer, AutoModelForCausalLM, GenerationConfig, BitsAndBytesConfig ) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_path = 'zjunlp/OneKE' config = AutoConfig.from_pretrained(model_path, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) # 4-bit Quantized OneKE quantization_config=BitsAndBytesConfig( load_in_4bit=True, llm_int8_threshold=6.0, llm_int8_has_fp16_weight=False, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", ) model = AutoModelForCausalLM.from_pretrained( model_path, config=config, device_map="auto", quantization_config=quantization_config, torch_dtype=torch.bfloat16, trust_remote_code=True, ) model.eval() system_prompt = '<<SYS>>\nYou are a helpful assistant. 你是一个乐于助人的助手。\n<</SYS>>\n\n' sintruct = "{\"instruction\": \"You are an expert in named entity recognition. Please extract entities that match the schema definition from the input. Return an empty list if the entity type does not exist. Please respond in the format of a JSON string.\", \"schema\": [\"person\", \"organization\", \"else\", \"location\"], \"input\": \"284 Robert Allenby ( Australia ) 69 71 71 73 , Miguel Angel Martin ( Spain ) 75 70 71 68 ( Allenby won at first play-off hole )\"}" sintruct = '[INST] ' + system_prompt + sintruct + '[/INST]' input_ids = tokenizer.encode(sintruct, return_tensors="pt").to(device) input_length = input_ids.size(1) generation_output = model.generate(input_ids=input_ids, generation_config=GenerationConfig(max_length=1024, max_new_tokens=512, return_dict_in_generate=True)) generation_output = generation_output.sequences[0] generation_output = generation_output[input_length:] output = tokenizer.decode(generation_output, skip_special_tokens=True) print(output) ``` For more detailed inference, please refer to [DeepKE-llm/InstructKGC/6.1.2IE专用模型](https://github.com/zjunlp/DeepKE/blob/main/example/llm/InstructKGC/README_CN.md/#612ie%E4%B8%93%E7%94%A8%E6%A8%A1%E5%9E%8B). ### Advanced Use of OneKE ### OneKE Instruction Format The instructions in OneKE are formatted in a dictionary-type string similar to JSON. It consists of three fields: (1) **`'instruction'`**, which is the task description, specifies in natural language the role the model plays and the task to be completed; (2) **`'schema'`**, a list of labels to be extracted, clearly indicates the key fields of the information to be extracted, reflecting the user's needs, and is dynamic and changeable; (3) **`'input'`**, refers to the source text for information extraction. Below are examples of instructions for various tasks: <details> <summary><b>Named Entity Recognition (NER)</b></summary> ```json { "instruction": "You are an expert specializing in entity extraction. Please extract entities that comply with the schema definition from the input; return an empty list for non-existent entity types. Please respond in the JSON string format.", "schema": ["Person Name", "Education", "Position", "Nationality"], "input": "Mr. Liu Zhijian: Born in 1956, Chinese nationality, no permanent residency abroad, member of the Communist Party, associate degree, senior economist." } ``` </details> <details> <summary><b>Relation Extraction (RE)</b></summary> ```json { "instruction": "You are an expert specializing in relation extraction. Please extract relationship triples that comply with the schema definition from the input; return an empty list for non-existent relationships. Please respond in the JSON string format.", "schema": ["Father", "Husband", "Postal Code", "Mother"], "input": "Ding Long took out his life savings of $12,000, which without a doubt was a substantial amount at the end of the 19th century, plus Carpentier's donation, they both funded Columbia University's sinology research together." } ``` </details> <details> <summary><b>Knowledge Graph Construction (KGC)</b></summary> ```json { "instruction": "You are an expert in structuring knowledge about graph entities. Based on the schema description of the input entity type, extract the corresponding entity instances and their property information from the text; do not output non-existent properties, return a list if there are multiple values for a property, and provide the output in a parseable json format.", "schema": [ { "entity_type": "Person", "attributes": ["Chinese Name", "English Name", "Ancestral Home", "Date of Birth", "Place of Birth", "Occupation", "Alma Mater", "Works", "Awards"] } ], "input": "Jay Chou (Jay Chou), born on January 18, 1979, in New Taipei City, Taiwan Province, ancestral home in Yongchun County, Quanzhou City, Fujian Province, Chinese pop singer, musician, actor, director, screenwriter, graduated from Tamkang High School. In 2000, he released his debut album 'Jay'. In 2001, he cemented his style of blending Eastern and Western music with the album 'Fantasy'. In 2002, he held ‘The One’ world tour; the same year, he won the Best Composer award at the 13th Taiwan Golden Melody Awards with the song 'Love Before the Century'." } ``` </details> <details> <summary><b>Event Extraction (EE)</b></summary> ```json { "instruction": "You are an expert specializing in event extraction. Please extract events that match the defined schema from the input; return an empty list for non-existent events, NAN for non-existent arguments, and a list if there are multiple values for an argument. Please provide your response in JSON string format.", "schema": [ { "event_type": "Finance/Trading - Interest Rate Hike", "trigger": true, "arguments": [ "Time" ] }, { "event_type": "Finance/Trading - Interest Rate Cut", "trigger": true, "arguments": [ "Cut Magnitude" ] }, { "event_type": "Finance/Trading - Price Increase", "trigger": true, "arguments": [ "Price Raiser" ] }, { "event_type": "Finance/Trading - Price Cut", "trigger": true, "arguments": [ "Price Cutter", "Time" ] } ], "input": "AI risk control solution provider Vezetech secures tens of millions of dollars in Series C+ funding" } ``` </details> <details> <summary><b>Event Trigger Identification (EET)</b></summary> ```json { "instruction": "You are an expert specializing in event trigger identification. Please extract the event types and triggers that match the defined schema from the input; return an empty list if the event type doesn't exist. Please provide your response in JSON string format.", "schema": ["Organizational Relationship - Dissolve", "Organizational Relationship - Layoff", "Organizational Relationship - Dismiss", "Competition Behavior - Promotion"], "input": "Nestlé lays off 4,000 employees: When the times leave you behind, they won't even say goodbye!" } ``` </details> <details> <summary><b>Event Argument Extraction (EEA)</b></summary> ```json { "instruction": "You are an expert specializing in event argument extraction. Please extract the event arguments and their roles that match the defined schema from the input; return NAN or an empty dictionary for non-existent arguments, and a list if there are multiple values for an argument. Please provide your response in JSON string format.", "schema": [{"event_type": "Organizational Relationship - Resignation/Departure", "arguments": ["Resigner", "Time", "Former Organization"]}], "input": "Nestlé lays off 4,000 employees: When the times leave you behind, they won't even say goodbye!" } ``` </details> > Note: In consideration of the complexity of information extraction within specific domains and the high reliance on prompts, we support the integration of Schema descriptions and examples in the instructions to enhance the effectiveness of extraction tasks. For details, refer to **`Customized Schema Description Instructions`** and **`Customized Example Instructions`**. Please understand that due to the limited scale of the model, the model output is prompt-dependent and different prompts may yield inconsistent results. ### Conversion of OneKE Instruction Format **List of Instructions**: ```python instruction_mapper = { 'NERzh': "你是专门进行实体抽取的专家。请从input中抽取出符合schema定义的实体,不存在的实体类型返回空列表。请按照JSON字符串的格式回答。", 'REzh': "你是专门进行关系抽取的专家。请从input中抽取出符合schema定义的关系三元组,不存在的关系返回空列表。请按照JSON字符串的格式回答。", 'EEzh': "你是专门进行事件提取的专家。请从input中抽取出符合schema定义的事件,不存在的事件返回空列表,不存在的论元返回NAN,如果论元存在多值请返回列表。请按照JSON字符串的格式回答。", 'EETzh': "你是专门进行事件提取的专家。请从input中抽取出符合schema定义的事件类型及事件触发词,不存在的事件返回空列表。请按照JSON字符串的格式回答。", 'EEAzh': "你是专门进行事件论元提取的专家。请从input中抽取出符合schema定义的事件论元及论元角色,不存在的论元返回NAN或空字典,如果论元存在多值请返回列表。请按照JSON字符串的格式回答。", 'KGzh': '你是一个图谱实体知识结构化专家。根据输入实体类型(entity type)的schema描述,从文本中抽取出相应的实体实例和其属性信息,不存在的属性不输出, 属性存在多值就返回列表,并输出为可解析的json格式。', 'NERen': "You are an expert in named entity recognition. Please extract entities that match the schema definition from the input. Return an empty list if the entity type does not exist. Please respond in the format of a JSON string.", 'REen': "You are an expert in relationship extraction. Please extract relationship triples that match the schema definition from the input. Return an empty list for relationships that do not exist. Please respond in the format of a JSON string.", 'EEen': "You are an expert in event extraction. Please extract events from the input that conform to the schema definition. Return an empty list for events that do not exist, and return NAN for arguments that do not exist. If an argument has multiple values, please return a list. Respond in the format of a JSON string.", 'EETen': "You are an expert in event extraction. Please extract event types and event trigger words from the input that conform to the schema definition. Return an empty list for non-existent events. Please respond in the format of a JSON string.", 'EEAen': "You are an expert in event argument extraction. Please extract event arguments and their roles from the input that conform to the schema definition, which already includes event trigger words. If an argument does not exist, return NAN or an empty dictionary. Please respond in the format of a JSON string.", 'KGen': 'You are an expert in structured knowledge systems for graph entities. Based on the schema description of the input entity type, you extract the corresponding entity instances and their attribute information from the text. Attributes that do not exist should not be output. If an attribute has multiple values, a list should be returned. The results should be output in a parsable JSON format.', } ``` Recommended **Split Numbers** for Each Task: ```python split_num_mapper = { 'NER':6, 'RE':4, 'EE':4, 'EET':4, 'EEA':4, 'KG':1 } ``` Since predicting all schemas in the label set at once is too challenging and not easily scalable, OneKE uses a batched approach during training. It divides the number of schemas asked in the instructions, querying a fixed number of schemas at a time. Hence, if the label set of a piece of data is too long, it will be split into multiple instructions that the model will address in turns. **Schema Format**: ```python NER: ["Person Name", "Education", "Position", "Nationality"] # List of strings RE: ["Father", "Husband", "Postal Code", "Mother"] # List of strings EE: [{"event_type": "Finance/Trading - Interest Rate Hike", "trigger": True, "arguments": ["Time"]}, {"event_type": "Finance/Trading - Interest Rate Cut", "trigger": True, "arguments": ["Cut Magnitude"]}] # List of dictionaries, "event_type" is a string, "trigger" is a bool, "arguments" is a list EET: ["Organizational Relationship - Dissolution", "Organizational Relationship - Layoff", "Organizational Relationship - Dismissal", "Competition Behavior - Advancement"] # List of strings EEA: [{"event_type": "Finance/Trading - Interest Rate Hike", "arguments": ["Time"]}, {"event_type": "Finance/Trading - Interest Rate Cut", "arguments": ["Cut Magnitude"]}] # List of dictionaries, "event_type" is a string, "arguments" is a list ``` Below is a simple Batched Instruction Generation script: ```python def get_instruction(language, task, schema, input): sintructs = [] split_num = split_num_mapper[task] if type(schema) == dict: sintruct = json.dumps({'instruction':instruction_mapper[task+language], 'schema':schema, 'input':input}, ensure_ascii=False) sintructs.append(sintruct) else: split_schemas = [schema[i:i+split_num] for i in range(0, len(schema), split_num)] for split_schema in split_schemas: sintruct = json.dumps({'instruction':instruction_mapper[task+language], 'schema':split_schema, 'input':input}, ensure_ascii=False) sintructs.append(sintruct) return sintructs ``` Below is an example using the aforementioned simple script: ```python task = 'NER' language = 'en' schema = ['person', 'organization', 'else', 'location'] split_num = split_num_mapper[task] split_schemas = [schema[i:i+split_num] for i in range(0, len(schema), split_num)] input = '284 Robert Allenby ( Australia ) 69 71 71 73 , Miguel Angel Martin ( Spain ) 75 70 71 68 ( Allenby won at first play-off hole )' sintructs = [] for split_schema in split_schemas: sintruct = json.dumps({'instruction':instruction_mapper[task+language], 'schema':split_schema, 'input':input}, ensure_ascii=False) sintructs.append(sintruct) ``` > '{"instruction": "You are an expert in named entity recognition. Please extract entities that match the schema definition from the input. Return an empty list if the entity type does not exist. Please respond in the format of a JSON string.", "schema": ["person", "organization", "else", "location"], "input": "284 Robert Allenby ( Australia ) 69 71 71 73 , Miguel Angel Martin ( Spain ) 75 70 71 68 ( Allenby won at first play-off hole )"}' For more detailed data conversion, please refer to [DeepKE-llm/InstructKGC/README_CN.md/2.3测试数据转换](https://github.com/zjunlp/DeepKE/blob/main/example/llm/InstructKGC/README_CN.md/#23%E6%B5%8B%E8%AF%95%E6%95%B0%E6%8D%AE%E8%BD%AC%E6%8D%A2) ### Customized Schema Description Instructions ```json { "instruction": "You are an expert specializing in entity extraction. Please extract entities that comply with the defined schema from the input; return an empty list for non-existent entity types. Please respond in JSON string format.", "schema": { "Position": "The entity type describes the occupation or official position of an individual or group, including specific role names such as 'producer', 'scorekeeper', 'ascetic', 'oil painter'.", "Attraction": "The entity type of attraction includes buildings, museums, memorials, art galleries, rivers, peaks, etc. Representative entities include the Pentagon, Tate Modern, Zheng Chenggong Memorial Hall, Duxi Palace, Barikasa, Robo River, Gunung Batur, Yugong Yishan LIVE, Xu Beihong Memorial Hall, Madame Tussauds, etc.", "Company": "Company is an entity type representing any legal entity or business organization. This type of entity can be a catering group, manufacturer, retailer, hotel, bank, design institute, etc. Examples include: 'Shangri-La Hotel Group', 'JVC', 'Shanghai Coolray Professional eSports Peripheral Store', 'K2&bull;Haitang Bay', 'Wuhan Iron and Steel', 'louisvuitton', 'Bank of Scotland', 'Beijing Institute of Architectural Design', '7 Days Inn', 'Vanke Group'.", "Address": "Address entities refer to entities with geographical location information, representing specific places such as a country, city, region, street, or abstract geographic areas. Examples include: 'the river dock at the southeast tip of downtown Manhattan', 'Tuapse', 'Venice, Italy', 'Huzhou Hot Spring Golf Course', 'North Carolina', 'Beijing-Tianjin region', 'Happy Internet Cafe', 'Yinian Nursing Home', 'Shangtang Town Pudong', 'Inner Mongolia Autonomous Region Chifeng City', etc.", "Organization": "Organizational entities refer to collective organizations such as companies, shops, clubs, schools, etc. They play a certain role in social and economic activities and have certain personality rights.", "Movie": "Movie entities include titles of movies in Chinese or English, and sometimes also include names of characters in films." }, "input": "It is difficult for me to imagine setting up another Haifishing Plaza. When we obtained this project, I just happened to be in Sanya." } ``` <details> <summary><b>Relation Extraction (RE) Description Instructions</b></summary> ```json { "instruction": "You are an expert specializing in relation extraction. Please extract triples that match the defined schema from the input; return an empty list for non-existent relations. Please respond in JSON string format.", "schema": { "Ethnicity": "Ethnicity", "Alma Mater": "This type of relationship describes the connection between a person and their alma mater; the person is the subject, and the alma mater is the object. By identifying the names of people and schools in the text and analyzing the relationship of graduation between them based on word combinations and contextual information.", "Lead Actor": "This is a type of relationship that describes the connection between a film or television work and its main actors; the subject is the film or television work and the object is the actor. In a valid 'Lead Actor' relationship, the actor (object) plays an important role in the work (subject).", "Father": "This type of relationship is used to indicate the kinship between a father and a child, where the father is the birth parent or caregiver of the child. In the triple, the subject of the 'Father' relation type is the child, and the object is the father." }, "input": "Throughout history, all those who have portrayed the character 'Chu Liuxiang' from Gu Long's novels are recognized as handsome men in the entertainment industry. In 2011, 36-year-old Zhang Zhiyao played Chu Liuxiang in 'The New Adventures of Chu Liuxiang', remaining irresistibly handsome." } ``` </details> <details> <summary><b>Event Extraction (EE) Description Instructions</b></summary> ```json { "instruction": "You are an expert specializing in event extraction. Please extract events that match the schema definition from the input; return an empty list for non-existent events, NAN for non-existent arguments, and a list if there are multiple values for an argument. Please respond in JSON string format.", "schema": { "Finance/Trading - Listing": { "Finance/Trading - Listing": "The act of a financial entity being listed on the stock market mainly involves companies, stocks, etc. Positive examples include specific information about a company or stock listing, while negative examples are unrelated to such activities.", "trigger": true, "arguments": { "Financing Amount": "Refers to the total amount of funds raised by a company in a listing event. It sums up the revenue of all share issues and is measured in currency, including but not limited to units like 'billion', 'million', 'dollars', 'RMB', etc.", "Time": "Describes the specific time of the listing event, which can be a specific date or relative time, and may also include location information and specific days and weeks.", "Listing Enterprise": "Refers to the company or enterprise that is conducting an IPO or has already been listed on the trading market in a listing event. Examples include: 'Shanghai Henlius Biotech', 'Three Squirrels', 'Baoxin Software', 'Little Bear Electric', 'Jinshang Bank', 'Beyond Meat (BYND)', 'DouYu gaming live-streaming platform', 'fast food empire', and 'autonomous driving lidar manufacturer Velodyne', etc.", "Location": "The specific location of the financial or trading event, such as a city, building, or room." } }, "Organizational Relationship - Resignation/Departure": { "Organizational Relationship - Resignation/Departure": "The event type 'Organizational Relationship - Resignation/Departure' refers to changes in the relationship between individuals or organizational members and their organization, mainly including 'resignation', 'requesting to resign', 'stepping down', 'leaving the team', 'retirement', 'leaving', etc. Often occurs in scenarios of high-level personnel changes, government officials changes, or athletes transfers. Examples: 'Li Nan announced resignation', 'Yu Xubo resigned from the position of chairman of the board just three months after taking office, Chen Lang succeeded'.", "trigger": true, "arguments": { "Resigner": "Refers to the individual or group who actively or passively leaves their original position or job post in an organizational relationship resignation/departure event. It can be one person or a group of people, such as: 'Finance Minister', '90s born guy from Shaoyang Longhui, Ouyang En and', 'Xiong Xiaoge', '*ST Changsheng two deputy general managers', 'Yang Tao', 'pilot Ma Qiang', 'HE WEI', '5 Baidu executives', 'Youxin Group COO Peng Weilian', 'Jianke Institute securities representative Shu Yanming', etc.", "Time": "Indicates the specific point in time or period when the resignation/departure event occurred, generally including specific dates, weeks, times, etc., like 'September 19', 'the evening of June 29', 'this Saturday', '10:30 AM on July 9', 'the morning of June 12', 'April 9', 'September 10', 'local time on Sunday', 'September 12', '10 AM on October 15', etc." } }, "Finance/Trading - Interest Rate Increase": { "Finance/Trading - Interest Rate Increase": "This event describes banks or financial institutions raising interest rates to tighten the money supply. The typical trigger word is 'hike'. 'Hike' indicates the occurrence of the Finance/Trading - Interest Rate Increase event.", "trigger": true, "arguments": { "Rate of Increase": "The rate of increase is usually presented as a percentage or basis points, indicating the degree or range of the interest rate hike in the event. Examples include: 'to 5.75%', '25 basis points', 'the benchmark rate from 0.25% up to 0.5%', '25 basis points'.", "Hiking Institution": "The hiking institution is the financial institution with the authority to determine or implement the interest rate hike policy in a Finance/Trading - Interest Rate Increase event, such as central banks from different countries (e.g., Bank of England, Federal Reserve, European Central Bank) or financial institutions (e.g., Bank of England).", "Time": "Indicates the specific date or time period when the Finance/Trading - Interest Rate Increase event occurred, such as 'the morning of June 18th', 'January 24th', 'three months later', etc. The specific expression includes time accurate to the minute, such as '11:00 on December 28, 2018', relative time, such as 'yesterday (2nd)', and special time expressions like 'Mid-Autumn Festival'." } }, "Organizational Relationship - Contract Termination": { "Organizational Relationship - Contract Termination": "Situations of contract cancellation or termination usually occur in the business, entertainment, or sports domains. Trigger words include 'leave', 'trade', 'cut', 'contract expiry', 'contract termination', 'sell-off', 'release', 'send out', 'contract break', etc. Positive examples include 'Peng Yuchang terminates his contract' and 'Jiang Mengjie nearly bankrupt after contract termination'. Negative examples are like 'Federer withdrew from the competition'.", "trigger": true, "arguments": { "Party Being Terminated": "In an organizational relationship contract termination event, the role is the party whose agreement or contract relation is being dissolved, and might be an individual or an organization, such as an athlete, film producer, company, etc. For instance, 'seven-time All-Star Joe Johnson', 'the production side of 'A Little Wish'', 'Raptors', 'Samsung', etc." } } }, "input": "News from August 20th, according to Tencent News 'Frontline' report, informed sources stated that in order to control cost expenditure, NIO plans to reduce the number of staff at its U.S. branch, excluding those involved in the autonomous driving business, to about 200. As of August 16th, U.S. time, NIO's Silicon Valley branch had cut 100 employees." } ``` </details> <details> <summary><b>Knowledge Graph Construction (KGC) Description Instructions</b></summary> ```json { "instruction": "You are an expert in structuring knowledge about graph entities. Based on the schema description for the input entity type, extract the corresponding entity instances and their attribute information from the text; do not output non-existent attributes, return a list for attributes with multiple values, and provide the output in a parseable JSON format.", "schema": [ { "entity_type": "Person", "attributes": { "Chinese Name": "The Chinese name of the person", "English Name": "The English name of the person", "Ancestral Home": "The ancestral address of the person", "Date of Birth": "Birthday, birth date", "Place of Birth": "The place of birth, administrative region", "Occupation": "The occupation, position, identity of the person", "Alma Mater": "The middle school, university, college from which the person graduated", "Works": "Albums, songs, novels, published books, participated film and television works, etc.", "Awards": "Various awards and honors received by the person" } } ], "input": "Jay Chou (Jay Chou), born on January 18, 1979, in New Taipei City, Taiwan Province, with ancestral home in Yongchun County, Quanzhou City, Fujian Province, is a Chinese pop musician, actor, director, and screenwriter. He graduated from Tamkang High School. In 2000, he released his debut music album 'Jay.' In 2001, he cemented his fusion style of Eastern and Western music with the album 'Fantasy.' In 2002, he held 'The One' world tour; that same year, he won the Best Composer award at the 13th Taiwan Golden Melody Awards for the song 'Love Before the Century.'" } ``` </details> ### Customized Example Instructions Given that example instances can often be lengthy, and due to the limited maximum length of model training, too many examples may inversely affect model performance. Therefore, we suggest providing 2 examples: one positive and one negative, while keeping the number of schemas to one. ```json { "instruction": "You are an expert in entity extraction. Please extract entities from the input that fit the defined schema; return an empty list for non-existent entity types. Please respond in the format of a JSON string. You may refer to the example to guide your extraction.", "schema": [ "Biomarker" ], "example": [ { "input": "Diagnostic criteria for CKD include: 1. Any of the following indicators persisting for more than 3 months; and meeting at least one criterion.(1) Signs of renal damage: Albuminuria [Albumin excretion rate (AER)≥30mg/24h; Albumin to creatinine ratio (ACR)≥3mg/mmol]; abnormal urinary sediment; tubular pathology; histological anomalies; structural abnormities found in imaging; history of kidney transplantation.(2) Decline in glomerular filtration rate: eGFR≤60ml·min-1·1.73m-2", "output": { "Biomarker": [ "Albumin excretion rate (AER)", "Albumin to creatinine ratio (ACR)", "Glomerular filtration rate", "eGFR" ] } }, { "input": "Application of DPP-4 inhibitors in specific populations", "output": { "Biomarker": [] } } ], "input": "Currently, all sulfonylurea drugs' leaflets list severe liver dysfunction as a contraindication. Alanine transaminase (ALT)> 3 times the upper limit of the reference value can serve as a sensitive and specific indicator of liver damage. If ALT>8-10 times the upper limit of the reference value or ALT>3 times with total serum bilirubin (TBIL)>2 times the reference value, it is considered a specific predictor of severe liver damage, indicating substantial injury to hepatic parenchymal cells; sulfonylureas should be contraindicated at this stage. Clinically, patients with decompensated liver cirrhosis accompanied by hepatic encephalopathy, ascites, or coagulation disorders should avoid this class of drugs to prevent hypoglycemia." } ``` <details> <summary><b>Relationship Extraction (RE) Example Instruction</b></summary> ```json { "instruction": "You are an expert specialized in relationship extraction. Please extract from the input the defined relation triples according to the schema; return an empty list for non-existent relations. Please respond in the format of a JSON string. You may refer to the example for guidance on extraction.", "schema": [ "Disease Staging and Typing" ], "example": [ { "input": "The foundational treatment of diabetes includes both education and management, as well as diet and exercise. A lack of knowledge in diabetes prevention and control is the primary reason for poor blood sugar management. Paying attention to the education and management of elderly patients is an important measure to improve the treatment level of diabetes.", "output": { "Disease Staging and Typing": [] } }, { "input": "Metabolites of glipizide have no hypoglycemic effect and are mostly excreted through feces, with only 5.0% excreted by the kidneys, thus are less affected by renal function. However, large clinical trials in patients with chronic kidney disease are limited. There have been studies observing the use of glipizide in patients with GFR10~50 ml min-1.(1.73m2)-1, but the trial designs are not perfect. Glipizide can be used in patients with stages 1 to 3 chronic kidney disease without dose adjustment; caution is advised in stage 4; and it is contraindicated in stage 5.", "output": { "Disease Staging and Typing": [ { "subject": "Chronic kidney disease", "object": "Chronic" }, { "subject": "Chronic kidney disease", "object": "Chronic" }, { "subject": "Chronic kidney disease", "object": "stages 1 to 3" }, { "subject": "Chronic kidney disease", "object": "stage 4" }, { "subject": "Chronic kidney disease", "object": "stage 5" } ] } } ], "input": "(2)NSAIDs: This includes both non-selective cyclooxygenase (COX) inhibitors and COX-2 inhibitors. If there are no contraindications, early and ample use of fast-acting NSAID formulations is recommended. Non-selective COX inhibitors primarily have gastrointestinal adverse reactions such as ulcers, perforations, and upper gastrointestinal bleeding, hence COX-2 inhibitors, which can reduce GI reactions by 50%, may be used for those intolerant to non-selective COX inhibitors. Active gastrointestinal ulcers/bleeding or a history of recurrent gastrointestinal ulcers/bleeding is a contraindication for all NSAIDs use. COX-2 inhibitors may increase the risk of cardiovascular events and should be avoided in patients with myocardial infarction or heart failure. Kidney function monitoring is required during the use of NSAIDs, and their use is not recommended in patients with severe chronic kidney disease (stages G4 to G5) who are not undergoing dialysis." } ``` </details> <details> <summary><b>Event Extraction (EE) Example Instruction</b></summary> ```json { "instruction": "You are an expert specialized in event extraction. Please extract events from the input according to the defined schema; return an empty list for non-existent events, and 'NAN' for non-existent arguments. If an argument has multiple values, please return a list. Respond in the format of a JSON string. You may refer to the example for extraction guidance.", "schema": [ { "event_type": "Corporate Financing", "trigger": true, "arguments": [ "Disclosure Time", "Investee", "Financing Round", "Lead Investor", "Event Time", "Investor", "Financing Amount" ] } ], "example": [ { "input": "Raise 2.5 billion yuan for expansion due to the 'three highs' condition of Joyson Electronics: high pledges, high goodwill, high debt\nReporter Zhang Jiazhen, from Beijing\nNingbo Joyson Electronic Corporation (hereinafter referred to as 'Joyson Electronics', 600699.SH), which holds billion-level big orders, is actively raising funds to expand production capacity to ease the increasingly pressing bottleneck of production capacity saturation.\nRecently, Joyson Electronics announced that it has received the 'Feedback Notice' from the China Securities Regulatory Commission, and its private stock offering is a step closer to approval.", "output": { "Corporate Financing": [ { "trigger": "Raise", "arguments": { "Disclosure Time": "NAN", "Investee": "Ningbo Joyson Electronic Corporation", "Financing Round": "NAN", "Lead Investor": "NAN", "Event Time": "NAN", "Investor": "NAN", "Financing Amount": "2.5 billion yuan" } } ] } }, { "input": "NIO stock falls to 13% before market; NIO reports over 3.2 billion loss in Q2\nOriginal Title: NIO stock falls to 13% before market; NIO reports over 3.2 billion loss in Q2\nNIO's stock price turned from a rise to a fall before market, falling to 13%. NIO released its Q2 earnings today, followed by the announcement of the cancellation of the earnings conference call originally scheduled for today.\nThe earnings report showed that NIO achieved a revenue of 1.508 billion yuan in the second quarter, exceeding market expectations of 1.309 billion yuan, compared to 46 million yuan in the same period last year; The net loss attributable to shareholders in the second quarter was 3.285 billion yuan, higher than the market expected loss of 2.944 billion yuan, compared to a loss of 6.11 billion yuan in the same period last year.", "output": { "Corporate Financing": [] } } ], "input": "【Exclusive】The 11th in five years, Codemao announces completion of C+ round financing of 250 million yuan\nJiemodui, April 17th - Today, Codemao announced the completion of a C+ round of financing worth 250 million yuan.\nThis comes five months after completing a C round financing of 400 million yuan last year, which is the new round of 'ammunition' added by Codemao.\nThe round was led by China Merchants International, with Bohai Capital, an equity investment fund under Bank of China Group, and existing shareholders Yueke Xintai and Shengyu Investment following suit." } ``` </details> ## Evaluation To extract structured content from the output text and to assess it, please refer to [DeepKE-llm/InstructKGC/README_CN.md/7.评估](https://github.com/zjunlp/DeepKE/blob/main/example/llm/InstructKGC/README_CN.md/#-7%E8%AF%84%E4%BC%B0). ## Continue Training To continue training OneKE, refer to [DeepKE-llm/InstructKGC/4.9领域内数据继续训练](https://github.com/zjunlp/DeepKE/blob/main/example/llm/InstructKGC/README_CN.md/#49%E9%A2%86%E5%9F%9F%E5%86%85%E6%95%B0%E6%8D%AE%E7%BB%A7%E7%BB%AD%E8%AE%AD%E7%BB%83). ## Citation If you have used OneKE in your work, please kindly cite the following paper: ```bibtex @article{DBLP:journals/corr/abs-2402-14710, author = {Honghao Gui and Lin Yuan and Hongbin Ye and Ningyu Zhang and Mengshu Sun and Lei Liang and Huajun Chen}, title = {IEPile: Unearthing Large-Scale Schema-Based Information Extraction Corpus}, journal = {CoRR}, volume = {abs/2402.14710}, year = {2024}, url = {https://doi.org/10.48550/arXiv.2402.14710}, doi = {10.48550/ARXIV.2402.14710}, eprinttype = {arXiv}, eprint = {2402.14710}, timestamp = {Tue, 09 Apr 2024 07:32:43 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2402-14710.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
{"datasets": ["zjunlp/iepile", "zjunlp/InstructIE"], "language": ["en", "zh"], "license": "cc-by-nc-sa-4.0"}
w601sxs/b1ade-embed-kd
w601sxs
sentence-similarity
[ "sentence-transformers", "safetensors", "bert", "mteb", "sentence-similarity", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
2024-05-24T20:58:10
2024-05-28T18:31:24
276
1
--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - mteb model-index: - name: b1ade_embed_kd results: - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification type: mteb/amazon_counterfactual config: default split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 75.81709145427287 - type: ap value: 23.581082591688467 - type: f1 value: 62.54637626017967 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification type: mteb/amazon_polarity config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 80.300125 - type: ap value: 74.26836190039964 - type: f1 value: 80.2158066692679 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification type: mteb/amazon_reviews_multi config: default split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 43.084 - type: f1 value: 42.66774553366831 - task: type: Retrieval dataset: name: MTEB ArguAna type: mteb/arguana config: default split: test revision: c22ab2a51041ffd869aaddef7af8d8215647e41a metrics: - type: map_at_1 value: 29.232000000000003 - type: map_at_10 value: 45.777 - type: map_at_100 value: 46.634 - type: map_at_1000 value: 46.64 - type: map_at_20 value: 46.489000000000004 - type: map_at_3 value: 40.861 - type: map_at_5 value: 43.659 - type: mrr_at_1 value: 30.156 - type: mrr_at_10 value: 46.141 - type: mrr_at_100 value: 46.983999999999995 - type: mrr_at_1000 value: 46.989999999999995 - type: mrr_at_20 value: 46.839 - type: mrr_at_3 value: 41.157 - type: mrr_at_5 value: 44.013000000000005 - type: ndcg_at_1 value: 29.232000000000003 - type: ndcg_at_10 value: 54.832 - type: ndcg_at_100 value: 58.303000000000004 - type: ndcg_at_1000 value: 58.451 - type: ndcg_at_20 value: 57.328 - type: ndcg_at_3 value: 44.685 - type: ndcg_at_5 value: 49.756 - type: precision_at_1 value: 29.232000000000003 - type: precision_at_10 value: 8.371 - type: precision_at_100 value: 0.985 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.6690000000000005 - type: precision_at_3 value: 18.587 - type: precision_at_5 value: 13.627 - type: recall_at_1 value: 29.232000000000003 - type: recall_at_10 value: 83.71300000000001 - type: recall_at_100 value: 98.506 - type: recall_at_1000 value: 99.644 - type: recall_at_20 value: 93.38499999999999 - type: recall_at_3 value: 55.761 - type: recall_at_5 value: 68.137 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P type: mteb/arxiv-clustering-p2p config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 45.801946024895756 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S type: mteb/arxiv-clustering-s2s config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 37.639210206045206 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions type: mteb/askubuntudupquestions-reranking config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 57.589359041891576 - type: mrr value: 70.88334872268389 - task: type: STS dataset: name: MTEB BIOSSES type: mteb/biosses-sts config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 86.63594177060354 - type: cos_sim_spearman value: 84.75132870687939 - type: euclidean_pearson value: 85.05646621990854 - type: euclidean_spearman value: 84.68686940680522 - type: manhattan_pearson value: 85.08705700579426 - type: manhattan_spearman value: 84.83446313127413 - task: type: Classification dataset: name: MTEB Banking77Classification type: mteb/banking77 config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 85.1948051948052 - type: f1 value: 85.13229898343104 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P type: mteb/biorxiv-clustering-p2p config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 38.68616898014911 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S type: mteb/biorxiv-clustering-s2s config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 34.45376891835619 - task: type: Retrieval dataset: name: MTEB CQADupstackAndroidRetrieval type: mteb/cqadupstack-android config: default split: test revision: f46a197baaae43b4f621051089b82a364682dfeb metrics: - type: map_at_1 value: 26.340000000000003 - type: map_at_10 value: 36.513 - type: map_at_100 value: 37.968 - type: map_at_1000 value: 38.107 - type: map_at_20 value: 37.355 - type: map_at_3 value: 33.153 - type: map_at_5 value: 34.899 - type: mrr_at_1 value: 33.763 - type: mrr_at_10 value: 42.778 - type: mrr_at_100 value: 43.667 - type: mrr_at_1000 value: 43.724000000000004 - type: mrr_at_20 value: 43.349 - type: mrr_at_3 value: 40.32 - type: mrr_at_5 value: 41.657 - type: ndcg_at_1 value: 33.763 - type: ndcg_at_10 value: 42.783 - type: ndcg_at_100 value: 48.209999999999994 - type: ndcg_at_1000 value: 50.678999999999995 - type: ndcg_at_20 value: 45.073 - type: ndcg_at_3 value: 37.841 - type: ndcg_at_5 value: 39.818999999999996 - type: precision_at_1 value: 33.763 - type: precision_at_10 value: 8.398 - type: precision_at_100 value: 1.396 - type: precision_at_1000 value: 0.188 - type: precision_at_20 value: 5.0569999999999995 - type: precision_at_3 value: 18.503 - type: precision_at_5 value: 13.219 - type: recall_at_1 value: 26.340000000000003 - type: recall_at_10 value: 54.603 - type: recall_at_100 value: 77.264 - type: recall_at_1000 value: 93.882 - type: recall_at_20 value: 63.101 - type: recall_at_3 value: 39.6 - type: recall_at_5 value: 45.651 - task: type: Retrieval dataset: name: MTEB CQADupstackEnglishRetrieval type: mteb/cqadupstack-english config: default split: test revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 metrics: - type: map_at_1 value: 24.313000000000002 - type: map_at_10 value: 33.225 - type: map_at_100 value: 34.293 - type: map_at_1000 value: 34.421 - type: map_at_20 value: 33.818 - type: map_at_3 value: 30.545 - type: map_at_5 value: 32.144 - type: mrr_at_1 value: 31.083 - type: mrr_at_10 value: 39.199 - type: mrr_at_100 value: 39.835 - type: mrr_at_1000 value: 39.892 - type: mrr_at_20 value: 39.57 - type: mrr_at_3 value: 36.879 - type: mrr_at_5 value: 38.245000000000005 - type: ndcg_at_1 value: 31.083 - type: ndcg_at_10 value: 38.553 - type: ndcg_at_100 value: 42.685 - type: ndcg_at_1000 value: 45.144 - type: ndcg_at_20 value: 40.116 - type: ndcg_at_3 value: 34.608 - type: ndcg_at_5 value: 36.551 - type: precision_at_1 value: 31.083 - type: precision_at_10 value: 7.28 - type: precision_at_100 value: 1.183 - type: precision_at_1000 value: 0.168 - type: precision_at_20 value: 4.322 - type: precision_at_3 value: 16.858 - type: precision_at_5 value: 12.127 - type: recall_at_1 value: 24.313000000000002 - type: recall_at_10 value: 48.117 - type: recall_at_100 value: 65.768 - type: recall_at_1000 value: 81.935 - type: recall_at_20 value: 53.689 - type: recall_at_3 value: 36.335 - type: recall_at_5 value: 41.803000000000004 - task: type: Retrieval dataset: name: MTEB CQADupstackGamingRetrieval type: mteb/cqadupstack-gaming config: default split: test revision: 4885aa143210c98657558c04aaf3dc47cfb54340 metrics: - type: map_at_1 value: 33.013999999999996 - type: map_at_10 value: 44.567 - type: map_at_100 value: 45.664 - type: map_at_1000 value: 45.732 - type: map_at_20 value: 45.190000000000005 - type: map_at_3 value: 41.393 - type: map_at_5 value: 43.147000000000006 - type: mrr_at_1 value: 37.806 - type: mrr_at_10 value: 47.841 - type: mrr_at_100 value: 48.597 - type: mrr_at_1000 value: 48.638 - type: mrr_at_20 value: 48.262 - type: mrr_at_3 value: 45.361000000000004 - type: mrr_at_5 value: 46.803 - type: ndcg_at_1 value: 37.806 - type: ndcg_at_10 value: 50.412 - type: ndcg_at_100 value: 55.019 - type: ndcg_at_1000 value: 56.52 - type: ndcg_at_20 value: 52.23100000000001 - type: ndcg_at_3 value: 44.944 - type: ndcg_at_5 value: 47.535 - type: precision_at_1 value: 37.806 - type: precision_at_10 value: 8.351 - type: precision_at_100 value: 1.163 - type: precision_at_1000 value: 0.134 - type: precision_at_20 value: 4.727 - type: precision_at_3 value: 20.376 - type: precision_at_5 value: 14.056 - type: recall_at_1 value: 33.013999999999996 - type: recall_at_10 value: 64.35600000000001 - type: recall_at_100 value: 84.748 - type: recall_at_1000 value: 95.525 - type: recall_at_20 value: 71.137 - type: recall_at_3 value: 49.726 - type: recall_at_5 value: 56.054 - task: type: Retrieval dataset: name: MTEB CQADupstackGisRetrieval type: mteb/cqadupstack-gis config: default split: test revision: 5003b3064772da1887988e05400cf3806fe491f2 metrics: - type: map_at_1 value: 18.476 - type: map_at_10 value: 24.715999999999998 - type: map_at_100 value: 25.72 - type: map_at_1000 value: 25.826999999999998 - type: map_at_20 value: 25.276 - type: map_at_3 value: 22.656000000000002 - type: map_at_5 value: 23.737 - type: mrr_at_1 value: 20.113 - type: mrr_at_10 value: 26.423999999999996 - type: mrr_at_100 value: 27.328000000000003 - type: mrr_at_1000 value: 27.418 - type: mrr_at_20 value: 26.936 - type: mrr_at_3 value: 24.275 - type: mrr_at_5 value: 25.501 - type: ndcg_at_1 value: 20.113 - type: ndcg_at_10 value: 28.626 - type: ndcg_at_100 value: 33.649 - type: ndcg_at_1000 value: 36.472 - type: ndcg_at_20 value: 30.581999999999997 - type: ndcg_at_3 value: 24.490000000000002 - type: ndcg_at_5 value: 26.394000000000002 - type: precision_at_1 value: 20.113 - type: precision_at_10 value: 4.52 - type: precision_at_100 value: 0.739 - type: precision_at_1000 value: 0.10200000000000001 - type: precision_at_20 value: 2.706 - type: precision_at_3 value: 10.433 - type: precision_at_5 value: 7.48 - type: recall_at_1 value: 18.476 - type: recall_at_10 value: 39.129000000000005 - type: recall_at_100 value: 62.44 - type: recall_at_1000 value: 83.95700000000001 - type: recall_at_20 value: 46.611999999999995 - type: recall_at_3 value: 27.772000000000002 - type: recall_at_5 value: 32.312000000000005 - task: type: Retrieval dataset: name: MTEB CQADupstackMathematicaRetrieval type: mteb/cqadupstack-mathematica config: default split: test revision: 90fceea13679c63fe563ded68f3b6f06e50061de metrics: - type: map_at_1 value: 10.126 - type: map_at_10 value: 15.916 - type: map_at_100 value: 17.049 - type: map_at_1000 value: 17.19 - type: map_at_20 value: 16.569 - type: map_at_3 value: 13.986 - type: map_at_5 value: 15.052999999999999 - type: mrr_at_1 value: 13.059999999999999 - type: mrr_at_10 value: 19.52 - type: mrr_at_100 value: 20.599999999999998 - type: mrr_at_1000 value: 20.693 - type: mrr_at_20 value: 20.177999999999997 - type: mrr_at_3 value: 17.496000000000002 - type: mrr_at_5 value: 18.541 - type: ndcg_at_1 value: 13.059999999999999 - type: ndcg_at_10 value: 19.987 - type: ndcg_at_100 value: 25.602000000000004 - type: ndcg_at_1000 value: 29.171999999999997 - type: ndcg_at_20 value: 22.31 - type: ndcg_at_3 value: 16.286 - type: ndcg_at_5 value: 17.931 - type: precision_at_1 value: 13.059999999999999 - type: precision_at_10 value: 3.9050000000000002 - type: precision_at_100 value: 0.771 - type: precision_at_1000 value: 0.123 - type: precision_at_20 value: 2.606 - type: precision_at_3 value: 8.167 - type: precision_at_5 value: 6.045 - type: recall_at_1 value: 10.126 - type: recall_at_10 value: 29.137 - type: recall_at_100 value: 53.824000000000005 - type: recall_at_1000 value: 79.373 - type: recall_at_20 value: 37.475 - type: recall_at_3 value: 18.791 - type: recall_at_5 value: 22.993 - task: type: Retrieval dataset: name: MTEB CQADupstackPhysicsRetrieval type: mteb/cqadupstack-physics config: default split: test revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 metrics: - type: map_at_1 value: 25.281 - type: map_at_10 value: 34.875 - type: map_at_100 value: 36.268 - type: map_at_1000 value: 36.385 - type: map_at_20 value: 35.711999999999996 - type: map_at_3 value: 31.808999999999997 - type: map_at_5 value: 33.550999999999995 - type: mrr_at_1 value: 31.28 - type: mrr_at_10 value: 40.489000000000004 - type: mrr_at_100 value: 41.434 - type: mrr_at_1000 value: 41.491 - type: mrr_at_20 value: 41.088 - type: mrr_at_3 value: 38.033 - type: mrr_at_5 value: 39.621 - type: ndcg_at_1 value: 31.28 - type: ndcg_at_10 value: 40.716 - type: ndcg_at_100 value: 46.45 - type: ndcg_at_1000 value: 48.851 - type: ndcg_at_20 value: 43.216 - type: ndcg_at_3 value: 35.845 - type: ndcg_at_5 value: 38.251000000000005 - type: precision_at_1 value: 31.28 - type: precision_at_10 value: 7.623 - type: precision_at_100 value: 1.214 - type: precision_at_1000 value: 0.159 - type: precision_at_20 value: 4.625 - type: precision_at_3 value: 17.26 - type: precision_at_5 value: 12.435 - type: recall_at_1 value: 25.281 - type: recall_at_10 value: 52.476 - type: recall_at_100 value: 76.535 - type: recall_at_1000 value: 92.658 - type: recall_at_20 value: 61.211000000000006 - type: recall_at_3 value: 38.805 - type: recall_at_5 value: 45.053 - task: type: Retrieval dataset: name: MTEB CQADupstackProgrammersRetrieval type: mteb/cqadupstack-programmers config: default split: test revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 metrics: - type: map_at_1 value: 20.092 - type: map_at_10 value: 27.805999999999997 - type: map_at_100 value: 29.137999999999998 - type: map_at_1000 value: 29.266 - type: map_at_20 value: 28.587 - type: map_at_3 value: 25.112000000000002 - type: map_at_5 value: 26.551000000000002 - type: mrr_at_1 value: 24.315 - type: mrr_at_10 value: 32.068000000000005 - type: mrr_at_100 value: 33.039 - type: mrr_at_1000 value: 33.114 - type: mrr_at_20 value: 32.66 - type: mrr_at_3 value: 29.49 - type: mrr_at_5 value: 30.906 - type: ndcg_at_1 value: 24.315 - type: ndcg_at_10 value: 32.9 - type: ndcg_at_100 value: 38.741 - type: ndcg_at_1000 value: 41.657 - type: ndcg_at_20 value: 35.338 - type: ndcg_at_3 value: 28.069 - type: ndcg_at_5 value: 30.169 - type: precision_at_1 value: 24.315 - type: precision_at_10 value: 6.2330000000000005 - type: precision_at_100 value: 1.072 - type: precision_at_1000 value: 0.15 - type: precision_at_20 value: 3.8580000000000005 - type: precision_at_3 value: 13.318 - type: precision_at_5 value: 9.748999999999999 - type: recall_at_1 value: 20.092 - type: recall_at_10 value: 43.832 - type: recall_at_100 value: 68.75099999999999 - type: recall_at_1000 value: 89.25 - type: recall_at_20 value: 52.445 - type: recall_at_3 value: 30.666 - type: recall_at_5 value: 35.873 - task: type: Retrieval dataset: name: MTEB CQADupstackRetrieval type: mteb/cqadupstack config: default split: test revision: 160c094312a0e1facb97e55eeddb698c0abe3571 metrics: - type: map_at_1 value: 19.317 - type: map_at_10 value: 26.653 - type: map_at_100 value: 28.011999999999997 - type: map_at_1000 value: 28.231 - type: map_at_20 value: 27.301 - type: map_at_3 value: 23.763 - type: map_at_5 value: 25.391000000000002 - type: mrr_at_1 value: 24.506 - type: mrr_at_10 value: 31.991999999999997 - type: mrr_at_100 value: 32.924 - type: mrr_at_1000 value: 32.993 - type: mrr_at_20 value: 32.521 - type: mrr_at_3 value: 29.48 - type: mrr_at_5 value: 30.982 - type: ndcg_at_1 value: 24.506 - type: ndcg_at_10 value: 32.202999999999996 - type: ndcg_at_100 value: 37.797 - type: ndcg_at_1000 value: 40.859 - type: ndcg_at_20 value: 34.098 - type: ndcg_at_3 value: 27.552 - type: ndcg_at_5 value: 29.781000000000002 - type: precision_at_1 value: 24.506 - type: precision_at_10 value: 6.462 - type: precision_at_100 value: 1.35 - type: precision_at_1000 value: 0.22499999999999998 - type: precision_at_20 value: 4.071000000000001 - type: precision_at_3 value: 13.241 - type: precision_at_5 value: 9.921000000000001 - type: recall_at_1 value: 19.317 - type: recall_at_10 value: 42.296 - type: recall_at_100 value: 68.2 - type: recall_at_1000 value: 88.565 - type: recall_at_20 value: 49.883 - type: recall_at_3 value: 28.608 - type: recall_at_5 value: 34.854 - task: type: Retrieval dataset: name: MTEB CQADupstackStatsRetrieval type: mteb/cqadupstack-stats config: default split: test revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a metrics: - type: map_at_1 value: 18.0 - type: map_at_10 value: 24.444 - type: map_at_100 value: 25.205 - type: map_at_1000 value: 25.291000000000004 - type: map_at_20 value: 24.834 - type: map_at_3 value: 22.311 - type: map_at_5 value: 23.442 - type: mrr_at_1 value: 20.552 - type: mrr_at_10 value: 27.028999999999996 - type: mrr_at_100 value: 27.706999999999997 - type: mrr_at_1000 value: 27.775 - type: mrr_at_20 value: 27.366 - type: mrr_at_3 value: 25.051000000000002 - type: mrr_at_5 value: 26.063 - type: ndcg_at_1 value: 20.552 - type: ndcg_at_10 value: 28.519 - type: ndcg_at_100 value: 32.580999999999996 - type: ndcg_at_1000 value: 34.99 - type: ndcg_at_20 value: 29.848000000000003 - type: ndcg_at_3 value: 24.46 - type: ndcg_at_5 value: 26.273000000000003 - type: precision_at_1 value: 20.552 - type: precision_at_10 value: 4.801 - type: precision_at_100 value: 0.729 - type: precision_at_1000 value: 0.101 - type: precision_at_20 value: 2.715 - type: precision_at_3 value: 10.940999999999999 - type: precision_at_5 value: 7.761 - type: recall_at_1 value: 18.0 - type: recall_at_10 value: 38.425 - type: recall_at_100 value: 57.885 - type: recall_at_1000 value: 75.945 - type: recall_at_20 value: 43.472 - type: recall_at_3 value: 27.483 - type: recall_at_5 value: 31.866 - task: type: Retrieval dataset: name: MTEB CQADupstackTexRetrieval type: mteb/cqadupstack-tex config: default split: test revision: 46989137a86843e03a6195de44b09deda022eec7 metrics: - type: map_at_1 value: 10.014000000000001 - type: map_at_10 value: 14.462 - type: map_at_100 value: 15.364 - type: map_at_1000 value: 15.482999999999999 - type: map_at_20 value: 14.931 - type: map_at_3 value: 12.842 - type: map_at_5 value: 13.697999999999999 - type: mrr_at_1 value: 12.526000000000002 - type: mrr_at_10 value: 17.433 - type: mrr_at_100 value: 18.296 - type: mrr_at_1000 value: 18.383 - type: mrr_at_20 value: 17.897 - type: mrr_at_3 value: 15.703 - type: mrr_at_5 value: 16.627 - type: ndcg_at_1 value: 12.526000000000002 - type: ndcg_at_10 value: 17.697 - type: ndcg_at_100 value: 22.33 - type: ndcg_at_1000 value: 25.587 - type: ndcg_at_20 value: 19.302 - type: ndcg_at_3 value: 14.606 - type: ndcg_at_5 value: 15.946 - type: precision_at_1 value: 12.526000000000002 - type: precision_at_10 value: 3.383 - type: precision_at_100 value: 0.6799999999999999 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_20 value: 2.147 - type: precision_at_3 value: 7.02 - type: precision_at_5 value: 5.196 - type: recall_at_1 value: 10.014000000000001 - type: recall_at_10 value: 24.623 - type: recall_at_100 value: 45.795 - type: recall_at_1000 value: 69.904 - type: recall_at_20 value: 30.534 - type: recall_at_3 value: 15.955 - type: recall_at_5 value: 19.394 - task: type: Retrieval dataset: name: MTEB CQADupstackUnixRetrieval type: mteb/cqadupstack-unix config: default split: test revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 metrics: - type: map_at_1 value: 19.156000000000002 - type: map_at_10 value: 26.144000000000002 - type: map_at_100 value: 27.157999999999998 - type: map_at_1000 value: 27.288 - type: map_at_20 value: 26.689 - type: map_at_3 value: 24.125 - type: map_at_5 value: 25.369000000000003 - type: mrr_at_1 value: 22.854 - type: mrr_at_10 value: 29.874000000000002 - type: mrr_at_100 value: 30.738 - type: mrr_at_1000 value: 30.826999999999998 - type: mrr_at_20 value: 30.354 - type: mrr_at_3 value: 27.689999999999998 - type: mrr_at_5 value: 29.131 - type: ndcg_at_1 value: 22.854 - type: ndcg_at_10 value: 30.469 - type: ndcg_at_100 value: 35.475 - type: ndcg_at_1000 value: 38.59 - type: ndcg_at_20 value: 32.333 - type: ndcg_at_3 value: 26.674999999999997 - type: ndcg_at_5 value: 28.707 - type: precision_at_1 value: 22.854 - type: precision_at_10 value: 5.1209999999999996 - type: precision_at_100 value: 0.8500000000000001 - type: precision_at_1000 value: 0.123 - type: precision_at_20 value: 3.0460000000000003 - type: precision_at_3 value: 12.127 - type: precision_at_5 value: 8.75 - type: recall_at_1 value: 19.156000000000002 - type: recall_at_10 value: 40.009 - type: recall_at_100 value: 62.419999999999995 - type: recall_at_1000 value: 84.585 - type: recall_at_20 value: 46.912 - type: recall_at_3 value: 29.733999999999998 - type: recall_at_5 value: 34.741 - task: type: Retrieval dataset: name: MTEB CQADupstackWebmastersRetrieval type: mteb/cqadupstack-webmasters config: default split: test revision: 160c094312a0e1facb97e55eeddb698c0abe3571 metrics: - type: map_at_1 value: 19.317 - type: map_at_10 value: 26.653 - type: map_at_100 value: 28.011999999999997 - type: map_at_1000 value: 28.231 - type: map_at_20 value: 27.301 - type: map_at_3 value: 23.763 - type: map_at_5 value: 25.391000000000002 - type: mrr_at_1 value: 24.506 - type: mrr_at_10 value: 31.991999999999997 - type: mrr_at_100 value: 32.924 - type: mrr_at_1000 value: 32.993 - type: mrr_at_20 value: 32.521 - type: mrr_at_3 value: 29.48 - type: mrr_at_5 value: 30.982 - type: ndcg_at_1 value: 24.506 - type: ndcg_at_10 value: 32.202999999999996 - type: ndcg_at_100 value: 37.797 - type: ndcg_at_1000 value: 40.859 - type: ndcg_at_20 value: 34.098 - type: ndcg_at_3 value: 27.552 - type: ndcg_at_5 value: 29.781000000000002 - type: precision_at_1 value: 24.506 - type: precision_at_10 value: 6.462 - type: precision_at_100 value: 1.35 - type: precision_at_1000 value: 0.22499999999999998 - type: precision_at_20 value: 4.071000000000001 - type: precision_at_3 value: 13.241 - type: precision_at_5 value: 9.921000000000001 - type: recall_at_1 value: 19.317 - type: recall_at_10 value: 42.296 - type: recall_at_100 value: 68.2 - type: recall_at_1000 value: 88.565 - type: recall_at_20 value: 49.883 - type: recall_at_3 value: 28.608 - type: recall_at_5 value: 34.854 - task: type: Retrieval dataset: name: MTEB CQADupstackWordpressRetrieval type: mteb/cqadupstack-wordpress config: default split: test revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 metrics: - type: map_at_1 value: 12.822 - type: map_at_10 value: 18.055 - type: map_at_100 value: 18.942 - type: map_at_1000 value: 19.057 - type: map_at_20 value: 18.544 - type: map_at_3 value: 15.964 - type: map_at_5 value: 16.833000000000002 - type: mrr_at_1 value: 14.048 - type: mrr_at_10 value: 19.489 - type: mrr_at_100 value: 20.392 - type: mrr_at_1000 value: 20.49 - type: mrr_at_20 value: 19.979 - type: mrr_at_3 value: 17.344 - type: mrr_at_5 value: 18.287 - type: ndcg_at_1 value: 14.048 - type: ndcg_at_10 value: 21.737000000000002 - type: ndcg_at_100 value: 26.383000000000003 - type: ndcg_at_1000 value: 29.555 - type: ndcg_at_20 value: 23.463 - type: ndcg_at_3 value: 17.29 - type: ndcg_at_5 value: 18.829 - type: precision_at_1 value: 14.048 - type: precision_at_10 value: 3.6229999999999998 - type: precision_at_100 value: 0.641 - type: precision_at_1000 value: 0.099 - type: precision_at_20 value: 2.1999999999999997 - type: precision_at_3 value: 7.2090000000000005 - type: precision_at_5 value: 5.213 - type: recall_at_1 value: 12.822 - type: recall_at_10 value: 32.123000000000005 - type: recall_at_100 value: 53.657999999999994 - type: recall_at_1000 value: 77.72200000000001 - type: recall_at_20 value: 38.66 - type: recall_at_3 value: 19.814999999999998 - type: recall_at_5 value: 23.432 - task: type: Retrieval dataset: name: MTEB ClimateFEVER type: mteb/climate-fever config: default split: test revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 metrics: - type: map_at_1 value: 13.119 - type: map_at_10 value: 22.999 - type: map_at_100 value: 25.108000000000004 - type: map_at_1000 value: 25.306 - type: map_at_20 value: 24.141000000000002 - type: map_at_3 value: 19.223000000000003 - type: map_at_5 value: 21.181 - type: mrr_at_1 value: 30.554 - type: mrr_at_10 value: 42.553000000000004 - type: mrr_at_100 value: 43.498 - type: mrr_at_1000 value: 43.527 - type: mrr_at_20 value: 43.193 - type: mrr_at_3 value: 39.283 - type: mrr_at_5 value: 41.143 - type: ndcg_at_1 value: 30.554 - type: ndcg_at_10 value: 31.946 - type: ndcg_at_100 value: 39.934999999999995 - type: ndcg_at_1000 value: 43.256 - type: ndcg_at_20 value: 35.101 - type: ndcg_at_3 value: 26.489 - type: ndcg_at_5 value: 28.272000000000002 - type: precision_at_1 value: 30.554 - type: precision_at_10 value: 10.039 - type: precision_at_100 value: 1.864 - type: precision_at_1000 value: 0.248 - type: precision_at_20 value: 6.371 - type: precision_at_3 value: 20.174 - type: precision_at_5 value: 15.296000000000001 - type: recall_at_1 value: 13.119 - type: recall_at_10 value: 37.822 - type: recall_at_100 value: 65.312 - type: recall_at_1000 value: 83.817 - type: recall_at_20 value: 46.760000000000005 - type: recall_at_3 value: 23.858999999999998 - type: recall_at_5 value: 29.609999999999996 - task: type: Retrieval dataset: name: MTEB DBPedia type: mteb/dbpedia config: default split: test revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 metrics: - type: map_at_1 value: 8.176 - type: map_at_10 value: 19.594 - type: map_at_100 value: 28.081 - type: map_at_1000 value: 29.864 - type: map_at_20 value: 22.983999999999998 - type: map_at_3 value: 13.923 - type: map_at_5 value: 16.597 - type: mrr_at_1 value: 66.75 - type: mrr_at_10 value: 75.82600000000001 - type: mrr_at_100 value: 76.145 - type: mrr_at_1000 value: 76.14999999999999 - type: mrr_at_20 value: 76.074 - type: mrr_at_3 value: 74.333 - type: mrr_at_5 value: 75.25800000000001 - type: ndcg_at_1 value: 54.50000000000001 - type: ndcg_at_10 value: 41.806 - type: ndcg_at_100 value: 47.067 - type: ndcg_at_1000 value: 54.397 - type: ndcg_at_20 value: 41.727 - type: ndcg_at_3 value: 46.92 - type: ndcg_at_5 value: 44.381 - type: precision_at_1 value: 66.75 - type: precision_at_10 value: 33.35 - type: precision_at_100 value: 10.92 - type: precision_at_1000 value: 2.222 - type: precision_at_20 value: 25.862000000000002 - type: precision_at_3 value: 51.417 - type: precision_at_5 value: 43.65 - type: recall_at_1 value: 8.176 - type: recall_at_10 value: 26.029000000000003 - type: recall_at_100 value: 53.872 - type: recall_at_1000 value: 76.895 - type: recall_at_20 value: 34.192 - type: recall_at_3 value: 15.789 - type: recall_at_5 value: 20.255000000000003 - task: type: Classification dataset: name: MTEB EmotionClassification type: mteb/emotion config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 48.22 - type: f1 value: 43.59074485488622 - task: type: Retrieval dataset: name: MTEB FEVER type: mteb/fever config: default split: test revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 metrics: - type: map_at_1 value: 40.872 - type: map_at_10 value: 55.178000000000004 - type: map_at_100 value: 55.859 - type: map_at_1000 value: 55.881 - type: map_at_20 value: 55.66 - type: map_at_3 value: 51.4 - type: map_at_5 value: 53.754000000000005 - type: mrr_at_1 value: 43.744 - type: mrr_at_10 value: 58.36900000000001 - type: mrr_at_100 value: 58.911 - type: mrr_at_1000 value: 58.916999999999994 - type: mrr_at_20 value: 58.779 - type: mrr_at_3 value: 54.653 - type: mrr_at_5 value: 56.987 - type: ndcg_at_1 value: 43.744 - type: ndcg_at_10 value: 62.936 - type: ndcg_at_100 value: 65.666 - type: ndcg_at_1000 value: 66.08699999999999 - type: ndcg_at_20 value: 64.548 - type: ndcg_at_3 value: 55.543 - type: ndcg_at_5 value: 59.646 - type: precision_at_1 value: 43.744 - type: precision_at_10 value: 9.191 - type: precision_at_100 value: 1.072 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_20 value: 4.967 - type: precision_at_3 value: 23.157 - type: precision_at_5 value: 16.115 - type: recall_at_1 value: 40.872 - type: recall_at_10 value: 83.818 - type: recall_at_100 value: 95.14200000000001 - type: recall_at_1000 value: 97.897 - type: recall_at_20 value: 89.864 - type: recall_at_3 value: 64.19200000000001 - type: recall_at_5 value: 74.029 - task: type: Retrieval dataset: name: MTEB FiQA2018 type: mteb/fiqa config: default split: test revision: 27a168819829fe9bcd655c2df245fb19452e8e06 metrics: - type: map_at_1 value: 14.804999999999998 - type: map_at_10 value: 22.86 - type: map_at_100 value: 24.823999999999998 - type: map_at_1000 value: 25.041000000000004 - type: map_at_20 value: 23.881 - type: map_at_3 value: 20.09 - type: map_at_5 value: 21.39 - type: mrr_at_1 value: 29.938 - type: mrr_at_10 value: 37.041000000000004 - type: mrr_at_100 value: 38.196000000000005 - type: mrr_at_1000 value: 38.256 - type: mrr_at_20 value: 37.693 - type: mrr_at_3 value: 34.721999999999994 - type: mrr_at_5 value: 35.787 - type: ndcg_at_1 value: 29.938 - type: ndcg_at_10 value: 29.358 - type: ndcg_at_100 value: 37.544 - type: ndcg_at_1000 value: 41.499 - type: ndcg_at_20 value: 32.354 - type: ndcg_at_3 value: 26.434 - type: ndcg_at_5 value: 26.93 - type: precision_at_1 value: 29.938 - type: precision_at_10 value: 8.117 - type: precision_at_100 value: 1.611 - type: precision_at_1000 value: 0.232 - type: precision_at_20 value: 5.255 - type: precision_at_3 value: 17.49 - type: precision_at_5 value: 12.747 - type: recall_at_1 value: 14.804999999999998 - type: recall_at_10 value: 34.776 - type: recall_at_100 value: 66.279 - type: recall_at_1000 value: 89.96600000000001 - type: recall_at_20 value: 44.31 - type: recall_at_3 value: 23.623 - type: recall_at_5 value: 27.194000000000003 - task: type: Retrieval dataset: name: MTEB HotpotQA type: mteb/hotpotqa config: default split: test revision: ab518f4d6fcca38d87c25209f94beba119d02014 metrics: - type: map_at_1 value: 38.555 - type: map_at_10 value: 54.20700000000001 - type: map_at_100 value: 55.177 - type: map_at_1000 value: 55.254999999999995 - type: map_at_20 value: 54.788000000000004 - type: map_at_3 value: 51.034 - type: map_at_5 value: 52.998 - type: mrr_at_1 value: 77.11 - type: mrr_at_10 value: 82.93199999999999 - type: mrr_at_100 value: 83.14200000000001 - type: mrr_at_1000 value: 83.15 - type: mrr_at_20 value: 83.062 - type: mrr_at_3 value: 81.95599999999999 - type: mrr_at_5 value: 82.586 - type: ndcg_at_1 value: 77.11 - type: ndcg_at_10 value: 63.853 - type: ndcg_at_100 value: 67.18499999999999 - type: ndcg_at_1000 value: 68.676 - type: ndcg_at_20 value: 65.279 - type: ndcg_at_3 value: 59.301 - type: ndcg_at_5 value: 61.822 - type: precision_at_1 value: 77.11 - type: precision_at_10 value: 13.044 - type: precision_at_100 value: 1.5630000000000002 - type: precision_at_1000 value: 0.17600000000000002 - type: precision_at_20 value: 6.979 - type: precision_at_3 value: 36.759 - type: precision_at_5 value: 24.054000000000002 - type: recall_at_1 value: 38.555 - type: recall_at_10 value: 65.21900000000001 - type: recall_at_100 value: 78.16300000000001 - type: recall_at_1000 value: 88.02799999999999 - type: recall_at_20 value: 69.791 - type: recall_at_3 value: 55.138 - type: recall_at_5 value: 60.135000000000005 - task: type: Classification dataset: name: MTEB ImdbClassification type: mteb/imdb config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 69.8728 - type: ap value: 63.98214492125858 - type: f1 value: 69.59975497754624 - task: type: Classification dataset: name: MTEB MTOPDomainClassification type: mteb/mtop_domain config: default split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 94.76288189694483 - type: f1 value: 94.52150972672682 - task: type: Classification dataset: name: MTEB MTOPIntentClassification type: mteb/mtop_intent config: default split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 76.83994528043777 - type: f1 value: 57.95571154189732 - task: type: Classification dataset: name: MTEB MassiveIntentClassification type: mteb/amazon_massive_intent config: default split: test revision: 4672e20407010da34463acc759c162ca9734bca6 metrics: - type: accuracy value: 46.1163416274378 - type: f1 value: 45.425692244093064 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification type: mteb/amazon_massive_scenario config: default split: test revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 metrics: - type: accuracy value: 45.57834566240753 - type: f1 value: 43.84840097785479 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P type: mteb/medrxiv-clustering-p2p config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 32.86396397182615 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S type: mteb/medrxiv-clustering-s2s config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 34.018965727588565 - task: type: Reranking dataset: name: MTEB MindSmallReranking type: mteb/mind_small config: default split: test revision: 59042f120c80e8afa9cdbb224f67076cec0fc9a7 metrics: - type: map value: 31.286618059824573 - type: mrr value: 32.481830769278965 - task: type: Retrieval dataset: name: MTEB NFCorpus type: mteb/nfcorpus config: default split: test revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 metrics: - type: map_at_1 value: 4.236 - type: map_at_10 value: 9.352 - type: map_at_100 value: 12.382 - type: map_at_1000 value: 13.828999999999999 - type: map_at_20 value: 10.619 - type: map_at_3 value: 6.814000000000001 - type: map_at_5 value: 7.887 - type: mrr_at_1 value: 37.152 - type: mrr_at_10 value: 47.055 - type: mrr_at_100 value: 47.82 - type: mrr_at_1000 value: 47.86 - type: mrr_at_20 value: 47.605 - type: mrr_at_3 value: 44.118 - type: mrr_at_5 value: 46.115 - type: ndcg_at_1 value: 34.365 - type: ndcg_at_10 value: 28.473 - type: ndcg_at_100 value: 27.311999999999998 - type: ndcg_at_1000 value: 36.671 - type: ndcg_at_20 value: 27.137 - type: ndcg_at_3 value: 31.939 - type: ndcg_at_5 value: 30.428 - type: precision_at_1 value: 36.223 - type: precision_at_10 value: 21.858 - type: precision_at_100 value: 7.417999999999999 - type: precision_at_1000 value: 2.0709999999999997 - type: precision_at_20 value: 16.502 - type: precision_at_3 value: 30.857 - type: precision_at_5 value: 26.997 - type: recall_at_1 value: 4.236 - type: recall_at_10 value: 13.489 - type: recall_at_100 value: 29.580000000000002 - type: recall_at_1000 value: 62.726000000000006 - type: recall_at_20 value: 18.346999999999998 - type: recall_at_3 value: 7.811 - type: recall_at_5 value: 10.086 - task: type: Retrieval dataset: name: MTEB NQ type: mteb/nq config: default split: test revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 metrics: - type: map_at_1 value: 21.123 - type: map_at_10 value: 34.429 - type: map_at_100 value: 35.803000000000004 - type: map_at_1000 value: 35.853 - type: map_at_20 value: 35.308 - type: map_at_3 value: 30.095 - type: map_at_5 value: 32.435 - type: mrr_at_1 value: 23.841 - type: mrr_at_10 value: 36.864999999999995 - type: mrr_at_100 value: 37.935 - type: mrr_at_1000 value: 37.97 - type: mrr_at_20 value: 37.566 - type: mrr_at_3 value: 32.918 - type: mrr_at_5 value: 35.11 - type: ndcg_at_1 value: 23.841 - type: ndcg_at_10 value: 42.043 - type: ndcg_at_100 value: 48.015 - type: ndcg_at_1000 value: 49.152 - type: ndcg_at_20 value: 44.936 - type: ndcg_at_3 value: 33.513999999999996 - type: ndcg_at_5 value: 37.541999999999994 - type: precision_at_1 value: 23.841 - type: precision_at_10 value: 7.454 - type: precision_at_100 value: 1.081 - type: precision_at_1000 value: 0.11900000000000001 - type: precision_at_20 value: 4.413 - type: precision_at_3 value: 15.672 - type: precision_at_5 value: 11.657 - type: recall_at_1 value: 21.123 - type: recall_at_10 value: 63.096 - type: recall_at_100 value: 89.27199999999999 - type: recall_at_1000 value: 97.69 - type: recall_at_20 value: 73.873 - type: recall_at_3 value: 40.588 - type: recall_at_5 value: 49.928 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval type: mteb/quora config: default split: test revision: e4e08e0b7dbe3c8700f0daef558ff32256715259 metrics: - type: map_at_1 value: 70.255 - type: map_at_10 value: 84.387 - type: map_at_100 value: 85.027 - type: map_at_1000 value: 85.043 - type: map_at_20 value: 84.809 - type: map_at_3 value: 81.5 - type: map_at_5 value: 83.286 - type: mrr_at_1 value: 80.85 - type: mrr_at_10 value: 87.25699999999999 - type: mrr_at_100 value: 87.363 - type: mrr_at_1000 value: 87.363 - type: mrr_at_20 value: 87.336 - type: mrr_at_3 value: 86.357 - type: mrr_at_5 value: 86.939 - type: ndcg_at_1 value: 80.86 - type: ndcg_at_10 value: 88.151 - type: ndcg_at_100 value: 89.381 - type: ndcg_at_1000 value: 89.47800000000001 - type: ndcg_at_20 value: 88.82100000000001 - type: ndcg_at_3 value: 85.394 - type: ndcg_at_5 value: 86.855 - type: precision_at_1 value: 80.86 - type: precision_at_10 value: 13.397 - type: precision_at_100 value: 1.5310000000000001 - type: precision_at_1000 value: 0.157 - type: precision_at_20 value: 7.106999999999999 - type: precision_at_3 value: 37.46 - type: precision_at_5 value: 24.568 - type: recall_at_1 value: 70.255 - type: recall_at_10 value: 95.405 - type: recall_at_100 value: 99.56 - type: recall_at_1000 value: 99.98599999999999 - type: recall_at_20 value: 97.544 - type: recall_at_3 value: 87.414 - type: recall_at_5 value: 91.598 - task: type: Clustering dataset: name: MTEB RedditClustering type: mteb/reddit-clustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 54.7557403999403 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P type: mteb/reddit-clustering-p2p config: default split: test revision: 385e3cb46b4cfa89021f56c4380204149d0efe33 metrics: - type: v_measure value: 56.2773308957202 - task: type: Retrieval dataset: name: MTEB SCIDOCS type: mteb/scidocs config: default split: test revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88 metrics: - type: map_at_1 value: 4.123 - type: map_at_10 value: 9.940999999999999 - type: map_at_100 value: 11.928999999999998 - type: map_at_1000 value: 12.257 - type: map_at_20 value: 10.866000000000001 - type: map_at_3 value: 7.091 - type: map_at_5 value: 8.393 - type: mrr_at_1 value: 20.3 - type: mrr_at_10 value: 30.068 - type: mrr_at_100 value: 31.296000000000003 - type: mrr_at_1000 value: 31.36 - type: mrr_at_20 value: 30.756 - type: mrr_at_3 value: 26.667 - type: mrr_at_5 value: 28.616999999999997 - type: ndcg_at_1 value: 20.3 - type: ndcg_at_10 value: 17.305 - type: ndcg_at_100 value: 25.529000000000003 - type: ndcg_at_1000 value: 31.41 - type: ndcg_at_20 value: 19.967 - type: ndcg_at_3 value: 16.022 - type: ndcg_at_5 value: 14.12 - type: precision_at_1 value: 20.3 - type: precision_at_10 value: 9.06 - type: precision_at_100 value: 2.103 - type: precision_at_1000 value: 0.35200000000000004 - type: precision_at_20 value: 6.075 - type: precision_at_3 value: 14.832999999999998 - type: precision_at_5 value: 12.36 - type: recall_at_1 value: 4.123 - type: recall_at_10 value: 18.383 - type: recall_at_100 value: 42.67 - type: recall_at_1000 value: 71.44800000000001 - type: recall_at_20 value: 24.64 - type: recall_at_3 value: 9.043 - type: recall_at_5 value: 12.543000000000001 - task: type: STS dataset: name: MTEB SICK-R type: mteb/sickr-sts config: default split: test revision: 20a6d6f312dd54037fe07a32d58e5e168867909d metrics: - type: cos_sim_pearson value: 84.37101718384514 - type: cos_sim_spearman value: 80.73657031880697 - type: euclidean_pearson value: 81.42351850520845 - type: euclidean_spearman value: 80.81452496851979 - type: manhattan_pearson value: 81.47676252115669 - type: manhattan_spearman value: 80.87566944708885 - task: type: STS dataset: name: MTEB STS12 type: mteb/sts12-sts config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 84.79559176971591 - type: cos_sim_spearman value: 75.41866597445552 - type: euclidean_pearson value: 83.20287101163838 - type: euclidean_spearman value: 75.54564777571143 - type: manhattan_pearson value: 83.24622548900163 - type: manhattan_spearman value: 75.63826258190343 - task: type: STS dataset: name: MTEB STS13 type: mteb/sts13-sts config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 84.63322096299294 - type: cos_sim_spearman value: 85.48272638914783 - type: euclidean_pearson value: 85.57327707819331 - type: euclidean_spearman value: 85.90735298172922 - type: manhattan_pearson value: 85.5744191274933 - type: manhattan_spearman value: 85.90828008488766 - task: type: STS dataset: name: MTEB STS14 type: mteb/sts14-sts config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 82.05530140566407 - type: cos_sim_spearman value: 78.85454907951474 - type: euclidean_pearson value: 81.4307311680376 - type: euclidean_spearman value: 78.99131623529348 - type: manhattan_pearson value: 81.46870892683134 - type: manhattan_spearman value: 79.05473823658481 - task: type: STS dataset: name: MTEB STS15 type: mteb/sts15-sts config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 83.66620817683379 - type: cos_sim_spearman value: 85.23347998035328 - type: euclidean_pearson value: 84.59001637865366 - type: euclidean_spearman value: 85.0081410316597 - type: manhattan_pearson value: 84.59742325369818 - type: manhattan_spearman value: 85.01721329704324 - task: type: STS dataset: name: MTEB STS16 type: mteb/sts16-sts config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 79.86344730144208 - type: cos_sim_spearman value: 82.15966778685441 - type: euclidean_pearson value: 81.85580574642779 - type: euclidean_spearman value: 82.06482873417123 - type: manhattan_pearson value: 81.82971046102377 - type: manhattan_spearman value: 82.04185436355144 - task: type: STS dataset: name: MTEB STS17 type: mteb/sts17-crosslingual-sts config: default split: test revision: faeb762787bd10488a50c8b5be4a3b82e411949c metrics: - type: cos_sim_pearson value: 31.440481026661672 - type: cos_sim_spearman value: 31.592743544965913 - type: euclidean_pearson value: 31.15111049327518 - type: euclidean_spearman value: 30.555124184361464 - type: manhattan_pearson value: 31.724139249295654 - type: manhattan_spearman value: 30.483389245793504 - task: type: STS dataset: name: MTEB STS22 type: mteb/sts22-crosslingual-sts config: default split: test revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 metrics: - type: cos_sim_pearson value: 34.51489724275415 - type: cos_sim_spearman value: 47.06532141601629 - type: euclidean_pearson value: 33.28904737503036 - type: euclidean_spearman value: 45.111172981641865 - type: manhattan_pearson value: 33.36374172942392 - type: manhattan_spearman value: 45.100940945158534 - task: type: STS dataset: name: MTEB STSBenchmark type: mteb/stsbenchmark-sts config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 82.09996292950329 - type: cos_sim_spearman value: 82.69376206796092 - type: euclidean_pearson value: 82.83254956369134 - type: euclidean_spearman value: 82.34202999843637 - type: manhattan_pearson value: 82.8048494319632 - type: manhattan_spearman value: 82.34713123336984 - task: type: Reranking dataset: name: MTEB SciDocsRR type: mteb/scidocs-reranking config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 82.1402269601644 - type: mrr value: 94.84447197682492 - task: type: Retrieval dataset: name: MTEB SciFact type: mteb/scifact config: default split: test revision: 0228b52cf27578f30900b9e5271d331663a030d7 metrics: - type: map_at_1 value: 49.138999999999996 - type: map_at_10 value: 60.288 - type: map_at_100 value: 61.082 - type: map_at_1000 value: 61.11 - type: map_at_20 value: 60.831999999999994 - type: map_at_3 value: 57.106 - type: map_at_5 value: 58.857000000000006 - type: mrr_at_1 value: 51.333 - type: mrr_at_10 value: 61.364 - type: mrr_at_100 value: 62.029999999999994 - type: mrr_at_1000 value: 62.056 - type: mrr_at_20 value: 61.85000000000001 - type: mrr_at_3 value: 58.721999999999994 - type: mrr_at_5 value: 60.221999999999994 - type: ndcg_at_1 value: 51.333 - type: ndcg_at_10 value: 65.71900000000001 - type: ndcg_at_100 value: 69.036 - type: ndcg_at_1000 value: 69.626 - type: ndcg_at_20 value: 67.571 - type: ndcg_at_3 value: 60.019 - type: ndcg_at_5 value: 62.733000000000004 - type: precision_at_1 value: 51.333 - type: precision_at_10 value: 9.067 - type: precision_at_100 value: 1.083 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_20 value: 4.95 - type: precision_at_3 value: 23.889 - type: precision_at_5 value: 16.0 - type: recall_at_1 value: 49.138999999999996 - type: recall_at_10 value: 81.256 - type: recall_at_100 value: 95.6 - type: recall_at_1000 value: 100.0 - type: recall_at_20 value: 88.289 - type: recall_at_3 value: 66.078 - type: recall_at_5 value: 72.661 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions type: mteb/sprintduplicatequestions-pairclassification config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.73762376237623 - type: cos_sim_ap value: 93.02149432690442 - type: cos_sim_f1 value: 86.59079663532904 - type: cos_sim_precision value: 85.70029382957884 - type: cos_sim_recall value: 87.5 - type: dot_accuracy value: 99.73267326732673 - type: dot_ap value: 92.38661051842968 - type: dot_f1 value: 85.92283628779978 - type: dot_precision value: 89.76034858387798 - type: dot_recall value: 82.39999999999999 - type: euclidean_accuracy value: 99.73960396039604 - type: euclidean_ap value: 92.99557708360517 - type: euclidean_f1 value: 86.49183572488866 - type: euclidean_precision value: 85.60235063663075 - type: euclidean_recall value: 87.4 - type: manhattan_accuracy value: 99.74059405940594 - type: manhattan_ap value: 93.24237279644005 - type: manhattan_f1 value: 86.77727501256913 - type: manhattan_precision value: 87.25985844287159 - type: manhattan_recall value: 86.3 - type: max_accuracy value: 99.74059405940594 - type: max_ap value: 93.24237279644005 - type: max_f1 value: 86.77727501256913 - task: type: Clustering dataset: name: MTEB StackExchangeClustering type: mteb/stackexchange-clustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 63.94924261127149 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P type: mteb/stackexchange-clustering-p2p config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 32.22297034902405 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions type: mteb/stackoverflowdupquestions-reranking config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 46.12948438780115 - type: mrr value: 46.77186783804431 - task: type: Summarization dataset: name: MTEB SummEval type: mteb/summeval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.02235612863601 - type: cos_sim_spearman value: 30.567504287706598 - type: dot_pearson value: 28.943978981614897 - type: dot_spearman value: 29.905635915797358 - task: type: Retrieval dataset: name: MTEB TRECCOVID type: mteb/trec-covid config: default split: test revision: bb9466bac8153a0349341eb1b22e06409e78ef4e metrics: - type: map_at_1 value: 0.173 - type: map_at_10 value: 1.124 - type: map_at_100 value: 5.645 - type: map_at_1000 value: 14.965 - type: map_at_20 value: 1.876 - type: map_at_3 value: 0.45599999999999996 - type: map_at_5 value: 0.699 - type: mrr_at_1 value: 70.0 - type: mrr_at_10 value: 81.786 - type: mrr_at_100 value: 81.786 - type: mrr_at_1000 value: 81.786 - type: mrr_at_20 value: 81.786 - type: mrr_at_3 value: 80.0 - type: mrr_at_5 value: 81.5 - type: ndcg_at_1 value: 65.0 - type: ndcg_at_10 value: 53.88699999999999 - type: ndcg_at_100 value: 38.028 - type: ndcg_at_1000 value: 37.183 - type: ndcg_at_20 value: 49.286 - type: ndcg_at_3 value: 63.05 - type: ndcg_at_5 value: 59.49100000000001 - type: precision_at_1 value: 70.0 - type: precision_at_10 value: 55.400000000000006 - type: precision_at_100 value: 38.800000000000004 - type: precision_at_1000 value: 17.082 - type: precision_at_20 value: 50.7 - type: precision_at_3 value: 66.667 - type: precision_at_5 value: 62.4 - type: recall_at_1 value: 0.173 - type: recall_at_10 value: 1.353 - type: recall_at_100 value: 8.887 - type: recall_at_1000 value: 36.012 - type: recall_at_20 value: 2.476 - type: recall_at_3 value: 0.508 - type: recall_at_5 value: 0.795 - task: type: Retrieval dataset: name: MTEB Touche2020 type: mteb/touche2020 config: default split: test revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f metrics: - type: map_at_1 value: 2.614 - type: map_at_10 value: 6.651999999999999 - type: map_at_100 value: 11.59 - type: map_at_1000 value: 13.044 - type: map_at_20 value: 8.702 - type: map_at_3 value: 4.159 - type: map_at_5 value: 5.327 - type: mrr_at_1 value: 30.612000000000002 - type: mrr_at_10 value: 42.664 - type: mrr_at_100 value: 43.957 - type: mrr_at_1000 value: 43.957 - type: mrr_at_20 value: 43.193 - type: mrr_at_3 value: 40.476 - type: mrr_at_5 value: 42.007 - type: ndcg_at_1 value: 27.551 - type: ndcg_at_10 value: 18.098 - type: ndcg_at_100 value: 30.019000000000002 - type: ndcg_at_1000 value: 42.179 - type: ndcg_at_20 value: 19.552 - type: ndcg_at_3 value: 21.22 - type: ndcg_at_5 value: 19.774 - type: precision_at_1 value: 30.612000000000002 - type: precision_at_10 value: 15.101999999999999 - type: precision_at_100 value: 6.510000000000001 - type: precision_at_1000 value: 1.4569999999999999 - type: precision_at_20 value: 12.449 - type: precision_at_3 value: 22.448999999999998 - type: precision_at_5 value: 19.592000000000002 - type: recall_at_1 value: 2.614 - type: recall_at_10 value: 11.068 - type: recall_at_100 value: 42.317 - type: recall_at_1000 value: 79.063 - type: recall_at_20 value: 18.589 - type: recall_at_3 value: 5.06 - type: recall_at_5 value: 7.356 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification type: mteb/toxic_conversations_50k config: default split: test revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de metrics: - type: accuracy value: 75.0146484375 - type: ap value: 16.80191476928431 - type: f1 value: 58.08037205204817 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification type: mteb/tweet_sentiment_extraction config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 61.80249009620826 - type: f1 value: 62.24155926661914 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering type: mteb/twentynewsgroups-clustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 47.074846780747094 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 type: mteb/twittersemeval2015-pairclassification config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 85.21785778148656 - type: cos_sim_ap value: 71.06584074764645 - type: cos_sim_f1 value: 65.81720166625826 - type: cos_sim_precision value: 61.43641354071363 - type: cos_sim_recall value: 70.87071240105541 - type: dot_accuracy value: 84.30589497526375 - type: dot_ap value: 68.85872202019365 - type: dot_f1 value: 64.20295157946092 - type: dot_precision value: 59.69607620775687 - type: dot_recall value: 69.44591029023746 - type: euclidean_accuracy value: 85.21189724026942 - type: euclidean_ap value: 71.18847194129523 - type: euclidean_f1 value: 66.00049962528105 - type: euclidean_precision value: 62.66603415559773 - type: euclidean_recall value: 69.70976253298153 - type: manhattan_accuracy value: 85.25958157000656 - type: manhattan_ap value: 71.12967638566641 - type: manhattan_f1 value: 65.77477594492791 - type: manhattan_precision value: 64.77359938603223 - type: manhattan_recall value: 66.80738786279683 - type: max_accuracy value: 85.25958157000656 - type: max_ap value: 71.18847194129523 - type: max_f1 value: 66.00049962528105 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus type: mteb/twitterurlcorpus-pairclassification config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.22330888345559 - type: cos_sim_ap value: 84.40304506741951 - type: cos_sim_f1 value: 76.46823520855303 - type: cos_sim_precision value: 72.45537867824409 - type: cos_sim_recall value: 80.95164767477672 - type: dot_accuracy value: 87.9400007761866 - type: dot_ap value: 83.63499141834609 - type: dot_f1 value: 75.98620939938304 - type: dot_precision value: 71.86792064254823 - type: dot_recall value: 80.60517400677548 - type: euclidean_accuracy value: 88.21166608452671 - type: euclidean_ap value: 84.40463988450605 - type: euclidean_f1 value: 76.52312831312177 - type: euclidean_precision value: 72.40621135083138 - type: euclidean_recall value: 81.13643363104404 - type: manhattan_accuracy value: 88.24659448131331 - type: manhattan_ap value: 84.42287495905447 - type: manhattan_f1 value: 76.54849595413475 - type: manhattan_precision value: 72.39036442248302 - type: manhattan_recall value: 81.21342777948875 - type: max_accuracy value: 88.24659448131331 - type: max_ap value: 84.42287495905447 - type: max_f1 value: 76.54849595413475 --- # b1ade-embed-kd This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was distilled with teacher model as and student model as b1ade-embed **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 275105 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 5000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 5e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Results: Good agreement with teacher model, at least on STS: Teacher: ``` 2024-05-20 16:29:07 - Teacher Performance: 2024-05-20 16:29:07 - EmbeddingSimilarityEvaluator: Evaluating the model on the sts-dev dataset: 2024-05-20 16:29:12 - Cosine-Similarity : Pearson: 0.8561 Spearman: 0.8597 2024-05-20 16:29:12 - Manhattan-Distance: Pearson: 0.8569 Spearman: 0.8567 2024-05-20 16:29:12 - Euclidean-Distance: Pearson: 0.8575 Spearman: 0.8571 2024-05-20 16:29:12 - Dot-Product-Similarity: Pearson: 0.8624 Spearman: 0.8662 ``` Student: ``` 2024-05-20 16:29:12 - Student Performance: 2024-05-20 16:29:12 - EmbeddingSimilarityEvaluator: Evaluating the model on the sts-dev dataset: 2024-05-20 16:29:17 - Cosine-Similarity : Pearson: 0.8561 Spearman: 0.8597 2024-05-20 16:29:17 - Manhattan-Distance: Pearson: 0.8569 Spearman: 0.8567 2024-05-20 16:29:17 - Euclidean-Distance: Pearson: 0.8575 Spearman: 0.8571 2024-05-20 16:29:17 - Dot-Product-Similarity: Pearson: 0.8624 Spearman: 0.8662 ```
[ "SUMMARIZATION" ]
[ "BIOSSES", "SCIFACT" ]
Non_BioNLP
# b1ade-embed-kd This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was distilled with teacher model as and student model as b1ade-embed **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 275105 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 5000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 5e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Results: Good agreement with teacher model, at least on STS: Teacher: ``` 2024-05-20 16:29:07 - Teacher Performance: 2024-05-20 16:29:07 - EmbeddingSimilarityEvaluator: Evaluating the model on the sts-dev dataset: 2024-05-20 16:29:12 - Cosine-Similarity : Pearson: 0.8561 Spearman: 0.8597 2024-05-20 16:29:12 - Manhattan-Distance: Pearson: 0.8569 Spearman: 0.8567 2024-05-20 16:29:12 - Euclidean-Distance: Pearson: 0.8575 Spearman: 0.8571 2024-05-20 16:29:12 - Dot-Product-Similarity: Pearson: 0.8624 Spearman: 0.8662 ``` Student: ``` 2024-05-20 16:29:12 - Student Performance: 2024-05-20 16:29:12 - EmbeddingSimilarityEvaluator: Evaluating the model on the sts-dev dataset: 2024-05-20 16:29:17 - Cosine-Similarity : Pearson: 0.8561 Spearman: 0.8597 2024-05-20 16:29:17 - Manhattan-Distance: Pearson: 0.8569 Spearman: 0.8567 2024-05-20 16:29:17 - Euclidean-Distance: Pearson: 0.8575 Spearman: 0.8571 2024-05-20 16:29:17 - Dot-Product-Similarity: Pearson: 0.8624 Spearman: 0.8662 ```
{"library_name": "sentence-transformers", "pipeline_tag": "sentence-similarity", "tags": ["mteb"], "model-index": [{"name": "b1ade_embed_kd", "results": [{"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonCounterfactualClassification", "type": "mteb/amazon_counterfactual", "config": "default", "split": "test", "revision": "e8379541af4e31359cca9fbcf4b00f2671dba205"}, "metrics": [{"type": "accuracy", "value": 75.81709145427287}, {"type": "ap", "value": 23.581082591688467}, {"type": "f1", "value": 62.54637626017967}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonPolarityClassification", "type": "mteb/amazon_polarity", "config": "default", "split": "test", "revision": "e2d317d38cd51312af73b3d32a06d1a08b442046"}, "metrics": [{"type": "accuracy", "value": 80.300125}, {"type": "ap", "value": 74.26836190039964}, {"type": "f1", "value": 80.2158066692679}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonReviewsClassification", "type": "mteb/amazon_reviews_multi", "config": "default", "split": "test", "revision": "1399c76144fd37290681b995c656ef9b2e06e26d"}, "metrics": [{"type": "accuracy", "value": 43.084}, {"type": "f1", "value": 42.66774553366831}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ArguAna", "type": "mteb/arguana", "config": "default", "split": "test", "revision": "c22ab2a51041ffd869aaddef7af8d8215647e41a"}, "metrics": [{"type": "map_at_1", "value": 29.232000000000003}, {"type": "map_at_10", "value": 45.777}, {"type": "map_at_100", "value": 46.634}, {"type": "map_at_1000", "value": 46.64}, {"type": "map_at_20", "value": 46.489000000000004}, {"type": "map_at_3", "value": 40.861}, {"type": "map_at_5", "value": 43.659}, {"type": "mrr_at_1", "value": 30.156}, {"type": "mrr_at_10", "value": 46.141}, {"type": "mrr_at_100", "value": 46.983999999999995}, {"type": "mrr_at_1000", "value": 46.989999999999995}, {"type": "mrr_at_20", "value": 46.839}, {"type": "mrr_at_3", "value": 41.157}, {"type": "mrr_at_5", "value": 44.013000000000005}, {"type": "ndcg_at_1", "value": 29.232000000000003}, {"type": "ndcg_at_10", "value": 54.832}, {"type": "ndcg_at_100", "value": 58.303000000000004}, {"type": "ndcg_at_1000", "value": 58.451}, {"type": "ndcg_at_20", "value": 57.328}, {"type": "ndcg_at_3", "value": 44.685}, {"type": "ndcg_at_5", "value": 49.756}, {"type": "precision_at_1", "value": 29.232000000000003}, {"type": "precision_at_10", "value": 8.371}, {"type": "precision_at_100", "value": 0.985}, {"type": "precision_at_1000", "value": 0.1}, {"type": "precision_at_20", "value": 4.6690000000000005}, {"type": "precision_at_3", "value": 18.587}, {"type": "precision_at_5", "value": 13.627}, {"type": "recall_at_1", "value": 29.232000000000003}, {"type": "recall_at_10", "value": 83.71300000000001}, {"type": "recall_at_100", "value": 98.506}, {"type": "recall_at_1000", "value": 99.644}, {"type": "recall_at_20", "value": 93.38499999999999}, {"type": "recall_at_3", "value": 55.761}, {"type": "recall_at_5", "value": 68.137}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringP2P", "type": "mteb/arxiv-clustering-p2p", "config": "default", "split": "test", "revision": "a122ad7f3f0291bf49cc6f4d32aa80929df69d5d"}, "metrics": [{"type": "v_measure", "value": 45.801946024895756}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringS2S", "type": "mteb/arxiv-clustering-s2s", "config": "default", "split": "test", "revision": "f910caf1a6075f7329cdf8c1a6135696f37dbd53"}, "metrics": [{"type": "v_measure", "value": 37.639210206045206}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB AskUbuntuDupQuestions", "type": "mteb/askubuntudupquestions-reranking", "config": "default", "split": "test", "revision": "2000358ca161889fa9c082cb41daa8dcfb161a54"}, "metrics": [{"type": "map", "value": 57.589359041891576}, {"type": "mrr", "value": 70.88334872268389}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB BIOSSES", "type": "mteb/biosses-sts", "config": "default", "split": "test", "revision": "d3fb88f8f02e40887cd149695127462bbcf29b4a"}, "metrics": [{"type": "cos_sim_pearson", "value": 86.63594177060354}, {"type": "cos_sim_spearman", "value": 84.75132870687939}, {"type": "euclidean_pearson", "value": 85.05646621990854}, {"type": "euclidean_spearman", "value": 84.68686940680522}, {"type": "manhattan_pearson", "value": 85.08705700579426}, {"type": "manhattan_spearman", "value": 84.83446313127413}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB Banking77Classification", "type": "mteb/banking77", "config": "default", "split": "test", "revision": "0fd18e25b25c072e09e0d92ab615fda904d66300"}, "metrics": [{"type": "accuracy", "value": 85.1948051948052}, {"type": "f1", "value": 85.13229898343104}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringP2P", "type": "mteb/biorxiv-clustering-p2p", "config": "default", "split": "test", "revision": "65b79d1d13f80053f67aca9498d9402c2d9f1f40"}, "metrics": [{"type": "v_measure", "value": 38.68616898014911}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringS2S", "type": "mteb/biorxiv-clustering-s2s", "config": "default", "split": "test", "revision": "258694dd0231531bc1fd9de6ceb52a0853c6d908"}, "metrics": [{"type": "v_measure", "value": 34.45376891835619}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackAndroidRetrieval", "type": "mteb/cqadupstack-android", "config": "default", "split": "test", "revision": "f46a197baaae43b4f621051089b82a364682dfeb"}, "metrics": [{"type": "map_at_1", "value": 26.340000000000003}, {"type": "map_at_10", "value": 36.513}, {"type": "map_at_100", "value": 37.968}, {"type": "map_at_1000", "value": 38.107}, {"type": "map_at_20", "value": 37.355}, {"type": "map_at_3", "value": 33.153}, {"type": "map_at_5", "value": 34.899}, {"type": "mrr_at_1", "value": 33.763}, {"type": "mrr_at_10", "value": 42.778}, {"type": "mrr_at_100", "value": 43.667}, {"type": "mrr_at_1000", "value": 43.724000000000004}, {"type": "mrr_at_20", "value": 43.349}, {"type": "mrr_at_3", "value": 40.32}, {"type": "mrr_at_5", "value": 41.657}, {"type": "ndcg_at_1", "value": 33.763}, {"type": "ndcg_at_10", "value": 42.783}, {"type": "ndcg_at_100", "value": 48.209999999999994}, {"type": "ndcg_at_1000", "value": 50.678999999999995}, {"type": "ndcg_at_20", "value": 45.073}, {"type": "ndcg_at_3", "value": 37.841}, {"type": "ndcg_at_5", "value": 39.818999999999996}, {"type": "precision_at_1", "value": 33.763}, {"type": "precision_at_10", "value": 8.398}, {"type": "precision_at_100", "value": 1.396}, {"type": "precision_at_1000", "value": 0.188}, {"type": "precision_at_20", "value": 5.0569999999999995}, {"type": "precision_at_3", "value": 18.503}, {"type": "precision_at_5", "value": 13.219}, {"type": "recall_at_1", "value": 26.340000000000003}, {"type": "recall_at_10", "value": 54.603}, {"type": "recall_at_100", "value": 77.264}, {"type": "recall_at_1000", "value": 93.882}, {"type": "recall_at_20", "value": 63.101}, {"type": "recall_at_3", "value": 39.6}, {"type": "recall_at_5", "value": 45.651}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackEnglishRetrieval", "type": "mteb/cqadupstack-english", "config": "default", "split": "test", "revision": "ad9991cb51e31e31e430383c75ffb2885547b5f0"}, "metrics": [{"type": "map_at_1", "value": 24.313000000000002}, {"type": "map_at_10", "value": 33.225}, {"type": "map_at_100", "value": 34.293}, {"type": "map_at_1000", "value": 34.421}, {"type": "map_at_20", "value": 33.818}, {"type": "map_at_3", "value": 30.545}, {"type": "map_at_5", "value": 32.144}, {"type": "mrr_at_1", "value": 31.083}, {"type": "mrr_at_10", "value": 39.199}, {"type": "mrr_at_100", "value": 39.835}, {"type": "mrr_at_1000", "value": 39.892}, {"type": "mrr_at_20", "value": 39.57}, {"type": "mrr_at_3", "value": 36.879}, {"type": "mrr_at_5", "value": 38.245000000000005}, {"type": "ndcg_at_1", "value": 31.083}, {"type": "ndcg_at_10", "value": 38.553}, {"type": "ndcg_at_100", "value": 42.685}, {"type": "ndcg_at_1000", "value": 45.144}, {"type": "ndcg_at_20", "value": 40.116}, {"type": "ndcg_at_3", "value": 34.608}, {"type": "ndcg_at_5", "value": 36.551}, {"type": "precision_at_1", "value": 31.083}, {"type": "precision_at_10", "value": 7.28}, {"type": "precision_at_100", "value": 1.183}, {"type": "precision_at_1000", "value": 0.168}, {"type": "precision_at_20", "value": 4.322}, {"type": "precision_at_3", "value": 16.858}, {"type": "precision_at_5", "value": 12.127}, {"type": "recall_at_1", "value": 24.313000000000002}, {"type": "recall_at_10", "value": 48.117}, {"type": "recall_at_100", "value": 65.768}, {"type": "recall_at_1000", "value": 81.935}, {"type": "recall_at_20", "value": 53.689}, {"type": "recall_at_3", "value": 36.335}, {"type": "recall_at_5", "value": 41.803000000000004}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackGamingRetrieval", "type": "mteb/cqadupstack-gaming", "config": "default", "split": "test", "revision": "4885aa143210c98657558c04aaf3dc47cfb54340"}, "metrics": [{"type": "map_at_1", "value": 33.013999999999996}, {"type": "map_at_10", "value": 44.567}, {"type": "map_at_100", "value": 45.664}, {"type": "map_at_1000", "value": 45.732}, {"type": "map_at_20", "value": 45.190000000000005}, {"type": "map_at_3", "value": 41.393}, {"type": "map_at_5", "value": 43.147000000000006}, {"type": "mrr_at_1", "value": 37.806}, {"type": "mrr_at_10", "value": 47.841}, {"type": "mrr_at_100", "value": 48.597}, {"type": "mrr_at_1000", "value": 48.638}, {"type": "mrr_at_20", "value": 48.262}, {"type": "mrr_at_3", "value": 45.361000000000004}, {"type": "mrr_at_5", "value": 46.803}, {"type": "ndcg_at_1", "value": 37.806}, {"type": "ndcg_at_10", "value": 50.412}, {"type": "ndcg_at_100", "value": 55.019}, {"type": "ndcg_at_1000", "value": 56.52}, {"type": "ndcg_at_20", "value": 52.23100000000001}, {"type": "ndcg_at_3", "value": 44.944}, {"type": "ndcg_at_5", "value": 47.535}, {"type": "precision_at_1", "value": 37.806}, {"type": "precision_at_10", "value": 8.351}, {"type": "precision_at_100", "value": 1.163}, {"type": "precision_at_1000", "value": 0.134}, {"type": "precision_at_20", "value": 4.727}, {"type": "precision_at_3", "value": 20.376}, {"type": "precision_at_5", "value": 14.056}, {"type": "recall_at_1", "value": 33.013999999999996}, {"type": "recall_at_10", "value": 64.35600000000001}, {"type": "recall_at_100", "value": 84.748}, {"type": "recall_at_1000", "value": 95.525}, {"type": "recall_at_20", "value": 71.137}, {"type": "recall_at_3", "value": 49.726}, {"type": "recall_at_5", "value": 56.054}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackGisRetrieval", "type": "mteb/cqadupstack-gis", "config": "default", "split": "test", "revision": "5003b3064772da1887988e05400cf3806fe491f2"}, "metrics": [{"type": "map_at_1", "value": 18.476}, {"type": "map_at_10", "value": 24.715999999999998}, {"type": "map_at_100", "value": 25.72}, {"type": "map_at_1000", "value": 25.826999999999998}, {"type": "map_at_20", "value": 25.276}, {"type": "map_at_3", "value": 22.656000000000002}, {"type": "map_at_5", "value": 23.737}, {"type": "mrr_at_1", "value": 20.113}, {"type": "mrr_at_10", "value": 26.423999999999996}, {"type": "mrr_at_100", "value": 27.328000000000003}, {"type": "mrr_at_1000", "value": 27.418}, {"type": "mrr_at_20", "value": 26.936}, {"type": "mrr_at_3", "value": 24.275}, {"type": "mrr_at_5", "value": 25.501}, {"type": "ndcg_at_1", "value": 20.113}, {"type": "ndcg_at_10", "value": 28.626}, {"type": "ndcg_at_100", "value": 33.649}, {"type": "ndcg_at_1000", "value": 36.472}, {"type": "ndcg_at_20", "value": 30.581999999999997}, {"type": "ndcg_at_3", "value": 24.490000000000002}, {"type": "ndcg_at_5", "value": 26.394000000000002}, {"type": "precision_at_1", "value": 20.113}, {"type": "precision_at_10", "value": 4.52}, {"type": "precision_at_100", "value": 0.739}, {"type": "precision_at_1000", "value": 0.10200000000000001}, {"type": "precision_at_20", "value": 2.706}, {"type": "precision_at_3", "value": 10.433}, {"type": "precision_at_5", "value": 7.48}, {"type": "recall_at_1", "value": 18.476}, {"type": "recall_at_10", "value": 39.129000000000005}, {"type": "recall_at_100", "value": 62.44}, {"type": "recall_at_1000", "value": 83.95700000000001}, {"type": "recall_at_20", "value": 46.611999999999995}, {"type": "recall_at_3", "value": 27.772000000000002}, {"type": "recall_at_5", "value": 32.312000000000005}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackMathematicaRetrieval", "type": "mteb/cqadupstack-mathematica", "config": "default", "split": "test", "revision": "90fceea13679c63fe563ded68f3b6f06e50061de"}, "metrics": [{"type": "map_at_1", "value": 10.126}, {"type": "map_at_10", "value": 15.916}, {"type": "map_at_100", "value": 17.049}, {"type": "map_at_1000", "value": 17.19}, {"type": "map_at_20", "value": 16.569}, {"type": "map_at_3", "value": 13.986}, {"type": "map_at_5", "value": 15.052999999999999}, {"type": "mrr_at_1", "value": 13.059999999999999}, {"type": "mrr_at_10", "value": 19.52}, {"type": "mrr_at_100", "value": 20.599999999999998}, {"type": "mrr_at_1000", "value": 20.693}, {"type": "mrr_at_20", "value": 20.177999999999997}, {"type": "mrr_at_3", "value": 17.496000000000002}, {"type": "mrr_at_5", "value": 18.541}, {"type": "ndcg_at_1", "value": 13.059999999999999}, {"type": "ndcg_at_10", "value": 19.987}, {"type": "ndcg_at_100", "value": 25.602000000000004}, {"type": "ndcg_at_1000", "value": 29.171999999999997}, {"type": "ndcg_at_20", "value": 22.31}, {"type": "ndcg_at_3", "value": 16.286}, {"type": "ndcg_at_5", "value": 17.931}, {"type": "precision_at_1", "value": 13.059999999999999}, {"type": "precision_at_10", "value": 3.9050000000000002}, {"type": "precision_at_100", "value": 0.771}, {"type": "precision_at_1000", "value": 0.123}, {"type": "precision_at_20", "value": 2.606}, {"type": "precision_at_3", "value": 8.167}, {"type": "precision_at_5", "value": 6.045}, {"type": "recall_at_1", "value": 10.126}, {"type": "recall_at_10", "value": 29.137}, {"type": "recall_at_100", "value": 53.824000000000005}, {"type": "recall_at_1000", "value": 79.373}, {"type": "recall_at_20", "value": 37.475}, {"type": "recall_at_3", "value": 18.791}, {"type": "recall_at_5", "value": 22.993}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackPhysicsRetrieval", "type": "mteb/cqadupstack-physics", "config": "default", "split": "test", "revision": "79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4"}, "metrics": [{"type": "map_at_1", "value": 25.281}, {"type": "map_at_10", "value": 34.875}, {"type": "map_at_100", "value": 36.268}, {"type": "map_at_1000", "value": 36.385}, {"type": "map_at_20", "value": 35.711999999999996}, {"type": "map_at_3", "value": 31.808999999999997}, {"type": "map_at_5", "value": 33.550999999999995}, {"type": "mrr_at_1", "value": 31.28}, {"type": "mrr_at_10", "value": 40.489000000000004}, {"type": "mrr_at_100", "value": 41.434}, {"type": "mrr_at_1000", "value": 41.491}, {"type": "mrr_at_20", "value": 41.088}, {"type": "mrr_at_3", "value": 38.033}, {"type": "mrr_at_5", "value": 39.621}, {"type": "ndcg_at_1", "value": 31.28}, {"type": "ndcg_at_10", "value": 40.716}, {"type": "ndcg_at_100", "value": 46.45}, {"type": "ndcg_at_1000", "value": 48.851}, {"type": "ndcg_at_20", "value": 43.216}, {"type": "ndcg_at_3", "value": 35.845}, {"type": "ndcg_at_5", "value": 38.251000000000005}, {"type": "precision_at_1", "value": 31.28}, {"type": "precision_at_10", "value": 7.623}, {"type": "precision_at_100", "value": 1.214}, {"type": "precision_at_1000", "value": 0.159}, {"type": "precision_at_20", "value": 4.625}, {"type": "precision_at_3", "value": 17.26}, {"type": "precision_at_5", "value": 12.435}, {"type": "recall_at_1", "value": 25.281}, {"type": "recall_at_10", "value": 52.476}, {"type": "recall_at_100", "value": 76.535}, {"type": "recall_at_1000", "value": 92.658}, {"type": "recall_at_20", "value": 61.211000000000006}, {"type": "recall_at_3", "value": 38.805}, {"type": "recall_at_5", "value": 45.053}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackProgrammersRetrieval", "type": "mteb/cqadupstack-programmers", "config": "default", "split": "test", "revision": "6184bc1440d2dbc7612be22b50686b8826d22b32"}, "metrics": [{"type": "map_at_1", "value": 20.092}, {"type": "map_at_10", "value": 27.805999999999997}, {"type": "map_at_100", "value": 29.137999999999998}, {"type": "map_at_1000", "value": 29.266}, {"type": "map_at_20", "value": 28.587}, {"type": "map_at_3", "value": 25.112000000000002}, {"type": "map_at_5", "value": 26.551000000000002}, {"type": "mrr_at_1", "value": 24.315}, {"type": "mrr_at_10", "value": 32.068000000000005}, {"type": "mrr_at_100", "value": 33.039}, {"type": "mrr_at_1000", "value": 33.114}, {"type": "mrr_at_20", "value": 32.66}, {"type": "mrr_at_3", "value": 29.49}, {"type": "mrr_at_5", "value": 30.906}, {"type": "ndcg_at_1", "value": 24.315}, {"type": "ndcg_at_10", "value": 32.9}, {"type": "ndcg_at_100", "value": 38.741}, {"type": "ndcg_at_1000", "value": 41.657}, {"type": "ndcg_at_20", "value": 35.338}, {"type": "ndcg_at_3", "value": 28.069}, {"type": "ndcg_at_5", "value": 30.169}, {"type": "precision_at_1", "value": 24.315}, {"type": "precision_at_10", "value": 6.2330000000000005}, {"type": "precision_at_100", "value": 1.072}, {"type": "precision_at_1000", "value": 0.15}, {"type": "precision_at_20", "value": 3.8580000000000005}, {"type": "precision_at_3", "value": 13.318}, {"type": "precision_at_5", "value": 9.748999999999999}, {"type": "recall_at_1", "value": 20.092}, {"type": "recall_at_10", "value": 43.832}, {"type": "recall_at_100", "value": 68.75099999999999}, {"type": "recall_at_1000", "value": 89.25}, {"type": "recall_at_20", "value": 52.445}, {"type": "recall_at_3", "value": 30.666}, {"type": "recall_at_5", "value": 35.873}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackRetrieval", "type": "mteb/cqadupstack", "config": "default", "split": "test", "revision": "160c094312a0e1facb97e55eeddb698c0abe3571"}, "metrics": [{"type": "map_at_1", "value": 19.317}, {"type": "map_at_10", "value": 26.653}, {"type": "map_at_100", "value": 28.011999999999997}, {"type": "map_at_1000", "value": 28.231}, {"type": "map_at_20", "value": 27.301}, {"type": "map_at_3", "value": 23.763}, {"type": "map_at_5", "value": 25.391000000000002}, {"type": "mrr_at_1", "value": 24.506}, {"type": "mrr_at_10", "value": 31.991999999999997}, {"type": "mrr_at_100", "value": 32.924}, {"type": "mrr_at_1000", "value": 32.993}, {"type": "mrr_at_20", "value": 32.521}, {"type": "mrr_at_3", "value": 29.48}, {"type": "mrr_at_5", "value": 30.982}, {"type": "ndcg_at_1", "value": 24.506}, {"type": "ndcg_at_10", "value": 32.202999999999996}, {"type": "ndcg_at_100", "value": 37.797}, {"type": "ndcg_at_1000", "value": 40.859}, {"type": "ndcg_at_20", "value": 34.098}, {"type": "ndcg_at_3", "value": 27.552}, {"type": "ndcg_at_5", "value": 29.781000000000002}, {"type": "precision_at_1", "value": 24.506}, {"type": "precision_at_10", "value": 6.462}, {"type": "precision_at_100", "value": 1.35}, {"type": "precision_at_1000", "value": 0.22499999999999998}, {"type": "precision_at_20", "value": 4.071000000000001}, {"type": "precision_at_3", "value": 13.241}, {"type": "precision_at_5", "value": 9.921000000000001}, {"type": "recall_at_1", "value": 19.317}, {"type": "recall_at_10", "value": 42.296}, {"type": "recall_at_100", "value": 68.2}, {"type": "recall_at_1000", "value": 88.565}, {"type": "recall_at_20", "value": 49.883}, {"type": "recall_at_3", "value": 28.608}, {"type": "recall_at_5", "value": 34.854}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackStatsRetrieval", "type": "mteb/cqadupstack-stats", "config": "default", "split": "test", "revision": "65ac3a16b8e91f9cee4c9828cc7c335575432a2a"}, "metrics": [{"type": "map_at_1", "value": 18.0}, {"type": "map_at_10", "value": 24.444}, {"type": "map_at_100", "value": 25.205}, {"type": "map_at_1000", "value": 25.291000000000004}, {"type": "map_at_20", "value": 24.834}, {"type": "map_at_3", "value": 22.311}, {"type": "map_at_5", "value": 23.442}, {"type": "mrr_at_1", "value": 20.552}, {"type": "mrr_at_10", "value": 27.028999999999996}, {"type": "mrr_at_100", "value": 27.706999999999997}, {"type": "mrr_at_1000", "value": 27.775}, {"type": "mrr_at_20", "value": 27.366}, {"type": "mrr_at_3", "value": 25.051000000000002}, {"type": "mrr_at_5", "value": 26.063}, {"type": "ndcg_at_1", "value": 20.552}, {"type": "ndcg_at_10", "value": 28.519}, {"type": "ndcg_at_100", "value": 32.580999999999996}, {"type": "ndcg_at_1000", "value": 34.99}, {"type": "ndcg_at_20", "value": 29.848000000000003}, {"type": "ndcg_at_3", "value": 24.46}, {"type": "ndcg_at_5", "value": 26.273000000000003}, {"type": "precision_at_1", "value": 20.552}, {"type": "precision_at_10", "value": 4.801}, {"type": "precision_at_100", "value": 0.729}, {"type": "precision_at_1000", "value": 0.101}, {"type": "precision_at_20", "value": 2.715}, {"type": "precision_at_3", "value": 10.940999999999999}, {"type": "precision_at_5", "value": 7.761}, {"type": "recall_at_1", "value": 18.0}, {"type": "recall_at_10", "value": 38.425}, {"type": "recall_at_100", "value": 57.885}, {"type": "recall_at_1000", "value": 75.945}, {"type": "recall_at_20", "value": 43.472}, {"type": "recall_at_3", "value": 27.483}, {"type": "recall_at_5", "value": 31.866}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackTexRetrieval", "type": "mteb/cqadupstack-tex", "config": "default", "split": "test", "revision": "46989137a86843e03a6195de44b09deda022eec7"}, "metrics": [{"type": "map_at_1", "value": 10.014000000000001}, {"type": "map_at_10", "value": 14.462}, {"type": "map_at_100", "value": 15.364}, {"type": "map_at_1000", "value": 15.482999999999999}, {"type": "map_at_20", "value": 14.931}, {"type": "map_at_3", "value": 12.842}, {"type": "map_at_5", "value": 13.697999999999999}, {"type": "mrr_at_1", "value": 12.526000000000002}, {"type": "mrr_at_10", "value": 17.433}, {"type": "mrr_at_100", "value": 18.296}, {"type": "mrr_at_1000", "value": 18.383}, {"type": "mrr_at_20", "value": 17.897}, {"type": "mrr_at_3", "value": 15.703}, {"type": "mrr_at_5", "value": 16.627}, {"type": "ndcg_at_1", "value": 12.526000000000002}, {"type": "ndcg_at_10", "value": 17.697}, {"type": "ndcg_at_100", "value": 22.33}, {"type": "ndcg_at_1000", "value": 25.587}, {"type": "ndcg_at_20", "value": 19.302}, {"type": "ndcg_at_3", "value": 14.606}, {"type": "ndcg_at_5", "value": 15.946}, {"type": "precision_at_1", "value": 12.526000000000002}, {"type": "precision_at_10", "value": 3.383}, {"type": "precision_at_100", "value": 0.6799999999999999}, {"type": "precision_at_1000", "value": 0.11199999999999999}, {"type": "precision_at_20", "value": 2.147}, {"type": "precision_at_3", "value": 7.02}, {"type": "precision_at_5", "value": 5.196}, {"type": "recall_at_1", "value": 10.014000000000001}, {"type": "recall_at_10", "value": 24.623}, {"type": "recall_at_100", "value": 45.795}, {"type": "recall_at_1000", "value": 69.904}, {"type": "recall_at_20", "value": 30.534}, {"type": "recall_at_3", "value": 15.955}, {"type": "recall_at_5", "value": 19.394}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackUnixRetrieval", "type": "mteb/cqadupstack-unix", "config": "default", "split": "test", "revision": "6c6430d3a6d36f8d2a829195bc5dc94d7e063e53"}, "metrics": [{"type": "map_at_1", "value": 19.156000000000002}, {"type": "map_at_10", "value": 26.144000000000002}, {"type": "map_at_100", "value": 27.157999999999998}, {"type": "map_at_1000", "value": 27.288}, {"type": "map_at_20", "value": 26.689}, {"type": "map_at_3", "value": 24.125}, {"type": "map_at_5", "value": 25.369000000000003}, {"type": "mrr_at_1", "value": 22.854}, {"type": "mrr_at_10", "value": 29.874000000000002}, {"type": "mrr_at_100", "value": 30.738}, {"type": "mrr_at_1000", "value": 30.826999999999998}, {"type": "mrr_at_20", "value": 30.354}, {"type": "mrr_at_3", "value": 27.689999999999998}, {"type": "mrr_at_5", "value": 29.131}, {"type": "ndcg_at_1", "value": 22.854}, {"type": "ndcg_at_10", "value": 30.469}, {"type": "ndcg_at_100", "value": 35.475}, {"type": "ndcg_at_1000", "value": 38.59}, {"type": "ndcg_at_20", "value": 32.333}, {"type": "ndcg_at_3", "value": 26.674999999999997}, {"type": "ndcg_at_5", "value": 28.707}, {"type": "precision_at_1", "value": 22.854}, {"type": "precision_at_10", "value": 5.1209999999999996}, {"type": "precision_at_100", "value": 0.8500000000000001}, {"type": "precision_at_1000", "value": 0.123}, {"type": "precision_at_20", "value": 3.0460000000000003}, {"type": "precision_at_3", "value": 12.127}, {"type": "precision_at_5", "value": 8.75}, {"type": "recall_at_1", "value": 19.156000000000002}, {"type": "recall_at_10", "value": 40.009}, {"type": "recall_at_100", "value": 62.419999999999995}, {"type": "recall_at_1000", "value": 84.585}, {"type": "recall_at_20", "value": 46.912}, {"type": "recall_at_3", "value": 29.733999999999998}, {"type": "recall_at_5", "value": 34.741}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackWebmastersRetrieval", "type": "mteb/cqadupstack-webmasters", "config": "default", "split": "test", "revision": "160c094312a0e1facb97e55eeddb698c0abe3571"}, "metrics": [{"type": "map_at_1", "value": 19.317}, {"type": "map_at_10", "value": 26.653}, {"type": "map_at_100", "value": 28.011999999999997}, {"type": "map_at_1000", "value": 28.231}, {"type": "map_at_20", "value": 27.301}, {"type": "map_at_3", "value": 23.763}, {"type": "map_at_5", "value": 25.391000000000002}, {"type": "mrr_at_1", "value": 24.506}, {"type": "mrr_at_10", "value": 31.991999999999997}, {"type": "mrr_at_100", "value": 32.924}, {"type": "mrr_at_1000", "value": 32.993}, {"type": "mrr_at_20", "value": 32.521}, {"type": "mrr_at_3", "value": 29.48}, {"type": "mrr_at_5", "value": 30.982}, {"type": "ndcg_at_1", "value": 24.506}, {"type": "ndcg_at_10", "value": 32.202999999999996}, {"type": "ndcg_at_100", "value": 37.797}, {"type": "ndcg_at_1000", "value": 40.859}, {"type": "ndcg_at_20", "value": 34.098}, {"type": "ndcg_at_3", "value": 27.552}, {"type": "ndcg_at_5", "value": 29.781000000000002}, {"type": "precision_at_1", "value": 24.506}, {"type": "precision_at_10", "value": 6.462}, {"type": "precision_at_100", "value": 1.35}, {"type": "precision_at_1000", "value": 0.22499999999999998}, {"type": "precision_at_20", "value": 4.071000000000001}, {"type": "precision_at_3", "value": 13.241}, {"type": "precision_at_5", "value": 9.921000000000001}, {"type": "recall_at_1", "value": 19.317}, {"type": "recall_at_10", "value": 42.296}, {"type": "recall_at_100", "value": 68.2}, {"type": "recall_at_1000", "value": 88.565}, {"type": "recall_at_20", "value": 49.883}, {"type": "recall_at_3", "value": 28.608}, {"type": "recall_at_5", "value": 34.854}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackWordpressRetrieval", "type": "mteb/cqadupstack-wordpress", "config": "default", "split": "test", "revision": "4ffe81d471b1924886b33c7567bfb200e9eec5c4"}, "metrics": [{"type": "map_at_1", "value": 12.822}, {"type": "map_at_10", "value": 18.055}, {"type": "map_at_100", "value": 18.942}, {"type": "map_at_1000", "value": 19.057}, {"type": "map_at_20", "value": 18.544}, {"type": "map_at_3", "value": 15.964}, {"type": "map_at_5", "value": 16.833000000000002}, {"type": "mrr_at_1", "value": 14.048}, {"type": "mrr_at_10", "value": 19.489}, {"type": "mrr_at_100", "value": 20.392}, {"type": "mrr_at_1000", "value": 20.49}, {"type": "mrr_at_20", "value": 19.979}, {"type": "mrr_at_3", "value": 17.344}, {"type": "mrr_at_5", "value": 18.287}, {"type": "ndcg_at_1", "value": 14.048}, {"type": "ndcg_at_10", "value": 21.737000000000002}, {"type": "ndcg_at_100", "value": 26.383000000000003}, {"type": "ndcg_at_1000", "value": 29.555}, {"type": "ndcg_at_20", "value": 23.463}, {"type": "ndcg_at_3", "value": 17.29}, {"type": "ndcg_at_5", "value": 18.829}, {"type": "precision_at_1", "value": 14.048}, {"type": "precision_at_10", "value": 3.6229999999999998}, {"type": "precision_at_100", "value": 0.641}, {"type": "precision_at_1000", "value": 0.099}, {"type": "precision_at_20", "value": 2.1999999999999997}, {"type": "precision_at_3", "value": 7.2090000000000005}, {"type": "precision_at_5", "value": 5.213}, {"type": "recall_at_1", "value": 12.822}, {"type": "recall_at_10", "value": 32.123000000000005}, {"type": "recall_at_100", "value": 53.657999999999994}, {"type": "recall_at_1000", "value": 77.72200000000001}, {"type": "recall_at_20", "value": 38.66}, {"type": "recall_at_3", "value": 19.814999999999998}, {"type": "recall_at_5", "value": 23.432}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ClimateFEVER", "type": "mteb/climate-fever", "config": "default", "split": "test", "revision": "47f2ac6acb640fc46020b02a5b59fdda04d39380"}, "metrics": [{"type": "map_at_1", "value": 13.119}, {"type": "map_at_10", "value": 22.999}, {"type": "map_at_100", "value": 25.108000000000004}, {"type": "map_at_1000", "value": 25.306}, {"type": "map_at_20", "value": 24.141000000000002}, {"type": "map_at_3", "value": 19.223000000000003}, {"type": "map_at_5", "value": 21.181}, {"type": "mrr_at_1", "value": 30.554}, {"type": "mrr_at_10", "value": 42.553000000000004}, {"type": "mrr_at_100", "value": 43.498}, {"type": "mrr_at_1000", "value": 43.527}, {"type": "mrr_at_20", "value": 43.193}, {"type": "mrr_at_3", "value": 39.283}, {"type": "mrr_at_5", "value": 41.143}, {"type": "ndcg_at_1", "value": 30.554}, {"type": "ndcg_at_10", "value": 31.946}, {"type": "ndcg_at_100", "value": 39.934999999999995}, {"type": "ndcg_at_1000", "value": 43.256}, {"type": "ndcg_at_20", "value": 35.101}, {"type": "ndcg_at_3", "value": 26.489}, {"type": "ndcg_at_5", "value": 28.272000000000002}, {"type": "precision_at_1", "value": 30.554}, {"type": "precision_at_10", "value": 10.039}, {"type": "precision_at_100", "value": 1.864}, {"type": "precision_at_1000", "value": 0.248}, {"type": "precision_at_20", "value": 6.371}, {"type": "precision_at_3", "value": 20.174}, {"type": "precision_at_5", "value": 15.296000000000001}, {"type": "recall_at_1", "value": 13.119}, {"type": "recall_at_10", "value": 37.822}, {"type": "recall_at_100", "value": 65.312}, {"type": "recall_at_1000", "value": 83.817}, {"type": "recall_at_20", "value": 46.760000000000005}, {"type": "recall_at_3", "value": 23.858999999999998}, {"type": "recall_at_5", "value": 29.609999999999996}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB DBPedia", "type": "mteb/dbpedia", "config": "default", "split": "test", "revision": "c0f706b76e590d620bd6618b3ca8efdd34e2d659"}, "metrics": [{"type": "map_at_1", "value": 8.176}, {"type": "map_at_10", "value": 19.594}, {"type": "map_at_100", "value": 28.081}, {"type": "map_at_1000", "value": 29.864}, {"type": "map_at_20", "value": 22.983999999999998}, {"type": "map_at_3", "value": 13.923}, {"type": "map_at_5", "value": 16.597}, {"type": "mrr_at_1", "value": 66.75}, {"type": "mrr_at_10", "value": 75.82600000000001}, {"type": "mrr_at_100", "value": 76.145}, {"type": "mrr_at_1000", "value": 76.14999999999999}, {"type": "mrr_at_20", "value": 76.074}, {"type": "mrr_at_3", "value": 74.333}, {"type": "mrr_at_5", "value": 75.25800000000001}, {"type": "ndcg_at_1", "value": 54.50000000000001}, {"type": "ndcg_at_10", "value": 41.806}, {"type": "ndcg_at_100", "value": 47.067}, {"type": "ndcg_at_1000", "value": 54.397}, {"type": "ndcg_at_20", "value": 41.727}, {"type": "ndcg_at_3", "value": 46.92}, {"type": "ndcg_at_5", "value": 44.381}, {"type": "precision_at_1", "value": 66.75}, {"type": "precision_at_10", "value": 33.35}, {"type": "precision_at_100", "value": 10.92}, {"type": "precision_at_1000", "value": 2.222}, {"type": "precision_at_20", "value": 25.862000000000002}, {"type": "precision_at_3", "value": 51.417}, {"type": "precision_at_5", "value": 43.65}, {"type": "recall_at_1", "value": 8.176}, {"type": "recall_at_10", "value": 26.029000000000003}, {"type": "recall_at_100", "value": 53.872}, {"type": "recall_at_1000", "value": 76.895}, {"type": "recall_at_20", "value": 34.192}, {"type": "recall_at_3", "value": 15.789}, {"type": "recall_at_5", "value": 20.255000000000003}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB EmotionClassification", "type": "mteb/emotion", "config": "default", "split": "test", "revision": "4f58c6b202a23cf9a4da393831edf4f9183cad37"}, "metrics": [{"type": "accuracy", "value": 48.22}, {"type": "f1", "value": 43.59074485488622}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB FEVER", "type": "mteb/fever", "config": "default", "split": "test", "revision": "bea83ef9e8fb933d90a2f1d5515737465d613e12"}, "metrics": [{"type": "map_at_1", "value": 40.872}, {"type": "map_at_10", "value": 55.178000000000004}, {"type": "map_at_100", "value": 55.859}, {"type": "map_at_1000", "value": 55.881}, {"type": "map_at_20", "value": 55.66}, {"type": "map_at_3", "value": 51.4}, {"type": "map_at_5", "value": 53.754000000000005}, {"type": "mrr_at_1", "value": 43.744}, {"type": "mrr_at_10", "value": 58.36900000000001}, {"type": "mrr_at_100", "value": 58.911}, {"type": "mrr_at_1000", "value": 58.916999999999994}, {"type": "mrr_at_20", "value": 58.779}, {"type": "mrr_at_3", "value": 54.653}, {"type": "mrr_at_5", "value": 56.987}, {"type": "ndcg_at_1", "value": 43.744}, {"type": "ndcg_at_10", "value": 62.936}, {"type": "ndcg_at_100", "value": 65.666}, {"type": "ndcg_at_1000", "value": 66.08699999999999}, {"type": "ndcg_at_20", "value": 64.548}, {"type": "ndcg_at_3", "value": 55.543}, {"type": "ndcg_at_5", "value": 59.646}, {"type": "precision_at_1", "value": 43.744}, {"type": "precision_at_10", "value": 9.191}, {"type": "precision_at_100", "value": 1.072}, {"type": "precision_at_1000", "value": 0.11299999999999999}, {"type": "precision_at_20", "value": 4.967}, {"type": "precision_at_3", "value": 23.157}, {"type": "precision_at_5", "value": 16.115}, {"type": "recall_at_1", "value": 40.872}, {"type": "recall_at_10", "value": 83.818}, {"type": "recall_at_100", "value": 95.14200000000001}, {"type": "recall_at_1000", "value": 97.897}, {"type": "recall_at_20", "value": 89.864}, {"type": "recall_at_3", "value": 64.19200000000001}, {"type": "recall_at_5", "value": 74.029}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB FiQA2018", "type": "mteb/fiqa", "config": "default", "split": "test", "revision": "27a168819829fe9bcd655c2df245fb19452e8e06"}, "metrics": [{"type": "map_at_1", "value": 14.804999999999998}, {"type": "map_at_10", "value": 22.86}, {"type": "map_at_100", "value": 24.823999999999998}, {"type": "map_at_1000", "value": 25.041000000000004}, {"type": "map_at_20", "value": 23.881}, {"type": "map_at_3", "value": 20.09}, {"type": "map_at_5", "value": 21.39}, {"type": "mrr_at_1", "value": 29.938}, {"type": "mrr_at_10", "value": 37.041000000000004}, {"type": "mrr_at_100", "value": 38.196000000000005}, {"type": "mrr_at_1000", "value": 38.256}, {"type": "mrr_at_20", "value": 37.693}, {"type": "mrr_at_3", "value": 34.721999999999994}, {"type": "mrr_at_5", "value": 35.787}, {"type": "ndcg_at_1", "value": 29.938}, {"type": "ndcg_at_10", "value": 29.358}, {"type": "ndcg_at_100", "value": 37.544}, {"type": "ndcg_at_1000", "value": 41.499}, {"type": "ndcg_at_20", "value": 32.354}, {"type": "ndcg_at_3", "value": 26.434}, {"type": "ndcg_at_5", "value": 26.93}, {"type": "precision_at_1", "value": 29.938}, {"type": "precision_at_10", "value": 8.117}, {"type": "precision_at_100", "value": 1.611}, {"type": "precision_at_1000", "value": 0.232}, {"type": "precision_at_20", "value": 5.255}, {"type": "precision_at_3", "value": 17.49}, {"type": "precision_at_5", "value": 12.747}, {"type": "recall_at_1", "value": 14.804999999999998}, {"type": "recall_at_10", "value": 34.776}, {"type": "recall_at_100", "value": 66.279}, {"type": "recall_at_1000", "value": 89.96600000000001}, {"type": "recall_at_20", "value": 44.31}, {"type": "recall_at_3", "value": 23.623}, {"type": "recall_at_5", "value": 27.194000000000003}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB HotpotQA", "type": "mteb/hotpotqa", "config": "default", "split": "test", "revision": "ab518f4d6fcca38d87c25209f94beba119d02014"}, "metrics": [{"type": "map_at_1", "value": 38.555}, {"type": "map_at_10", "value": 54.20700000000001}, {"type": "map_at_100", "value": 55.177}, {"type": "map_at_1000", "value": 55.254999999999995}, {"type": "map_at_20", "value": 54.788000000000004}, {"type": "map_at_3", "value": 51.034}, {"type": "map_at_5", "value": 52.998}, {"type": "mrr_at_1", "value": 77.11}, {"type": "mrr_at_10", "value": 82.93199999999999}, {"type": "mrr_at_100", "value": 83.14200000000001}, {"type": "mrr_at_1000", "value": 83.15}, {"type": "mrr_at_20", "value": 83.062}, {"type": "mrr_at_3", "value": 81.95599999999999}, {"type": "mrr_at_5", "value": 82.586}, {"type": "ndcg_at_1", "value": 77.11}, {"type": "ndcg_at_10", "value": 63.853}, {"type": "ndcg_at_100", "value": 67.18499999999999}, {"type": "ndcg_at_1000", "value": 68.676}, {"type": "ndcg_at_20", "value": 65.279}, {"type": "ndcg_at_3", "value": 59.301}, {"type": "ndcg_at_5", "value": 61.822}, {"type": "precision_at_1", "value": 77.11}, {"type": "precision_at_10", "value": 13.044}, {"type": "precision_at_100", "value": 1.5630000000000002}, {"type": "precision_at_1000", "value": 0.17600000000000002}, {"type": "precision_at_20", "value": 6.979}, {"type": "precision_at_3", "value": 36.759}, {"type": "precision_at_5", "value": 24.054000000000002}, {"type": "recall_at_1", "value": 38.555}, {"type": "recall_at_10", "value": 65.21900000000001}, {"type": "recall_at_100", "value": 78.16300000000001}, {"type": "recall_at_1000", "value": 88.02799999999999}, {"type": "recall_at_20", "value": 69.791}, {"type": "recall_at_3", "value": 55.138}, {"type": "recall_at_5", "value": 60.135000000000005}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ImdbClassification", "type": "mteb/imdb", "config": "default", "split": "test", "revision": "3d86128a09e091d6018b6d26cad27f2739fc2db7"}, "metrics": [{"type": "accuracy", "value": 69.8728}, {"type": "ap", "value": 63.98214492125858}, {"type": "f1", "value": 69.59975497754624}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPDomainClassification", "type": "mteb/mtop_domain", "config": "default", "split": "test", "revision": "d80d48c1eb48d3562165c59d59d0034df9fff0bf"}, "metrics": [{"type": "accuracy", "value": 94.76288189694483}, {"type": "f1", "value": 94.52150972672682}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPIntentClassification", "type": "mteb/mtop_intent", "config": "default", "split": "test", "revision": "ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba"}, "metrics": [{"type": "accuracy", "value": 76.83994528043777}, {"type": "f1", "value": 57.95571154189732}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification", "type": "mteb/amazon_massive_intent", "config": "default", "split": "test", "revision": "4672e20407010da34463acc759c162ca9734bca6"}, "metrics": [{"type": "accuracy", "value": 46.1163416274378}, {"type": "f1", "value": 45.425692244093064}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification", "type": "mteb/amazon_massive_scenario", "config": "default", "split": "test", "revision": "fad2c6e8459f9e1c45d9315f4953d921437d70f8"}, "metrics": [{"type": "accuracy", "value": 45.57834566240753}, {"type": "f1", "value": 43.84840097785479}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringP2P", "type": "mteb/medrxiv-clustering-p2p", "config": "default", "split": "test", "revision": "e7a26af6f3ae46b30dde8737f02c07b1505bcc73"}, "metrics": [{"type": "v_measure", "value": 32.86396397182615}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringS2S", "type": "mteb/medrxiv-clustering-s2s", "config": "default", "split": "test", "revision": "35191c8c0dca72d8ff3efcd72aa802307d469663"}, "metrics": [{"type": "v_measure", "value": 34.018965727588565}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB MindSmallReranking", "type": "mteb/mind_small", "config": "default", "split": "test", "revision": "59042f120c80e8afa9cdbb224f67076cec0fc9a7"}, "metrics": [{"type": "map", "value": 31.286618059824573}, {"type": "mrr", "value": 32.481830769278965}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB NFCorpus", "type": "mteb/nfcorpus", "config": "default", "split": "test", "revision": "ec0fa4fe99da2ff19ca1214b7966684033a58814"}, "metrics": [{"type": "map_at_1", "value": 4.236}, {"type": "map_at_10", "value": 9.352}, {"type": "map_at_100", "value": 12.382}, {"type": "map_at_1000", "value": 13.828999999999999}, {"type": "map_at_20", "value": 10.619}, {"type": "map_at_3", "value": 6.814000000000001}, {"type": "map_at_5", "value": 7.887}, {"type": "mrr_at_1", "value": 37.152}, {"type": "mrr_at_10", "value": 47.055}, {"type": "mrr_at_100", "value": 47.82}, {"type": "mrr_at_1000", "value": 47.86}, {"type": "mrr_at_20", "value": 47.605}, {"type": "mrr_at_3", "value": 44.118}, {"type": "mrr_at_5", "value": 46.115}, {"type": "ndcg_at_1", "value": 34.365}, {"type": "ndcg_at_10", "value": 28.473}, {"type": "ndcg_at_100", "value": 27.311999999999998}, {"type": "ndcg_at_1000", "value": 36.671}, {"type": "ndcg_at_20", "value": 27.137}, {"type": "ndcg_at_3", "value": 31.939}, {"type": "ndcg_at_5", "value": 30.428}, {"type": "precision_at_1", "value": 36.223}, {"type": "precision_at_10", "value": 21.858}, {"type": "precision_at_100", "value": 7.417999999999999}, {"type": "precision_at_1000", "value": 2.0709999999999997}, {"type": "precision_at_20", "value": 16.502}, {"type": "precision_at_3", "value": 30.857}, {"type": "precision_at_5", "value": 26.997}, {"type": "recall_at_1", "value": 4.236}, {"type": "recall_at_10", "value": 13.489}, {"type": "recall_at_100", "value": 29.580000000000002}, {"type": "recall_at_1000", "value": 62.726000000000006}, {"type": "recall_at_20", "value": 18.346999999999998}, {"type": "recall_at_3", "value": 7.811}, {"type": "recall_at_5", "value": 10.086}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB NQ", "type": "mteb/nq", "config": "default", "split": "test", "revision": "b774495ed302d8c44a3a7ea25c90dbce03968f31"}, "metrics": [{"type": "map_at_1", "value": 21.123}, {"type": "map_at_10", "value": 34.429}, {"type": "map_at_100", "value": 35.803000000000004}, {"type": "map_at_1000", "value": 35.853}, {"type": "map_at_20", "value": 35.308}, {"type": "map_at_3", "value": 30.095}, {"type": "map_at_5", "value": 32.435}, {"type": "mrr_at_1", "value": 23.841}, {"type": "mrr_at_10", "value": 36.864999999999995}, {"type": "mrr_at_100", "value": 37.935}, {"type": "mrr_at_1000", "value": 37.97}, {"type": "mrr_at_20", "value": 37.566}, {"type": "mrr_at_3", "value": 32.918}, {"type": "mrr_at_5", "value": 35.11}, {"type": "ndcg_at_1", "value": 23.841}, {"type": "ndcg_at_10", "value": 42.043}, {"type": "ndcg_at_100", "value": 48.015}, {"type": "ndcg_at_1000", "value": 49.152}, {"type": "ndcg_at_20", "value": 44.936}, {"type": "ndcg_at_3", "value": 33.513999999999996}, {"type": "ndcg_at_5", "value": 37.541999999999994}, {"type": "precision_at_1", "value": 23.841}, {"type": "precision_at_10", "value": 7.454}, {"type": "precision_at_100", "value": 1.081}, {"type": "precision_at_1000", "value": 0.11900000000000001}, {"type": "precision_at_20", "value": 4.413}, {"type": "precision_at_3", "value": 15.672}, {"type": "precision_at_5", "value": 11.657}, {"type": "recall_at_1", "value": 21.123}, {"type": "recall_at_10", "value": 63.096}, {"type": "recall_at_100", "value": 89.27199999999999}, {"type": "recall_at_1000", "value": 97.69}, {"type": "recall_at_20", "value": 73.873}, {"type": "recall_at_3", "value": 40.588}, {"type": "recall_at_5", "value": 49.928}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB QuoraRetrieval", "type": "mteb/quora", "config": "default", "split": "test", "revision": "e4e08e0b7dbe3c8700f0daef558ff32256715259"}, "metrics": [{"type": "map_at_1", "value": 70.255}, {"type": "map_at_10", "value": 84.387}, {"type": "map_at_100", "value": 85.027}, {"type": "map_at_1000", "value": 85.043}, {"type": "map_at_20", "value": 84.809}, {"type": "map_at_3", "value": 81.5}, {"type": "map_at_5", "value": 83.286}, {"type": "mrr_at_1", "value": 80.85}, {"type": "mrr_at_10", "value": 87.25699999999999}, {"type": "mrr_at_100", "value": 87.363}, {"type": "mrr_at_1000", "value": 87.363}, {"type": "mrr_at_20", "value": 87.336}, {"type": "mrr_at_3", "value": 86.357}, {"type": "mrr_at_5", "value": 86.939}, {"type": "ndcg_at_1", "value": 80.86}, {"type": "ndcg_at_10", "value": 88.151}, {"type": "ndcg_at_100", "value": 89.381}, {"type": "ndcg_at_1000", "value": 89.47800000000001}, {"type": "ndcg_at_20", "value": 88.82100000000001}, {"type": "ndcg_at_3", "value": 85.394}, {"type": "ndcg_at_5", "value": 86.855}, {"type": "precision_at_1", "value": 80.86}, {"type": "precision_at_10", "value": 13.397}, {"type": "precision_at_100", "value": 1.5310000000000001}, {"type": "precision_at_1000", "value": 0.157}, {"type": "precision_at_20", "value": 7.106999999999999}, {"type": "precision_at_3", "value": 37.46}, {"type": "precision_at_5", "value": 24.568}, {"type": "recall_at_1", "value": 70.255}, {"type": "recall_at_10", "value": 95.405}, {"type": "recall_at_100", "value": 99.56}, {"type": "recall_at_1000", "value": 99.98599999999999}, {"type": "recall_at_20", "value": 97.544}, {"type": "recall_at_3", "value": 87.414}, {"type": "recall_at_5", "value": 91.598}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClustering", "type": "mteb/reddit-clustering", "config": "default", "split": "test", "revision": "24640382cdbf8abc73003fb0fa6d111a705499eb"}, "metrics": [{"type": "v_measure", "value": 54.7557403999403}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClusteringP2P", "type": "mteb/reddit-clustering-p2p", "config": "default", "split": "test", "revision": "385e3cb46b4cfa89021f56c4380204149d0efe33"}, "metrics": [{"type": "v_measure", "value": 56.2773308957202}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB SCIDOCS", "type": "mteb/scidocs", "config": "default", "split": "test", "revision": "f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88"}, "metrics": [{"type": "map_at_1", "value": 4.123}, {"type": "map_at_10", "value": 9.940999999999999}, {"type": "map_at_100", "value": 11.928999999999998}, {"type": "map_at_1000", "value": 12.257}, {"type": "map_at_20", "value": 10.866000000000001}, {"type": "map_at_3", "value": 7.091}, {"type": "map_at_5", "value": 8.393}, {"type": "mrr_at_1", "value": 20.3}, {"type": "mrr_at_10", "value": 30.068}, {"type": "mrr_at_100", "value": 31.296000000000003}, {"type": "mrr_at_1000", "value": 31.36}, {"type": "mrr_at_20", "value": 30.756}, {"type": "mrr_at_3", "value": 26.667}, {"type": "mrr_at_5", "value": 28.616999999999997}, {"type": "ndcg_at_1", "value": 20.3}, {"type": "ndcg_at_10", "value": 17.305}, {"type": "ndcg_at_100", "value": 25.529000000000003}, {"type": "ndcg_at_1000", "value": 31.41}, {"type": "ndcg_at_20", "value": 19.967}, {"type": "ndcg_at_3", "value": 16.022}, {"type": "ndcg_at_5", "value": 14.12}, {"type": "precision_at_1", "value": 20.3}, {"type": "precision_at_10", "value": 9.06}, {"type": "precision_at_100", "value": 2.103}, {"type": "precision_at_1000", "value": 0.35200000000000004}, {"type": "precision_at_20", "value": 6.075}, {"type": "precision_at_3", "value": 14.832999999999998}, {"type": "precision_at_5", "value": 12.36}, {"type": "recall_at_1", "value": 4.123}, {"type": "recall_at_10", "value": 18.383}, {"type": "recall_at_100", "value": 42.67}, {"type": "recall_at_1000", "value": 71.44800000000001}, {"type": "recall_at_20", "value": 24.64}, {"type": "recall_at_3", "value": 9.043}, {"type": "recall_at_5", "value": 12.543000000000001}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB SICK-R", "type": "mteb/sickr-sts", "config": "default", "split": "test", "revision": "20a6d6f312dd54037fe07a32d58e5e168867909d"}, "metrics": [{"type": "cos_sim_pearson", "value": 84.37101718384514}, {"type": "cos_sim_spearman", "value": 80.73657031880697}, {"type": "euclidean_pearson", "value": 81.42351850520845}, {"type": "euclidean_spearman", "value": 80.81452496851979}, {"type": "manhattan_pearson", "value": 81.47676252115669}, {"type": "manhattan_spearman", "value": 80.87566944708885}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS12", "type": "mteb/sts12-sts", "config": "default", "split": "test", "revision": "a0d554a64d88156834ff5ae9920b964011b16384"}, "metrics": [{"type": "cos_sim_pearson", "value": 84.79559176971591}, {"type": "cos_sim_spearman", "value": 75.41866597445552}, {"type": "euclidean_pearson", "value": 83.20287101163838}, {"type": "euclidean_spearman", "value": 75.54564777571143}, {"type": "manhattan_pearson", "value": 83.24622548900163}, {"type": "manhattan_spearman", "value": 75.63826258190343}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS13", "type": "mteb/sts13-sts", "config": "default", "split": "test", "revision": "7e90230a92c190f1bf69ae9002b8cea547a64cca"}, "metrics": [{"type": "cos_sim_pearson", "value": 84.63322096299294}, {"type": "cos_sim_spearman", "value": 85.48272638914783}, {"type": "euclidean_pearson", "value": 85.57327707819331}, {"type": "euclidean_spearman", "value": 85.90735298172922}, {"type": "manhattan_pearson", "value": 85.5744191274933}, {"type": "manhattan_spearman", "value": 85.90828008488766}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS14", "type": "mteb/sts14-sts", "config": "default", "split": "test", "revision": "6031580fec1f6af667f0bd2da0a551cf4f0b2375"}, "metrics": [{"type": "cos_sim_pearson", "value": 82.05530140566407}, {"type": "cos_sim_spearman", "value": 78.85454907951474}, {"type": "euclidean_pearson", "value": 81.4307311680376}, {"type": "euclidean_spearman", "value": 78.99131623529348}, {"type": "manhattan_pearson", "value": 81.46870892683134}, {"type": "manhattan_spearman", "value": 79.05473823658481}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS15", "type": "mteb/sts15-sts", "config": "default", "split": "test", "revision": "ae752c7c21bf194d8b67fd573edf7ae58183cbe3"}, "metrics": [{"type": "cos_sim_pearson", "value": 83.66620817683379}, {"type": "cos_sim_spearman", "value": 85.23347998035328}, {"type": "euclidean_pearson", "value": 84.59001637865366}, {"type": "euclidean_spearman", "value": 85.0081410316597}, {"type": "manhattan_pearson", "value": 84.59742325369818}, {"type": "manhattan_spearman", "value": 85.01721329704324}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS16", "type": "mteb/sts16-sts", "config": "default", "split": "test", "revision": "4d8694f8f0e0100860b497b999b3dbed754a0513"}, "metrics": [{"type": "cos_sim_pearson", "value": 79.86344730144208}, {"type": "cos_sim_spearman", "value": 82.15966778685441}, {"type": "euclidean_pearson", "value": 81.85580574642779}, {"type": "euclidean_spearman", "value": 82.06482873417123}, {"type": "manhattan_pearson", "value": 81.82971046102377}, {"type": "manhattan_spearman", "value": 82.04185436355144}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS17", "type": "mteb/sts17-crosslingual-sts", "config": "default", "split": "test", "revision": "faeb762787bd10488a50c8b5be4a3b82e411949c"}, "metrics": [{"type": "cos_sim_pearson", "value": 31.440481026661672}, {"type": "cos_sim_spearman", "value": 31.592743544965913}, {"type": "euclidean_pearson", "value": 31.15111049327518}, {"type": "euclidean_spearman", "value": 30.555124184361464}, {"type": "manhattan_pearson", "value": 31.724139249295654}, {"type": "manhattan_spearman", "value": 30.483389245793504}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22", "type": "mteb/sts22-crosslingual-sts", "config": "default", "split": "test", "revision": "de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3"}, "metrics": [{"type": "cos_sim_pearson", "value": 34.51489724275415}, {"type": "cos_sim_spearman", "value": 47.06532141601629}, {"type": "euclidean_pearson", "value": 33.28904737503036}, {"type": "euclidean_spearman", "value": 45.111172981641865}, {"type": "manhattan_pearson", "value": 33.36374172942392}, {"type": "manhattan_spearman", "value": 45.100940945158534}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STSBenchmark", "type": "mteb/stsbenchmark-sts", "config": "default", "split": "test", "revision": "b0fddb56ed78048fa8b90373c8a3cfc37b684831"}, "metrics": [{"type": "cos_sim_pearson", "value": 82.09996292950329}, {"type": "cos_sim_spearman", "value": 82.69376206796092}, {"type": "euclidean_pearson", "value": 82.83254956369134}, {"type": "euclidean_spearman", "value": 82.34202999843637}, {"type": "manhattan_pearson", "value": 82.8048494319632}, {"type": "manhattan_spearman", "value": 82.34713123336984}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB SciDocsRR", "type": "mteb/scidocs-reranking", "config": "default", "split": "test", "revision": "d3c5e1fc0b855ab6097bf1cda04dd73947d7caab"}, "metrics": [{"type": "map", "value": 82.1402269601644}, {"type": "mrr", "value": 94.84447197682492}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB SciFact", "type": "mteb/scifact", "config": "default", "split": "test", "revision": "0228b52cf27578f30900b9e5271d331663a030d7"}, "metrics": [{"type": "map_at_1", "value": 49.138999999999996}, {"type": "map_at_10", "value": 60.288}, {"type": "map_at_100", "value": 61.082}, {"type": "map_at_1000", "value": 61.11}, {"type": "map_at_20", "value": 60.831999999999994}, {"type": "map_at_3", "value": 57.106}, {"type": "map_at_5", "value": 58.857000000000006}, {"type": "mrr_at_1", "value": 51.333}, {"type": "mrr_at_10", "value": 61.364}, {"type": "mrr_at_100", "value": 62.029999999999994}, {"type": "mrr_at_1000", "value": 62.056}, {"type": "mrr_at_20", "value": 61.85000000000001}, {"type": "mrr_at_3", "value": 58.721999999999994}, {"type": "mrr_at_5", "value": 60.221999999999994}, {"type": "ndcg_at_1", "value": 51.333}, {"type": "ndcg_at_10", "value": 65.71900000000001}, {"type": "ndcg_at_100", "value": 69.036}, {"type": "ndcg_at_1000", "value": 69.626}, {"type": "ndcg_at_20", "value": 67.571}, {"type": "ndcg_at_3", "value": 60.019}, {"type": "ndcg_at_5", "value": 62.733000000000004}, {"type": "precision_at_1", "value": 51.333}, {"type": "precision_at_10", "value": 9.067}, {"type": "precision_at_100", "value": 1.083}, {"type": "precision_at_1000", "value": 0.11299999999999999}, {"type": "precision_at_20", "value": 4.95}, {"type": "precision_at_3", "value": 23.889}, {"type": "precision_at_5", "value": 16.0}, {"type": "recall_at_1", "value": 49.138999999999996}, {"type": "recall_at_10", "value": 81.256}, {"type": "recall_at_100", "value": 95.6}, {"type": "recall_at_1000", "value": 100.0}, {"type": "recall_at_20", "value": 88.289}, {"type": "recall_at_3", "value": 66.078}, {"type": "recall_at_5", "value": 72.661}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB SprintDuplicateQuestions", "type": "mteb/sprintduplicatequestions-pairclassification", "config": "default", "split": "test", "revision": "d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46"}, "metrics": [{"type": "cos_sim_accuracy", "value": 99.73762376237623}, {"type": "cos_sim_ap", "value": 93.02149432690442}, {"type": "cos_sim_f1", "value": 86.59079663532904}, {"type": "cos_sim_precision", "value": 85.70029382957884}, {"type": "cos_sim_recall", "value": 87.5}, {"type": "dot_accuracy", "value": 99.73267326732673}, {"type": "dot_ap", "value": 92.38661051842968}, {"type": "dot_f1", "value": 85.92283628779978}, {"type": "dot_precision", "value": 89.76034858387798}, {"type": "dot_recall", "value": 82.39999999999999}, {"type": "euclidean_accuracy", "value": 99.73960396039604}, {"type": "euclidean_ap", "value": 92.99557708360517}, {"type": "euclidean_f1", "value": 86.49183572488866}, {"type": "euclidean_precision", "value": 85.60235063663075}, {"type": "euclidean_recall", "value": 87.4}, {"type": "manhattan_accuracy", "value": 99.74059405940594}, {"type": "manhattan_ap", "value": 93.24237279644005}, {"type": "manhattan_f1", "value": 86.77727501256913}, {"type": "manhattan_precision", "value": 87.25985844287159}, {"type": "manhattan_recall", "value": 86.3}, {"type": "max_accuracy", "value": 99.74059405940594}, {"type": "max_ap", "value": 93.24237279644005}, {"type": "max_f1", "value": 86.77727501256913}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClustering", "type": "mteb/stackexchange-clustering", "config": "default", "split": "test", "revision": "6cbc1f7b2bc0622f2e39d2c77fa502909748c259"}, "metrics": [{"type": "v_measure", "value": 63.94924261127149}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClusteringP2P", "type": "mteb/stackexchange-clustering-p2p", "config": "default", "split": "test", "revision": "815ca46b2622cec33ccafc3735d572c266efdb44"}, "metrics": [{"type": "v_measure", "value": 32.22297034902405}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB StackOverflowDupQuestions", "type": "mteb/stackoverflowdupquestions-reranking", "config": "default", "split": "test", "revision": "e185fbe320c72810689fc5848eb6114e1ef5ec69"}, "metrics": [{"type": "map", "value": 46.12948438780115}, {"type": "mrr", "value": 46.77186783804431}]}, {"task": {"type": "Summarization"}, "dataset": {"name": "MTEB SummEval", "type": "mteb/summeval", "config": "default", "split": "test", "revision": "cda12ad7615edc362dbf25a00fdd61d3b1eaf93c"}, "metrics": [{"type": "cos_sim_pearson", "value": 30.02235612863601}, {"type": "cos_sim_spearman", "value": 30.567504287706598}, {"type": "dot_pearson", "value": 28.943978981614897}, {"type": "dot_spearman", "value": 29.905635915797358}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB TRECCOVID", "type": "mteb/trec-covid", "config": "default", "split": "test", "revision": "bb9466bac8153a0349341eb1b22e06409e78ef4e"}, "metrics": [{"type": "map_at_1", "value": 0.173}, {"type": "map_at_10", "value": 1.124}, {"type": "map_at_100", "value": 5.645}, {"type": "map_at_1000", "value": 14.965}, {"type": "map_at_20", "value": 1.876}, {"type": "map_at_3", "value": 0.45599999999999996}, {"type": "map_at_5", "value": 0.699}, {"type": "mrr_at_1", "value": 70.0}, {"type": "mrr_at_10", "value": 81.786}, {"type": "mrr_at_100", "value": 81.786}, {"type": "mrr_at_1000", "value": 81.786}, {"type": "mrr_at_20", "value": 81.786}, {"type": "mrr_at_3", "value": 80.0}, {"type": "mrr_at_5", "value": 81.5}, {"type": "ndcg_at_1", "value": 65.0}, {"type": "ndcg_at_10", "value": 53.88699999999999}, {"type": "ndcg_at_100", "value": 38.028}, {"type": "ndcg_at_1000", "value": 37.183}, {"type": "ndcg_at_20", "value": 49.286}, {"type": "ndcg_at_3", "value": 63.05}, {"type": "ndcg_at_5", "value": 59.49100000000001}, {"type": "precision_at_1", "value": 70.0}, {"type": "precision_at_10", "value": 55.400000000000006}, {"type": "precision_at_100", "value": 38.800000000000004}, {"type": "precision_at_1000", "value": 17.082}, {"type": "precision_at_20", "value": 50.7}, {"type": "precision_at_3", "value": 66.667}, {"type": "precision_at_5", "value": 62.4}, {"type": "recall_at_1", "value": 0.173}, {"type": "recall_at_10", "value": 1.353}, {"type": "recall_at_100", "value": 8.887}, {"type": "recall_at_1000", "value": 36.012}, {"type": "recall_at_20", "value": 2.476}, {"type": "recall_at_3", "value": 0.508}, {"type": "recall_at_5", "value": 0.795}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB Touche2020", "type": "mteb/touche2020", "config": "default", "split": "test", "revision": "a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f"}, "metrics": [{"type": "map_at_1", "value": 2.614}, {"type": "map_at_10", "value": 6.651999999999999}, {"type": "map_at_100", "value": 11.59}, {"type": "map_at_1000", "value": 13.044}, {"type": "map_at_20", "value": 8.702}, {"type": "map_at_3", "value": 4.159}, {"type": "map_at_5", "value": 5.327}, {"type": "mrr_at_1", "value": 30.612000000000002}, {"type": "mrr_at_10", "value": 42.664}, {"type": "mrr_at_100", "value": 43.957}, {"type": "mrr_at_1000", "value": 43.957}, {"type": "mrr_at_20", "value": 43.193}, {"type": "mrr_at_3", "value": 40.476}, {"type": "mrr_at_5", "value": 42.007}, {"type": "ndcg_at_1", "value": 27.551}, {"type": "ndcg_at_10", "value": 18.098}, {"type": "ndcg_at_100", "value": 30.019000000000002}, {"type": "ndcg_at_1000", "value": 42.179}, {"type": "ndcg_at_20", "value": 19.552}, {"type": "ndcg_at_3", "value": 21.22}, {"type": "ndcg_at_5", "value": 19.774}, {"type": "precision_at_1", "value": 30.612000000000002}, {"type": "precision_at_10", "value": 15.101999999999999}, {"type": "precision_at_100", "value": 6.510000000000001}, {"type": "precision_at_1000", "value": 1.4569999999999999}, {"type": "precision_at_20", "value": 12.449}, {"type": "precision_at_3", "value": 22.448999999999998}, {"type": "precision_at_5", "value": 19.592000000000002}, {"type": "recall_at_1", "value": 2.614}, {"type": "recall_at_10", "value": 11.068}, {"type": "recall_at_100", "value": 42.317}, {"type": "recall_at_1000", "value": 79.063}, {"type": "recall_at_20", "value": 18.589}, {"type": "recall_at_3", "value": 5.06}, {"type": "recall_at_5", "value": 7.356}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ToxicConversationsClassification", "type": "mteb/toxic_conversations_50k", "config": "default", "split": "test", "revision": "edfaf9da55d3dd50d43143d90c1ac476895ae6de"}, "metrics": [{"type": "accuracy", "value": 75.0146484375}, {"type": "ap", "value": 16.80191476928431}, {"type": "f1", "value": 58.08037205204817}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB TweetSentimentExtractionClassification", "type": "mteb/tweet_sentiment_extraction", "config": "default", "split": "test", "revision": "d604517c81ca91fe16a244d1248fc021f9ecee7a"}, "metrics": [{"type": "accuracy", "value": 61.80249009620826}, {"type": "f1", "value": 62.24155926661914}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB TwentyNewsgroupsClustering", "type": "mteb/twentynewsgroups-clustering", "config": "default", "split": "test", "revision": "6125ec4e24fa026cec8a478383ee943acfbd5449"}, "metrics": [{"type": "v_measure", "value": 47.074846780747094}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterSemEval2015", "type": "mteb/twittersemeval2015-pairclassification", "config": "default", "split": "test", "revision": "70970daeab8776df92f5ea462b6173c0b46fd2d1"}, "metrics": [{"type": "cos_sim_accuracy", "value": 85.21785778148656}, {"type": "cos_sim_ap", "value": 71.06584074764645}, {"type": "cos_sim_f1", "value": 65.81720166625826}, {"type": "cos_sim_precision", "value": 61.43641354071363}, {"type": "cos_sim_recall", "value": 70.87071240105541}, {"type": "dot_accuracy", "value": 84.30589497526375}, {"type": "dot_ap", "value": 68.85872202019365}, {"type": "dot_f1", "value": 64.20295157946092}, {"type": "dot_precision", "value": 59.69607620775687}, {"type": "dot_recall", "value": 69.44591029023746}, {"type": "euclidean_accuracy", "value": 85.21189724026942}, {"type": "euclidean_ap", "value": 71.18847194129523}, {"type": "euclidean_f1", "value": 66.00049962528105}, {"type": "euclidean_precision", "value": 62.66603415559773}, {"type": "euclidean_recall", "value": 69.70976253298153}, {"type": "manhattan_accuracy", "value": 85.25958157000656}, {"type": "manhattan_ap", "value": 71.12967638566641}, {"type": "manhattan_f1", "value": 65.77477594492791}, {"type": "manhattan_precision", "value": 64.77359938603223}, {"type": "manhattan_recall", "value": 66.80738786279683}, {"type": "max_accuracy", "value": 85.25958157000656}, {"type": "max_ap", "value": 71.18847194129523}, {"type": "max_f1", "value": 66.00049962528105}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterURLCorpus", "type": "mteb/twitterurlcorpus-pairclassification", "config": "default", "split": "test", "revision": "8b6510b0b1fa4e4c4f879467980e9be563ec1cdf"}, "metrics": [{"type": "cos_sim_accuracy", "value": 88.22330888345559}, {"type": "cos_sim_ap", "value": 84.40304506741951}, {"type": "cos_sim_f1", "value": 76.46823520855303}, {"type": "cos_sim_precision", "value": 72.45537867824409}, {"type": "cos_sim_recall", "value": 80.95164767477672}, {"type": "dot_accuracy", "value": 87.9400007761866}, {"type": "dot_ap", "value": 83.63499141834609}, {"type": "dot_f1", "value": 75.98620939938304}, {"type": "dot_precision", "value": 71.86792064254823}, {"type": "dot_recall", "value": 80.60517400677548}, {"type": "euclidean_accuracy", "value": 88.21166608452671}, {"type": "euclidean_ap", "value": 84.40463988450605}, {"type": "euclidean_f1", "value": 76.52312831312177}, {"type": "euclidean_precision", "value": 72.40621135083138}, {"type": "euclidean_recall", "value": 81.13643363104404}, {"type": "manhattan_accuracy", "value": 88.24659448131331}, {"type": "manhattan_ap", "value": 84.42287495905447}, {"type": "manhattan_f1", "value": 76.54849595413475}, {"type": "manhattan_precision", "value": 72.39036442248302}, {"type": "manhattan_recall", "value": 81.21342777948875}, {"type": "max_accuracy", "value": 88.24659448131331}, {"type": "max_ap", "value": 84.42287495905447}, {"type": "max_f1", "value": 76.54849595413475}]}]}]}
vidhi0206/setfit-paraphrase-mpnet-base-v2
vidhi0206
text-classification
[ "setfit", "safetensors", "mpnet", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:sentence-transformers/paraphrase-mpnet-base-v2", "base_model:finetune:sentence-transformers/paraphrase-mpnet-base-v2", "model-index", "region:us" ]
2024-01-15T10:07:50
2024-02-14T21:46:15
3
0
--- base_model: sentence-transformers/paraphrase-mpnet-base-v2 library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 'versace art portfolio up for sale the art collection of murdered fashion designer gianni versace could fetch up to £9m ($17m) when it is auctioned in new york and london later this year. among the pictures for sale are works by roy lichtenstein andy warhol and henri matisse. the collection was housed at versace s six-storey new york townhouse. the 51-year-old designer was shot outside his florida home in 1997 by suspected serial killer andrew cunanan who later killed himself. the auction at sotheby s will feature 45 contemporary impressionist and 19th century paintings. one of the highlights of the sale is roy lichtenstein s blue nude which has been given an estimate of £1.8m ($3.4m). tobias meyer sotheby s worldwide head of contemporary art said: this collection reflects mr versace s wide-ranging taste and impeccable eye and many of the works were commissioned directly from the artists. outstanding later examples from champions of the pop movement such as roy lichtenstein are juxtaposed with masterpieces from the most visible artists of the 1980 s including jean-michel basquiat and the collaborative genius of basquiat and warhol as well as francesco clemente. much of the collection will be offered for sale at three auctions in new york in june with smaller contemporary paintings going under the hammer in london on 22 and 23 june. a sale of versace s furniture and artworks sold in 2001fetched £5.5m ($10.3m).' - text: 'councils prepare to set tax rises council tax in scotland is set to rise by an average of about 4% in the coming year bbc scotland has learned. authorities will decide final figures on thursday when projected increases will be more than twice the rate of inflation which is currently 1.6%. the finance minister has urged councils to limit increases but they have warned that they will struggle to maintain services unless funding is increased. they say much additional government money is for new initiatives. scottish finance minister tom mccabe msp said: last week in parliament i announced an additional £419m for core expenditure to local government in scotland. that s a 5.5% increase and sits against an inflation rate of 1.6% so i think we have quite rightly said to councils this year that we would at the very least ask them to exercise restraint. mr mccabe is also looking for local authorities to become more efficient and save money in coming years. he told bbc radio scotland s sunday live programme: here in scotland we have 32 councils who all have their own individual collection systems for council tax they have their own payroll systems and their own human resource systems. we think there has to be opportunities there for rationalisation and using the money saved to reinvest in frontline services. the councils umbrella organisation cosla which provided bbc scotland with the indicative figures for next year warned that councils would face a continuous struggle to maintain services. mr mccabe has promised them about £8.1bn next year. however most of the increase is targeted to new initiatives and councils will experience difficulties in maintaining core services a cosla spokesman said. cosla says that it is willing to work with the executive on finding efficiency savings but that these will not be enough to maintain services. they say the funding plans for the next three years will see councils lose more of the share of public spending. the conservatives accuse the scottish executive of using the council tax to raise funds because it is too afraid to raise income tax. the tory finance spokesman brian monteith msp said: its a form of disguise... yet again we see that council tax is being used as a way of passing on costs. scared of actually using its three pence income tax that it could put up what we ve seen over the years is more and more burdens being put onto local authorities and the council tax payer having to pick up the bill. there are also warnings that unless funding to councils is increased in the next few years then services may have to be reduced. linda knox director of the scottish local authority management centre at strathclyde university said: with this current settlement the increase is slowing. at the same time the burdens on councils are greater than they were. the settlement figures don t include pay increases and the executive is also requiring a substantial figure - in the area of £325m - in efficiency savings across the settlement period. education will be protected from any cuts but linda knox says this will mean other services will suffer. she said: in practice that will mean a 4-5% cut for other services. on the face of it the settlement looks like an increase of about 9.7% but by the time you take into account other factors its probably only about 1% in real terms.' - text: gadget show heralds mp3 christmas partners of those who love their hi-tech gear may want to get their presents in early as experts predict a gadget shortage this christmas. with apple s ipod topping wish lists again there may not be enough ipod minis to go round predicts oliver irish editor of gadget magazine stuff. the ipod mini is likely to be this year s tracey island said mr irish. stuff has compiled a list of the top 10 gadgets for 2004 and the ipod is at number one. for anyone bewildered by the choice of gadgets on the market stuff and what hi-fi are hosting a best-of gadget show in london this weekend. star of the show will be sony s qrio robot an all-singing all-dancing football-playing man-machine who can even hold intelligent conversations. but he is not for sale and sony has no commercial plans for the robot. he will greet visitors and is flying in from japan. he probably has his own airplane seat that is how highly sony prize him said mr irish. also on display will be a virtual keyboard which projects itself onto any flat surface. the event will play host to a large collection of digital music players from companies such as creative sony and philips as well as the ubiquitously fashionable ipod from apple. suggestions that it could be a gaming or wireless christmas are unlikely to come true as mp3 players remain the most popular stocking filler said mr irish. demand is huge and apple has promised that it can supply enough but people might struggle to get their hands on ipod minis said mr irish. for those who like their gadgets to be multi-talented the gizmondo a powerful gaming console with gps and gprs that also doubles up as an mp3 player movie player and camera could be a must-have. what is impressive is how much it can do and how well it can do them said mr irish. this christmas gadgets will not be an all-male preserve. women will be getting gadgets from husbands and boyfriends as well as buying them for themselves said mr irish. gadgets nowadays are lifestyle products rather than just for geeks. - text: 'virus poses as christmas e-mail security firms are warning about a windows virus disguising itself as an electronic christmas card. the zafi.d virus translates the christmas greeting on its subject line into the language of the person receiving infected e-mail. anti-virus firms speculate that this multilingual ability is helping the malicious program spread widely online. anti-virus firm sophos said that 10% of the e-mail currently on the net was infected with the zafi virus. like many other windows viruses zafi-d plunders microsoft outlook for e-mail addresses and then uses mail-sending software to despatch itself across the web to new victims. to be infected users must open up the attachment travelling with the message which bears the code for the malicious bug. the attachment on the e-mail poses as an electronic christmas card but anyone opening it will simply get a crude image of two smiley faces. the virus subject line says merry christmas and translates this into one of 15 languages depending of the final suffix of the e-mail address the infected message has been sent to. the message in the body of the e-mail reads: happy holidays and this too is translated. on infected machines the virus tries to disable anti-virus and firewall software and opens up a backdoor on the pc to hand over control to the writer of the virus. the virus is thought to have spread most widely in south america italy spain bulgaria and hungary. the original zafi virus appeared in april this year. we have seen these hoaxes for several christmases already and personally i prefer traditional pen and paper cards and we recommend this to all our clients too said mikko hypponen who heads f-secure s anti-virus team.' - text: desailly backs blues revenge trip marcel desailly insists there is no chance of history repeating itself when chelsea take on barcelona on wednesday. the french star was part of the chelsea side crushed 5-1 at the nou camp in the champions league quarter-final second leg in 2000. things will be totally different this time he told bbc sport. now everyone knows about chelsea and is a little bit afraid of them. they are one of the major clubs in europe and the pressure will be on barcelona. chelsea have not played barcelona since that quarter-final tie five years ago. the blues had looked destined to progress after winning the first leg at stamford bridge 3-1 courtesy of two goals from tore andre flo and one by gianfranco zola. but they collapsed in the second leg going down to strikes from rivaldo (2) luis figo dani and patrick kluivert. former chelsea captain desailly who is now playing for al-gharafa in qatar says there is no comparison between that side and the current blues team who are top of the premiership. mentally they are much stronger even though a lot of their players are young the 36-year-old said. we made some mistakes at the nou camp in 2000 - a lot of them were individual mistakes. it would not happen now. this team has a new motivation and a different mentality. world cup winner desailly saw huge changes during his time at stamford bridge. he was signed for £4.6m from ac milan in 1998 by ruud gullit and went on to play under gianluca vialli and claudio ranieri. but the biggest change occurred when billionaire roman abramovich bought the club in 2003. desailly says the russian s arrival helped to instil a winning mentality at the club as well as a demand for success. the whole of chelsea is different now - the chairman the manager and all the players he said. everything is new and there is a huge determination to win. since that game in 2000 chelsea have gained more experience in europe and were very close to reaching the champions league final last season. desailly is one of the most decorated players in the history of football. he won the 1998 world cup and 2000 european championship with france the champions league in 1993 with marseilles and 1994 with ac milan two serie a titles and the fa cup in 2000 with chelsea. he is now winding down his career in qatar alongside the likes of frank lebeouf josep guardiola titi camara gabriel batistuta and christophe dugarry. so he is full of admiration for two of his colleagues from the great milan side of the mid-90s who are likely to line up against manchester united on wednesday - paolo maldini and alessandro costacurta. i m happy that they have managed to play so long at a high level he said. i made a vow to costacurta that as long as he plays i will continue to play. and it s amazing that paolo has managed to play at such a high level for such a long time. inference: true model-index: - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.953 name: Accuracy --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 5 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 4 | <ul><li>'peace demo appeal rejected peace protestors have lost a landmark appeal over police actions in stopping an anti-war demonstration days after the start of the iraq war. they had appealed against a high court decision that it was not unlawful for police to forcibly turn protestors away near raf fairford glos in 2003. the police had also sought to overturn a breach of human rights ruling arising from the same case. sitting on wednesday three appeal court judges dismissed both appeals. they were challenging decisions by two judges in the high court in february this year. it followed action by police when three coachloads of people were searched and detained on the way to raf fairford and forced to return to london under police escort. the demonstrators appealed against a finding by lord justice may and mr justice harrison that it was not unlawful for the police to turn the passengers away. the police were urging lord chief justice and lord justices clarke and rix to overturn the ruling that they had breached the protestors human rights by detaining them in the coaches. craig mackey assistant chief constable of gloucestershire police said: we have always considered that our responses were proportionate and all our decisions on the day were based on intelligence. he said no one on the coaches accepted responsibility for items found on the coaches including body armour a smoke bomb and five shields. given these circumstances and the fact that raf fairford and other military installations in the uk had been the scene of increasingly destructive disorder in the weeks preceding this incident the police commander on the ground made the decision to turn back the coaches. from day one we have vigorously defended this decision which was made out of a genuine concern that if the coaches were allowed to proceed it would have resulted in disorder and criminal damage at raf fairford. fairford coach action representing more than 80 people who appealed against the police actions say they are prepared to take their case to the european court of human rights. their action is supported by amnesty international and liberty.'</li><li>'kilroy launches veritas party ex-bbc chat show host and east midlands mep robert kilroy-silk has said he wants to change the face of british politics as he launched his new party. mr kilroy-silk who recently quit the uk independence party said our country was being stolen from us by mass immigration. he told a london news conference that veritas - latin for truth - would avoid the old parties lies and spin . ukip leader roger knapman says he was glad to see the back of mr kilroy-silk. mr kilroy-silk promised a firm but fair policy on immigration and said they hoped to contest most seats at the forthcoming general election. he said veritas would also announce detailed policies on crime tax pensions health and defence over the next few weeks. and he announced the party would be holding a leadership election. on thursday he is due to announce which constituency he will run in at the next general election - that will come amid speculation he has his sights set on defence secretary geoff hoon s ashfield seat. he was joined in the new venture by one of ukip s two london assembly members damien hockney who is now veritas deputy leader. ukip s chairman petrina holdsworth has said the group will just be a parody of the party the men have left. mr kilroy-silk announced his decision to quit ukip at a public meeting in hinckley leicestershire last week. it came after months of tension as he vied unsuccessfully for the leadership of that party. he said he was ashamed to be a member of a ukip whose leadership had gone awol after the great opportunity offered by its third place at last june s european elections. while ukip has turned its back on the british people i shall not he said. i will be standing at the next general election. i shall be leading a vigorous campaign for the causes i believe in. and unlike the old parties we shall be honest open and straight. mr hockney also left ukip saying mr kilroy-silk would deliver better as the leader of a eurosceptic party. a spokesman for ukip called on mr hockney to quit the london assembly. the party asserts that mr hockney has a moral obligation if not a legal one to stand down. its leader roger knapman has said he is glad to see the back of mr kilroy-silk. he has remarkable ability to influence people but sadly after the [european] election it became clear that he was more interested in the robert kilroy-silk party than the uk independence party so it was nice knowing him now goodbye he said. ukip officials also argue mr kilroy-silk has not been straightforward in attacking the party he once wanted to lead. this is just what the europhiles pray for. as the main eurosceptic party ukip should try to resolve its differences with kilroy to show a united front and give the uk public a serious political voice against europe. having multiple parties with the same view point just splits the vote further. thank goodness that kilroy-silk has gone - now ukip at least has a chance in the election! it is very sad to see the cause of britain regaining its proper relationship with europe damaged by this split within ukip. robert kilroy-silk could have a lot to offer. instead we have a split party and a damaged cause. under the present electoral system people must work together and small parties have no hope of representation. last summer ukip achieved a major advance partly and only partly due to kilroy-silk. it is a great shame this has been dissipated in in-fighting. ukip has a wide platform of policies not just withdrawal from the eu. this kilroy-silk conveniently ignores in the comments surrounding the launch of his own party. neither the english democrats nor the new party were interested in letting him join them and take over their leadership speaks volumes. veritas is the beginning of the end for kilroy-silk. if he believes in truth and democracy then he and the two assembly members should resign and force a by-elections to stand on their own platform rather than this backdoor approach to politics of being elected for one party then defecting to another. so ukip was good enough for him to lead not good enough for him to follow! interesting that a party committed to plain speaking should have a latin name! every opinion poll points to an overwhelming anti-europe feeling in this country. kilroy-silk could be on the verge of something huge if he can broaden his appeal beyond this one issue. he is an extremely able communicator with years of political experience. we wants quality schools top hospitals clean and efficient public transport punishments that fit the crime limited asylum a purge on bureaucracy and less taxes. it needs courage and honesty two qualities sadly lacking in our politicians. kilroy-silk may just have those very qualities. recruit the right colleagues robert and your time may have come! well if you cannot get enough limelight being an ordinary mp then go out and start up your own party. it s all flash and no real policy here let s hope this is the start of both ukip and kilroy-silk slipping into obscurity. veritas the name will doom it. but perhaps i am wrong for surely all modern schoolchildren will understand it since they do still learn latin in the classroom do they not the whole essence of what rks represents is euroscepticism so explain to me how the too-twee label of veritas symbolises that'</li><li>'lib dems target first-time buyers the liberal democrats have unveiled plans to build 100 000 new affordable homes on publicly owned land. the party s scheme would allow people to buy a share in a home through a mutual home ownership trust as a way of getting onto the housing ladder. the lib dems would also encourage the conversion of existing buildings in an effort to protect greenfield sites. labour has already announced plans to help first-time buyers and the tories would extend right-to-buy schemes. all the major parties are focusing on the issue in the run-up to the election after a survey suggested first-time buyers could not afford a home in 92% of uk towns. the lib dems say their mutual homes would let people buy a share of a property usually worth about 5% of the building costs. party leader charles kennedy said the homes would be affordable because they would be built on surplus public sector land donated by central or local government. people would also only have to pay for the cost of the building and not the land he added. they would spend about 30% of their monthly salary on rent and buying extra shares in the property. when they moved house they would be able to cash in on any rise in property prices by selling their share. it would also allow councils to vary discounts to tenants given the right to buy their council homes so local needs were taken into account. mr kennedy said: mutual homes will offer people the opportunity to build up an equity stake in a home gradually investing only as much as they can afford. there are also plans to prevent high house prices forcing people out of their local communities. the kind of golden share used by the lib dems in south shropshire could be rolled out more widely. under the plan councils secure deals with developers where they keep a 1% share in a property scheme so properties cannot be sold on the open market. instead they are sold at build cost to people who the local council decides have local needs. the party says its help for first-time buyers can be funded at no extra cost to the taxpayer. but the plans involve changing the vat system which the party says often makes it too expensive to renovate existing buildings. the conservatives claimed the plans would amount to an extra tax of up to £11 000 on every new house. this is typical of lib dem hypocrisy said tory shadow local government secretary caroline spelman. they claim that they want to help people on to the property ladder but the small print of their policies reveal how they intend to price even more people out of the housing market. the flagship tory proposal on housing policy is to give a million more housing association tenants the right to buy their homes. labour has said it will allow 300 000 council and housing association tenants to buy a share in their homes. housing minister keith hill said much of the lib dem plans mimicked the government s strategy. however as usual the lib dems proposals are completely uncosted he said. mr hill said he also asked whether the lib dems would match labour s promise to spend £42bn on making refurbishing and repair council homes by 2010.'</li></ul> | | 0 | <ul><li>'souped-up wi-fi is on the horizon super high-speed wireless data networks could soon be in use in the uk. the government s wireless watchdog is seeking help on the best way to regulate the technology behind such networks called ultra wideband (uwb). ofcom wants to ensure that the arrival of uwb-using devices does not cause problems for those that already use the same part of the radio spectrum. uwb makes it possible to stream huge amounts of data through the air over short distances. one of the more likely uses of uwb is to make it possible to send dvd quality video images wirelessly to tv screens or to let people beam music to media players around their home. the technology has the potential to transmit hundreds of megabits of data per second. uwb could also be used to create so-called personal area networks that let a person s gadgets quickly and easily swap data amongst themselves. the technology works over a range up to 10 metres and uses billions of short radio pulses every second to carry data. at the recent consumer electronics show in las vegas products with uwb chips built-in got their first public airing. currently use of uwb is only allowed in the uk under a strict licencing scheme. we re seeking opinion from industry to find out whether or not we should allow uwb on a licence-exempt basis said a spokesman for ofcom. companies have until 24 march to respond. in april the ec is due to start its own consultation on europe-wide adoption of uwb. the cross-europe body for radio regulators known as the european conference of postal and telecommunications administrations (cept) is carrying out research for this harmonisation programme. early sight of the cept work has caused controversy as some think it over-emphasises uwb s potential to interfere with existing users. by contrast a preliminary ofcom report found that it would be quite straight-forward to deploy uwb without causing problems for those that already use it. the ofcom spokesman said it was considering imposing a mask or set of technical restrictions on uwb-using devices. we would want these devices to have very strict controls on power levels so they can not transmit a long way or over a wide area he said. despite the current restrictions the technology is already being used. cambridge-based ubisense has about 40 customers around the world using the short-range radio technology said david theriault standards and regulatory liaison for ubisense. he said that uwb was driving novel ways to interact with computers. it s like having a 3d mouse all the time he said. he said that european decisions on what to do with uwb allied with ieee decisions on the exact specifications for it would help drive adoption. prior to its adoption as a way for gadgets and computers to communicate uwb was used as a sensing technology. it is used to spot such things as cracks under the surface of runways or to help firemen detect people through walls.'</li><li>'microsoft plans safer id system microsoft is planning to make windows and internet explorer more secure by including software to give people more control over personal information. info cards will help people manage personal details on their pcs to make online services safer said microsoft. microsoft s two previous programs passport and hailstorm aimed to protect users but were criticised. id fraud is one of the uk s fastest-growing crimes with criminals netting an estimated £1.3bn last year. a quarter of uk adults has either had their id stolen via hi-tech or other means or knows someone who has a recent report by which magazine found. microsoft is developing a new version of internet explorer browser and its operating system windows which has been code-named longhorn. michael stephenson director in microsoft s windows server division would not confirm however whether the new info cards id system will be built into the current windows xp version or longhorn. we re trying to make the end-user experience as simple as possible mr stephenson said. the system would differ from its previous attempts to make online transactions more secure said microsoft. while passport and hailstorm stored user information centrally on the net the latest system will store data on a user s pc. it s going to put control of digital ids into the hands of an end-user the end-user will be in full control said mr stephenson. hailstorm was criticised by privacy campaigners for putting too much sensitive information into the hands of a single company. passport provides a single log-in for more than one website and stores basic personal information. but its popularity suffered after security scares. up to 200 million passport accounts were left vulnerable to online theft and malicious hackers after a flaw in the system was exploited in 2003. online auction site ebay stopped supporting it in january 2005. although the flaw was fixed microsoft has come under regular criticism for the number of security loopholes in internet explorer. last year it released a major security update for windows service pack 2 to combat some of the security concerns. longhorn is due to be released commercially in late 2006 but an updated version of internet explorer is due for release later this year.'</li><li>'casual gaming to take off games aimed at casual players are set to be even bigger in 2005 according to industry experts. easy-to-play titles that do not require too much time and that are playable online or downloadable to mobile devices will see real growth in the coming year. the trend shows that gaming is not just about big-hitting games console titles which appeal more to hardcore gamers said a panel of experts. they were speaking before the annual consumer electronics show in las vegas which showcases the latest trends in gadgets and technologies for 2005. the panel also insisted that casual gamers were not just women a common misconception which pervades current thinking about gamer demographics. casual games like poker pool bridge bingo and puzzle-based titles which can be played online or downloaded onto mobile devices were gender neutral and different genres attracted different players. greg mills program director at aol said its figures suggested that sports-based games attracted 90% of 18 to 24-year-old males while puzzle games were played by 80% of females. games like bridge tended to attract the over-50 demographic of gamers. but hardcore gamers who are more attracted to blockbuster gamers which usually require hi-spec pcs like half-life 2 or halo 2 on xbox also liked to have a different type of gaming experience. when hardcore gamers are not playing halo they are playing poker and pool based on our research said geoff graber director of yahoo games which attracts about 12 million gamers a month. with the growth of powerful pc technology and ownership broadband take-up portable players and mobile devices as well as interactive tv casual gaming is shaping up to be big business in 2005 according to the panel. the focus for the coming year should be about attracting third-party developers into the field to offer more innovative and multiplayer titles they agreed. we are at a time where we are on the verge of something much bigger said mr graber. casual games will get into their stride in 2005 will be really big in 2006 and will be about community. with more people finding more to do with their gadgets and high-speed connections casual games would start to open up the world of gaming as a form of mass-market entertainment to more people. key to these types of titles is the chance they give people who may not see themselves as gamers to dip in and out of games when they liked. portal sites which offer casual games like aol yahoo and realarcade as well as other games-on-demand services allow people to build up buddy lists so they can return and play against the same people. this aspect of community is crucial for gamers who just want to have quick access to free or cheap games without committing long periods of time immersed in £30 to £40 console or pc titles said the panel. about 120 000 people are expected to attend the ces trade show which stretches over more than 1.5 million square feet and which officially runs from 6 to 9 january. the main theme is how new devices are getting better at talking to each other allowing people to enjoy digital content like audio video and images when they want and where they want.'</li></ul> | | 2 | <ul><li>'woodward eyes brennan for lions toulouse s former irish international trevor brennan could be one of clive woodward s many surprises when the 44-man lions tour squad is announced. brennan who last played for ireland against samoa in 2001 is held in high esteem by the former england coach. if you speak to the players there s a huge amount of respect for the guy woodward told the sunday independent. players tend to know better than most coaches. it s not just the irish but welsh and english players as well. the 31-year-old former dublin milkman moved from leinster to toulouse in 2003 and immediately picked up a heineken cup winner s medal in an all-french final against perpignan at lansdowne road. brennan is highly-rated at stade toulousain where he is used anywhere in the back five. woodward is ensuring his preparations for the trip to new zealand in june are as thorough as possible. i ve spoken to quite a few players and they probably don t know what they re actually saying when we re having these conversations he told the newspaper. but you talk about certain players and they ll say if they think they re up to scratch or that they don t want them in their team. i haven t heard a bad word said against trevor which considering he has a pretty tough guy reputation is to me impressive.'</li><li>'off-colour gardener storms to win britain s jason gardener shook off an upset stomach to win the 60m at sunday s leipzig international meeting. gardener clocked 6.56 seconds to equal the meeting record and finished well ahead of germany s marc blume who crossed the line in 6.67 secs. the world indoor champion said: i got to the airport and my stomach was upset and i was vomiting. i almost went home. i felt a little better sunday morning but decided i d only run in the main race. then everything went perfectly. gardener part of the great britain 4x100m quartet that won gold at the athens olympics will now turn his attention to next weekend s norwich union european indoor trials in sheffield. given i am still off-colour i know there is plenty more in the tank and i expect to get faster in the next few weeks he said. it s just a case of chipping away as i have done in previous years and the results will come. scotland s ian mackie was also in action in leipzig. he stepped down from his favoured 400m to 200m to finish third in 21.72 secs. germany s alexander kosenkow won the race in 21.07 secs with dutchman patrick van balkom second in 21.58 secs. there were plenty of other senior british athletes showing their indoor form over the weekend. promising 60m hurdler clocked a new uk record of 7.98 seconds at a meeting in norway. the 24-year-old reached the mark in her heat but had to settle for joint first place with former aaa champion diane allahgreen in the final. who broke onto the international scene at the olympic games last season set an indoor personal best of 16.50m in the triple jump at a meeting in ghent. that leap - 37cm short of brazilian winner jadel gregorio s effort - was good enough to qualify for the european indoor championships. at the same meeting finished third in 7.27 seconds in a high-class women s 60m. the event was won by european medal favourite christine arron of france while belgium rival kim gevaert was second. britain s joice maduaka finished fifth in 7.35. olympic bronze heptathlon medallist made a low-key return to action at an indoor meeting in birmingham. the 28-year-old cleared 1.76m to win the high jump and threw 13.86m in the women s shot put.'</li><li>'parry relishes anfield challenge bbc sport reflects on the future for liverpool after our exclusive interview with chief executive rick parry. chief executive parry is the man at the helm as liverpool reach the most crucial point in their recent history. parry has to deliver a new 60 000-seat stadium in stanley park by 2007 amid claims of costs spiralling above £120m. he is also searching for an investment package of a size and stature that will restore liverpool to their place at european football s top table. but it is a challenge that appears to sit easily with parry who has forged a reputation as one of football s most respected administrators since his days at the fledgling premier league. liverpool have not won the championship since 1990 a fact that causes deep discomfort inside anfield as they attempt to muscle in on the top three of chelsea manchester united and arsenal. throw in the small matter of warding off every top club in world football as they eye captain steven gerrard and you can see parry is a man with a lot on his plate. but in the comfort of a conference room deep inside liverpool s heartbeat - the kop end - parry spoke to us with brutal honesty about the crucial months ahead. he only dodged one question - when asked to reveal the name of the mystery investor currently courting liverpool a polite smile deflected the inquiry. but to his credit he met everything else head on in measured tones that underscore the belief that liverpool still mean business. by business he means becoming title challengers again and locking the pieces together that will help return the trophy to liverpool is parry s mission. parry has already successfully put one of those planks in place in the form of new manager rafael benitez. and his enthusiasm for the spaniard s personality and methods is an indication of his clear feeling that he has struck gold. benitez s early work has given parry renewed optimism about the years ahead. but it remains a massive task at a club with a unique history and expectations. this will not come as news to parry a lifelong liverpool supporter but his quiet determination suggests he is no mood to be found wanting... captain gerrard is central to liverpool s plans and parry s insistence that all offers will be refused is a firm statement of intent. as ever the player will have the final say and parry acknowledges that but he is determined to provide the framework and environment for liverpool and gerrard to flourish. in terms of the search for new investment hawkpoint were appointed as advisors to flush out interest in march 2004. thailand prime minister thaksin shiniwatra came and went while the most serious statement of intent came from tycoon and lifelong fan steve morgan. morgan had a succession of bids rejected having come close in the summer only for talks to break down over potential costs for the new stadium. bbc sport understands morgan is still ready and willing to invest in liverpool and parry has kept the door ajar despite currently seeking investment elsewhere. morgan however has had no formal contact with liverpool or their advisors since last december blaming indecision at board level as he publicly withdrew his £70m offer. he was also convinced his interest was being used to lure in others so any new approach would now have to come from liverpool. morgan will certainly not be making another call. so speculation continues about the new benefactor with trails leading to the middle east and america but all met with an understandable veil of secrecy from anfield. parry meanwhile sees the new ground as crucial to liverpool s future but is refusing to become emotionally attached to the idea. he is determined the ground will only be built on an affordable basis and will not make future liverpool management hostages to the new stadium. parry will pull back the moment the figures do not stack up but there has been a vital new development in north london that has re-shaped liverpool s thinking. liverpool have publicly refused to entertain the idea of stadium sponsorship and potential naming rights - but the realism of arsenal s stunning £100m deal for their new emirates stadium at ashburton has changed the landscape. parry labelled the deal an eye-opener and admits liverpool would be missing a trick not to explore the possibilities. he knows some traditionalist liverpool fans will reel at any attempt to call the new stadium anything other than just anfield but the maths of modern-day football decree that multi-millions for stadium and team could ease the pain. i would take £50m if we had no investment but if we did keep him. as for the stadium if it gets us cash what difference does it make really £50m for gerrard i don t care who you are the directors would take the money and it is the way it should be. we cannot let that sum of money go despite gerrard s quality. through a cleverly worded statement the club has effectively forced gerrard to publicly make the decision for himself which i think is the right thing to do. critical time for liverpool with regards to gerrard. ideally we would want to secure his future to the club for the long term. i am hoping he doesn t walk out of the club like michael owen did for very little cash. £50m realistically would allow rafa to completely rebuild the squad however if we can afford to do this and keep gerrard we will be better for it. i would however be happy with gerrard s transfer for any fee over £35m. parry s statements are clever in that any future gerrard transfer cannot be construed as a lack of ambition by the club to not try and keep their best players. upping the ante is another smart move by parry. i would keep gerrard. no amount of money could replace his obvious love of the club and determination to succeed. the key is if gerrard comes out and says that he is happy. clearly if he isn t then we would be foolish not to sell. the worrying thing is who would you buy (or who would come) pending possible non-champions league football.'</li></ul> | | 3 | <ul><li>'rem announce new glasgow concert us band rem have announced plans to perform for 10 000 scottish fans in a rescheduled gig. the band will play in what has been dubbed europe s biggest tent on glasgow green on tuesday 14 june. they were forced to pull out of a concert at the secc in glasgow last month after bassist mike mills contracted flu. fans who bought tickets for the original 22 february show can attend the rescheduled concert. the june gig will act as a warm-up for rem s open air concert at balloch castle country park on the banks of loch lomond four days later. promoters regular music booked glasgow green as the secc was not available on the most suitable date. mark mackie director of regular music said: it is fantastic news and it really shows rem s commitment to their scottish fans that they are coming back to glasgow for what will be a truly unique gig. the rem gigs will kick-start what promises to be a memorable summer for scottish music lovers. grammy award winners u2 will play hampden on 21 june while oasis will also perform at the national stadium in glasgow on 29 june. coldplay have announced a concert at bellahouston park in glasgow on 1 july and t in the park will be held at balado near kinross from 9-10 july. ticketweb and the secc box office will write to customers who bought tickets for the february gig asking if they want to attend the new show. those who bought tickets in person are being urged to return to the point of purchase. anyone who cannot make the concert will be given a refund. the cut-off date for swapping tickets is 1 april when those remaining will go on sale to the public.'</li><li>'tautou film tops cesar prize nods french film a very long engagement has received 12 nominations for france s cesar film awards despite a recent ruling it was not french enough . the world war i romantic drama starring audrey tautou was recently ruled too american by a paris court as it was partially backed by warner bros. but the cesar organisers modified their rules to allow the film to compete. the film directed by jean-pierre jeunet received best actress picture and director nominations. last november a court judged the film was too american to compete in french film festivals. two associations of french producers challenged jeunet s right to french government subsidies because warner bros was a backer. the ruling meant the movie - which was filmed in france and used french actors and technicians - was not eligible to compete for french prizes. but alain terzian president of cesar organisers the academie des arts et techniques du cinema said the changes in eligibility rules which allow films of french expression were made three months prior to the court decision. other films in the best film category include police drama 36 quai des orfevres arnaud desplechin s kings and queen abdellatif kechiche s l esquive and france s number one film at the 2004 box-office the chorus. best actors are daniel auteuil for 36 mathieu amalric for kings and queen gerard jugnot for the chorus philippe torreton for l equipier and benoit poelvoorde for podium. tautou will compete against maggie cheung emmanuelle devos yolande moreau and karin viard for best actress. michael moore s fahrenheit 9/11 the motorcycle diaries lost in translation eternal sunshine of the spotless mind and 21 grams are all vying in the best foreign film prize. the awards ceremony will be held on 26 february. this year will smith star of i robot independence day and men in black will be given an honorary cesar along with french singer/actor jacques dutronc.'</li><li>'gallery unveils interactive tree a christmas tree that can receive text messages has been unveiled at london s tate britain art gallery. the spruce has an antenna which can receive bluetooth texts sent by visitors to the tate. the messages will be unwrapped by sculptor richard wentworth who is responsible for decorating the tree with broken plates and light bulbs. it is the 17th year that the gallery has invited an artist to dress their christmas tree. artists who have decorated the tate tree in previous years include tracey emin in 2002. the plain green norway spruce is displayed in the gallery s foyer. its light bulb adornments are dimmed ordinary domestic ones joined together with string. the plates decorating the branches will be auctioned off for the children s charity artworks. wentworth worked as an assistant to sculptor henry moore in the late 1960s. his reputation as a sculptor grew in the 1980s while he has been one of the most influential teachers during the last two decades. wentworth is also known for his photography of mundane everyday subjects such as a cigarette packet jammed under the wonky leg of a table.'</li></ul> | | 1 | <ul><li>'ask jeeves tips online ad revival ask jeeves has become the third leading online search firm this week to thank a revival in internet advertising for improving fortunes. the firm s revenue nearly tripled in the fourth quarter of 2004 exceeding $86m (£46m). ask jeeves once among the best-known names on the web is now a relatively modest player. its $17m profit for the quarter was dwarfed by the $204m announced by rival google earlier in the week. during the same quarter yahoo earned $187m again tipping a resurgence in online advertising. the trend has taken hold relatively quickly. late last year marketing company doubleclick one of the leading providers of online advertising warned that some or all of its business would have to be put up for sale. but on thursday it announced that a sharp turnaround had brought about an unexpected increase in profits. neither ask jeeves nor doubleclick thrilled investors with their profit news however. in both cases their shares fell by some 4%. analysts attributed the falls to excessive expectations in some quarters fuelled by the dramatic outperformance of google on tuesday.'</li><li>'us bank boss hails genius smith us federal reserve chairman alan greenspan has given a speech at a scottish church in honour of the pioneering economist adam smith. he delivered the 14th adam smith lecture in kirkcaldy fife. the adam smith lecture celebrates the author of 1776 s wealth of nations which became a bible of capitalism. dr greenspan was invited by chancellor gordon brown whose minister father john used to preach at the st bryce kirk church. mr brown introduced dr greenspan to the 400 invited guests as the the world s greatest economist . dr greenspan 79 who has been in the uk to attend the g7 meeting in london said the world could never repay the debt of gratitude it owed to smith whose genius he compared to that of mozart. he said the philosopher was a towering contributor to the modern world . kirkcaldy the birthplace in 1723 of adam smith and by extension of modern economics is also of course where your chancellor was reared. i am led to ponder to what extent the chancellor s renowned economic and financial skills are the result of exposure to the subliminal intellect-enhancing emanation in this area. he continued: smith reached far beyond the insights of his predecessors to frame a global view of how market economics just then emerging worked. in so doing he supported changes in societal organisation that were to measurably enhance standards of living. dr greenspan said smith s revolutionary philosophy on human self-interest laissez-faire economics and competition had been a force for good in the world. the incredible insights of a handful of intellectuals of the enlightenment - especially with smith toiling in the environs of kirkcaldy - created the modern vision of people free to choose and to act according to their individual self-interest he said. following his lecture dr greenspan - who received an honorary knighthood from the queen at balmoral in 2002 - was awarded an honorary fellowship of the royal society of edinburgh. he later opened an exhibition dedicated to smith in the atrium of fife college of further and higher education. joyce johnston principal of the college said: it is very fitting that the world s premier economist delivered this lecture in tribute to the world s first economist. dr greenspan - who became chairman of the federal reserve for an unprecedented fifth term in june 2004 - will step down in january next year. he has served under presidents george w bush bill clinton george bush and ronald reagan. he was also chairman of the council of economic advisors to gerald ford.'</li><li>'hariri killing hits beirut shares shares in solidere the lebanese company founded by assassinated former prime minister rafik hariri fell 15% in renewed trading in beirut. the real estate firm which dominates lebanon s stock exchange ended the day down at $8.08. traders said there was some panic selling during friday s session the first since a three-day market closure to mourn the death of mr hariri. beirut s benchmark blom stock index closed down 7.9% at 642.80. solidere in which mr hariri was a major shareholder was the major drag on the index. the company owns much of the property in central beirut which it restored and redeveloped following the end of lebanon s bitter 15-year civil war. solidere should be above $10 but because of this disaster it is falling said one trader. if solidere drops much lower i would consider it a buying opportunity. this is a very big company held by many lebanese. critics had accused mr hariri of using lebanon s post-war reconstruction drive for his personal financial gain. but his assassination on monday sent shudders through lebanon s business community which saw the billionaire tycoon as the country s best hope for economic revival. solidere posted profits of $12.5m in the first half of 2004 and its shares had been gaining in recent months.'</li></ul> | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.953 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("vidhi0206/setfit-paraphrase-mpnet-base-v2") # Run inference preds = model("versace art portfolio up for sale the art collection of murdered fashion designer gianni versace could fetch up to £9m ($17m) when it is auctioned in new york and london later this year. among the pictures for sale are works by roy lichtenstein andy warhol and henri matisse. the collection was housed at versace s six-storey new york townhouse. the 51-year-old designer was shot outside his florida home in 1997 by suspected serial killer andrew cunanan who later killed himself. the auction at sotheby s will feature 45 contemporary impressionist and 19th century paintings. one of the highlights of the sale is roy lichtenstein s blue nude which has been given an estimate of £1.8m ($3.4m). tobias meyer sotheby s worldwide head of contemporary art said: this collection reflects mr versace s wide-ranging taste and impeccable eye and many of the works were commissioned directly from the artists. outstanding later examples from champions of the pop movement such as roy lichtenstein are juxtaposed with masterpieces from the most visible artists of the 1980 s including jean-michel basquiat and the collaborative genius of basquiat and warhol as well as francesco clemente. much of the collection will be offered for sale at three auctions in new york in june with smaller contemporary paintings going under the hammer in london on 22 and 23 june. a sale of versace s furniture and artworks sold in 2001fetched £5.5m ($10.3m).") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:-----| | Word count | 173 | 419.325 | 1121 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 8 | | 1 | 8 | | 2 | 8 | | 3 | 8 | | 4 | 8 | ### Training Hyperparameters - batch_size: (8, 8) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-----:|:----:|:-------------:|:---------------:| | 0.005 | 1 | 0.245 | - | | 0.25 | 50 | 0.0174 | - | | 0.5 | 100 | 0.0008 | - | | 0.75 | 150 | 0.0005 | - | | 1.0 | 200 | 0.0002 | - | ### Framework Versions - Python: 3.8.10 - SetFit: 1.0.3 - Sentence Transformers: 2.3.1 - Transformers: 4.37.2 - PyTorch: 2.2.0+cu121 - Datasets: 2.17.0 - Tokenizers: 0.15.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
[ "TEXT_CLASSIFICATION", "TRANSLATION" ]
[ "MEDAL" ]
Non_BioNLP
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 5 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 4 | <ul><li>'peace demo appeal rejected peace protestors have lost a landmark appeal over police actions in stopping an anti-war demonstration days after the start of the iraq war. they had appealed against a high court decision that it was not unlawful for police to forcibly turn protestors away near raf fairford glos in 2003. the police had also sought to overturn a breach of human rights ruling arising from the same case. sitting on wednesday three appeal court judges dismissed both appeals. they were challenging decisions by two judges in the high court in february this year. it followed action by police when three coachloads of people were searched and detained on the way to raf fairford and forced to return to london under police escort. the demonstrators appealed against a finding by lord justice may and mr justice harrison that it was not unlawful for the police to turn the passengers away. the police were urging lord chief justice and lord justices clarke and rix to overturn the ruling that they had breached the protestors human rights by detaining them in the coaches. craig mackey assistant chief constable of gloucestershire police said: we have always considered that our responses were proportionate and all our decisions on the day were based on intelligence. he said no one on the coaches accepted responsibility for items found on the coaches including body armour a smoke bomb and five shields. given these circumstances and the fact that raf fairford and other military installations in the uk had been the scene of increasingly destructive disorder in the weeks preceding this incident the police commander on the ground made the decision to turn back the coaches. from day one we have vigorously defended this decision which was made out of a genuine concern that if the coaches were allowed to proceed it would have resulted in disorder and criminal damage at raf fairford. fairford coach action representing more than 80 people who appealed against the police actions say they are prepared to take their case to the european court of human rights. their action is supported by amnesty international and liberty.'</li><li>'kilroy launches veritas party ex-bbc chat show host and east midlands mep robert kilroy-silk has said he wants to change the face of british politics as he launched his new party. mr kilroy-silk who recently quit the uk independence party said our country was being stolen from us by mass immigration. he told a london news conference that veritas - latin for truth - would avoid the old parties lies and spin . ukip leader roger knapman says he was glad to see the back of mr kilroy-silk. mr kilroy-silk promised a firm but fair policy on immigration and said they hoped to contest most seats at the forthcoming general election. he said veritas would also announce detailed policies on crime tax pensions health and defence over the next few weeks. and he announced the party would be holding a leadership election. on thursday he is due to announce which constituency he will run in at the next general election - that will come amid speculation he has his sights set on defence secretary geoff hoon s ashfield seat. he was joined in the new venture by one of ukip s two london assembly members damien hockney who is now veritas deputy leader. ukip s chairman petrina holdsworth has said the group will just be a parody of the party the men have left. mr kilroy-silk announced his decision to quit ukip at a public meeting in hinckley leicestershire last week. it came after months of tension as he vied unsuccessfully for the leadership of that party. he said he was ashamed to be a member of a ukip whose leadership had gone awol after the great opportunity offered by its third place at last june s european elections. while ukip has turned its back on the british people i shall not he said. i will be standing at the next general election. i shall be leading a vigorous campaign for the causes i believe in. and unlike the old parties we shall be honest open and straight. mr hockney also left ukip saying mr kilroy-silk would deliver better as the leader of a eurosceptic party. a spokesman for ukip called on mr hockney to quit the london assembly. the party asserts that mr hockney has a moral obligation if not a legal one to stand down. its leader roger knapman has said he is glad to see the back of mr kilroy-silk. he has remarkable ability to influence people but sadly after the [european] election it became clear that he was more interested in the robert kilroy-silk party than the uk independence party so it was nice knowing him now goodbye he said. ukip officials also argue mr kilroy-silk has not been straightforward in attacking the party he once wanted to lead. this is just what the europhiles pray for. as the main eurosceptic party ukip should try to resolve its differences with kilroy to show a united front and give the uk public a serious political voice against europe. having multiple parties with the same view point just splits the vote further. thank goodness that kilroy-silk has gone - now ukip at least has a chance in the election! it is very sad to see the cause of britain regaining its proper relationship with europe damaged by this split within ukip. robert kilroy-silk could have a lot to offer. instead we have a split party and a damaged cause. under the present electoral system people must work together and small parties have no hope of representation. last summer ukip achieved a major advance partly and only partly due to kilroy-silk. it is a great shame this has been dissipated in in-fighting. ukip has a wide platform of policies not just withdrawal from the eu. this kilroy-silk conveniently ignores in the comments surrounding the launch of his own party. neither the english democrats nor the new party were interested in letting him join them and take over their leadership speaks volumes. veritas is the beginning of the end for kilroy-silk. if he believes in truth and democracy then he and the two assembly members should resign and force a by-elections to stand on their own platform rather than this backdoor approach to politics of being elected for one party then defecting to another. so ukip was good enough for him to lead not good enough for him to follow! interesting that a party committed to plain speaking should have a latin name! every opinion poll points to an overwhelming anti-europe feeling in this country. kilroy-silk could be on the verge of something huge if he can broaden his appeal beyond this one issue. he is an extremely able communicator with years of political experience. we wants quality schools top hospitals clean and efficient public transport punishments that fit the crime limited asylum a purge on bureaucracy and less taxes. it needs courage and honesty two qualities sadly lacking in our politicians. kilroy-silk may just have those very qualities. recruit the right colleagues robert and your time may have come! well if you cannot get enough limelight being an ordinary mp then go out and start up your own party. it s all flash and no real policy here let s hope this is the start of both ukip and kilroy-silk slipping into obscurity. veritas the name will doom it. but perhaps i am wrong for surely all modern schoolchildren will understand it since they do still learn latin in the classroom do they not the whole essence of what rks represents is euroscepticism so explain to me how the too-twee label of veritas symbolises that'</li><li>'lib dems target first-time buyers the liberal democrats have unveiled plans to build 100 000 new affordable homes on publicly owned land. the party s scheme would allow people to buy a share in a home through a mutual home ownership trust as a way of getting onto the housing ladder. the lib dems would also encourage the conversion of existing buildings in an effort to protect greenfield sites. labour has already announced plans to help first-time buyers and the tories would extend right-to-buy schemes. all the major parties are focusing on the issue in the run-up to the election after a survey suggested first-time buyers could not afford a home in 92% of uk towns. the lib dems say their mutual homes would let people buy a share of a property usually worth about 5% of the building costs. party leader charles kennedy said the homes would be affordable because they would be built on surplus public sector land donated by central or local government. people would also only have to pay for the cost of the building and not the land he added. they would spend about 30% of their monthly salary on rent and buying extra shares in the property. when they moved house they would be able to cash in on any rise in property prices by selling their share. it would also allow councils to vary discounts to tenants given the right to buy their council homes so local needs were taken into account. mr kennedy said: mutual homes will offer people the opportunity to build up an equity stake in a home gradually investing only as much as they can afford. there are also plans to prevent high house prices forcing people out of their local communities. the kind of golden share used by the lib dems in south shropshire could be rolled out more widely. under the plan councils secure deals with developers where they keep a 1% share in a property scheme so properties cannot be sold on the open market. instead they are sold at build cost to people who the local council decides have local needs. the party says its help for first-time buyers can be funded at no extra cost to the taxpayer. but the plans involve changing the vat system which the party says often makes it too expensive to renovate existing buildings. the conservatives claimed the plans would amount to an extra tax of up to £11 000 on every new house. this is typical of lib dem hypocrisy said tory shadow local government secretary caroline spelman. they claim that they want to help people on to the property ladder but the small print of their policies reveal how they intend to price even more people out of the housing market. the flagship tory proposal on housing policy is to give a million more housing association tenants the right to buy their homes. labour has said it will allow 300 000 council and housing association tenants to buy a share in their homes. housing minister keith hill said much of the lib dem plans mimicked the government s strategy. however as usual the lib dems proposals are completely uncosted he said. mr hill said he also asked whether the lib dems would match labour s promise to spend £42bn on making refurbishing and repair council homes by 2010.'</li></ul> | | 0 | <ul><li>'souped-up wi-fi is on the horizon super high-speed wireless data networks could soon be in use in the uk. the government s wireless watchdog is seeking help on the best way to regulate the technology behind such networks called ultra wideband (uwb). ofcom wants to ensure that the arrival of uwb-using devices does not cause problems for those that already use the same part of the radio spectrum. uwb makes it possible to stream huge amounts of data through the air over short distances. one of the more likely uses of uwb is to make it possible to send dvd quality video images wirelessly to tv screens or to let people beam music to media players around their home. the technology has the potential to transmit hundreds of megabits of data per second. uwb could also be used to create so-called personal area networks that let a person s gadgets quickly and easily swap data amongst themselves. the technology works over a range up to 10 metres and uses billions of short radio pulses every second to carry data. at the recent consumer electronics show in las vegas products with uwb chips built-in got their first public airing. currently use of uwb is only allowed in the uk under a strict licencing scheme. we re seeking opinion from industry to find out whether or not we should allow uwb on a licence-exempt basis said a spokesman for ofcom. companies have until 24 march to respond. in april the ec is due to start its own consultation on europe-wide adoption of uwb. the cross-europe body for radio regulators known as the european conference of postal and telecommunications administrations (cept) is carrying out research for this harmonisation programme. early sight of the cept work has caused controversy as some think it over-emphasises uwb s potential to interfere with existing users. by contrast a preliminary ofcom report found that it would be quite straight-forward to deploy uwb without causing problems for those that already use it. the ofcom spokesman said it was considering imposing a mask or set of technical restrictions on uwb-using devices. we would want these devices to have very strict controls on power levels so they can not transmit a long way or over a wide area he said. despite the current restrictions the technology is already being used. cambridge-based ubisense has about 40 customers around the world using the short-range radio technology said david theriault standards and regulatory liaison for ubisense. he said that uwb was driving novel ways to interact with computers. it s like having a 3d mouse all the time he said. he said that european decisions on what to do with uwb allied with ieee decisions on the exact specifications for it would help drive adoption. prior to its adoption as a way for gadgets and computers to communicate uwb was used as a sensing technology. it is used to spot such things as cracks under the surface of runways or to help firemen detect people through walls.'</li><li>'microsoft plans safer id system microsoft is planning to make windows and internet explorer more secure by including software to give people more control over personal information. info cards will help people manage personal details on their pcs to make online services safer said microsoft. microsoft s two previous programs passport and hailstorm aimed to protect users but were criticised. id fraud is one of the uk s fastest-growing crimes with criminals netting an estimated £1.3bn last year. a quarter of uk adults has either had their id stolen via hi-tech or other means or knows someone who has a recent report by which magazine found. microsoft is developing a new version of internet explorer browser and its operating system windows which has been code-named longhorn. michael stephenson director in microsoft s windows server division would not confirm however whether the new info cards id system will be built into the current windows xp version or longhorn. we re trying to make the end-user experience as simple as possible mr stephenson said. the system would differ from its previous attempts to make online transactions more secure said microsoft. while passport and hailstorm stored user information centrally on the net the latest system will store data on a user s pc. it s going to put control of digital ids into the hands of an end-user the end-user will be in full control said mr stephenson. hailstorm was criticised by privacy campaigners for putting too much sensitive information into the hands of a single company. passport provides a single log-in for more than one website and stores basic personal information. but its popularity suffered after security scares. up to 200 million passport accounts were left vulnerable to online theft and malicious hackers after a flaw in the system was exploited in 2003. online auction site ebay stopped supporting it in january 2005. although the flaw was fixed microsoft has come under regular criticism for the number of security loopholes in internet explorer. last year it released a major security update for windows service pack 2 to combat some of the security concerns. longhorn is due to be released commercially in late 2006 but an updated version of internet explorer is due for release later this year.'</li><li>'casual gaming to take off games aimed at casual players are set to be even bigger in 2005 according to industry experts. easy-to-play titles that do not require too much time and that are playable online or downloadable to mobile devices will see real growth in the coming year. the trend shows that gaming is not just about big-hitting games console titles which appeal more to hardcore gamers said a panel of experts. they were speaking before the annual consumer electronics show in las vegas which showcases the latest trends in gadgets and technologies for 2005. the panel also insisted that casual gamers were not just women a common misconception which pervades current thinking about gamer demographics. casual games like poker pool bridge bingo and puzzle-based titles which can be played online or downloaded onto mobile devices were gender neutral and different genres attracted different players. greg mills program director at aol said its figures suggested that sports-based games attracted 90% of 18 to 24-year-old males while puzzle games were played by 80% of females. games like bridge tended to attract the over-50 demographic of gamers. but hardcore gamers who are more attracted to blockbuster gamers which usually require hi-spec pcs like half-life 2 or halo 2 on xbox also liked to have a different type of gaming experience. when hardcore gamers are not playing halo they are playing poker and pool based on our research said geoff graber director of yahoo games which attracts about 12 million gamers a month. with the growth of powerful pc technology and ownership broadband take-up portable players and mobile devices as well as interactive tv casual gaming is shaping up to be big business in 2005 according to the panel. the focus for the coming year should be about attracting third-party developers into the field to offer more innovative and multiplayer titles they agreed. we are at a time where we are on the verge of something much bigger said mr graber. casual games will get into their stride in 2005 will be really big in 2006 and will be about community. with more people finding more to do with their gadgets and high-speed connections casual games would start to open up the world of gaming as a form of mass-market entertainment to more people. key to these types of titles is the chance they give people who may not see themselves as gamers to dip in and out of games when they liked. portal sites which offer casual games like aol yahoo and realarcade as well as other games-on-demand services allow people to build up buddy lists so they can return and play against the same people. this aspect of community is crucial for gamers who just want to have quick access to free or cheap games without committing long periods of time immersed in £30 to £40 console or pc titles said the panel. about 120 000 people are expected to attend the ces trade show which stretches over more than 1.5 million square feet and which officially runs from 6 to 9 january. the main theme is how new devices are getting better at talking to each other allowing people to enjoy digital content like audio video and images when they want and where they want.'</li></ul> | | 2 | <ul><li>'woodward eyes brennan for lions toulouse s former irish international trevor brennan could be one of clive woodward s many surprises when the 44-man lions tour squad is announced. brennan who last played for ireland against samoa in 2001 is held in high esteem by the former england coach. if you speak to the players there s a huge amount of respect for the guy woodward told the sunday independent. players tend to know better than most coaches. it s not just the irish but welsh and english players as well. the 31-year-old former dublin milkman moved from leinster to toulouse in 2003 and immediately picked up a heineken cup winner s medal in an all-french final against perpignan at lansdowne road. brennan is highly-rated at stade toulousain where he is used anywhere in the back five. woodward is ensuring his preparations for the trip to new zealand in june are as thorough as possible. i ve spoken to quite a few players and they probably don t know what they re actually saying when we re having these conversations he told the newspaper. but you talk about certain players and they ll say if they think they re up to scratch or that they don t want them in their team. i haven t heard a bad word said against trevor which considering he has a pretty tough guy reputation is to me impressive.'</li><li>'off-colour gardener storms to win britain s jason gardener shook off an upset stomach to win the 60m at sunday s leipzig international meeting. gardener clocked 6.56 seconds to equal the meeting record and finished well ahead of germany s marc blume who crossed the line in 6.67 secs. the world indoor champion said: i got to the airport and my stomach was upset and i was vomiting. i almost went home. i felt a little better sunday morning but decided i d only run in the main race. then everything went perfectly. gardener part of the great britain 4x100m quartet that won gold at the athens olympics will now turn his attention to next weekend s norwich union european indoor trials in sheffield. given i am still off-colour i know there is plenty more in the tank and i expect to get faster in the next few weeks he said. it s just a case of chipping away as i have done in previous years and the results will come. scotland s ian mackie was also in action in leipzig. he stepped down from his favoured 400m to 200m to finish third in 21.72 secs. germany s alexander kosenkow won the race in 21.07 secs with dutchman patrick van balkom second in 21.58 secs. there were plenty of other senior british athletes showing their indoor form over the weekend. promising 60m hurdler clocked a new uk record of 7.98 seconds at a meeting in norway. the 24-year-old reached the mark in her heat but had to settle for joint first place with former aaa champion diane allahgreen in the final. who broke onto the international scene at the olympic games last season set an indoor personal best of 16.50m in the triple jump at a meeting in ghent. that leap - 37cm short of brazilian winner jadel gregorio s effort - was good enough to qualify for the european indoor championships. at the same meeting finished third in 7.27 seconds in a high-class women s 60m. the event was won by european medal favourite christine arron of france while belgium rival kim gevaert was second. britain s joice maduaka finished fifth in 7.35. olympic bronze heptathlon medallist made a low-key return to action at an indoor meeting in birmingham. the 28-year-old cleared 1.76m to win the high jump and threw 13.86m in the women s shot put.'</li><li>'parry relishes anfield challenge bbc sport reflects on the future for liverpool after our exclusive interview with chief executive rick parry. chief executive parry is the man at the helm as liverpool reach the most crucial point in their recent history. parry has to deliver a new 60 000-seat stadium in stanley park by 2007 amid claims of costs spiralling above £120m. he is also searching for an investment package of a size and stature that will restore liverpool to their place at european football s top table. but it is a challenge that appears to sit easily with parry who has forged a reputation as one of football s most respected administrators since his days at the fledgling premier league. liverpool have not won the championship since 1990 a fact that causes deep discomfort inside anfield as they attempt to muscle in on the top three of chelsea manchester united and arsenal. throw in the small matter of warding off every top club in world football as they eye captain steven gerrard and you can see parry is a man with a lot on his plate. but in the comfort of a conference room deep inside liverpool s heartbeat - the kop end - parry spoke to us with brutal honesty about the crucial months ahead. he only dodged one question - when asked to reveal the name of the mystery investor currently courting liverpool a polite smile deflected the inquiry. but to his credit he met everything else head on in measured tones that underscore the belief that liverpool still mean business. by business he means becoming title challengers again and locking the pieces together that will help return the trophy to liverpool is parry s mission. parry has already successfully put one of those planks in place in the form of new manager rafael benitez. and his enthusiasm for the spaniard s personality and methods is an indication of his clear feeling that he has struck gold. benitez s early work has given parry renewed optimism about the years ahead. but it remains a massive task at a club with a unique history and expectations. this will not come as news to parry a lifelong liverpool supporter but his quiet determination suggests he is no mood to be found wanting... captain gerrard is central to liverpool s plans and parry s insistence that all offers will be refused is a firm statement of intent. as ever the player will have the final say and parry acknowledges that but he is determined to provide the framework and environment for liverpool and gerrard to flourish. in terms of the search for new investment hawkpoint were appointed as advisors to flush out interest in march 2004. thailand prime minister thaksin shiniwatra came and went while the most serious statement of intent came from tycoon and lifelong fan steve morgan. morgan had a succession of bids rejected having come close in the summer only for talks to break down over potential costs for the new stadium. bbc sport understands morgan is still ready and willing to invest in liverpool and parry has kept the door ajar despite currently seeking investment elsewhere. morgan however has had no formal contact with liverpool or their advisors since last december blaming indecision at board level as he publicly withdrew his £70m offer. he was also convinced his interest was being used to lure in others so any new approach would now have to come from liverpool. morgan will certainly not be making another call. so speculation continues about the new benefactor with trails leading to the middle east and america but all met with an understandable veil of secrecy from anfield. parry meanwhile sees the new ground as crucial to liverpool s future but is refusing to become emotionally attached to the idea. he is determined the ground will only be built on an affordable basis and will not make future liverpool management hostages to the new stadium. parry will pull back the moment the figures do not stack up but there has been a vital new development in north london that has re-shaped liverpool s thinking. liverpool have publicly refused to entertain the idea of stadium sponsorship and potential naming rights - but the realism of arsenal s stunning £100m deal for their new emirates stadium at ashburton has changed the landscape. parry labelled the deal an eye-opener and admits liverpool would be missing a trick not to explore the possibilities. he knows some traditionalist liverpool fans will reel at any attempt to call the new stadium anything other than just anfield but the maths of modern-day football decree that multi-millions for stadium and team could ease the pain. i would take £50m if we had no investment but if we did keep him. as for the stadium if it gets us cash what difference does it make really £50m for gerrard i don t care who you are the directors would take the money and it is the way it should be. we cannot let that sum of money go despite gerrard s quality. through a cleverly worded statement the club has effectively forced gerrard to publicly make the decision for himself which i think is the right thing to do. critical time for liverpool with regards to gerrard. ideally we would want to secure his future to the club for the long term. i am hoping he doesn t walk out of the club like michael owen did for very little cash. £50m realistically would allow rafa to completely rebuild the squad however if we can afford to do this and keep gerrard we will be better for it. i would however be happy with gerrard s transfer for any fee over £35m. parry s statements are clever in that any future gerrard transfer cannot be construed as a lack of ambition by the club to not try and keep their best players. upping the ante is another smart move by parry. i would keep gerrard. no amount of money could replace his obvious love of the club and determination to succeed. the key is if gerrard comes out and says that he is happy. clearly if he isn t then we would be foolish not to sell. the worrying thing is who would you buy (or who would come) pending possible non-champions league football.'</li></ul> | | 3 | <ul><li>'rem announce new glasgow concert us band rem have announced plans to perform for 10 000 scottish fans in a rescheduled gig. the band will play in what has been dubbed europe s biggest tent on glasgow green on tuesday 14 june. they were forced to pull out of a concert at the secc in glasgow last month after bassist mike mills contracted flu. fans who bought tickets for the original 22 february show can attend the rescheduled concert. the june gig will act as a warm-up for rem s open air concert at balloch castle country park on the banks of loch lomond four days later. promoters regular music booked glasgow green as the secc was not available on the most suitable date. mark mackie director of regular music said: it is fantastic news and it really shows rem s commitment to their scottish fans that they are coming back to glasgow for what will be a truly unique gig. the rem gigs will kick-start what promises to be a memorable summer for scottish music lovers. grammy award winners u2 will play hampden on 21 june while oasis will also perform at the national stadium in glasgow on 29 june. coldplay have announced a concert at bellahouston park in glasgow on 1 july and t in the park will be held at balado near kinross from 9-10 july. ticketweb and the secc box office will write to customers who bought tickets for the february gig asking if they want to attend the new show. those who bought tickets in person are being urged to return to the point of purchase. anyone who cannot make the concert will be given a refund. the cut-off date for swapping tickets is 1 april when those remaining will go on sale to the public.'</li><li>'tautou film tops cesar prize nods french film a very long engagement has received 12 nominations for france s cesar film awards despite a recent ruling it was not french enough . the world war i romantic drama starring audrey tautou was recently ruled too american by a paris court as it was partially backed by warner bros. but the cesar organisers modified their rules to allow the film to compete. the film directed by jean-pierre jeunet received best actress picture and director nominations. last november a court judged the film was too american to compete in french film festivals. two associations of french producers challenged jeunet s right to french government subsidies because warner bros was a backer. the ruling meant the movie - which was filmed in france and used french actors and technicians - was not eligible to compete for french prizes. but alain terzian president of cesar organisers the academie des arts et techniques du cinema said the changes in eligibility rules which allow films of french expression were made three months prior to the court decision. other films in the best film category include police drama 36 quai des orfevres arnaud desplechin s kings and queen abdellatif kechiche s l esquive and france s number one film at the 2004 box-office the chorus. best actors are daniel auteuil for 36 mathieu amalric for kings and queen gerard jugnot for the chorus philippe torreton for l equipier and benoit poelvoorde for podium. tautou will compete against maggie cheung emmanuelle devos yolande moreau and karin viard for best actress. michael moore s fahrenheit 9/11 the motorcycle diaries lost in translation eternal sunshine of the spotless mind and 21 grams are all vying in the best foreign film prize. the awards ceremony will be held on 26 february. this year will smith star of i robot independence day and men in black will be given an honorary cesar along with french singer/actor jacques dutronc.'</li><li>'gallery unveils interactive tree a christmas tree that can receive text messages has been unveiled at london s tate britain art gallery. the spruce has an antenna which can receive bluetooth texts sent by visitors to the tate. the messages will be unwrapped by sculptor richard wentworth who is responsible for decorating the tree with broken plates and light bulbs. it is the 17th year that the gallery has invited an artist to dress their christmas tree. artists who have decorated the tate tree in previous years include tracey emin in 2002. the plain green norway spruce is displayed in the gallery s foyer. its light bulb adornments are dimmed ordinary domestic ones joined together with string. the plates decorating the branches will be auctioned off for the children s charity artworks. wentworth worked as an assistant to sculptor henry moore in the late 1960s. his reputation as a sculptor grew in the 1980s while he has been one of the most influential teachers during the last two decades. wentworth is also known for his photography of mundane everyday subjects such as a cigarette packet jammed under the wonky leg of a table.'</li></ul> | | 1 | <ul><li>'ask jeeves tips online ad revival ask jeeves has become the third leading online search firm this week to thank a revival in internet advertising for improving fortunes. the firm s revenue nearly tripled in the fourth quarter of 2004 exceeding $86m (£46m). ask jeeves once among the best-known names on the web is now a relatively modest player. its $17m profit for the quarter was dwarfed by the $204m announced by rival google earlier in the week. during the same quarter yahoo earned $187m again tipping a resurgence in online advertising. the trend has taken hold relatively quickly. late last year marketing company doubleclick one of the leading providers of online advertising warned that some or all of its business would have to be put up for sale. but on thursday it announced that a sharp turnaround had brought about an unexpected increase in profits. neither ask jeeves nor doubleclick thrilled investors with their profit news however. in both cases their shares fell by some 4%. analysts attributed the falls to excessive expectations in some quarters fuelled by the dramatic outperformance of google on tuesday.'</li><li>'us bank boss hails genius smith us federal reserve chairman alan greenspan has given a speech at a scottish church in honour of the pioneering economist adam smith. he delivered the 14th adam smith lecture in kirkcaldy fife. the adam smith lecture celebrates the author of 1776 s wealth of nations which became a bible of capitalism. dr greenspan was invited by chancellor gordon brown whose minister father john used to preach at the st bryce kirk church. mr brown introduced dr greenspan to the 400 invited guests as the the world s greatest economist . dr greenspan 79 who has been in the uk to attend the g7 meeting in london said the world could never repay the debt of gratitude it owed to smith whose genius he compared to that of mozart. he said the philosopher was a towering contributor to the modern world . kirkcaldy the birthplace in 1723 of adam smith and by extension of modern economics is also of course where your chancellor was reared. i am led to ponder to what extent the chancellor s renowned economic and financial skills are the result of exposure to the subliminal intellect-enhancing emanation in this area. he continued: smith reached far beyond the insights of his predecessors to frame a global view of how market economics just then emerging worked. in so doing he supported changes in societal organisation that were to measurably enhance standards of living. dr greenspan said smith s revolutionary philosophy on human self-interest laissez-faire economics and competition had been a force for good in the world. the incredible insights of a handful of intellectuals of the enlightenment - especially with smith toiling in the environs of kirkcaldy - created the modern vision of people free to choose and to act according to their individual self-interest he said. following his lecture dr greenspan - who received an honorary knighthood from the queen at balmoral in 2002 - was awarded an honorary fellowship of the royal society of edinburgh. he later opened an exhibition dedicated to smith in the atrium of fife college of further and higher education. joyce johnston principal of the college said: it is very fitting that the world s premier economist delivered this lecture in tribute to the world s first economist. dr greenspan - who became chairman of the federal reserve for an unprecedented fifth term in june 2004 - will step down in january next year. he has served under presidents george w bush bill clinton george bush and ronald reagan. he was also chairman of the council of economic advisors to gerald ford.'</li><li>'hariri killing hits beirut shares shares in solidere the lebanese company founded by assassinated former prime minister rafik hariri fell 15% in renewed trading in beirut. the real estate firm which dominates lebanon s stock exchange ended the day down at $8.08. traders said there was some panic selling during friday s session the first since a three-day market closure to mourn the death of mr hariri. beirut s benchmark blom stock index closed down 7.9% at 642.80. solidere in which mr hariri was a major shareholder was the major drag on the index. the company owns much of the property in central beirut which it restored and redeveloped following the end of lebanon s bitter 15-year civil war. solidere should be above $10 but because of this disaster it is falling said one trader. if solidere drops much lower i would consider it a buying opportunity. this is a very big company held by many lebanese. critics had accused mr hariri of using lebanon s post-war reconstruction drive for his personal financial gain. but his assassination on monday sent shudders through lebanon s business community which saw the billionaire tycoon as the country s best hope for economic revival. solidere posted profits of $12.5m in the first half of 2004 and its shares had been gaining in recent months.'</li></ul> | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.953 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("vidhi0206/setfit-paraphrase-mpnet-base-v2") # Run inference preds = model("versace art portfolio up for sale the art collection of murdered fashion designer gianni versace could fetch up to £9m ($17m) when it is auctioned in new york and london later this year. among the pictures for sale are works by roy lichtenstein andy warhol and henri matisse. the collection was housed at versace s six-storey new york townhouse. the 51-year-old designer was shot outside his florida home in 1997 by suspected serial killer andrew cunanan who later killed himself. the auction at sotheby s will feature 45 contemporary impressionist and 19th century paintings. one of the highlights of the sale is roy lichtenstein s blue nude which has been given an estimate of £1.8m ($3.4m). tobias meyer sotheby s worldwide head of contemporary art said: this collection reflects mr versace s wide-ranging taste and impeccable eye and many of the works were commissioned directly from the artists. outstanding later examples from champions of the pop movement such as roy lichtenstein are juxtaposed with masterpieces from the most visible artists of the 1980 s including jean-michel basquiat and the collaborative genius of basquiat and warhol as well as francesco clemente. much of the collection will be offered for sale at three auctions in new york in june with smaller contemporary paintings going under the hammer in london on 22 and 23 june. a sale of versace s furniture and artworks sold in 2001fetched £5.5m ($10.3m).") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:-----| | Word count | 173 | 419.325 | 1121 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 8 | | 1 | 8 | | 2 | 8 | | 3 | 8 | | 4 | 8 | ### Training Hyperparameters - batch_size: (8, 8) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-----:|:----:|:-------------:|:---------------:| | 0.005 | 1 | 0.245 | - | | 0.25 | 50 | 0.0174 | - | | 0.5 | 100 | 0.0008 | - | | 0.75 | 150 | 0.0005 | - | | 1.0 | 200 | 0.0002 | - | ### Framework Versions - Python: 3.8.10 - SetFit: 1.0.3 - Sentence Transformers: 2.3.1 - Transformers: 4.37.2 - PyTorch: 2.2.0+cu121 - Datasets: 2.17.0 - Tokenizers: 0.15.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
{"base_model": "sentence-transformers/paraphrase-mpnet-base-v2", "library_name": "setfit", "metrics": ["accuracy"], "pipeline_tag": "text-classification", "tags": ["setfit", "sentence-transformers", "text-classification", "generated_from_setfit_trainer"], "widget": [{"text": "versace art portfolio up for sale the art collection of murdered fashion designer gianni versace could fetch up to £9m ($17m) when it is auctioned in new york and london later this year. among the pictures for sale are works by roy lichtenstein andy warhol and henri matisse. the collection was housed at versace s six-storey new york townhouse. the 51-year-old designer was shot outside his florida home in 1997 by suspected serial killer andrew cunanan who later killed himself. the auction at sotheby s will feature 45 contemporary impressionist and 19th century paintings. one of the highlights of the sale is roy lichtenstein s blue nude which has been given an estimate of £1.8m ($3.4m). tobias meyer sotheby s worldwide head of contemporary art said: this collection reflects mr versace s wide-ranging taste and impeccable eye and many of the works were commissioned directly from the artists. outstanding later examples from champions of the pop movement such as roy lichtenstein are juxtaposed with masterpieces from the most visible artists of the 1980 s including jean-michel basquiat and the collaborative genius of basquiat and warhol as well as francesco clemente. much of the collection will be offered for sale at three auctions in new york in june with smaller contemporary paintings going under the hammer in london on 22 and 23 june. a sale of versace s furniture and artworks sold in 2001fetched £5.5m ($10.3m)."}, {"text": "councils prepare to set tax rises council tax in scotland is set to rise by an average of about 4% in the coming year bbc scotland has learned. authorities will decide final figures on thursday when projected increases will be more than twice the rate of inflation which is currently 1.6%. the finance minister has urged councils to limit increases but they have warned that they will struggle to maintain services unless funding is increased. they say much additional government money is for new initiatives. scottish finance minister tom mccabe msp said: last week in parliament i announced an additional £419m for core expenditure to local government in scotland. that s a 5.5% increase and sits against an inflation rate of 1.6% so i think we have quite rightly said to councils this year that we would at the very least ask them to exercise restraint. mr mccabe is also looking for local authorities to become more efficient and save money in coming years. he told bbc radio scotland s sunday live programme: here in scotland we have 32 councils who all have their own individual collection systems for council tax they have their own payroll systems and their own human resource systems. we think there has to be opportunities there for rationalisation and using the money saved to reinvest in frontline services. the councils umbrella organisation cosla which provided bbc scotland with the indicative figures for next year warned that councils would face a continuous struggle to maintain services. mr mccabe has promised them about £8.1bn next year. however most of the increase is targeted to new initiatives and councils will experience difficulties in maintaining core services a cosla spokesman said. cosla says that it is willing to work with the executive on finding efficiency savings but that these will not be enough to maintain services. they say the funding plans for the next three years will see councils lose more of the share of public spending. the conservatives accuse the scottish executive of using the council tax to raise funds because it is too afraid to raise income tax. the tory finance spokesman brian monteith msp said: its a form of disguise... yet again we see that council tax is being used as a way of passing on costs. scared of actually using its three pence income tax that it could put up what we ve seen over the years is more and more burdens being put onto local authorities and the council tax payer having to pick up the bill. there are also warnings that unless funding to councils is increased in the next few years then services may have to be reduced. linda knox director of the scottish local authority management centre at strathclyde university said: with this current settlement the increase is slowing. at the same time the burdens on councils are greater than they were. the settlement figures don t include pay increases and the executive is also requiring a substantial figure - in the area of £325m - in efficiency savings across the settlement period. education will be protected from any cuts but linda knox says this will mean other services will suffer. she said: in practice that will mean a 4-5% cut for other services. on the face of it the settlement looks like an increase of about 9.7% but by the time you take into account other factors its probably only about 1% in real terms."}, {"text": "gadget show heralds mp3 christmas partners of those who love their hi-tech gear may want to get their presents in early as experts predict a gadget shortage this christmas. with apple s ipod topping wish lists again there may not be enough ipod minis to go round predicts oliver irish editor of gadget magazine stuff. the ipod mini is likely to be this year s tracey island said mr irish. stuff has compiled a list of the top 10 gadgets for 2004 and the ipod is at number one. for anyone bewildered by the choice of gadgets on the market stuff and what hi-fi are hosting a best-of gadget show in london this weekend. star of the show will be sony s qrio robot an all-singing all-dancing football-playing man-machine who can even hold intelligent conversations. but he is not for sale and sony has no commercial plans for the robot. he will greet visitors and is flying in from japan. he probably has his own airplane seat that is how highly sony prize him said mr irish. also on display will be a virtual keyboard which projects itself onto any flat surface. the event will play host to a large collection of digital music players from companies such as creative sony and philips as well as the ubiquitously fashionable ipod from apple. suggestions that it could be a gaming or wireless christmas are unlikely to come true as mp3 players remain the most popular stocking filler said mr irish. demand is huge and apple has promised that it can supply enough but people might struggle to get their hands on ipod minis said mr irish. for those who like their gadgets to be multi-talented the gizmondo a powerful gaming console with gps and gprs that also doubles up as an mp3 player movie player and camera could be a must-have. what is impressive is how much it can do and how well it can do them said mr irish. this christmas gadgets will not be an all-male preserve. women will be getting gadgets from husbands and boyfriends as well as buying them for themselves said mr irish. gadgets nowadays are lifestyle products rather than just for geeks."}, {"text": "virus poses as christmas e-mail security firms are warning about a windows virus disguising itself as an electronic christmas card. the zafi.d virus translates the christmas greeting on its subject line into the language of the person receiving infected e-mail. anti-virus firms speculate that this multilingual ability is helping the malicious program spread widely online. anti-virus firm sophos said that 10% of the e-mail currently on the net was infected with the zafi virus. like many other windows viruses zafi-d plunders microsoft outlook for e-mail addresses and then uses mail-sending software to despatch itself across the web to new victims. to be infected users must open up the attachment travelling with the message which bears the code for the malicious bug. the attachment on the e-mail poses as an electronic christmas card but anyone opening it will simply get a crude image of two smiley faces. the virus subject line says merry christmas and translates this into one of 15 languages depending of the final suffix of the e-mail address the infected message has been sent to. the message in the body of the e-mail reads: happy holidays and this too is translated. on infected machines the virus tries to disable anti-virus and firewall software and opens up a backdoor on the pc to hand over control to the writer of the virus. the virus is thought to have spread most widely in south america italy spain bulgaria and hungary. the original zafi virus appeared in april this year. we have seen these hoaxes for several christmases already and personally i prefer traditional pen and paper cards and we recommend this to all our clients too said mikko hypponen who heads f-secure s anti-virus team."}, {"text": "desailly backs blues revenge trip marcel desailly insists there is no chance of history repeating itself when chelsea take on barcelona on wednesday. the french star was part of the chelsea side crushed 5-1 at the nou camp in the champions league quarter-final second leg in 2000. things will be totally different this time he told bbc sport. now everyone knows about chelsea and is a little bit afraid of them. they are one of the major clubs in europe and the pressure will be on barcelona. chelsea have not played barcelona since that quarter-final tie five years ago. the blues had looked destined to progress after winning the first leg at stamford bridge 3-1 courtesy of two goals from tore andre flo and one by gianfranco zola. but they collapsed in the second leg going down to strikes from rivaldo (2) luis figo dani and patrick kluivert. former chelsea captain desailly who is now playing for al-gharafa in qatar says there is no comparison between that side and the current blues team who are top of the premiership. mentally they are much stronger even though a lot of their players are young the 36-year-old said. we made some mistakes at the nou camp in 2000 - a lot of them were individual mistakes. it would not happen now. this team has a new motivation and a different mentality. world cup winner desailly saw huge changes during his time at stamford bridge. he was signed for £4.6m from ac milan in 1998 by ruud gullit and went on to play under gianluca vialli and claudio ranieri. but the biggest change occurred when billionaire roman abramovich bought the club in 2003. desailly says the russian s arrival helped to instil a winning mentality at the club as well as a demand for success. the whole of chelsea is different now - the chairman the manager and all the players he said. everything is new and there is a huge determination to win. since that game in 2000 chelsea have gained more experience in europe and were very close to reaching the champions league final last season. desailly is one of the most decorated players in the history of football. he won the 1998 world cup and 2000 european championship with france the champions league in 1993 with marseilles and 1994 with ac milan two serie a titles and the fa cup in 2000 with chelsea. he is now winding down his career in qatar alongside the likes of frank lebeouf josep guardiola titi camara gabriel batistuta and christophe dugarry. so he is full of admiration for two of his colleagues from the great milan side of the mid-90s who are likely to line up against manchester united on wednesday - paolo maldini and alessandro costacurta. i m happy that they have managed to play so long at a high level he said. i made a vow to costacurta that as long as he plays i will continue to play. and it s amazing that paolo has managed to play at such a high level for such a long time."}], "inference": true, "model-index": [{"name": "SetFit with sentence-transformers/paraphrase-mpnet-base-v2", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "Unknown", "type": "unknown", "split": "test"}, "metrics": [{"type": "accuracy", "value": 0.953, "name": "Accuracy"}]}]}]}
NickyNicky/StaticEmbedding-MatryoshkaLoss-gemma-2-2b-en-es
NickyNicky
sentence-similarity
[ "sentence-transformers", "safetensors", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:4322286", "loss:MatryoshkaLoss", "loss:MultipleNegativesRankingLoss", "arxiv:1908.10084", "arxiv:2205.13147", "arxiv:1705.00652", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2025-01-16T04:07:42
2025-01-22T03:44:46
0
2
--- library_name: sentence-transformers license: apache-2.0 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:4322286 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: how to sign legal documents as power of attorney? sentences: - 'After the principal''s name, write “by” and then sign your own name. Under or after the signature line, indicate your status as POA by including any of the following identifiers: as POA, as Agent, as Attorney in Fact or as Power of Attorney.' - '[''From the Home screen, swipe left to Apps.'', ''Tap Transfer my Data.'', ''Tap Menu (...).'', ''Tap Export to SD card.'']' - Ginger Dank Nugs (Grape) - 350mg. Feast your eyes on these unique and striking gourmet chocolates; Coco Nugs created by Ginger Dank. Crafted to resemble perfect nugs of cannabis, each of the 10 buds contains 35mg of THC. ... This is a perfect product for both cannabis and chocolate lovers, who appreciate a little twist. - source_sentence: how to delete vdom in fortigate? sentences: - Go to System -> VDOM -> VDOM2 and select 'Delete'. This VDOM is now successfully removed from the configuration. - 'Both combination birth control pills and progestin-only pills may cause headaches as a side effect. Additional side effects of birth control pills may include: breast tenderness. nausea.' - White cheese tends to show imperfections more readily and as consumers got more used to yellow-orange cheese, it became an expected option. Today, many cheddars are yellow. While most cheesemakers use annatto, some use an artificial coloring agent instead, according to Sachs. - source_sentence: where are earthquakes most likely to occur on earth? sentences: - Zelle in the Bank of the America app is a fast, safe, and easy way to send and receive money with family and friends who have a bank account in the U.S., all with no fees. Money moves in minutes directly between accounts that are already enrolled with Zelle. - It takes about 3 days for a spacecraft to reach the Moon. During that time a spacecraft travels at least 240,000 miles (386,400 kilometers) which is the distance between Earth and the Moon. - Most earthquakes occur along the edge of the oceanic and continental plates. The earth's crust (the outer layer of the planet) is made up of several pieces, called plates. The plates under the oceans are called oceanic plates and the rest are continental plates. - source_sentence: fix iphone is disabled connect to itunes without itunes? sentences: - To fix a disabled iPhone or iPad without iTunes, you have to erase your device. Click on the "Erase iPhone" option and confirm your selection. Wait for a while as the "Find My iPhone" feature will remotely erase your iOS device. Needless to say, it will also disable its lock. - How Māui brought fire to the world. One evening, after eating a hearty meal, Māui lay beside his fire staring into the flames. ... In the middle of the night, while everyone was sleeping, Māui went from village to village and extinguished all the fires until not a single fire burned in the world. - Angry Orchard makes a variety of year-round craft cider styles, including Angry Orchard Crisp Apple, a fruit-forward hard cider that balances the sweetness of culinary apples with dryness and bright acidity of bittersweet apples for a complex, refreshing taste. - source_sentence: how to reverse a video on tiktok that's not yours? sentences: - '[''Tap "Effects" at the bottom of your screen — it\''s an icon that looks like a clock. Open the Effects menu. ... '', ''At the end of the new list that appears, tap "Time." Select "Time" at the end. ... '', ''Select "Reverse" — you\''ll then see a preview of your new, reversed video appear on the screen.'']' - Franchise Facts Poke Bar has a franchise fee of up to $30,000, with a total initial investment range of $157,800 to $438,000. The initial cost of a franchise includes several fees -- Unlock this franchise to better understand the costs such as training and territory fees. - Relative age is the age of a rock layer (or the fossils it contains) compared to other layers. It can be determined by looking at the position of rock layers. Absolute age is the numeric age of a layer of rocks or fossils. Absolute age can be determined by using radiometric dating. --- <!-- ### Nicko colab de pruebas fine tune. https://colab.research.google.com/drive/1IbcgP-KT01-5csBBB-SJ6kMiI1Udbokt#scrollTo=XgNQ1C1wWbTg&uniqifier=1 --> # SentenceTransformer This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) --> - **Maximum Sequence Length:** inf tokens - **Output Dimensionality:** 1024 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): StaticEmbedding( (embedding): EmbeddingBag(256000, 1024, mode='mean') ) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("NickyNicky/StaticEmbedding-MatryoshkaLoss-gemma-2-2b-en-es") # Run inference sentences = [ "how to reverse a video on tiktok that's not yours?", '[\'Tap "Effects" at the bottom of your screen — it\\\'s an icon that looks like a clock. Open the Effects menu. ... \', \'At the end of the new list that appears, tap "Time." Select "Time" at the end. ... \', \'Select "Reverse" — you\\\'ll then see a preview of your new, reversed video appear on the screen.\']', 'Relative age is the age of a rock layer (or the fossils it contains) compared to other layers. It can be determined by looking at the position of rock layers. Absolute age is the numeric age of a layer of rocks or fossils. Absolute age can be determined by using radiometric dating.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 4,322,286 training samples english and spanish [dataset news, QA, summary,news cryptocurrency]. * Columns: <code>question</code> and <code>answer</code> * Approximate statistics based on the first 1000 samples: | | question | answer | |:--------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 18 characters</li><li>mean: 43.23 characters</li><li>max: 96 characters</li></ul> | <ul><li>min: 55 characters</li><li>mean: 253.36 characters</li><li>max: 371 characters</li></ul> | * Samples: | question | answer | |:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>what is the difference between broilers and layers?</code> | <code>An egg laying poultry is called egger or layer whereas broilers are reared for obtaining meat. So a layer should be able to produce more number of large sized eggs, without growing too much. On the other hand, a broiler should yield more meat and hence should be able to grow well.</code> | | <code>what is the difference between chronological order and spatial order?</code> | <code>As a writer, you should always remember that unlike chronological order and the other organizational methods for data, spatial order does not take into account the time. Spatial order is primarily focused on the location. All it does is take into account the location of objects and not the time.</code> | | <code>is kamagra same as viagra?</code> | <code>Kamagra is thought to contain the same active ingredient as Viagra, sildenafil citrate. In theory, it should work in much the same way as Viagra, taking about 45 minutes to take effect, and lasting for around 4-6 hours. However, this will vary from person to person.</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 1024, 768, 512, 256, 128, 64, 32 ], "matryoshka_weights": [ 1, 1, 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 10,005 evaluation samples * Columns: <code>question</code> and <code>answer</code> * Approximate statistics based on the first 1000 samples: | | question | answer | |:--------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 18 characters</li><li>mean: 43.17 characters</li><li>max: 98 characters</li></ul> | <ul><li>min: 51 characters</li><li>mean: 254.12 characters</li><li>max: 360 characters</li></ul> | * Samples: | question | answer | |:-----------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>how do i program my directv remote with my tv?</code> | <code>['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.']</code> | | <code>are rodrigues fruit bats nocturnal?</code> | <code>Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night.</code> | | <code>why does your heart rate increase during exercise bbc bitesize?</code> | <code>During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it.</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 1024, 768, 512, 256, 128, 64, 32 ], "matryoshka_weights": [ 1, 1, 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 2048 - `per_device_eval_batch_size`: 2048 - `learning_rate`: 0.2 - `warmup_ratio`: 0.1 - `bf16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 2048 - `per_device_eval_batch_size`: 2048 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 0.2 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0005 | 1 | 49.8746 | - | | 0.0474 | 100 | 35.8567 | 7.1776 | | 0.0947 | 200 | 13.988 | 3.2848 | | 0.1421 | 300 | 8.0009 | 2.3610 | | 0.1895 | 400 | 6.3293 | 2.0293 | | 0.2369 | 500 | 5.6296 | 1.8849 | | 0.2842 | 600 | 5.238 | 1.7495 | | 0.3316 | 700 | 4.9115 | 1.6694 | | 0.3790 | 800 | 4.5779 | 1.5583 | | 0.4263 | 900 | 4.2608 | 1.4784 | | 0.4737 | 1000 | 4.0893 | 1.4020 | | 0.5211 | 1100 | 3.8669 | 1.3426 | | 0.5685 | 1200 | 3.7505 | 1.3160 | | 0.6158 | 1300 | 3.6529 | 1.2822 | | 0.6632 | 1400 | 3.5203 | 1.2612 | | 0.7106 | 1500 | 5.1906 | 1.4469 | | 0.7579 | 1600 | 4.0273 | 1.6219 | | 0.8053 | 1700 | 4.8308 | 3.1338 | | 0.8527 | 1800 | 0.5336 | 3.2854 | | 0.9000 | 1900 | 0.3 | 3.3757 | | 0.9474 | 2000 | 0.0886 | 3.3620 | | 0.9948 | 2100 | 0.0817 | 3.3510 | | 1.0417 | 2200 | 4.0692 | 1.3638 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.3.1 - Transformers: 4.47.1 - PyTorch: 2.5.1+cu121 - Accelerate: 1.2.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## NanoBEIREvaluator > 0.8 ``` { "NanoDBPedia_cosine_accuracy@3": 0.86, "NanoDBPedia_cosine_accuracy@5": 0.92, "NanoDBPedia_cosine_accuracy@10": 0.96, "NanoFEVER_cosine_accuracy@3": 0.86, "NanoFEVER_cosine_accuracy@5": 0.92, "NanoFEVER_cosine_accuracy@10": 0.96, "NanoQuoraRetrieval_cosine_accuracy@1": 0.88, "NanoQuoraRetrieval_cosine_accuracy@3": 0.96, "NanoQuoraRetrieval_cosine_accuracy@5": 1.0, "NanoQuoraRetrieval_cosine_accuracy@10": 1.0, "NanoSCIDOCS_cosine_accuracy@5": 0.82, "NanoSCIDOCS_cosine_accuracy@10": 0.92, "NanoArguAna_cosine_accuracy@10": 0.92, "NanoSciFact_cosine_accuracy@10": 0.88, "NanoHotpotQA_cosine_accuracy@10": 0.88, "NanoTouche2020_cosine_accuracy@5": 0.9183673469387755, "NanoTouche2020_cosine_accuracy@10": 0.9387755102040817, "NanoBEIR_mean_cosine_accuracy@10": 0.8583673469387756 } ``` ## All NanoBEIREvaluator ``` {'NanoClimateFEVER_cosine_accuracy@1': 0.28, 'NanoClimateFEVER_cosine_accuracy@3': 0.44, 'NanoClimateFEVER_cosine_accuracy@5': 0.54, 'NanoClimateFEVER_cosine_accuracy@10': 0.72, 'NanoClimateFEVER_cosine_precision@1': 0.28, 'NanoClimateFEVER_cosine_precision@3': 0.15333333333333332, 'NanoClimateFEVER_cosine_precision@5': 0.124, 'NanoClimateFEVER_cosine_precision@10': 0.08999999999999998, 'NanoClimateFEVER_cosine_recall@1': 0.145, 'NanoClimateFEVER_cosine_recall@3': 0.205, 'NanoClimateFEVER_cosine_recall@5': 0.264, 'NanoClimateFEVER_cosine_recall@10': 0.36200000000000004, 'NanoClimateFEVER_cosine_ndcg@10': 0.2957527689242254, 'NanoClimateFEVER_cosine_mrr@10': 0.3996666666666668, 'NanoClimateFEVER_cosine_map@100': 0.23258384801937396, 'NanoDBPedia_cosine_accuracy@1': 0.68, 'NanoDBPedia_cosine_accuracy@3': 0.86, 'NanoDBPedia_cosine_accuracy@5': 0.92, 'NanoDBPedia_cosine_accuracy@10': 0.96, 'NanoDBPedia_cosine_precision@1': 0.68, 'NanoDBPedia_cosine_precision@3': 0.56, 'NanoDBPedia_cosine_precision@5': 0.5120000000000001, 'NanoDBPedia_cosine_precision@10': 0.43800000000000006, 'NanoDBPedia_cosine_recall@1': 0.07601531530835434, 'NanoDBPedia_cosine_recall@3': 0.1438904710839341, 'NanoDBPedia_cosine_recall@5': 0.20681359525684506, 'NanoDBPedia_cosine_recall@10': 0.319966975132044, 'NanoDBPedia_cosine_ndcg@10': 0.5501100350453579, 'NanoDBPedia_cosine_mrr@10': 0.7855000000000001, 'NanoDBPedia_cosine_map@100': 0.39476156890024533, 'NanoFEVER_cosine_accuracy@1': 0.68, 'NanoFEVER_cosine_accuracy@3': 0.86, 'NanoFEVER_cosine_accuracy@5': 0.92, 'NanoFEVER_cosine_accuracy@10': 0.96, 'NanoFEVER_cosine_precision@1': 0.68, 'NanoFEVER_cosine_precision@3': 0.29333333333333333, 'NanoFEVER_cosine_precision@5': 0.19199999999999995, 'NanoFEVER_cosine_precision@10': 0.10199999999999998, 'NanoFEVER_cosine_recall@1': 0.6266666666666666, 'NanoFEVER_cosine_recall@3': 0.8133333333333332, 'NanoFEVER_cosine_recall@5': 0.8833333333333333, 'NanoFEVER_cosine_recall@10': 0.9233333333333333, 'NanoFEVER_cosine_ndcg@10': 0.7933479848498471, 'NanoFEVER_cosine_mrr@10': 0.7780793650793651, 'NanoFEVER_cosine_map@100': 0.7406571665049926, 'NanoFiQA2018_cosine_accuracy@1': 0.46, 'NanoFiQA2018_cosine_accuracy@3': 0.64, 'NanoFiQA2018_cosine_accuracy@5': 0.7, 'NanoFiQA2018_cosine_accuracy@10': 0.72, 'NanoFiQA2018_cosine_precision@1': 0.46, 'NanoFiQA2018_cosine_precision@3': 0.2866666666666666, 'NanoFiQA2018_cosine_precision@5': 0.22399999999999998, 'NanoFiQA2018_cosine_precision@10': 0.12999999999999998, 'NanoFiQA2018_cosine_recall@1': 0.23924603174603173, 'NanoFiQA2018_cosine_recall@3': 0.4251031746031746, 'NanoFiQA2018_cosine_recall@5': 0.5099603174603174, 'NanoFiQA2018_cosine_recall@10': 0.566015873015873, 'NanoFiQA2018_cosine_ndcg@10': 0.4774545077577204, 'NanoFiQA2018_cosine_mrr@10': 0.5475555555555556, 'NanoFiQA2018_cosine_map@100': 0.4125452702654584, 'NanoHotpotQA_cosine_accuracy@1': 0.64, 'NanoHotpotQA_cosine_accuracy@3': 0.82, 'NanoHotpotQA_cosine_accuracy@5': 0.84, 'NanoHotpotQA_cosine_accuracy@10': 0.88, 'NanoHotpotQA_cosine_precision@1': 0.64, 'NanoHotpotQA_cosine_precision@3': 0.3533333333333333, 'NanoHotpotQA_cosine_precision@5': 0.23599999999999993, 'NanoHotpotQA_cosine_precision@10': 0.128, 'NanoHotpotQA_cosine_recall@1': 0.32, 'NanoHotpotQA_cosine_recall@3': 0.53, 'NanoHotpotQA_cosine_recall@5': 0.59, 'NanoHotpotQA_cosine_recall@10': 0.64, 'NanoHotpotQA_cosine_ndcg@10': 0.5959681682828366, 'NanoHotpotQA_cosine_mrr@10': 0.723888888888889, 'NanoHotpotQA_cosine_map@100': 0.5262469568756968, 'NanoMSMARCO_cosine_accuracy@1': 0.36, 'NanoMSMARCO_cosine_accuracy@3': 0.52, 'NanoMSMARCO_cosine_accuracy@5': 0.58, 'NanoMSMARCO_cosine_accuracy@10': 0.8, 'NanoMSMARCO_cosine_precision@1': 0.36, 'NanoMSMARCO_cosine_precision@3': 0.1733333333333333, 'NanoMSMARCO_cosine_precision@5': 0.11599999999999999, 'NanoMSMARCO_cosine_precision@10': 0.08, 'NanoMSMARCO_cosine_recall@1': 0.36, 'NanoMSMARCO_cosine_recall@3': 0.52, 'NanoMSMARCO_cosine_recall@5': 0.58, 'NanoMSMARCO_cosine_recall@10': 0.8, 'NanoMSMARCO_cosine_ndcg@10': 0.5539831330912274, 'NanoMSMARCO_cosine_mrr@10': 0.47960317460317464, 'NanoMSMARCO_cosine_map@100': 0.4907628900864195, 'NanoNFCorpus_cosine_accuracy@1': 0.42, 'NanoNFCorpus_cosine_accuracy@3': 0.56, 'NanoNFCorpus_cosine_accuracy@5': 0.6, 'NanoNFCorpus_cosine_accuracy@10': 0.7, 'NanoNFCorpus_cosine_precision@1': 0.42, 'NanoNFCorpus_cosine_precision@3': 0.3466666666666666, 'NanoNFCorpus_cosine_precision@5': 0.32800000000000007, 'NanoNFCorpus_cosine_precision@10': 0.286, 'NanoNFCorpus_cosine_recall@1': 0.03391318439564492, 'NanoNFCorpus_cosine_recall@3': 0.06311668492872162, 'NanoNFCorpus_cosine_recall@5': 0.08191277059586696, 'NanoNFCorpus_cosine_recall@10': 0.13476845853527392, 'NanoNFCorpus_cosine_ndcg@10': 0.3322933792371396, 'NanoNFCorpus_cosine_mrr@10': 0.4983333333333333, 'NanoNFCorpus_cosine_map@100': 0.13985354018581944, 'NanoNQ_cosine_accuracy@1': 0.44, 'NanoNQ_cosine_accuracy@3': 0.64, 'NanoNQ_cosine_accuracy@5': 0.66, 'NanoNQ_cosine_accuracy@10': 0.76, 'NanoNQ_cosine_precision@1': 0.44, 'NanoNQ_cosine_precision@3': 0.22, 'NanoNQ_cosine_precision@5': 0.14, 'NanoNQ_cosine_precision@10': 0.08199999999999999, 'NanoNQ_cosine_recall@1': 0.42, 'NanoNQ_cosine_recall@3': 0.62, 'NanoNQ_cosine_recall@5': 0.64, 'NanoNQ_cosine_recall@10': 0.75, 'NanoNQ_cosine_ndcg@10': 0.5903874296113161, 'NanoNQ_cosine_mrr@10': 0.5456349206349206, 'NanoNQ_cosine_map@100': 0.5437440035864959, 'NanoQuoraRetrieval_cosine_accuracy@1': 0.88, 'NanoQuoraRetrieval_cosine_accuracy@3': 0.96, 'NanoQuoraRetrieval_cosine_accuracy@5': 1.0, 'NanoQuoraRetrieval_cosine_accuracy@10': 1.0, 'NanoQuoraRetrieval_cosine_precision@1': 0.88, 'NanoQuoraRetrieval_cosine_precision@3': 0.3933333333333333, 'NanoQuoraRetrieval_cosine_precision@5': 0.256, 'NanoQuoraRetrieval_cosine_precision@10': 0.13599999999999998, 'NanoQuoraRetrieval_cosine_recall@1': 0.784, 'NanoQuoraRetrieval_cosine_recall@3': 0.9186666666666667, 'NanoQuoraRetrieval_cosine_recall@5': 0.976, 'NanoQuoraRetrieval_cosine_recall@10': 0.9933333333333334, 'NanoQuoraRetrieval_cosine_ndcg@10': 0.9367841595958026, 'NanoQuoraRetrieval_cosine_mrr@10': 0.9246666666666666, 'NanoQuoraRetrieval_cosine_map@100': 0.913554834054834, 'NanoSCIDOCS_cosine_accuracy@1': 0.52, 'NanoSCIDOCS_cosine_accuracy@3': 0.68, 'NanoSCIDOCS_cosine_accuracy@5': 0.82, 'NanoSCIDOCS_cosine_accuracy@10': 0.92, 'NanoSCIDOCS_cosine_precision@1': 0.52, 'NanoSCIDOCS_cosine_precision@3': 0.3933333333333333, 'NanoSCIDOCS_cosine_precision@5': 0.33599999999999997, 'NanoSCIDOCS_cosine_precision@10': 0.21600000000000003, 'NanoSCIDOCS_cosine_recall@1': 0.10966666666666666, 'NanoSCIDOCS_cosine_recall@3': 0.24466666666666664, 'NanoSCIDOCS_cosine_recall@5': 0.34566666666666657, 'NanoSCIDOCS_cosine_recall@10': 0.44266666666666665, 'NanoSCIDOCS_cosine_ndcg@10': 0.4328110226758414, 'NanoSCIDOCS_cosine_mrr@10': 0.6317222222222222, 'NanoSCIDOCS_cosine_map@100': 0.34997841607847063, 'NanoArguAna_cosine_accuracy@1': 0.2, 'NanoArguAna_cosine_accuracy@3': 0.56, 'NanoArguAna_cosine_accuracy@5': 0.76, 'NanoArguAna_cosine_accuracy@10': 0.92, 'NanoArguAna_cosine_precision@1': 0.2, 'NanoArguAna_cosine_precision@3': 0.18666666666666668, 'NanoArguAna_cosine_precision@5': 0.15200000000000002, 'NanoArguAna_cosine_precision@10': 0.092, 'NanoArguAna_cosine_recall@1': 0.2, 'NanoArguAna_cosine_recall@3': 0.56, 'NanoArguAna_cosine_recall@5': 0.76, 'NanoArguAna_cosine_recall@10': 0.92, 'NanoArguAna_cosine_ndcg@10': 0.5499071039525992, 'NanoArguAna_cosine_mrr@10': 0.43229365079365073, 'NanoArguAna_cosine_map@100': 0.43523820792684886, 'NanoSciFact_cosine_accuracy@1': 0.6, 'NanoSciFact_cosine_accuracy@3': 0.72, 'NanoSciFact_cosine_accuracy@5': 0.8, 'NanoSciFact_cosine_accuracy@10': 0.88, 'NanoSciFact_cosine_precision@1': 0.6, 'NanoSciFact_cosine_precision@3': 0.25333333333333335, 'NanoSciFact_cosine_precision@5': 0.18, 'NanoSciFact_cosine_precision@10': 0.09799999999999999, 'NanoSciFact_cosine_recall@1': 0.58, 'NanoSciFact_cosine_recall@3': 0.7, 'NanoSciFact_cosine_recall@5': 0.8, 'NanoSciFact_cosine_recall@10': 0.87, 'NanoSciFact_cosine_ndcg@10': 0.7265348054031264, 'NanoSciFact_cosine_mrr@10': 0.6841031746031746, 'NanoSciFact_cosine_map@100': 0.6810233866101422, 'NanoTouche2020_cosine_accuracy@1': 0.5102040816326531, 'NanoTouche2020_cosine_accuracy@3': 0.8367346938775511, 'NanoTouche2020_cosine_accuracy@5': 0.9183673469387755, 'NanoTouche2020_cosine_accuracy@10': 0.9387755102040817, 'NanoTouche2020_cosine_precision@1': 0.5102040816326531, 'NanoTouche2020_cosine_precision@3': 0.5374149659863945, 'NanoTouche2020_cosine_precision@5': 0.5061224489795918, 'NanoTouche2020_cosine_precision@10': 0.43265306122448977, 'NanoTouche2020_cosine_recall@1': 0.03546508562664911, 'NanoTouche2020_cosine_recall@3': 0.11189238805791148, 'NanoTouche2020_cosine_recall@5': 0.1673503566176574, 'NanoTouche2020_cosine_recall@10': 0.2818808841266296, 'NanoTouche2020_cosine_ndcg@10': 0.47479704449085264, 'NanoTouche2020_cosine_mrr@10': 0.6714285714285714, 'NanoTouche2020_cosine_map@100': 0.3438320372291555, 'NanoBEIR_mean_cosine_accuracy@1': 0.5130926216640502, 'NanoBEIR_mean_cosine_accuracy@3': 0.6997488226059654, 'NanoBEIR_mean_cosine_accuracy@5': 0.7737205651491367, 'NanoBEIR_mean_cosine_accuracy@10': 0.8583673469387756, 'NanoBEIR_mean_cosine_precision@1': 0.5130926216640502, 'NanoBEIR_mean_cosine_precision@3': 0.31928833071690216, 'NanoBEIR_mean_cosine_precision@5': 0.2540094191522763, 'NanoBEIR_mean_cosine_precision@10': 0.1777425431711146, 'NanoBEIR_mean_cosine_recall@1': 0.302305611570001, 'NanoBEIR_mean_cosine_recall@3': 0.4504361065646467, 'NanoBEIR_mean_cosine_recall@5': 0.5234643876869758, 'NanoBEIR_mean_cosine_recall@10': 0.6156896557033196, 'NanoBEIR_mean_cosine_ndcg@10': 0.5623178109936842, 'NanoBEIR_mean_cosine_mrr@10': 0.6232673992673993, 'NanoBEIR_mean_cosine_map@100': 0.47729093279415025} ``` ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
[ "TEXT_CLASSIFICATION" ]
[ "CRAFT" ]
Non_BioNLP
<!-- ### Nicko colab de pruebas fine tune. https://colab.research.google.com/drive/1IbcgP-KT01-5csBBB-SJ6kMiI1Udbokt#scrollTo=XgNQ1C1wWbTg&uniqifier=1 --> # SentenceTransformer This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) --> - **Maximum Sequence Length:** inf tokens - **Output Dimensionality:** 1024 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): StaticEmbedding( (embedding): EmbeddingBag(256000, 1024, mode='mean') ) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("NickyNicky/StaticEmbedding-MatryoshkaLoss-gemma-2-2b-en-es") # Run inference sentences = [ "how to reverse a video on tiktok that's not yours?", '[\'Tap "Effects" at the bottom of your screen — it\\\'s an icon that looks like a clock. Open the Effects menu. ... \', \'At the end of the new list that appears, tap "Time." Select "Time" at the end. ... \', \'Select "Reverse" — you\\\'ll then see a preview of your new, reversed video appear on the screen.\']', 'Relative age is the age of a rock layer (or the fossils it contains) compared to other layers. It can be determined by looking at the position of rock layers. Absolute age is the numeric age of a layer of rocks or fossils. Absolute age can be determined by using radiometric dating.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 4,322,286 training samples english and spanish [dataset news, QA, summary,news cryptocurrency]. * Columns: <code>question</code> and <code>answer</code> * Approximate statistics based on the first 1000 samples: | | question | answer | |:--------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 18 characters</li><li>mean: 43.23 characters</li><li>max: 96 characters</li></ul> | <ul><li>min: 55 characters</li><li>mean: 253.36 characters</li><li>max: 371 characters</li></ul> | * Samples: | question | answer | |:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>what is the difference between broilers and layers?</code> | <code>An egg laying poultry is called egger or layer whereas broilers are reared for obtaining meat. So a layer should be able to produce more number of large sized eggs, without growing too much. On the other hand, a broiler should yield more meat and hence should be able to grow well.</code> | | <code>what is the difference between chronological order and spatial order?</code> | <code>As a writer, you should always remember that unlike chronological order and the other organizational methods for data, spatial order does not take into account the time. Spatial order is primarily focused on the location. All it does is take into account the location of objects and not the time.</code> | | <code>is kamagra same as viagra?</code> | <code>Kamagra is thought to contain the same active ingredient as Viagra, sildenafil citrate. In theory, it should work in much the same way as Viagra, taking about 45 minutes to take effect, and lasting for around 4-6 hours. However, this will vary from person to person.</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 1024, 768, 512, 256, 128, 64, 32 ], "matryoshka_weights": [ 1, 1, 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 10,005 evaluation samples * Columns: <code>question</code> and <code>answer</code> * Approximate statistics based on the first 1000 samples: | | question | answer | |:--------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 18 characters</li><li>mean: 43.17 characters</li><li>max: 98 characters</li></ul> | <ul><li>min: 51 characters</li><li>mean: 254.12 characters</li><li>max: 360 characters</li></ul> | * Samples: | question | answer | |:-----------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>how do i program my directv remote with my tv?</code> | <code>['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.']</code> | | <code>are rodrigues fruit bats nocturnal?</code> | <code>Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night.</code> | | <code>why does your heart rate increase during exercise bbc bitesize?</code> | <code>During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it.</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 1024, 768, 512, 256, 128, 64, 32 ], "matryoshka_weights": [ 1, 1, 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 2048 - `per_device_eval_batch_size`: 2048 - `learning_rate`: 0.2 - `warmup_ratio`: 0.1 - `bf16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 2048 - `per_device_eval_batch_size`: 2048 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 0.2 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0005 | 1 | 49.8746 | - | | 0.0474 | 100 | 35.8567 | 7.1776 | | 0.0947 | 200 | 13.988 | 3.2848 | | 0.1421 | 300 | 8.0009 | 2.3610 | | 0.1895 | 400 | 6.3293 | 2.0293 | | 0.2369 | 500 | 5.6296 | 1.8849 | | 0.2842 | 600 | 5.238 | 1.7495 | | 0.3316 | 700 | 4.9115 | 1.6694 | | 0.3790 | 800 | 4.5779 | 1.5583 | | 0.4263 | 900 | 4.2608 | 1.4784 | | 0.4737 | 1000 | 4.0893 | 1.4020 | | 0.5211 | 1100 | 3.8669 | 1.3426 | | 0.5685 | 1200 | 3.7505 | 1.3160 | | 0.6158 | 1300 | 3.6529 | 1.2822 | | 0.6632 | 1400 | 3.5203 | 1.2612 | | 0.7106 | 1500 | 5.1906 | 1.4469 | | 0.7579 | 1600 | 4.0273 | 1.6219 | | 0.8053 | 1700 | 4.8308 | 3.1338 | | 0.8527 | 1800 | 0.5336 | 3.2854 | | 0.9000 | 1900 | 0.3 | 3.3757 | | 0.9474 | 2000 | 0.0886 | 3.3620 | | 0.9948 | 2100 | 0.0817 | 3.3510 | | 1.0417 | 2200 | 4.0692 | 1.3638 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.3.1 - Transformers: 4.47.1 - PyTorch: 2.5.1+cu121 - Accelerate: 1.2.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## NanoBEIREvaluator > 0.8 ``` { "NanoDBPedia_cosine_accuracy@3": 0.86, "NanoDBPedia_cosine_accuracy@5": 0.92, "NanoDBPedia_cosine_accuracy@10": 0.96, "NanoFEVER_cosine_accuracy@3": 0.86, "NanoFEVER_cosine_accuracy@5": 0.92, "NanoFEVER_cosine_accuracy@10": 0.96, "NanoQuoraRetrieval_cosine_accuracy@1": 0.88, "NanoQuoraRetrieval_cosine_accuracy@3": 0.96, "NanoQuoraRetrieval_cosine_accuracy@5": 1.0, "NanoQuoraRetrieval_cosine_accuracy@10": 1.0, "NanoSCIDOCS_cosine_accuracy@5": 0.82, "NanoSCIDOCS_cosine_accuracy@10": 0.92, "NanoArguAna_cosine_accuracy@10": 0.92, "NanoSciFact_cosine_accuracy@10": 0.88, "NanoHotpotQA_cosine_accuracy@10": 0.88, "NanoTouche2020_cosine_accuracy@5": 0.9183673469387755, "NanoTouche2020_cosine_accuracy@10": 0.9387755102040817, "NanoBEIR_mean_cosine_accuracy@10": 0.8583673469387756 } ``` ## All NanoBEIREvaluator ``` {'NanoClimateFEVER_cosine_accuracy@1': 0.28, 'NanoClimateFEVER_cosine_accuracy@3': 0.44, 'NanoClimateFEVER_cosine_accuracy@5': 0.54, 'NanoClimateFEVER_cosine_accuracy@10': 0.72, 'NanoClimateFEVER_cosine_precision@1': 0.28, 'NanoClimateFEVER_cosine_precision@3': 0.15333333333333332, 'NanoClimateFEVER_cosine_precision@5': 0.124, 'NanoClimateFEVER_cosine_precision@10': 0.08999999999999998, 'NanoClimateFEVER_cosine_recall@1': 0.145, 'NanoClimateFEVER_cosine_recall@3': 0.205, 'NanoClimateFEVER_cosine_recall@5': 0.264, 'NanoClimateFEVER_cosine_recall@10': 0.36200000000000004, 'NanoClimateFEVER_cosine_ndcg@10': 0.2957527689242254, 'NanoClimateFEVER_cosine_mrr@10': 0.3996666666666668, 'NanoClimateFEVER_cosine_map@100': 0.23258384801937396, 'NanoDBPedia_cosine_accuracy@1': 0.68, 'NanoDBPedia_cosine_accuracy@3': 0.86, 'NanoDBPedia_cosine_accuracy@5': 0.92, 'NanoDBPedia_cosine_accuracy@10': 0.96, 'NanoDBPedia_cosine_precision@1': 0.68, 'NanoDBPedia_cosine_precision@3': 0.56, 'NanoDBPedia_cosine_precision@5': 0.5120000000000001, 'NanoDBPedia_cosine_precision@10': 0.43800000000000006, 'NanoDBPedia_cosine_recall@1': 0.07601531530835434, 'NanoDBPedia_cosine_recall@3': 0.1438904710839341, 'NanoDBPedia_cosine_recall@5': 0.20681359525684506, 'NanoDBPedia_cosine_recall@10': 0.319966975132044, 'NanoDBPedia_cosine_ndcg@10': 0.5501100350453579, 'NanoDBPedia_cosine_mrr@10': 0.7855000000000001, 'NanoDBPedia_cosine_map@100': 0.39476156890024533, 'NanoFEVER_cosine_accuracy@1': 0.68, 'NanoFEVER_cosine_accuracy@3': 0.86, 'NanoFEVER_cosine_accuracy@5': 0.92, 'NanoFEVER_cosine_accuracy@10': 0.96, 'NanoFEVER_cosine_precision@1': 0.68, 'NanoFEVER_cosine_precision@3': 0.29333333333333333, 'NanoFEVER_cosine_precision@5': 0.19199999999999995, 'NanoFEVER_cosine_precision@10': 0.10199999999999998, 'NanoFEVER_cosine_recall@1': 0.6266666666666666, 'NanoFEVER_cosine_recall@3': 0.8133333333333332, 'NanoFEVER_cosine_recall@5': 0.8833333333333333, 'NanoFEVER_cosine_recall@10': 0.9233333333333333, 'NanoFEVER_cosine_ndcg@10': 0.7933479848498471, 'NanoFEVER_cosine_mrr@10': 0.7780793650793651, 'NanoFEVER_cosine_map@100': 0.7406571665049926, 'NanoFiQA2018_cosine_accuracy@1': 0.46, 'NanoFiQA2018_cosine_accuracy@3': 0.64, 'NanoFiQA2018_cosine_accuracy@5': 0.7, 'NanoFiQA2018_cosine_accuracy@10': 0.72, 'NanoFiQA2018_cosine_precision@1': 0.46, 'NanoFiQA2018_cosine_precision@3': 0.2866666666666666, 'NanoFiQA2018_cosine_precision@5': 0.22399999999999998, 'NanoFiQA2018_cosine_precision@10': 0.12999999999999998, 'NanoFiQA2018_cosine_recall@1': 0.23924603174603173, 'NanoFiQA2018_cosine_recall@3': 0.4251031746031746, 'NanoFiQA2018_cosine_recall@5': 0.5099603174603174, 'NanoFiQA2018_cosine_recall@10': 0.566015873015873, 'NanoFiQA2018_cosine_ndcg@10': 0.4774545077577204, 'NanoFiQA2018_cosine_mrr@10': 0.5475555555555556, 'NanoFiQA2018_cosine_map@100': 0.4125452702654584, 'NanoHotpotQA_cosine_accuracy@1': 0.64, 'NanoHotpotQA_cosine_accuracy@3': 0.82, 'NanoHotpotQA_cosine_accuracy@5': 0.84, 'NanoHotpotQA_cosine_accuracy@10': 0.88, 'NanoHotpotQA_cosine_precision@1': 0.64, 'NanoHotpotQA_cosine_precision@3': 0.3533333333333333, 'NanoHotpotQA_cosine_precision@5': 0.23599999999999993, 'NanoHotpotQA_cosine_precision@10': 0.128, 'NanoHotpotQA_cosine_recall@1': 0.32, 'NanoHotpotQA_cosine_recall@3': 0.53, 'NanoHotpotQA_cosine_recall@5': 0.59, 'NanoHotpotQA_cosine_recall@10': 0.64, 'NanoHotpotQA_cosine_ndcg@10': 0.5959681682828366, 'NanoHotpotQA_cosine_mrr@10': 0.723888888888889, 'NanoHotpotQA_cosine_map@100': 0.5262469568756968, 'NanoMSMARCO_cosine_accuracy@1': 0.36, 'NanoMSMARCO_cosine_accuracy@3': 0.52, 'NanoMSMARCO_cosine_accuracy@5': 0.58, 'NanoMSMARCO_cosine_accuracy@10': 0.8, 'NanoMSMARCO_cosine_precision@1': 0.36, 'NanoMSMARCO_cosine_precision@3': 0.1733333333333333, 'NanoMSMARCO_cosine_precision@5': 0.11599999999999999, 'NanoMSMARCO_cosine_precision@10': 0.08, 'NanoMSMARCO_cosine_recall@1': 0.36, 'NanoMSMARCO_cosine_recall@3': 0.52, 'NanoMSMARCO_cosine_recall@5': 0.58, 'NanoMSMARCO_cosine_recall@10': 0.8, 'NanoMSMARCO_cosine_ndcg@10': 0.5539831330912274, 'NanoMSMARCO_cosine_mrr@10': 0.47960317460317464, 'NanoMSMARCO_cosine_map@100': 0.4907628900864195, 'NanoNFCorpus_cosine_accuracy@1': 0.42, 'NanoNFCorpus_cosine_accuracy@3': 0.56, 'NanoNFCorpus_cosine_accuracy@5': 0.6, 'NanoNFCorpus_cosine_accuracy@10': 0.7, 'NanoNFCorpus_cosine_precision@1': 0.42, 'NanoNFCorpus_cosine_precision@3': 0.3466666666666666, 'NanoNFCorpus_cosine_precision@5': 0.32800000000000007, 'NanoNFCorpus_cosine_precision@10': 0.286, 'NanoNFCorpus_cosine_recall@1': 0.03391318439564492, 'NanoNFCorpus_cosine_recall@3': 0.06311668492872162, 'NanoNFCorpus_cosine_recall@5': 0.08191277059586696, 'NanoNFCorpus_cosine_recall@10': 0.13476845853527392, 'NanoNFCorpus_cosine_ndcg@10': 0.3322933792371396, 'NanoNFCorpus_cosine_mrr@10': 0.4983333333333333, 'NanoNFCorpus_cosine_map@100': 0.13985354018581944, 'NanoNQ_cosine_accuracy@1': 0.44, 'NanoNQ_cosine_accuracy@3': 0.64, 'NanoNQ_cosine_accuracy@5': 0.66, 'NanoNQ_cosine_accuracy@10': 0.76, 'NanoNQ_cosine_precision@1': 0.44, 'NanoNQ_cosine_precision@3': 0.22, 'NanoNQ_cosine_precision@5': 0.14, 'NanoNQ_cosine_precision@10': 0.08199999999999999, 'NanoNQ_cosine_recall@1': 0.42, 'NanoNQ_cosine_recall@3': 0.62, 'NanoNQ_cosine_recall@5': 0.64, 'NanoNQ_cosine_recall@10': 0.75, 'NanoNQ_cosine_ndcg@10': 0.5903874296113161, 'NanoNQ_cosine_mrr@10': 0.5456349206349206, 'NanoNQ_cosine_map@100': 0.5437440035864959, 'NanoQuoraRetrieval_cosine_accuracy@1': 0.88, 'NanoQuoraRetrieval_cosine_accuracy@3': 0.96, 'NanoQuoraRetrieval_cosine_accuracy@5': 1.0, 'NanoQuoraRetrieval_cosine_accuracy@10': 1.0, 'NanoQuoraRetrieval_cosine_precision@1': 0.88, 'NanoQuoraRetrieval_cosine_precision@3': 0.3933333333333333, 'NanoQuoraRetrieval_cosine_precision@5': 0.256, 'NanoQuoraRetrieval_cosine_precision@10': 0.13599999999999998, 'NanoQuoraRetrieval_cosine_recall@1': 0.784, 'NanoQuoraRetrieval_cosine_recall@3': 0.9186666666666667, 'NanoQuoraRetrieval_cosine_recall@5': 0.976, 'NanoQuoraRetrieval_cosine_recall@10': 0.9933333333333334, 'NanoQuoraRetrieval_cosine_ndcg@10': 0.9367841595958026, 'NanoQuoraRetrieval_cosine_mrr@10': 0.9246666666666666, 'NanoQuoraRetrieval_cosine_map@100': 0.913554834054834, 'NanoSCIDOCS_cosine_accuracy@1': 0.52, 'NanoSCIDOCS_cosine_accuracy@3': 0.68, 'NanoSCIDOCS_cosine_accuracy@5': 0.82, 'NanoSCIDOCS_cosine_accuracy@10': 0.92, 'NanoSCIDOCS_cosine_precision@1': 0.52, 'NanoSCIDOCS_cosine_precision@3': 0.3933333333333333, 'NanoSCIDOCS_cosine_precision@5': 0.33599999999999997, 'NanoSCIDOCS_cosine_precision@10': 0.21600000000000003, 'NanoSCIDOCS_cosine_recall@1': 0.10966666666666666, 'NanoSCIDOCS_cosine_recall@3': 0.24466666666666664, 'NanoSCIDOCS_cosine_recall@5': 0.34566666666666657, 'NanoSCIDOCS_cosine_recall@10': 0.44266666666666665, 'NanoSCIDOCS_cosine_ndcg@10': 0.4328110226758414, 'NanoSCIDOCS_cosine_mrr@10': 0.6317222222222222, 'NanoSCIDOCS_cosine_map@100': 0.34997841607847063, 'NanoArguAna_cosine_accuracy@1': 0.2, 'NanoArguAna_cosine_accuracy@3': 0.56, 'NanoArguAna_cosine_accuracy@5': 0.76, 'NanoArguAna_cosine_accuracy@10': 0.92, 'NanoArguAna_cosine_precision@1': 0.2, 'NanoArguAna_cosine_precision@3': 0.18666666666666668, 'NanoArguAna_cosine_precision@5': 0.15200000000000002, 'NanoArguAna_cosine_precision@10': 0.092, 'NanoArguAna_cosine_recall@1': 0.2, 'NanoArguAna_cosine_recall@3': 0.56, 'NanoArguAna_cosine_recall@5': 0.76, 'NanoArguAna_cosine_recall@10': 0.92, 'NanoArguAna_cosine_ndcg@10': 0.5499071039525992, 'NanoArguAna_cosine_mrr@10': 0.43229365079365073, 'NanoArguAna_cosine_map@100': 0.43523820792684886, 'NanoSciFact_cosine_accuracy@1': 0.6, 'NanoSciFact_cosine_accuracy@3': 0.72, 'NanoSciFact_cosine_accuracy@5': 0.8, 'NanoSciFact_cosine_accuracy@10': 0.88, 'NanoSciFact_cosine_precision@1': 0.6, 'NanoSciFact_cosine_precision@3': 0.25333333333333335, 'NanoSciFact_cosine_precision@5': 0.18, 'NanoSciFact_cosine_precision@10': 0.09799999999999999, 'NanoSciFact_cosine_recall@1': 0.58, 'NanoSciFact_cosine_recall@3': 0.7, 'NanoSciFact_cosine_recall@5': 0.8, 'NanoSciFact_cosine_recall@10': 0.87, 'NanoSciFact_cosine_ndcg@10': 0.7265348054031264, 'NanoSciFact_cosine_mrr@10': 0.6841031746031746, 'NanoSciFact_cosine_map@100': 0.6810233866101422, 'NanoTouche2020_cosine_accuracy@1': 0.5102040816326531, 'NanoTouche2020_cosine_accuracy@3': 0.8367346938775511, 'NanoTouche2020_cosine_accuracy@5': 0.9183673469387755, 'NanoTouche2020_cosine_accuracy@10': 0.9387755102040817, 'NanoTouche2020_cosine_precision@1': 0.5102040816326531, 'NanoTouche2020_cosine_precision@3': 0.5374149659863945, 'NanoTouche2020_cosine_precision@5': 0.5061224489795918, 'NanoTouche2020_cosine_precision@10': 0.43265306122448977, 'NanoTouche2020_cosine_recall@1': 0.03546508562664911, 'NanoTouche2020_cosine_recall@3': 0.11189238805791148, 'NanoTouche2020_cosine_recall@5': 0.1673503566176574, 'NanoTouche2020_cosine_recall@10': 0.2818808841266296, 'NanoTouche2020_cosine_ndcg@10': 0.47479704449085264, 'NanoTouche2020_cosine_mrr@10': 0.6714285714285714, 'NanoTouche2020_cosine_map@100': 0.3438320372291555, 'NanoBEIR_mean_cosine_accuracy@1': 0.5130926216640502, 'NanoBEIR_mean_cosine_accuracy@3': 0.6997488226059654, 'NanoBEIR_mean_cosine_accuracy@5': 0.7737205651491367, 'NanoBEIR_mean_cosine_accuracy@10': 0.8583673469387756, 'NanoBEIR_mean_cosine_precision@1': 0.5130926216640502, 'NanoBEIR_mean_cosine_precision@3': 0.31928833071690216, 'NanoBEIR_mean_cosine_precision@5': 0.2540094191522763, 'NanoBEIR_mean_cosine_precision@10': 0.1777425431711146, 'NanoBEIR_mean_cosine_recall@1': 0.302305611570001, 'NanoBEIR_mean_cosine_recall@3': 0.4504361065646467, 'NanoBEIR_mean_cosine_recall@5': 0.5234643876869758, 'NanoBEIR_mean_cosine_recall@10': 0.6156896557033196, 'NanoBEIR_mean_cosine_ndcg@10': 0.5623178109936842, 'NanoBEIR_mean_cosine_mrr@10': 0.6232673992673993, 'NanoBEIR_mean_cosine_map@100': 0.47729093279415025} ``` ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
{"library_name": "sentence-transformers", "license": "apache-2.0", "pipeline_tag": "sentence-similarity", "tags": ["sentence-transformers", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:4322286", "loss:MatryoshkaLoss", "loss:MultipleNegativesRankingLoss"], "widget": [{"source_sentence": "how to sign legal documents as power of attorney?", "sentences": ["After the principal's name, write “by” and then sign your own name. Under or after the signature line, indicate your status as POA by including any of the following identifiers: as POA, as Agent, as Attorney in Fact or as Power of Attorney.", "['From the Home screen, swipe left to Apps.', 'Tap Transfer my Data.', 'Tap Menu (...).', 'Tap Export to SD card.']", "Ginger Dank Nugs (Grape) - 350mg. Feast your eyes on these unique and striking gourmet chocolates; Coco Nugs created by Ginger Dank. Crafted to resemble perfect nugs of cannabis, each of the 10 buds contains 35mg of THC. ... This is a perfect product for both cannabis and chocolate lovers, who appreciate a little twist."]}, {"source_sentence": "how to delete vdom in fortigate?", "sentences": ["Go to System -> VDOM -> VDOM2 and select 'Delete'. This VDOM is now successfully removed from the configuration.", "Both combination birth control pills and progestin-only pills may cause headaches as a side effect. Additional side effects of birth control pills may include: breast tenderness. nausea.", "White cheese tends to show imperfections more readily and as consumers got more used to yellow-orange cheese, it became an expected option. Today, many cheddars are yellow. While most cheesemakers use annatto, some use an artificial coloring agent instead, according to Sachs."]}, {"source_sentence": "where are earthquakes most likely to occur on earth?", "sentences": ["Zelle in the Bank of the America app is a fast, safe, and easy way to send and receive money with family and friends who have a bank account in the U.S., all with no fees. Money moves in minutes directly between accounts that are already enrolled with Zelle.", "It takes about 3 days for a spacecraft to reach the Moon. During that time a spacecraft travels at least 240,000 miles (386,400 kilometers) which is the distance between Earth and the Moon.", "Most earthquakes occur along the edge of the oceanic and continental plates. The earth's crust (the outer layer of the planet) is made up of several pieces, called plates. The plates under the oceans are called oceanic plates and the rest are continental plates."]}, {"source_sentence": "fix iphone is disabled connect to itunes without itunes?", "sentences": ["To fix a disabled iPhone or iPad without iTunes, you have to erase your device. Click on the \"Erase iPhone\" option and confirm your selection. Wait for a while as the \"Find My iPhone\" feature will remotely erase your iOS device. Needless to say, it will also disable its lock.", "How Māui brought fire to the world. One evening, after eating a hearty meal, Māui lay beside his fire staring into the flames. ... In the middle of the night, while everyone was sleeping, Māui went from village to village and extinguished all the fires until not a single fire burned in the world.", "Angry Orchard makes a variety of year-round craft cider styles, including Angry Orchard Crisp Apple, a fruit-forward hard cider that balances the sweetness of culinary apples with dryness and bright acidity of bittersweet apples for a complex, refreshing taste."]}, {"source_sentence": "how to reverse a video on tiktok that's not yours?", "sentences": ["['Tap \"Effects\" at the bottom of your screen — it\\'s an icon that looks like a clock. Open the Effects menu. ... ', 'At the end of the new list that appears, tap \"Time.\" Select \"Time\" at the end. ... ', 'Select \"Reverse\" — you\\'ll then see a preview of your new, reversed video appear on the screen.']", "Franchise Facts Poke Bar has a franchise fee of up to $30,000, with a total initial investment range of $157,800 to $438,000. The initial cost of a franchise includes several fees -- Unlock this franchise to better understand the costs such as training and territory fees.", "Relative age is the age of a rock layer (or the fossils it contains) compared to other layers. It can be determined by looking at the position of rock layers. Absolute age is the numeric age of a layer of rocks or fossils. Absolute age can be determined by using radiometric dating."]}]}
BAAI/bge-large-zh-v1.5
BAAI
feature-extraction
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "zh", "arxiv:2401.03462", "arxiv:2312.15503", "arxiv:2311.13534", "arxiv:2310.07554", "arxiv:2309.07597", "license:mit", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
2023-09-12T05:22:11
2024-04-02T14:00:04
210,152
490
--- language: - zh license: mit tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- <h1 align="center">FlagEmbedding</h1> <h4 align="center"> <p> <a href=#model-list>Model List</a> | <a href=#frequently-asked-questions>FAQ</a> | <a href=#usage>Usage</a> | <a href="#evaluation">Evaluation</a> | <a href="#train">Train</a> | <a href="#contact">Contact</a> | <a href="#citation">Citation</a> | <a href="#license">License</a> <p> </h4> For more details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding). If you are looking for a model that supports more languages, longer texts, and other retrieval methods, you can try using [bge-m3](https://huggingface.co/BAAI/bge-m3). [English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md) FlagEmbedding focuses on retrieval-augmented LLMs, consisting of the following projects currently: - **Long-Context LLM**: [Activation Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon) - **Fine-tuning of LM** : [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail) - **Dense Retrieval**: [BGE-M3](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3), [LLM Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), [BGE Embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding) - **Reranker Model**: [BGE Reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker) - **Benchmark**: [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) ## News - 1/30/2024: Release **BGE-M3**, a new member to BGE model series! M3 stands for **M**ulti-linguality (100+ languages), **M**ulti-granularities (input length up to 8192), **M**ulti-Functionality (unification of dense, lexical, multi-vec/colbert retrieval). It is the first embedding model which supports all three retrieval methods, achieving new SOTA on multi-lingual (MIRACL) and cross-lingual (MKQA) benchmarks. [Technical Report](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/BGE_M3/BGE_M3.pdf) and [Code](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3). :fire: - 1/9/2024: Release [Activation-Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon), an effective, efficient, compatible, and low-cost (training) method to extend the context length of LLM. [Technical Report](https://arxiv.org/abs/2401.03462) :fire: - 12/24/2023: Release **LLaRA**, a LLaMA-7B based dense retriever, leading to state-of-the-art performances on MS MARCO and BEIR. Model and code will be open-sourced. Please stay tuned. [Technical Report](https://arxiv.org/abs/2312.15503) :fire: - 11/23/2023: Release [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail), a method to maintain general capabilities during fine-tuning by merging multiple language models. [Technical Report](https://arxiv.org/abs/2311.13534) :fire: - 10/12/2023: Release [LLM-Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), a unified embedding model to support diverse retrieval augmentation needs for LLMs. [Technical Report](https://arxiv.org/pdf/2310.07554.pdf) - 09/15/2023: The [technical report](https://arxiv.org/pdf/2309.07597.pdf) and [massive training data](https://data.baai.ac.cn/details/BAAI-MTP) of BGE has been released - 09/12/2023: New models: - **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models. - **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction. <details> <summary>More</summary> <!-- ### More --> - 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning. - 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard). - 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗** - 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada: - 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset. </details> ## Model List `bge` is short for `BAAI general embedding`. | Model | Language | | Description | query instruction for retrieval [1] | |:-------------------------------|:--------:| :--------:| :--------:|:--------:| | [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) | Multilingual | [Inference](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3#usage) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3) | Multi-Functionality(dense retrieval, sparse retrieval, multi-vector(colbert)), Multi-Linguality, and Multi-Granularity(8192 tokens) | | | [BAAI/llm-embedder](https://huggingface.co/BAAI/llm-embedder) | English | [Inference](./FlagEmbedding/llm_embedder/README.md) [Fine-tune](./FlagEmbedding/llm_embedder/README.md) | a unified embedding model to support diverse retrieval augmentation needs for LLMs | See [README](./FlagEmbedding/llm_embedder/README.md) | | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | | | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | | | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` | [1\]: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages. [2\]: Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models. For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results. All models have been uploaded to Huggingface Hub, and you can see them at https://huggingface.co/BAAI. If you cannot open the Huggingface Hub, you also can download the models at https://model.baai.ac.cn/models . ## Frequently asked questions <details> <summary>1. How to fine-tune bge embedding model?</summary> <!-- ### How to fine-tune bge embedding model? --> Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model. Some suggestions: - Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance. - If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity. - If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker. </details> <details> <summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary> <!-- ### The similarity score between two dissimilar sentences is higher than 0.5 --> **Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.** Since we finetune the models by contrastive learning with a temperature of 0.01, the similarity distribution of the current BGE model is about in the interval \[0.6, 1\]. So a similarity score greater than 0.5 does not indicate that the two sentences are similar. For downstream tasks, such as passage retrieval or semantic similarity, **what matters is the relative order of the scores, not the absolute value.** If you need to filter similar sentences based on a similarity threshold, please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9). </details> <details> <summary>3. When does the query instruction need to be used</summary> <!-- ### When does the query instruction need to be used --> For the `bge-*-v1.5`, we improve its retrieval ability when not using instruction. No instruction only has a slight degradation in retrieval performance compared with using instruction. So you can generate embedding without instruction in all cases for convenience. For a retrieval task that uses short queries to find long related documents, it is recommended to add instructions for these short queries. **The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.** In all cases, the documents/passages do not need to add the instruction. </details> ## Usage ### Usage for Embedding Model Here are some examples for using `bge` models with [FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers). #### Using FlagEmbedding ``` pip install -U FlagEmbedding ``` If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding. ```python from FlagEmbedding import FlagModel sentences_1 = ["样例数据-1", "样例数据-2"] sentences_2 = ["样例数据-3", "样例数据-4"] model = FlagModel('BAAI/bge-large-zh-v1.5', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:", use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation embeddings_1 = model.encode(sentences_1) embeddings_2 = model.encode(sentences_2) similarity = embeddings_1 @ embeddings_2.T print(similarity) # for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query # corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction queries = ['query_1', 'query_2'] passages = ["样例文档-1", "样例文档-2"] q_embeddings = model.encode_queries(queries) p_embeddings = model.encode(passages) scores = q_embeddings @ p_embeddings.T ``` For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list). By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs. You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable. #### Using Sentence-Transformers You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net): ``` pip install -U sentence-transformers ``` ```python from sentence_transformers import SentenceTransformer sentences_1 = ["样例数据-1", "样例数据-2"] sentences_2 = ["样例数据-3", "样例数据-4"] model = SentenceTransformer('BAAI/bge-large-zh-v1.5') embeddings_1 = model.encode(sentences_1, normalize_embeddings=True) embeddings_2 = model.encode(sentences_2, normalize_embeddings=True) similarity = embeddings_1 @ embeddings_2.T print(similarity) ``` For s2p(short query to long passage) retrieval task, each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)). But the instruction is not needed for passages. ```python from sentence_transformers import SentenceTransformer queries = ['query_1', 'query_2'] passages = ["样例文档-1", "样例文档-2"] instruction = "为这个句子生成表示以用于检索相关文章:" model = SentenceTransformer('BAAI/bge-large-zh-v1.5') q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True) p_embeddings = model.encode(passages, normalize_embeddings=True) scores = q_embeddings @ p_embeddings.T ``` #### Using Langchain You can use `bge` in langchain like this: ```python from langchain.embeddings import HuggingFaceBgeEmbeddings model_name = "BAAI/bge-large-en-v1.5" model_kwargs = {'device': 'cuda'} encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity model = HuggingFaceBgeEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs, query_instruction="为这个句子生成表示以用于检索相关文章:" ) model.query_instruction = "为这个句子生成表示以用于检索相关文章:" ``` #### Using HuggingFace Transformers With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding. ```python from transformers import AutoTokenizer, AutoModel import torch # Sentences we want sentence embeddings for sentences = ["样例数据-1", "样例数据-2"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh-v1.5') model = AutoModel.from_pretrained('BAAI/bge-large-zh-v1.5') model.eval() # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages) # encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = model_output[0][:, 0] # normalize embeddings sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1) print("Sentence embeddings:", sentence_embeddings) ``` ### Usage for Reranker Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. You can get a relevance score by inputting query and passage to the reranker. The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range. #### Using FlagEmbedding ``` pip install -U FlagEmbedding ``` Get relevance scores (higher scores indicate more relevance): ```python from FlagEmbedding import FlagReranker reranker = FlagReranker('BAAI/bge-reranker-large', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation score = reranker.compute_score(['query', 'passage']) print(score) scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]) print(scores) ``` #### Using Huggingface transformers ```python import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large') model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large') model.eval() pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']] with torch.no_grad(): inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512) scores = model(**inputs, return_dict=True).logits.view(-1, ).float() print(scores) ``` ## Evaluation `baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!** For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md). - **MTEB**: | Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) | |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 | | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 | | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 | | [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 | | [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 | | [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 | | [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 | | [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 | | [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 | | [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 | | [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 | | [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 | | [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 | | [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 | | [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 | | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 | | [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 | - **C-MTEB**: We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks. Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction. | Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering | |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:| | [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 | | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 | | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 | | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 | | [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 | | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 | | [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 | | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 | | [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 | | [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 | | [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 | | [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 | | [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 | | [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 | | [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 | | [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 | - **Reranking**: See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script. | Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg | |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:| | text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 | | multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 | | multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 | | multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 | | m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 | | m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 | | bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 | | bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 | | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 | | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 | \* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval tasks ## Train ### BAAI Embedding We pre-train the models using [retromae](https://github.com/staoxiao/RetroMAE) and train them on large-scale pairs data using contrastive learning. **You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).** We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain). Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned. More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md). ### BGE Reranker Cross-encoder will perform full-attention over the input pair, which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model. Therefore, it can be used to re-rank the top-k documents returned by embedding model. We train the cross-encoder on a multilingual pair data, The data format is the same as embedding model, so you can fine-tune it easily following our [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker). More details please refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker) ## Contact If you have any question or suggestion related to this project, feel free to open an issue or pull request. You also can email Shitao Xiao([email protected]) and Zheng Liu([email protected]). ## Citation If you find this repository useful, please consider giving a star :star: and citation ``` @misc{bge_embedding, title={C-Pack: Packaged Resources To Advance General Chinese Embedding}, author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff}, year={2023}, eprint={2309.07597}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## License FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
[ "SEMANTIC_SIMILARITY", "SUMMARIZATION" ]
[ "BEAR" ]
Non_BioNLP
<h1 align="center">FlagEmbedding</h1> <h4 align="center"> <p> <a href=#model-list>Model List</a> | <a href=#frequently-asked-questions>FAQ</a> | <a href=#usage>Usage</a> | <a href="#evaluation">Evaluation</a> | <a href="#train">Train</a> | <a href="#contact">Contact</a> | <a href="#citation">Citation</a> | <a href="#license">License</a> <p> </h4> For more details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding). If you are looking for a model that supports more languages, longer texts, and other retrieval methods, you can try using [bge-m3](https://huggingface.co/BAAI/bge-m3). [English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md) FlagEmbedding focuses on retrieval-augmented LLMs, consisting of the following projects currently: - **Long-Context LLM**: [Activation Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon) - **Fine-tuning of LM** : [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail) - **Dense Retrieval**: [BGE-M3](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3), [LLM Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), [BGE Embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding) - **Reranker Model**: [BGE Reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker) - **Benchmark**: [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) ## News - 1/30/2024: Release **BGE-M3**, a new member to BGE model series! M3 stands for **M**ulti-linguality (100+ languages), **M**ulti-granularities (input length up to 8192), **M**ulti-Functionality (unification of dense, lexical, multi-vec/colbert retrieval). It is the first embedding model which supports all three retrieval methods, achieving new SOTA on multi-lingual (MIRACL) and cross-lingual (MKQA) benchmarks. [Technical Report](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/BGE_M3/BGE_M3.pdf) and [Code](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3). :fire: - 1/9/2024: Release [Activation-Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon), an effective, efficient, compatible, and low-cost (training) method to extend the context length of LLM. [Technical Report](https://arxiv.org/abs/2401.03462) :fire: - 12/24/2023: Release **LLaRA**, a LLaMA-7B based dense retriever, leading to state-of-the-art performances on MS MARCO and BEIR. Model and code will be open-sourced. Please stay tuned. [Technical Report](https://arxiv.org/abs/2312.15503) :fire: - 11/23/2023: Release [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail), a method to maintain general capabilities during fine-tuning by merging multiple language models. [Technical Report](https://arxiv.org/abs/2311.13534) :fire: - 10/12/2023: Release [LLM-Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), a unified embedding model to support diverse retrieval augmentation needs for LLMs. [Technical Report](https://arxiv.org/pdf/2310.07554.pdf) - 09/15/2023: The [technical report](https://arxiv.org/pdf/2309.07597.pdf) and [massive training data](https://data.baai.ac.cn/details/BAAI-MTP) of BGE has been released - 09/12/2023: New models: - **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models. - **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction. <details> <summary>More</summary> <!-- ### More --> - 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning. - 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard). - 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗** - 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada: - 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset. </details> ## Model List `bge` is short for `BAAI general embedding`. | Model | Language | | Description | query instruction for retrieval [1] | |:-------------------------------|:--------:| :--------:| :--------:|:--------:| | [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) | Multilingual | [Inference](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3#usage) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3) | Multi-Functionality(dense retrieval, sparse retrieval, multi-vector(colbert)), Multi-Linguality, and Multi-Granularity(8192 tokens) | | | [BAAI/llm-embedder](https://huggingface.co/BAAI/llm-embedder) | English | [Inference](./FlagEmbedding/llm_embedder/README.md) [Fine-tune](./FlagEmbedding/llm_embedder/README.md) | a unified embedding model to support diverse retrieval augmentation needs for LLMs | See [README](./FlagEmbedding/llm_embedder/README.md) | | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | | | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | | | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` | [1\]: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages. [2\]: Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models. For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results. All models have been uploaded to Huggingface Hub, and you can see them at https://huggingface.co/BAAI. If you cannot open the Huggingface Hub, you also can download the models at https://model.baai.ac.cn/models . ## Frequently asked questions <details> <summary>1. How to fine-tune bge embedding model?</summary> <!-- ### How to fine-tune bge embedding model? --> Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model. Some suggestions: - Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance. - If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity. - If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker. </details> <details> <summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary> <!-- ### The similarity score between two dissimilar sentences is higher than 0.5 --> **Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.** Since we finetune the models by contrastive learning with a temperature of 0.01, the similarity distribution of the current BGE model is about in the interval \[0.6, 1\]. So a similarity score greater than 0.5 does not indicate that the two sentences are similar. For downstream tasks, such as passage retrieval or semantic similarity, **what matters is the relative order of the scores, not the absolute value.** If you need to filter similar sentences based on a similarity threshold, please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9). </details> <details> <summary>3. When does the query instruction need to be used</summary> <!-- ### When does the query instruction need to be used --> For the `bge-*-v1.5`, we improve its retrieval ability when not using instruction. No instruction only has a slight degradation in retrieval performance compared with using instruction. So you can generate embedding without instruction in all cases for convenience. For a retrieval task that uses short queries to find long related documents, it is recommended to add instructions for these short queries. **The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.** In all cases, the documents/passages do not need to add the instruction. </details> ## Usage ### Usage for Embedding Model Here are some examples for using `bge` models with [FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers). #### Using FlagEmbedding ``` pip install -U FlagEmbedding ``` If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding. ```python from FlagEmbedding import FlagModel sentences_1 = ["样例数据-1", "样例数据-2"] sentences_2 = ["样例数据-3", "样例数据-4"] model = FlagModel('BAAI/bge-large-zh-v1.5', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:", use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation embeddings_1 = model.encode(sentences_1) embeddings_2 = model.encode(sentences_2) similarity = embeddings_1 @ embeddings_2.T print(similarity) # for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query # corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction queries = ['query_1', 'query_2'] passages = ["样例文档-1", "样例文档-2"] q_embeddings = model.encode_queries(queries) p_embeddings = model.encode(passages) scores = q_embeddings @ p_embeddings.T ``` For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list). By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs. You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable. #### Using Sentence-Transformers You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net): ``` pip install -U sentence-transformers ``` ```python from sentence_transformers import SentenceTransformer sentences_1 = ["样例数据-1", "样例数据-2"] sentences_2 = ["样例数据-3", "样例数据-4"] model = SentenceTransformer('BAAI/bge-large-zh-v1.5') embeddings_1 = model.encode(sentences_1, normalize_embeddings=True) embeddings_2 = model.encode(sentences_2, normalize_embeddings=True) similarity = embeddings_1 @ embeddings_2.T print(similarity) ``` For s2p(short query to long passage) retrieval task, each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)). But the instruction is not needed for passages. ```python from sentence_transformers import SentenceTransformer queries = ['query_1', 'query_2'] passages = ["样例文档-1", "样例文档-2"] instruction = "为这个句子生成表示以用于检索相关文章:" model = SentenceTransformer('BAAI/bge-large-zh-v1.5') q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True) p_embeddings = model.encode(passages, normalize_embeddings=True) scores = q_embeddings @ p_embeddings.T ``` #### Using Langchain You can use `bge` in langchain like this: ```python from langchain.embeddings import HuggingFaceBgeEmbeddings model_name = "BAAI/bge-large-en-v1.5" model_kwargs = {'device': 'cuda'} encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity model = HuggingFaceBgeEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs, query_instruction="为这个句子生成表示以用于检索相关文章:" ) model.query_instruction = "为这个句子生成表示以用于检索相关文章:" ``` #### Using HuggingFace Transformers With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding. ```python from transformers import AutoTokenizer, AutoModel import torch # Sentences we want sentence embeddings for sentences = ["样例数据-1", "样例数据-2"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh-v1.5') model = AutoModel.from_pretrained('BAAI/bge-large-zh-v1.5') model.eval() # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages) # encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = model_output[0][:, 0] # normalize embeddings sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1) print("Sentence embeddings:", sentence_embeddings) ``` ### Usage for Reranker Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. You can get a relevance score by inputting query and passage to the reranker. The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range. #### Using FlagEmbedding ``` pip install -U FlagEmbedding ``` Get relevance scores (higher scores indicate more relevance): ```python from FlagEmbedding import FlagReranker reranker = FlagReranker('BAAI/bge-reranker-large', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation score = reranker.compute_score(['query', 'passage']) print(score) scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]) print(scores) ``` #### Using Huggingface transformers ```python import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large') model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large') model.eval() pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']] with torch.no_grad(): inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512) scores = model(**inputs, return_dict=True).logits.view(-1, ).float() print(scores) ``` ## Evaluation `baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!** For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md). - **MTEB**: | Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) | |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 | | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 | | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 | | [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 | | [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 | | [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 | | [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 | | [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 | | [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 | | [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 | | [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 | | [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 | | [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 | | [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 | | [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 | | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 | | [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 | - **C-MTEB**: We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks. Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction. | Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering | |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:| | [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 | | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 | | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 | | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 | | [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 | | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 | | [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 | | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 | | [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 | | [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 | | [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 | | [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 | | [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 | | [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 | | [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 | | [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 | - **Reranking**: See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script. | Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg | |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:| | text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 | | multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 | | multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 | | multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 | | m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 | | m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 | | bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 | | bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 | | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 | | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 | \* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval tasks ## Train ### BAAI Embedding We pre-train the models using [retromae](https://github.com/staoxiao/RetroMAE) and train them on large-scale pairs data using contrastive learning. **You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).** We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain). Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned. More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md). ### BGE Reranker Cross-encoder will perform full-attention over the input pair, which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model. Therefore, it can be used to re-rank the top-k documents returned by embedding model. We train the cross-encoder on a multilingual pair data, The data format is the same as embedding model, so you can fine-tune it easily following our [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker). More details please refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker) ## Contact If you have any question or suggestion related to this project, feel free to open an issue or pull request. You also can email Shitao Xiao([email protected]) and Zheng Liu([email protected]). ## Citation If you find this repository useful, please consider giving a star :star: and citation ``` @misc{bge_embedding, title={C-Pack: Packaged Resources To Advance General Chinese Embedding}, author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff}, year={2023}, eprint={2309.07597}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## License FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
{"language": ["zh"], "license": "mit", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "transformers"]}
CAiRE/UniVaR-lambda-80
CAiRE
sentence-similarity
[ "sentence-transformers", "safetensors", "nomic_bert", "feature-extraction", "sentence-similarity", "mteb", "transformers", "transformers.js", "custom_code", "en", "arxiv:2402.01613", "license:apache-2.0", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
2024-06-14T17:55:40
2024-06-14T17:56:29
8
0
--- language: - en library_name: sentence-transformers license: apache-2.0 pipeline_tag: sentence-similarity tags: - feature-extraction - sentence-similarity - mteb - transformers - transformers.js model-index: - name: epoch_0_model results: - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: mteb/amazon_counterfactual config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 76.8507462686567 - type: ap value: 40.592189159090495 - type: f1 value: 71.01634655512476 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification type: mteb/amazon_polarity config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 91.51892500000001 - type: ap value: 88.50346762975335 - type: f1 value: 91.50342077459624 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: mteb/amazon_reviews_multi config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 47.364 - type: f1 value: 46.72708080922794 - task: type: Retrieval dataset: name: MTEB ArguAna type: arguana config: default split: test revision: None metrics: - type: map_at_1 value: 25.178 - type: map_at_10 value: 40.244 - type: map_at_100 value: 41.321999999999996 - type: map_at_1000 value: 41.331 - type: map_at_3 value: 35.016999999999996 - type: map_at_5 value: 37.99 - type: mrr_at_1 value: 25.605 - type: mrr_at_10 value: 40.422000000000004 - type: mrr_at_100 value: 41.507 - type: mrr_at_1000 value: 41.516 - type: mrr_at_3 value: 35.23 - type: mrr_at_5 value: 38.15 - type: ndcg_at_1 value: 25.178 - type: ndcg_at_10 value: 49.258 - type: ndcg_at_100 value: 53.776 - type: ndcg_at_1000 value: 53.995000000000005 - type: ndcg_at_3 value: 38.429 - type: ndcg_at_5 value: 43.803 - type: precision_at_1 value: 25.178 - type: precision_at_10 value: 7.831 - type: precision_at_100 value: 0.979 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 16.121 - type: precision_at_5 value: 12.29 - type: recall_at_1 value: 25.178 - type: recall_at_10 value: 78.307 - type: recall_at_100 value: 97.866 - type: recall_at_1000 value: 99.57300000000001 - type: recall_at_3 value: 48.364000000000004 - type: recall_at_5 value: 61.451 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P type: mteb/arxiv-clustering-p2p config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 45.93034494751465 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S type: mteb/arxiv-clustering-s2s config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 36.64579480054327 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions type: mteb/askubuntudupquestions-reranking config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 60.601310529222054 - type: mrr value: 75.04484896451656 - task: type: STS dataset: name: MTEB BIOSSES type: mteb/biosses-sts config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 88.57797718095814 - type: cos_sim_spearman value: 86.47064499110101 - type: euclidean_pearson value: 87.4559602783142 - type: euclidean_spearman value: 86.47064499110101 - type: manhattan_pearson value: 87.7232764230245 - type: manhattan_spearman value: 86.91222131777742 - task: type: Classification dataset: name: MTEB Banking77Classification type: mteb/banking77 config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 84.5422077922078 - type: f1 value: 84.47657456950589 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P type: mteb/biorxiv-clustering-p2p config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 38.48953561974464 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S type: mteb/biorxiv-clustering-s2s config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 32.75995857510105 - task: type: Retrieval dataset: name: MTEB CQADupstackAndroidRetrieval type: BeIR/cqadupstack config: default split: test revision: None metrics: - type: map_at_1 value: 30.008000000000003 - type: map_at_10 value: 39.51 - type: map_at_100 value: 40.841 - type: map_at_1000 value: 40.973 - type: map_at_3 value: 36.248999999999995 - type: map_at_5 value: 38.096999999999994 - type: mrr_at_1 value: 36.481 - type: mrr_at_10 value: 44.818000000000005 - type: mrr_at_100 value: 45.64 - type: mrr_at_1000 value: 45.687 - type: mrr_at_3 value: 42.036 - type: mrr_at_5 value: 43.782 - type: ndcg_at_1 value: 36.481 - type: ndcg_at_10 value: 45.152 - type: ndcg_at_100 value: 50.449 - type: ndcg_at_1000 value: 52.76499999999999 - type: ndcg_at_3 value: 40.161 - type: ndcg_at_5 value: 42.577999999999996 - type: precision_at_1 value: 36.481 - type: precision_at_10 value: 8.369 - type: precision_at_100 value: 1.373 - type: precision_at_1000 value: 0.186 - type: precision_at_3 value: 18.693 - type: precision_at_5 value: 13.533999999999999 - type: recall_at_1 value: 30.008000000000003 - type: recall_at_10 value: 56.108999999999995 - type: recall_at_100 value: 78.55499999999999 - type: recall_at_1000 value: 93.659 - type: recall_at_3 value: 41.754999999999995 - type: recall_at_5 value: 48.296 - type: map_at_1 value: 30.262 - type: map_at_10 value: 40.139 - type: map_at_100 value: 41.394 - type: map_at_1000 value: 41.526 - type: map_at_3 value: 37.155 - type: map_at_5 value: 38.785 - type: mrr_at_1 value: 38.153 - type: mrr_at_10 value: 46.369 - type: mrr_at_100 value: 47.072 - type: mrr_at_1000 value: 47.111999999999995 - type: mrr_at_3 value: 44.268 - type: mrr_at_5 value: 45.389 - type: ndcg_at_1 value: 38.153 - type: ndcg_at_10 value: 45.925 - type: ndcg_at_100 value: 50.394000000000005 - type: ndcg_at_1000 value: 52.37500000000001 - type: ndcg_at_3 value: 41.754000000000005 - type: ndcg_at_5 value: 43.574 - type: precision_at_1 value: 38.153 - type: precision_at_10 value: 8.796 - type: precision_at_100 value: 1.432 - type: precision_at_1000 value: 0.189 - type: precision_at_3 value: 20.318 - type: precision_at_5 value: 14.395 - type: recall_at_1 value: 30.262 - type: recall_at_10 value: 55.72200000000001 - type: recall_at_100 value: 74.97500000000001 - type: recall_at_1000 value: 87.342 - type: recall_at_3 value: 43.129 - type: recall_at_5 value: 48.336 - type: map_at_1 value: 39.951 - type: map_at_10 value: 51.248000000000005 - type: map_at_100 value: 52.188 - type: map_at_1000 value: 52.247 - type: map_at_3 value: 48.211 - type: map_at_5 value: 49.797000000000004 - type: mrr_at_1 value: 45.329 - type: mrr_at_10 value: 54.749 - type: mrr_at_100 value: 55.367999999999995 - type: mrr_at_1000 value: 55.400000000000006 - type: mrr_at_3 value: 52.382 - type: mrr_at_5 value: 53.649 - type: ndcg_at_1 value: 45.329 - type: ndcg_at_10 value: 56.847 - type: ndcg_at_100 value: 60.738 - type: ndcg_at_1000 value: 61.976 - type: ndcg_at_3 value: 51.59 - type: ndcg_at_5 value: 53.915 - type: precision_at_1 value: 45.329 - type: precision_at_10 value: 8.959 - type: precision_at_100 value: 1.187 - type: precision_at_1000 value: 0.134 - type: precision_at_3 value: 22.612 - type: precision_at_5 value: 15.273 - type: recall_at_1 value: 39.951 - type: recall_at_10 value: 70.053 - type: recall_at_100 value: 86.996 - type: recall_at_1000 value: 95.707 - type: recall_at_3 value: 56.032000000000004 - type: recall_at_5 value: 61.629999999999995 - type: map_at_1 value: 25.566 - type: map_at_10 value: 33.207 - type: map_at_100 value: 34.166000000000004 - type: map_at_1000 value: 34.245 - type: map_at_3 value: 30.94 - type: map_at_5 value: 32.01 - type: mrr_at_1 value: 27.345000000000002 - type: mrr_at_10 value: 35.193000000000005 - type: mrr_at_100 value: 35.965 - type: mrr_at_1000 value: 36.028999999999996 - type: mrr_at_3 value: 32.806000000000004 - type: mrr_at_5 value: 34.021 - type: ndcg_at_1 value: 27.345000000000002 - type: ndcg_at_10 value: 37.891999999999996 - type: ndcg_at_100 value: 42.664 - type: ndcg_at_1000 value: 44.757000000000005 - type: ndcg_at_3 value: 33.123000000000005 - type: ndcg_at_5 value: 35.035 - type: precision_at_1 value: 27.345000000000002 - type: precision_at_10 value: 5.763 - type: precision_at_100 value: 0.859 - type: precision_at_1000 value: 0.108 - type: precision_at_3 value: 13.71 - type: precision_at_5 value: 9.401 - type: recall_at_1 value: 25.566 - type: recall_at_10 value: 50.563 - type: recall_at_100 value: 72.86399999999999 - type: recall_at_1000 value: 88.68599999999999 - type: recall_at_3 value: 37.43 - type: recall_at_5 value: 41.894999999999996 - type: map_at_1 value: 16.663 - type: map_at_10 value: 23.552 - type: map_at_100 value: 24.538 - type: map_at_1000 value: 24.661 - type: map_at_3 value: 21.085 - type: map_at_5 value: 22.391 - type: mrr_at_1 value: 20.025000000000002 - type: mrr_at_10 value: 27.643 - type: mrr_at_100 value: 28.499999999999996 - type: mrr_at_1000 value: 28.582 - type: mrr_at_3 value: 25.083 - type: mrr_at_5 value: 26.544 - type: ndcg_at_1 value: 20.025000000000002 - type: ndcg_at_10 value: 28.272000000000002 - type: ndcg_at_100 value: 33.353 - type: ndcg_at_1000 value: 36.454 - type: ndcg_at_3 value: 23.579 - type: ndcg_at_5 value: 25.685000000000002 - type: precision_at_1 value: 20.025000000000002 - type: precision_at_10 value: 5.187 - type: precision_at_100 value: 0.897 - type: precision_at_1000 value: 0.13 - type: precision_at_3 value: 10.987 - type: precision_at_5 value: 8.06 - type: recall_at_1 value: 16.663 - type: recall_at_10 value: 38.808 - type: recall_at_100 value: 61.305 - type: recall_at_1000 value: 83.571 - type: recall_at_3 value: 25.907999999999998 - type: recall_at_5 value: 31.214 - type: map_at_1 value: 27.695999999999998 - type: map_at_10 value: 37.018 - type: map_at_100 value: 38.263000000000005 - type: map_at_1000 value: 38.371 - type: map_at_3 value: 34.226 - type: map_at_5 value: 35.809999999999995 - type: mrr_at_1 value: 32.916000000000004 - type: mrr_at_10 value: 42.067 - type: mrr_at_100 value: 42.925000000000004 - type: mrr_at_1000 value: 42.978 - type: mrr_at_3 value: 39.637 - type: mrr_at_5 value: 41.134 - type: ndcg_at_1 value: 32.916000000000004 - type: ndcg_at_10 value: 42.539 - type: ndcg_at_100 value: 47.873 - type: ndcg_at_1000 value: 50.08200000000001 - type: ndcg_at_3 value: 37.852999999999994 - type: ndcg_at_5 value: 40.201 - type: precision_at_1 value: 32.916000000000004 - type: precision_at_10 value: 7.5840000000000005 - type: precision_at_100 value: 1.199 - type: precision_at_1000 value: 0.155 - type: precision_at_3 value: 17.485 - type: precision_at_5 value: 12.512 - type: recall_at_1 value: 27.695999999999998 - type: recall_at_10 value: 53.638 - type: recall_at_100 value: 76.116 - type: recall_at_1000 value: 91.069 - type: recall_at_3 value: 41.13 - type: recall_at_5 value: 46.872 - type: map_at_1 value: 24.108 - type: map_at_10 value: 33.372 - type: map_at_100 value: 34.656 - type: map_at_1000 value: 34.768 - type: map_at_3 value: 30.830999999999996 - type: map_at_5 value: 32.204 - type: mrr_at_1 value: 29.110000000000003 - type: mrr_at_10 value: 37.979 - type: mrr_at_100 value: 38.933 - type: mrr_at_1000 value: 38.988 - type: mrr_at_3 value: 35.731 - type: mrr_at_5 value: 36.963 - type: ndcg_at_1 value: 29.110000000000003 - type: ndcg_at_10 value: 38.635000000000005 - type: ndcg_at_100 value: 44.324999999999996 - type: ndcg_at_1000 value: 46.747 - type: ndcg_at_3 value: 34.37 - type: ndcg_at_5 value: 36.228 - type: precision_at_1 value: 29.110000000000003 - type: precision_at_10 value: 6.963 - type: precision_at_100 value: 1.146 - type: precision_at_1000 value: 0.152 - type: precision_at_3 value: 16.400000000000002 - type: precision_at_5 value: 11.552999999999999 - type: recall_at_1 value: 24.108 - type: recall_at_10 value: 49.597 - type: recall_at_100 value: 73.88900000000001 - type: recall_at_1000 value: 90.62400000000001 - type: recall_at_3 value: 37.662 - type: recall_at_5 value: 42.565 - type: map_at_1 value: 25.00791666666667 - type: map_at_10 value: 33.287749999999996 - type: map_at_100 value: 34.41141666666667 - type: map_at_1000 value: 34.52583333333333 - type: map_at_3 value: 30.734416666666668 - type: map_at_5 value: 32.137166666666666 - type: mrr_at_1 value: 29.305666666666664 - type: mrr_at_10 value: 37.22966666666666 - type: mrr_at_100 value: 38.066583333333334 - type: mrr_at_1000 value: 38.12616666666667 - type: mrr_at_3 value: 34.92275 - type: mrr_at_5 value: 36.23333333333334 - type: ndcg_at_1 value: 29.305666666666664 - type: ndcg_at_10 value: 38.25533333333333 - type: ndcg_at_100 value: 43.25266666666666 - type: ndcg_at_1000 value: 45.63583333333334 - type: ndcg_at_3 value: 33.777166666666666 - type: ndcg_at_5 value: 35.85 - type: precision_at_1 value: 29.305666666666664 - type: precision_at_10 value: 6.596416666666667 - type: precision_at_100 value: 1.0784166666666668 - type: precision_at_1000 value: 0.14666666666666664 - type: precision_at_3 value: 15.31075 - type: precision_at_5 value: 10.830916666666667 - type: recall_at_1 value: 25.00791666666667 - type: recall_at_10 value: 49.10933333333333 - type: recall_at_100 value: 71.09216666666667 - type: recall_at_1000 value: 87.77725000000001 - type: recall_at_3 value: 36.660916666666665 - type: recall_at_5 value: 41.94149999999999 - type: map_at_1 value: 23.521 - type: map_at_10 value: 30.043 - type: map_at_100 value: 30.936000000000003 - type: map_at_1000 value: 31.022 - type: map_at_3 value: 27.926000000000002 - type: map_at_5 value: 29.076999999999998 - type: mrr_at_1 value: 26.227 - type: mrr_at_10 value: 32.822 - type: mrr_at_100 value: 33.61 - type: mrr_at_1000 value: 33.672000000000004 - type: mrr_at_3 value: 30.776999999999997 - type: mrr_at_5 value: 31.866 - type: ndcg_at_1 value: 26.227 - type: ndcg_at_10 value: 34.041 - type: ndcg_at_100 value: 38.394 - type: ndcg_at_1000 value: 40.732 - type: ndcg_at_3 value: 30.037999999999997 - type: ndcg_at_5 value: 31.845000000000002 - type: precision_at_1 value: 26.227 - type: precision_at_10 value: 5.244999999999999 - type: precision_at_100 value: 0.808 - type: precision_at_1000 value: 0.107 - type: precision_at_3 value: 12.679000000000002 - type: precision_at_5 value: 8.773 - type: recall_at_1 value: 23.521 - type: recall_at_10 value: 43.633 - type: recall_at_100 value: 63.126000000000005 - type: recall_at_1000 value: 80.765 - type: recall_at_3 value: 32.614 - type: recall_at_5 value: 37.15 - type: map_at_1 value: 16.236 - type: map_at_10 value: 22.898 - type: map_at_100 value: 23.878 - type: map_at_1000 value: 24.009 - type: map_at_3 value: 20.87 - type: map_at_5 value: 22.025 - type: mrr_at_1 value: 19.339000000000002 - type: mrr_at_10 value: 26.382 - type: mrr_at_100 value: 27.245 - type: mrr_at_1000 value: 27.33 - type: mrr_at_3 value: 24.386 - type: mrr_at_5 value: 25.496000000000002 - type: ndcg_at_1 value: 19.339000000000002 - type: ndcg_at_10 value: 27.139999999999997 - type: ndcg_at_100 value: 31.944 - type: ndcg_at_1000 value: 35.077999999999996 - type: ndcg_at_3 value: 23.424 - type: ndcg_at_5 value: 25.188 - type: precision_at_1 value: 19.339000000000002 - type: precision_at_10 value: 4.8309999999999995 - type: precision_at_100 value: 0.845 - type: precision_at_1000 value: 0.128 - type: precision_at_3 value: 10.874 - type: precision_at_5 value: 7.825 - type: recall_at_1 value: 16.236 - type: recall_at_10 value: 36.513 - type: recall_at_100 value: 57.999 - type: recall_at_1000 value: 80.512 - type: recall_at_3 value: 26.179999999999996 - type: recall_at_5 value: 30.712 - type: map_at_1 value: 24.11 - type: map_at_10 value: 31.566 - type: map_at_100 value: 32.647 - type: map_at_1000 value: 32.753 - type: map_at_3 value: 29.24 - type: map_at_5 value: 30.564999999999998 - type: mrr_at_1 value: 28.265 - type: mrr_at_10 value: 35.504000000000005 - type: mrr_at_100 value: 36.436 - type: mrr_at_1000 value: 36.503 - type: mrr_at_3 value: 33.349000000000004 - type: mrr_at_5 value: 34.622 - type: ndcg_at_1 value: 28.265 - type: ndcg_at_10 value: 36.192 - type: ndcg_at_100 value: 41.388000000000005 - type: ndcg_at_1000 value: 43.948 - type: ndcg_at_3 value: 31.959 - type: ndcg_at_5 value: 33.998 - type: precision_at_1 value: 28.265 - type: precision_at_10 value: 5.989 - type: precision_at_100 value: 0.9650000000000001 - type: precision_at_1000 value: 0.13 - type: precision_at_3 value: 14.335 - type: precision_at_5 value: 10.112 - type: recall_at_1 value: 24.11 - type: recall_at_10 value: 46.418 - type: recall_at_100 value: 69.314 - type: recall_at_1000 value: 87.397 - type: recall_at_3 value: 34.724 - type: recall_at_5 value: 39.925 - type: map_at_1 value: 22.091 - type: map_at_10 value: 29.948999999999998 - type: map_at_100 value: 31.502000000000002 - type: map_at_1000 value: 31.713 - type: map_at_3 value: 27.464 - type: map_at_5 value: 28.968 - type: mrr_at_1 value: 26.482 - type: mrr_at_10 value: 34.009 - type: mrr_at_100 value: 35.081 - type: mrr_at_1000 value: 35.138000000000005 - type: mrr_at_3 value: 31.785000000000004 - type: mrr_at_5 value: 33.178999999999995 - type: ndcg_at_1 value: 26.482 - type: ndcg_at_10 value: 35.008 - type: ndcg_at_100 value: 41.272999999999996 - type: ndcg_at_1000 value: 43.972 - type: ndcg_at_3 value: 30.804 - type: ndcg_at_5 value: 33.046 - type: precision_at_1 value: 26.482 - type: precision_at_10 value: 6.462 - type: precision_at_100 value: 1.431 - type: precision_at_1000 value: 0.22899999999999998 - type: precision_at_3 value: 14.360999999999999 - type: precision_at_5 value: 10.474 - type: recall_at_1 value: 22.091 - type: recall_at_10 value: 45.125 - type: recall_at_100 value: 72.313 - type: recall_at_1000 value: 89.503 - type: recall_at_3 value: 33.158 - type: recall_at_5 value: 39.086999999999996 - type: map_at_1 value: 19.883 - type: map_at_10 value: 26.951000000000004 - type: map_at_100 value: 27.927999999999997 - type: map_at_1000 value: 28.022000000000002 - type: map_at_3 value: 24.616 - type: map_at_5 value: 25.917 - type: mrr_at_1 value: 21.996 - type: mrr_at_10 value: 29.221000000000004 - type: mrr_at_100 value: 30.024 - type: mrr_at_1000 value: 30.095 - type: mrr_at_3 value: 26.833000000000002 - type: mrr_at_5 value: 28.155 - type: ndcg_at_1 value: 21.996 - type: ndcg_at_10 value: 31.421 - type: ndcg_at_100 value: 36.237 - type: ndcg_at_1000 value: 38.744 - type: ndcg_at_3 value: 26.671 - type: ndcg_at_5 value: 28.907 - type: precision_at_1 value: 21.996 - type: precision_at_10 value: 5.009 - type: precision_at_100 value: 0.799 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 11.275 - type: precision_at_5 value: 8.059 - type: recall_at_1 value: 19.883 - type: recall_at_10 value: 43.132999999999996 - type: recall_at_100 value: 65.654 - type: recall_at_1000 value: 84.492 - type: recall_at_3 value: 30.209000000000003 - type: recall_at_5 value: 35.616 - task: type: Retrieval dataset: name: MTEB ClimateFEVER type: climate-fever config: default split: test revision: None metrics: - type: map_at_1 value: 17.756 - type: map_at_10 value: 30.378 - type: map_at_100 value: 32.537 - type: map_at_1000 value: 32.717 - type: map_at_3 value: 25.599 - type: map_at_5 value: 28.372999999999998 - type: mrr_at_1 value: 41.303 - type: mrr_at_10 value: 53.483999999999995 - type: mrr_at_100 value: 54.106 - type: mrr_at_1000 value: 54.127 - type: mrr_at_3 value: 50.315 - type: mrr_at_5 value: 52.396 - type: ndcg_at_1 value: 41.303 - type: ndcg_at_10 value: 40.503 - type: ndcg_at_100 value: 47.821000000000005 - type: ndcg_at_1000 value: 50.788 - type: ndcg_at_3 value: 34.364 - type: ndcg_at_5 value: 36.818 - type: precision_at_1 value: 41.303 - type: precision_at_10 value: 12.463000000000001 - type: precision_at_100 value: 2.037 - type: precision_at_1000 value: 0.26 - type: precision_at_3 value: 25.798 - type: precision_at_5 value: 19.896 - type: recall_at_1 value: 17.756 - type: recall_at_10 value: 46.102 - type: recall_at_100 value: 70.819 - type: recall_at_1000 value: 87.21799999999999 - type: recall_at_3 value: 30.646 - type: recall_at_5 value: 38.022 - task: type: Retrieval dataset: name: MTEB DBPedia type: dbpedia-entity config: default split: test revision: None metrics: - type: map_at_1 value: 9.033 - type: map_at_10 value: 20.584 - type: map_at_100 value: 29.518 - type: map_at_1000 value: 31.186000000000003 - type: map_at_3 value: 14.468 - type: map_at_5 value: 17.177 - type: mrr_at_1 value: 69.75 - type: mrr_at_10 value: 77.025 - type: mrr_at_100 value: 77.36699999999999 - type: mrr_at_1000 value: 77.373 - type: mrr_at_3 value: 75.583 - type: mrr_at_5 value: 76.396 - type: ndcg_at_1 value: 58.5 - type: ndcg_at_10 value: 45.033 - type: ndcg_at_100 value: 49.071 - type: ndcg_at_1000 value: 56.056 - type: ndcg_at_3 value: 49.936 - type: ndcg_at_5 value: 47.471999999999994 - type: precision_at_1 value: 69.75 - type: precision_at_10 value: 35.775 - type: precision_at_100 value: 11.594999999999999 - type: precision_at_1000 value: 2.062 - type: precision_at_3 value: 52.5 - type: precision_at_5 value: 45.300000000000004 - type: recall_at_1 value: 9.033 - type: recall_at_10 value: 26.596999999999998 - type: recall_at_100 value: 54.607000000000006 - type: recall_at_1000 value: 76.961 - type: recall_at_3 value: 15.754999999999999 - type: recall_at_5 value: 20.033 - task: type: Classification dataset: name: MTEB EmotionClassification type: mteb/emotion config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 48.345000000000006 - type: f1 value: 43.4514918068706 - task: type: Retrieval dataset: name: MTEB FEVER type: fever config: default split: test revision: None metrics: - type: map_at_1 value: 71.29100000000001 - type: map_at_10 value: 81.059 - type: map_at_100 value: 81.341 - type: map_at_1000 value: 81.355 - type: map_at_3 value: 79.74799999999999 - type: map_at_5 value: 80.612 - type: mrr_at_1 value: 76.40299999999999 - type: mrr_at_10 value: 84.615 - type: mrr_at_100 value: 84.745 - type: mrr_at_1000 value: 84.748 - type: mrr_at_3 value: 83.776 - type: mrr_at_5 value: 84.343 - type: ndcg_at_1 value: 76.40299999999999 - type: ndcg_at_10 value: 84.981 - type: ndcg_at_100 value: 86.00999999999999 - type: ndcg_at_1000 value: 86.252 - type: ndcg_at_3 value: 82.97 - type: ndcg_at_5 value: 84.152 - type: precision_at_1 value: 76.40299999999999 - type: precision_at_10 value: 10.446 - type: precision_at_100 value: 1.1199999999999999 - type: precision_at_1000 value: 0.116 - type: precision_at_3 value: 32.147999999999996 - type: precision_at_5 value: 20.135 - type: recall_at_1 value: 71.29100000000001 - type: recall_at_10 value: 93.232 - type: recall_at_100 value: 97.363 - type: recall_at_1000 value: 98.905 - type: recall_at_3 value: 87.893 - type: recall_at_5 value: 90.804 - task: type: Retrieval dataset: name: MTEB FiQA2018 type: fiqa config: default split: test revision: None metrics: - type: map_at_1 value: 18.667 - type: map_at_10 value: 30.853 - type: map_at_100 value: 32.494 - type: map_at_1000 value: 32.677 - type: map_at_3 value: 26.91 - type: map_at_5 value: 29.099000000000004 - type: mrr_at_1 value: 37.191 - type: mrr_at_10 value: 46.171 - type: mrr_at_100 value: 47.056 - type: mrr_at_1000 value: 47.099000000000004 - type: mrr_at_3 value: 44.059 - type: mrr_at_5 value: 45.147 - type: ndcg_at_1 value: 37.191 - type: ndcg_at_10 value: 38.437 - type: ndcg_at_100 value: 44.62 - type: ndcg_at_1000 value: 47.795 - type: ndcg_at_3 value: 35.003 - type: ndcg_at_5 value: 36.006 - type: precision_at_1 value: 37.191 - type: precision_at_10 value: 10.586 - type: precision_at_100 value: 1.688 - type: precision_at_1000 value: 0.22699999999999998 - type: precision_at_3 value: 23.302 - type: precision_at_5 value: 17.006 - type: recall_at_1 value: 18.667 - type: recall_at_10 value: 45.367000000000004 - type: recall_at_100 value: 68.207 - type: recall_at_1000 value: 87.072 - type: recall_at_3 value: 32.129000000000005 - type: recall_at_5 value: 37.719 - task: type: Retrieval dataset: name: MTEB HotpotQA type: hotpotqa config: default split: test revision: None metrics: - type: map_at_1 value: 39.494 - type: map_at_10 value: 66.223 - type: map_at_100 value: 67.062 - type: map_at_1000 value: 67.11500000000001 - type: map_at_3 value: 62.867 - type: map_at_5 value: 64.994 - type: mrr_at_1 value: 78.987 - type: mrr_at_10 value: 84.585 - type: mrr_at_100 value: 84.773 - type: mrr_at_1000 value: 84.77900000000001 - type: mrr_at_3 value: 83.592 - type: mrr_at_5 value: 84.235 - type: ndcg_at_1 value: 78.987 - type: ndcg_at_10 value: 73.64 - type: ndcg_at_100 value: 76.519 - type: ndcg_at_1000 value: 77.51 - type: ndcg_at_3 value: 68.893 - type: ndcg_at_5 value: 71.585 - type: precision_at_1 value: 78.987 - type: precision_at_10 value: 15.529000000000002 - type: precision_at_100 value: 1.7770000000000001 - type: precision_at_1000 value: 0.191 - type: precision_at_3 value: 44.808 - type: precision_at_5 value: 29.006999999999998 - type: recall_at_1 value: 39.494 - type: recall_at_10 value: 77.643 - type: recall_at_100 value: 88.825 - type: recall_at_1000 value: 95.321 - type: recall_at_3 value: 67.211 - type: recall_at_5 value: 72.519 - task: type: Classification dataset: name: MTEB ImdbClassification type: mteb/imdb config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 85.55959999999999 - type: ap value: 80.7246500384617 - type: f1 value: 85.52336485065454 - task: type: Retrieval dataset: name: MTEB MSMARCO type: msmarco config: default split: dev revision: None metrics: - type: map_at_1 value: 23.631 - type: map_at_10 value: 36.264 - type: map_at_100 value: 37.428 - type: map_at_1000 value: 37.472 - type: map_at_3 value: 32.537 - type: map_at_5 value: 34.746 - type: mrr_at_1 value: 24.312 - type: mrr_at_10 value: 36.858000000000004 - type: mrr_at_100 value: 37.966 - type: mrr_at_1000 value: 38.004 - type: mrr_at_3 value: 33.188 - type: mrr_at_5 value: 35.367 - type: ndcg_at_1 value: 24.312 - type: ndcg_at_10 value: 43.126999999999995 - type: ndcg_at_100 value: 48.642 - type: ndcg_at_1000 value: 49.741 - type: ndcg_at_3 value: 35.589 - type: ndcg_at_5 value: 39.515 - type: precision_at_1 value: 24.312 - type: precision_at_10 value: 6.699 - type: precision_at_100 value: 0.9450000000000001 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 15.153 - type: precision_at_5 value: 11.065999999999999 - type: recall_at_1 value: 23.631 - type: recall_at_10 value: 64.145 - type: recall_at_100 value: 89.41 - type: recall_at_1000 value: 97.83500000000001 - type: recall_at_3 value: 43.769000000000005 - type: recall_at_5 value: 53.169 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: mteb/mtop_domain config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 93.4108527131783 - type: f1 value: 93.1415880261038 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: mteb/mtop_intent config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 77.24806201550388 - type: f1 value: 60.531916308197175 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: mteb/amazon_massive_intent config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 73.71553463349024 - type: f1 value: 71.70753174900791 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: mteb/amazon_massive_scenario config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 77.79757901815736 - type: f1 value: 77.83719850433258 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P type: mteb/medrxiv-clustering-p2p config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 33.74193296622113 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S type: mteb/medrxiv-clustering-s2s config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 30.64257594108566 - task: type: Reranking dataset: name: MTEB MindSmallReranking type: mteb/mind_small config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 30.811018518883625 - type: mrr value: 31.910376577445003 - task: type: Retrieval dataset: name: MTEB NFCorpus type: nfcorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.409 - type: map_at_10 value: 13.093 - type: map_at_100 value: 16.256999999999998 - type: map_at_1000 value: 17.617 - type: map_at_3 value: 9.555 - type: map_at_5 value: 11.428 - type: mrr_at_1 value: 45.201 - type: mrr_at_10 value: 54.179 - type: mrr_at_100 value: 54.812000000000005 - type: mrr_at_1000 value: 54.840999999999994 - type: mrr_at_3 value: 51.909000000000006 - type: mrr_at_5 value: 53.519000000000005 - type: ndcg_at_1 value: 43.189 - type: ndcg_at_10 value: 35.028 - type: ndcg_at_100 value: 31.226 - type: ndcg_at_1000 value: 39.678000000000004 - type: ndcg_at_3 value: 40.596 - type: ndcg_at_5 value: 38.75 - type: precision_at_1 value: 44.582 - type: precision_at_10 value: 25.974999999999998 - type: precision_at_100 value: 7.793 - type: precision_at_1000 value: 2.036 - type: precision_at_3 value: 38.493 - type: precision_at_5 value: 33.994 - type: recall_at_1 value: 5.409 - type: recall_at_10 value: 16.875999999999998 - type: recall_at_100 value: 30.316 - type: recall_at_1000 value: 60.891 - type: recall_at_3 value: 10.688 - type: recall_at_5 value: 13.832 - task: type: Retrieval dataset: name: MTEB NQ type: nq config: default split: test revision: None metrics: - type: map_at_1 value: 36.375 - type: map_at_10 value: 51.991 - type: map_at_100 value: 52.91400000000001 - type: map_at_1000 value: 52.93600000000001 - type: map_at_3 value: 48.014 - type: map_at_5 value: 50.381 - type: mrr_at_1 value: 40.759 - type: mrr_at_10 value: 54.617000000000004 - type: mrr_at_100 value: 55.301 - type: mrr_at_1000 value: 55.315000000000005 - type: mrr_at_3 value: 51.516 - type: mrr_at_5 value: 53.435 - type: ndcg_at_1 value: 40.759 - type: ndcg_at_10 value: 59.384 - type: ndcg_at_100 value: 63.157 - type: ndcg_at_1000 value: 63.654999999999994 - type: ndcg_at_3 value: 52.114000000000004 - type: ndcg_at_5 value: 55.986000000000004 - type: precision_at_1 value: 40.759 - type: precision_at_10 value: 9.411999999999999 - type: precision_at_100 value: 1.153 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 23.329 - type: precision_at_5 value: 16.256999999999998 - type: recall_at_1 value: 36.375 - type: recall_at_10 value: 79.053 - type: recall_at_100 value: 95.167 - type: recall_at_1000 value: 98.82 - type: recall_at_3 value: 60.475 - type: recall_at_5 value: 69.327 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval type: quora config: default split: test revision: None metrics: - type: map_at_1 value: 70.256 - type: map_at_10 value: 83.8 - type: map_at_100 value: 84.425 - type: map_at_1000 value: 84.444 - type: map_at_3 value: 80.906 - type: map_at_5 value: 82.717 - type: mrr_at_1 value: 80.97999999999999 - type: mrr_at_10 value: 87.161 - type: mrr_at_100 value: 87.262 - type: mrr_at_1000 value: 87.263 - type: mrr_at_3 value: 86.175 - type: mrr_at_5 value: 86.848 - type: ndcg_at_1 value: 80.97999999999999 - type: ndcg_at_10 value: 87.697 - type: ndcg_at_100 value: 88.959 - type: ndcg_at_1000 value: 89.09899999999999 - type: ndcg_at_3 value: 84.83800000000001 - type: ndcg_at_5 value: 86.401 - type: precision_at_1 value: 80.97999999999999 - type: precision_at_10 value: 13.261000000000001 - type: precision_at_100 value: 1.5150000000000001 - type: precision_at_1000 value: 0.156 - type: precision_at_3 value: 37.01 - type: precision_at_5 value: 24.298000000000002 - type: recall_at_1 value: 70.256 - type: recall_at_10 value: 94.935 - type: recall_at_100 value: 99.274 - type: recall_at_1000 value: 99.928 - type: recall_at_3 value: 86.602 - type: recall_at_5 value: 91.133 - task: type: Clustering dataset: name: MTEB RedditClustering type: mteb/reddit-clustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 56.322692497613104 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P type: mteb/reddit-clustering-p2p config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 61.895813503775074 - task: type: Retrieval dataset: name: MTEB SCIDOCS type: scidocs config: default split: test revision: None metrics: - type: map_at_1 value: 4.338 - type: map_at_10 value: 10.767 - type: map_at_100 value: 12.537999999999998 - type: map_at_1000 value: 12.803999999999998 - type: map_at_3 value: 7.788 - type: map_at_5 value: 9.302000000000001 - type: mrr_at_1 value: 21.4 - type: mrr_at_10 value: 31.637999999999998 - type: mrr_at_100 value: 32.688 - type: mrr_at_1000 value: 32.756 - type: mrr_at_3 value: 28.433000000000003 - type: mrr_at_5 value: 30.178 - type: ndcg_at_1 value: 21.4 - type: ndcg_at_10 value: 18.293 - type: ndcg_at_100 value: 25.274 - type: ndcg_at_1000 value: 30.284 - type: ndcg_at_3 value: 17.391000000000002 - type: ndcg_at_5 value: 15.146999999999998 - type: precision_at_1 value: 21.4 - type: precision_at_10 value: 9.48 - type: precision_at_100 value: 1.949 - type: precision_at_1000 value: 0.316 - type: precision_at_3 value: 16.167 - type: precision_at_5 value: 13.22 - type: recall_at_1 value: 4.338 - type: recall_at_10 value: 19.213 - type: recall_at_100 value: 39.562999999999995 - type: recall_at_1000 value: 64.08 - type: recall_at_3 value: 9.828000000000001 - type: recall_at_5 value: 13.383000000000001 - task: type: STS dataset: name: MTEB SICK-R type: mteb/sickr-sts config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 82.42568163642142 - type: cos_sim_spearman value: 78.5797159641342 - type: euclidean_pearson value: 80.22151260811604 - type: euclidean_spearman value: 78.5797151953878 - type: manhattan_pearson value: 80.21224215864788 - type: manhattan_spearman value: 78.55641478381344 - task: type: STS dataset: name: MTEB STS12 type: mteb/sts12-sts config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 85.44020710812569 - type: cos_sim_spearman value: 78.91631735081286 - type: euclidean_pearson value: 81.64188964182102 - type: euclidean_spearman value: 78.91633286881678 - type: manhattan_pearson value: 81.69294748512496 - type: manhattan_spearman value: 78.93438558002656 - task: type: STS dataset: name: MTEB STS13 type: mteb/sts13-sts config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 84.27165426412311 - type: cos_sim_spearman value: 85.40429140249618 - type: euclidean_pearson value: 84.7509580724893 - type: euclidean_spearman value: 85.40429140249618 - type: manhattan_pearson value: 84.76488289321308 - type: manhattan_spearman value: 85.4256793698708 - task: type: STS dataset: name: MTEB STS14 type: mteb/sts14-sts config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 83.138851760732 - type: cos_sim_spearman value: 81.64101363896586 - type: euclidean_pearson value: 82.55165038934942 - type: euclidean_spearman value: 81.64105257080502 - type: manhattan_pearson value: 82.52802949883335 - type: manhattan_spearman value: 81.61255430718158 - task: type: STS dataset: name: MTEB STS15 type: mteb/sts15-sts config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 86.0654695484029 - type: cos_sim_spearman value: 87.20408521902229 - type: euclidean_pearson value: 86.8110651362115 - type: euclidean_spearman value: 87.20408521902229 - type: manhattan_pearson value: 86.77984656478691 - type: manhattan_spearman value: 87.1719947099227 - task: type: STS dataset: name: MTEB STS16 type: mteb/sts16-sts config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 83.77823915496512 - type: cos_sim_spearman value: 85.43566325729779 - type: euclidean_pearson value: 84.5396956658821 - type: euclidean_spearman value: 85.43566325729779 - type: manhattan_pearson value: 84.5665398848169 - type: manhattan_spearman value: 85.44375870303232 - task: type: STS dataset: name: MTEB STS17 (en-en) type: mteb/sts17-crosslingual-sts config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 87.20030208471798 - type: cos_sim_spearman value: 87.20485505076539 - type: euclidean_pearson value: 88.10588324368722 - type: euclidean_spearman value: 87.20485505076539 - type: manhattan_pearson value: 87.92324770415183 - type: manhattan_spearman value: 87.0571314561877 - task: type: STS dataset: name: MTEB STS22 (en) type: mteb/sts22-crosslingual-sts config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 63.06093161604453 - type: cos_sim_spearman value: 64.2163140357722 - type: euclidean_pearson value: 65.27589680994006 - type: euclidean_spearman value: 64.2163140357722 - type: manhattan_pearson value: 65.45904383711101 - type: manhattan_spearman value: 64.55404716679305 - task: type: STS dataset: name: MTEB STSBenchmark type: mteb/stsbenchmark-sts config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 84.32976164578706 - type: cos_sim_spearman value: 85.54302197678368 - type: euclidean_pearson value: 85.26307149193056 - type: euclidean_spearman value: 85.54302197678368 - type: manhattan_pearson value: 85.26647282029371 - type: manhattan_spearman value: 85.5316135265568 - task: type: Reranking dataset: name: MTEB SciDocsRR type: mteb/scidocs-reranking config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 81.44675968318754 - type: mrr value: 94.92741826075158 - task: type: Retrieval dataset: name: MTEB SciFact type: scifact config: default split: test revision: None metrics: - type: map_at_1 value: 56.34400000000001 - type: map_at_10 value: 65.927 - type: map_at_100 value: 66.431 - type: map_at_1000 value: 66.461 - type: map_at_3 value: 63.529 - type: map_at_5 value: 64.818 - type: mrr_at_1 value: 59.333000000000006 - type: mrr_at_10 value: 67.54599999999999 - type: mrr_at_100 value: 67.892 - type: mrr_at_1000 value: 67.917 - type: mrr_at_3 value: 65.778 - type: mrr_at_5 value: 66.794 - type: ndcg_at_1 value: 59.333000000000006 - type: ndcg_at_10 value: 70.5 - type: ndcg_at_100 value: 72.688 - type: ndcg_at_1000 value: 73.483 - type: ndcg_at_3 value: 66.338 - type: ndcg_at_5 value: 68.265 - type: precision_at_1 value: 59.333000000000006 - type: precision_at_10 value: 9.3 - type: precision_at_100 value: 1.053 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 25.889 - type: precision_at_5 value: 16.866999999999997 - type: recall_at_1 value: 56.34400000000001 - type: recall_at_10 value: 82.789 - type: recall_at_100 value: 92.767 - type: recall_at_1000 value: 99 - type: recall_at_3 value: 71.64399999999999 - type: recall_at_5 value: 76.322 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions type: mteb/sprintduplicatequestions-pairclassification config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.75742574257426 - type: cos_sim_ap value: 93.52081548447406 - type: cos_sim_f1 value: 87.33850129198966 - type: cos_sim_precision value: 90.37433155080214 - type: cos_sim_recall value: 84.5 - type: dot_accuracy value: 99.75742574257426 - type: dot_ap value: 93.52081548447406 - type: dot_f1 value: 87.33850129198966 - type: dot_precision value: 90.37433155080214 - type: dot_recall value: 84.5 - type: euclidean_accuracy value: 99.75742574257426 - type: euclidean_ap value: 93.52081548447406 - type: euclidean_f1 value: 87.33850129198966 - type: euclidean_precision value: 90.37433155080214 - type: euclidean_recall value: 84.5 - type: manhattan_accuracy value: 99.75841584158415 - type: manhattan_ap value: 93.4975678585854 - type: manhattan_f1 value: 87.26708074534162 - type: manhattan_precision value: 90.45064377682404 - type: manhattan_recall value: 84.3 - type: max_accuracy value: 99.75841584158415 - type: max_ap value: 93.52081548447406 - type: max_f1 value: 87.33850129198966 - task: type: Clustering dataset: name: MTEB StackExchangeClustering type: mteb/stackexchange-clustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 64.31437036686651 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P type: mteb/stackexchange-clustering-p2p config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 33.25569319007206 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions type: mteb/stackoverflowdupquestions-reranking config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 49.90474939720706 - type: mrr value: 50.568115503777264 - task: type: Summarization dataset: name: MTEB SummEval type: mteb/summeval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 29.866828641244712 - type: cos_sim_spearman value: 30.077555055873866 - type: dot_pearson value: 29.866832988572266 - type: dot_spearman value: 30.077555055873866 - task: type: Retrieval dataset: name: MTEB TRECCOVID type: trec-covid config: default split: test revision: None metrics: - type: map_at_1 value: 0.232 - type: map_at_10 value: 2.094 - type: map_at_100 value: 11.971 - type: map_at_1000 value: 28.158 - type: map_at_3 value: 0.688 - type: map_at_5 value: 1.114 - type: mrr_at_1 value: 88 - type: mrr_at_10 value: 93.4 - type: mrr_at_100 value: 93.4 - type: mrr_at_1000 value: 93.4 - type: mrr_at_3 value: 93 - type: mrr_at_5 value: 93.4 - type: ndcg_at_1 value: 84 - type: ndcg_at_10 value: 79.923 - type: ndcg_at_100 value: 61.17 - type: ndcg_at_1000 value: 53.03 - type: ndcg_at_3 value: 84.592 - type: ndcg_at_5 value: 82.821 - type: precision_at_1 value: 88 - type: precision_at_10 value: 85 - type: precision_at_100 value: 63.019999999999996 - type: precision_at_1000 value: 23.554 - type: precision_at_3 value: 89.333 - type: precision_at_5 value: 87.2 - type: recall_at_1 value: 0.232 - type: recall_at_10 value: 2.255 - type: recall_at_100 value: 14.823 - type: recall_at_1000 value: 49.456 - type: recall_at_3 value: 0.718 - type: recall_at_5 value: 1.175 - task: type: Retrieval dataset: name: MTEB Touche2020 type: webis-touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 2.547 - type: map_at_10 value: 11.375 - type: map_at_100 value: 18.194 - type: map_at_1000 value: 19.749 - type: map_at_3 value: 5.825 - type: map_at_5 value: 8.581 - type: mrr_at_1 value: 32.653 - type: mrr_at_10 value: 51.32 - type: mrr_at_100 value: 51.747 - type: mrr_at_1000 value: 51.747 - type: mrr_at_3 value: 47.278999999999996 - type: mrr_at_5 value: 48.605 - type: ndcg_at_1 value: 29.592000000000002 - type: ndcg_at_10 value: 28.151 - type: ndcg_at_100 value: 39.438 - type: ndcg_at_1000 value: 50.769 - type: ndcg_at_3 value: 30.758999999999997 - type: ndcg_at_5 value: 30.366 - type: precision_at_1 value: 32.653 - type: precision_at_10 value: 25.714 - type: precision_at_100 value: 8.041 - type: precision_at_1000 value: 1.555 - type: precision_at_3 value: 33.333 - type: precision_at_5 value: 31.837 - type: recall_at_1 value: 2.547 - type: recall_at_10 value: 18.19 - type: recall_at_100 value: 49.538 - type: recall_at_1000 value: 83.86 - type: recall_at_3 value: 7.329 - type: recall_at_5 value: 11.532 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification type: mteb/toxic_conversations_50k config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 71.4952 - type: ap value: 14.793362635531409 - type: f1 value: 55.204635551516915 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification type: mteb/tweet_sentiment_extraction config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 61.5365025466893 - type: f1 value: 61.81742556334845 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering type: mteb/twentynewsgroups-clustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 49.05531070301185 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 type: mteb/twittersemeval2015-pairclassification config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 86.51725576682364 - type: cos_sim_ap value: 75.2292304265163 - type: cos_sim_f1 value: 69.54022988505749 - type: cos_sim_precision value: 63.65629110039457 - type: cos_sim_recall value: 76.62269129287598 - type: dot_accuracy value: 86.51725576682364 - type: dot_ap value: 75.22922386081054 - type: dot_f1 value: 69.54022988505749 - type: dot_precision value: 63.65629110039457 - type: dot_recall value: 76.62269129287598 - type: euclidean_accuracy value: 86.51725576682364 - type: euclidean_ap value: 75.22925730473472 - type: euclidean_f1 value: 69.54022988505749 - type: euclidean_precision value: 63.65629110039457 - type: euclidean_recall value: 76.62269129287598 - type: manhattan_accuracy value: 86.52321630804077 - type: manhattan_ap value: 75.20608115037336 - type: manhattan_f1 value: 69.60000000000001 - type: manhattan_precision value: 64.37219730941705 - type: manhattan_recall value: 75.75197889182058 - type: max_accuracy value: 86.52321630804077 - type: max_ap value: 75.22925730473472 - type: max_f1 value: 69.60000000000001 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus type: mteb/twitterurlcorpus-pairclassification config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 89.34877944657896 - type: cos_sim_ap value: 86.71257569277373 - type: cos_sim_f1 value: 79.10386355986088 - type: cos_sim_precision value: 76.91468470434214 - type: cos_sim_recall value: 81.4213119802895 - type: dot_accuracy value: 89.34877944657896 - type: dot_ap value: 86.71257133133368 - type: dot_f1 value: 79.10386355986088 - type: dot_precision value: 76.91468470434214 - type: dot_recall value: 81.4213119802895 - type: euclidean_accuracy value: 89.34877944657896 - type: euclidean_ap value: 86.71257651501476 - type: euclidean_f1 value: 79.10386355986088 - type: euclidean_precision value: 76.91468470434214 - type: euclidean_recall value: 81.4213119802895 - type: manhattan_accuracy value: 89.35848177901967 - type: manhattan_ap value: 86.69330615469126 - type: manhattan_f1 value: 79.13867741453949 - type: manhattan_precision value: 76.78881807647741 - type: manhattan_recall value: 81.63689559593472 - type: max_accuracy value: 89.35848177901967 - type: max_ap value: 86.71257651501476 - type: max_f1 value: 79.13867741453949 --- # nomic-embed-text-v1: A Reproducible Long Context (8192) Text Embedder `nomic-embed-text-v1` is 8192 context length text encoder that surpasses OpenAI text-embedding-ada-002 and text-embedding-3-small performance on short and long context tasks. | Name | SeqLen | MTEB | LoCo | Jina Long Context | Open Weights | Open Training Code | Open Data | | :-------------------------------:| :----- | :-------- | :------: | :---------------: | :-----------: | :----------------: | :---------- | | nomic-embed-text-v1 | 8192 | **62.39** |**85.53** | 54.16 | ✅ | ✅ | ✅ | | jina-embeddings-v2-base-en | 8192 | 60.39 | 85.45 | 51.90 | ✅ | ❌ | ❌ | | text-embedding-3-small | 8191 | 62.26 | 82.40 | **58.20** | ❌ | ❌ | ❌ | | text-embedding-ada-002 | 8191 | 60.99 | 52.7 | 55.25 | ❌ | ❌ | ❌ | ## Hosted Inference API The easiest way to get started with Nomic Embed is through the Nomic Embedding API. Generating embeddings with the `nomic` Python client is as easy as ```python from nomic import embed output = embed.text( texts=['Nomic Embedding API', '#keepAIOpen'], model='nomic-embed-text-v1', task_type='search_document' ) print(output) ``` For more information, see the [API reference](https://docs.nomic.ai/reference/endpoints/nomic-embed-text) ## Data Visualization Click the Nomic Atlas map below to visualize a 5M sample of our contrastive pretraining data! [![image/webp](https://cdn-uploads.huggingface.co/production/uploads/607997c83a565c15675055b3/pjhJhuNyRfPagRd_c_iUz.webp)](https://atlas.nomic.ai/map/nomic-text-embed-v1-5m-sample) ## Training Details We train our embedder using a multi-stage training pipeline. Starting from a long-context [BERT model](https://huggingface.co/nomic-ai/nomic-bert-2048), the first unsupervised contrastive stage trains on a dataset generated from weakly related text pairs, such as question-answer pairs from forums like StackExchange and Quora, title-body pairs from Amazon reviews, and summarizations from news articles. In the second finetuning stage, higher quality labeled datasets such as search queries and answers from web searches are leveraged. Data curation and hard-example mining is crucial in this stage. For more details, see the Nomic Embed [Technical Report](https://static.nomic.ai/reports/2024_Nomic_Embed_Text_Technical_Report.pdf) and corresponding [blog post](https://blog.nomic.ai/posts/nomic-embed-text-v1). Training data to train the models is released in its entirety. For more details, see the `contrastors` [repository](https://github.com/nomic-ai/contrastors) ## Usage Note `nomic-embed-text` *requires* prefixes! We support the prefixes `[search_query, search_document, classification, clustering]`. For retrieval applications, you should prepend `search_document` for all your documents and `search_query` for your queries. For example, you are building a RAG application over the top of Wikipedia. You would embed all Wikipedia articles with the prefix `search_document` and any questions you ask with `search_query`. For example: ```python queries = ["search_query: who is the first president of the united states?", "search_query: when was babe ruth born?"] documents = ["search_document: <article about US Presidents>", "search_document: <article about Babe Ruth>"] ``` ### Sentence Transformers ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True) sentences = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?'] embeddings = model.encode(sentences) print(embeddings) ``` ### Transformers ```python import torch import torch.nn.functional as F from transformers import AutoTokenizer, AutoModel def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) sentences = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?'] tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True) model.eval() encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') with torch.no_grad(): model_output = model(**encoded_input) embeddings = mean_pooling(model_output, encoded_input['attention_mask']) embeddings = F.normalize(embeddings, p=2, dim=1) print(embeddings) ``` The model natively supports scaling of the sequence length past 2048 tokens. To do so, ```diff - tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') + tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased', model_max_length=8192) - model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True) + model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True, rotary_scaling_factor=2) ``` ### Transformers.js ```js import { pipeline } from '@xenova/transformers'; // Create a feature extraction pipeline const extractor = await pipeline('feature-extraction', 'nomic-ai/nomic-embed-text-v1', { quantized: false, // Comment out this line to use the quantized version }); // Compute sentence embeddings const texts = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?']; const embeddings = await extractor(texts, { pooling: 'mean', normalize: true }); console.log(embeddings); ``` # Join the Nomic Community - Nomic: [https://nomic.ai](https://nomic.ai) - Discord: [https://discord.gg/myY5YDR8z8](https://discord.gg/myY5YDR8z8) - Twitter: [https://twitter.com/nomic_ai](https://twitter.com/nomic_ai) # Citation If you find the model, dataset, or training code useful, please cite our work ```bibtex @misc{nussbaum2024nomic, title={Nomic Embed: Training a Reproducible Long Context Text Embedder}, author={Zach Nussbaum and John X. Morris and Brandon Duderstadt and Andriy Mulyar}, year={2024}, eprint={2402.01613}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
[ "SUMMARIZATION" ]
[ "BIOSSES", "SCIFACT" ]
Non_BioNLP
# nomic-embed-text-v1: A Reproducible Long Context (8192) Text Embedder `nomic-embed-text-v1` is 8192 context length text encoder that surpasses OpenAI text-embedding-ada-002 and text-embedding-3-small performance on short and long context tasks. | Name | SeqLen | MTEB | LoCo | Jina Long Context | Open Weights | Open Training Code | Open Data | | :-------------------------------:| :----- | :-------- | :------: | :---------------: | :-----------: | :----------------: | :---------- | | nomic-embed-text-v1 | 8192 | **62.39** |**85.53** | 54.16 | ✅ | ✅ | ✅ | | jina-embeddings-v2-base-en | 8192 | 60.39 | 85.45 | 51.90 | ✅ | ❌ | ❌ | | text-embedding-3-small | 8191 | 62.26 | 82.40 | **58.20** | ❌ | ❌ | ❌ | | text-embedding-ada-002 | 8191 | 60.99 | 52.7 | 55.25 | ❌ | ❌ | ❌ | ## Hosted Inference API The easiest way to get started with Nomic Embed is through the Nomic Embedding API. Generating embeddings with the `nomic` Python client is as easy as ```python from nomic import embed output = embed.text( texts=['Nomic Embedding API', '#keepAIOpen'], model='nomic-embed-text-v1', task_type='search_document' ) print(output) ``` For more information, see the [API reference](https://docs.nomic.ai/reference/endpoints/nomic-embed-text) ## Data Visualization Click the Nomic Atlas map below to visualize a 5M sample of our contrastive pretraining data! [![image/webp](https://cdn-uploads.huggingface.co/production/uploads/607997c83a565c15675055b3/pjhJhuNyRfPagRd_c_iUz.webp)](https://atlas.nomic.ai/map/nomic-text-embed-v1-5m-sample) ## Training Details We train our embedder using a multi-stage training pipeline. Starting from a long-context [BERT model](https://huggingface.co/nomic-ai/nomic-bert-2048), the first unsupervised contrastive stage trains on a dataset generated from weakly related text pairs, such as question-answer pairs from forums like StackExchange and Quora, title-body pairs from Amazon reviews, and summarizations from news articles. In the second finetuning stage, higher quality labeled datasets such as search queries and answers from web searches are leveraged. Data curation and hard-example mining is crucial in this stage. For more details, see the Nomic Embed [Technical Report](https://static.nomic.ai/reports/2024_Nomic_Embed_Text_Technical_Report.pdf) and corresponding [blog post](https://blog.nomic.ai/posts/nomic-embed-text-v1). Training data to train the models is released in its entirety. For more details, see the `contrastors` [repository](https://github.com/nomic-ai/contrastors) ## Usage Note `nomic-embed-text` *requires* prefixes! We support the prefixes `[search_query, search_document, classification, clustering]`. For retrieval applications, you should prepend `search_document` for all your documents and `search_query` for your queries. For example, you are building a RAG application over the top of Wikipedia. You would embed all Wikipedia articles with the prefix `search_document` and any questions you ask with `search_query`. For example: ```python queries = ["search_query: who is the first president of the united states?", "search_query: when was babe ruth born?"] documents = ["search_document: <article about US Presidents>", "search_document: <article about Babe Ruth>"] ``` ### Sentence Transformers ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True) sentences = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?'] embeddings = model.encode(sentences) print(embeddings) ``` ### Transformers ```python import torch import torch.nn.functional as F from transformers import AutoTokenizer, AutoModel def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) sentences = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?'] tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True) model.eval() encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') with torch.no_grad(): model_output = model(**encoded_input) embeddings = mean_pooling(model_output, encoded_input['attention_mask']) embeddings = F.normalize(embeddings, p=2, dim=1) print(embeddings) ``` The model natively supports scaling of the sequence length past 2048 tokens. To do so, ```diff - tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') + tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased', model_max_length=8192) - model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True) + model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True, rotary_scaling_factor=2) ``` ### Transformers.js ```js import { pipeline } from '@xenova/transformers'; // Create a feature extraction pipeline const extractor = await pipeline('feature-extraction', 'nomic-ai/nomic-embed-text-v1', { quantized: false, // Comment out this line to use the quantized version }); // Compute sentence embeddings const texts = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?']; const embeddings = await extractor(texts, { pooling: 'mean', normalize: true }); console.log(embeddings); ``` # Join the Nomic Community - Nomic: [https://nomic.ai](https://nomic.ai) - Discord: [https://discord.gg/myY5YDR8z8](https://discord.gg/myY5YDR8z8) - Twitter: [https://twitter.com/nomic_ai](https://twitter.com/nomic_ai) # Citation If you find the model, dataset, or training code useful, please cite our work ```bibtex @misc{nussbaum2024nomic, title={Nomic Embed: Training a Reproducible Long Context Text Embedder}, author={Zach Nussbaum and John X. Morris and Brandon Duderstadt and Andriy Mulyar}, year={2024}, eprint={2402.01613}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": ["en"], "library_name": "sentence-transformers", "license": "apache-2.0", "pipeline_tag": "sentence-similarity", "tags": ["feature-extraction", "sentence-similarity", "mteb", "transformers", "transformers.js"], "model-index": [{"name": "epoch_0_model", "results": [{"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonCounterfactualClassification (en)", "type": "mteb/amazon_counterfactual", "config": "en", "split": "test", "revision": "e8379541af4e31359cca9fbcf4b00f2671dba205"}, "metrics": [{"type": "accuracy", "value": 76.8507462686567}, {"type": "ap", "value": 40.592189159090495}, {"type": "f1", "value": 71.01634655512476}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonPolarityClassification", "type": "mteb/amazon_polarity", "config": "default", "split": "test", "revision": "e2d317d38cd51312af73b3d32a06d1a08b442046"}, "metrics": [{"type": "accuracy", "value": 91.51892500000001}, {"type": "ap", "value": 88.50346762975335}, {"type": "f1", "value": 91.50342077459624}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonReviewsClassification (en)", "type": "mteb/amazon_reviews_multi", "config": "en", "split": "test", "revision": "1399c76144fd37290681b995c656ef9b2e06e26d"}, "metrics": [{"type": "accuracy", "value": 47.364}, {"type": "f1", "value": 46.72708080922794}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ArguAna", "type": "arguana", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 25.178}, {"type": "map_at_10", "value": 40.244}, {"type": "map_at_100", "value": 41.321999999999996}, {"type": "map_at_1000", "value": 41.331}, {"type": "map_at_3", "value": 35.016999999999996}, {"type": "map_at_5", "value": 37.99}, {"type": "mrr_at_1", "value": 25.605}, {"type": "mrr_at_10", "value": 40.422000000000004}, {"type": "mrr_at_100", "value": 41.507}, {"type": "mrr_at_1000", "value": 41.516}, {"type": "mrr_at_3", "value": 35.23}, {"type": "mrr_at_5", "value": 38.15}, {"type": "ndcg_at_1", "value": 25.178}, {"type": "ndcg_at_10", "value": 49.258}, {"type": "ndcg_at_100", "value": 53.776}, {"type": "ndcg_at_1000", "value": 53.995000000000005}, {"type": "ndcg_at_3", "value": 38.429}, {"type": "ndcg_at_5", "value": 43.803}, {"type": "precision_at_1", "value": 25.178}, {"type": "precision_at_10", "value": 7.831}, {"type": "precision_at_100", "value": 0.979}, {"type": "precision_at_1000", "value": 0.1}, {"type": "precision_at_3", "value": 16.121}, {"type": "precision_at_5", "value": 12.29}, {"type": "recall_at_1", "value": 25.178}, {"type": "recall_at_10", "value": 78.307}, {"type": "recall_at_100", "value": 97.866}, {"type": "recall_at_1000", "value": 99.57300000000001}, {"type": "recall_at_3", "value": 48.364000000000004}, {"type": "recall_at_5", "value": 61.451}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringP2P", "type": "mteb/arxiv-clustering-p2p", "config": "default", "split": "test", "revision": "a122ad7f3f0291bf49cc6f4d32aa80929df69d5d"}, "metrics": [{"type": "v_measure", "value": 45.93034494751465}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringS2S", "type": "mteb/arxiv-clustering-s2s", "config": "default", "split": "test", "revision": "f910caf1a6075f7329cdf8c1a6135696f37dbd53"}, "metrics": [{"type": "v_measure", "value": 36.64579480054327}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB AskUbuntuDupQuestions", "type": "mteb/askubuntudupquestions-reranking", "config": "default", "split": "test", "revision": "2000358ca161889fa9c082cb41daa8dcfb161a54"}, "metrics": [{"type": "map", "value": 60.601310529222054}, {"type": "mrr", "value": 75.04484896451656}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB BIOSSES", "type": "mteb/biosses-sts", "config": "default", "split": "test", "revision": "d3fb88f8f02e40887cd149695127462bbcf29b4a"}, "metrics": [{"type": "cos_sim_pearson", "value": 88.57797718095814}, {"type": "cos_sim_spearman", "value": 86.47064499110101}, {"type": "euclidean_pearson", "value": 87.4559602783142}, {"type": "euclidean_spearman", "value": 86.47064499110101}, {"type": "manhattan_pearson", "value": 87.7232764230245}, {"type": "manhattan_spearman", "value": 86.91222131777742}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB Banking77Classification", "type": "mteb/banking77", "config": "default", "split": "test", "revision": "0fd18e25b25c072e09e0d92ab615fda904d66300"}, "metrics": [{"type": "accuracy", "value": 84.5422077922078}, {"type": "f1", "value": 84.47657456950589}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringP2P", "type": "mteb/biorxiv-clustering-p2p", "config": "default", "split": "test", "revision": "65b79d1d13f80053f67aca9498d9402c2d9f1f40"}, "metrics": [{"type": "v_measure", "value": 38.48953561974464}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringS2S", "type": "mteb/biorxiv-clustering-s2s", "config": "default", "split": "test", "revision": "258694dd0231531bc1fd9de6ceb52a0853c6d908"}, "metrics": [{"type": "v_measure", "value": 32.75995857510105}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackAndroidRetrieval", "type": "BeIR/cqadupstack", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 30.008000000000003}, {"type": "map_at_10", "value": 39.51}, {"type": "map_at_100", "value": 40.841}, {"type": "map_at_1000", "value": 40.973}, {"type": "map_at_3", "value": 36.248999999999995}, {"type": "map_at_5", "value": 38.096999999999994}, {"type": "mrr_at_1", "value": 36.481}, {"type": "mrr_at_10", "value": 44.818000000000005}, {"type": "mrr_at_100", "value": 45.64}, {"type": "mrr_at_1000", "value": 45.687}, {"type": "mrr_at_3", "value": 42.036}, {"type": "mrr_at_5", "value": 43.782}, {"type": "ndcg_at_1", "value": 36.481}, {"type": "ndcg_at_10", "value": 45.152}, {"type": "ndcg_at_100", "value": 50.449}, {"type": "ndcg_at_1000", "value": 52.76499999999999}, {"type": "ndcg_at_3", "value": 40.161}, {"type": "ndcg_at_5", "value": 42.577999999999996}, {"type": "precision_at_1", "value": 36.481}, {"type": "precision_at_10", "value": 8.369}, {"type": "precision_at_100", "value": 1.373}, {"type": "precision_at_1000", "value": 0.186}, {"type": "precision_at_3", "value": 18.693}, {"type": "precision_at_5", "value": 13.533999999999999}, {"type": "recall_at_1", "value": 30.008000000000003}, {"type": "recall_at_10", "value": 56.108999999999995}, {"type": "recall_at_100", "value": 78.55499999999999}, {"type": "recall_at_1000", "value": 93.659}, {"type": "recall_at_3", "value": 41.754999999999995}, {"type": "recall_at_5", "value": 48.296}, {"type": "map_at_1", "value": 30.262}, {"type": "map_at_10", "value": 40.139}, {"type": "map_at_100", "value": 41.394}, {"type": "map_at_1000", "value": 41.526}, {"type": "map_at_3", "value": 37.155}, {"type": "map_at_5", "value": 38.785}, {"type": "mrr_at_1", "value": 38.153}, {"type": "mrr_at_10", "value": 46.369}, {"type": "mrr_at_100", "value": 47.072}, {"type": "mrr_at_1000", "value": 47.111999999999995}, {"type": "mrr_at_3", "value": 44.268}, {"type": "mrr_at_5", "value": 45.389}, {"type": "ndcg_at_1", "value": 38.153}, {"type": "ndcg_at_10", "value": 45.925}, {"type": "ndcg_at_100", "value": 50.394000000000005}, {"type": "ndcg_at_1000", "value": 52.37500000000001}, {"type": "ndcg_at_3", "value": 41.754000000000005}, {"type": "ndcg_at_5", "value": 43.574}, {"type": "precision_at_1", "value": 38.153}, {"type": "precision_at_10", "value": 8.796}, {"type": "precision_at_100", "value": 1.432}, {"type": "precision_at_1000", "value": 0.189}, {"type": "precision_at_3", "value": 20.318}, {"type": "precision_at_5", "value": 14.395}, {"type": "recall_at_1", "value": 30.262}, {"type": "recall_at_10", "value": 55.72200000000001}, {"type": "recall_at_100", "value": 74.97500000000001}, {"type": "recall_at_1000", "value": 87.342}, {"type": "recall_at_3", "value": 43.129}, {"type": "recall_at_5", "value": 48.336}, {"type": "map_at_1", "value": 39.951}, {"type": "map_at_10", "value": 51.248000000000005}, {"type": "map_at_100", "value": 52.188}, {"type": "map_at_1000", "value": 52.247}, {"type": "map_at_3", "value": 48.211}, {"type": "map_at_5", "value": 49.797000000000004}, {"type": "mrr_at_1", "value": 45.329}, {"type": "mrr_at_10", "value": 54.749}, {"type": "mrr_at_100", "value": 55.367999999999995}, {"type": "mrr_at_1000", "value": 55.400000000000006}, {"type": "mrr_at_3", "value": 52.382}, {"type": "mrr_at_5", "value": 53.649}, {"type": "ndcg_at_1", "value": 45.329}, {"type": "ndcg_at_10", "value": 56.847}, {"type": "ndcg_at_100", "value": 60.738}, {"type": "ndcg_at_1000", "value": 61.976}, {"type": "ndcg_at_3", "value": 51.59}, {"type": "ndcg_at_5", "value": 53.915}, {"type": "precision_at_1", "value": 45.329}, {"type": "precision_at_10", "value": 8.959}, {"type": "precision_at_100", "value": 1.187}, {"type": "precision_at_1000", "value": 0.134}, {"type": "precision_at_3", "value": 22.612}, {"type": "precision_at_5", "value": 15.273}, {"type": "recall_at_1", "value": 39.951}, {"type": "recall_at_10", "value": 70.053}, {"type": "recall_at_100", "value": 86.996}, {"type": "recall_at_1000", "value": 95.707}, {"type": "recall_at_3", "value": 56.032000000000004}, {"type": "recall_at_5", "value": 61.629999999999995}, {"type": "map_at_1", "value": 25.566}, {"type": "map_at_10", "value": 33.207}, {"type": "map_at_100", "value": 34.166000000000004}, {"type": "map_at_1000", "value": 34.245}, {"type": "map_at_3", "value": 30.94}, {"type": "map_at_5", "value": 32.01}, {"type": "mrr_at_1", "value": 27.345000000000002}, {"type": "mrr_at_10", "value": 35.193000000000005}, {"type": "mrr_at_100", "value": 35.965}, {"type": "mrr_at_1000", "value": 36.028999999999996}, {"type": "mrr_at_3", "value": 32.806000000000004}, {"type": "mrr_at_5", "value": 34.021}, {"type": "ndcg_at_1", "value": 27.345000000000002}, {"type": "ndcg_at_10", "value": 37.891999999999996}, {"type": "ndcg_at_100", "value": 42.664}, {"type": "ndcg_at_1000", "value": 44.757000000000005}, {"type": "ndcg_at_3", "value": 33.123000000000005}, {"type": "ndcg_at_5", "value": 35.035}, {"type": "precision_at_1", "value": 27.345000000000002}, {"type": "precision_at_10", "value": 5.763}, {"type": "precision_at_100", "value": 0.859}, {"type": "precision_at_1000", "value": 0.108}, {"type": "precision_at_3", "value": 13.71}, {"type": "precision_at_5", "value": 9.401}, {"type": "recall_at_1", "value": 25.566}, {"type": "recall_at_10", "value": 50.563}, {"type": "recall_at_100", "value": 72.86399999999999}, {"type": "recall_at_1000", "value": 88.68599999999999}, {"type": "recall_at_3", "value": 37.43}, {"type": "recall_at_5", "value": 41.894999999999996}, {"type": "map_at_1", "value": 16.663}, {"type": "map_at_10", "value": 23.552}, {"type": "map_at_100", "value": 24.538}, {"type": "map_at_1000", "value": 24.661}, {"type": "map_at_3", "value": 21.085}, {"type": "map_at_5", "value": 22.391}, {"type": "mrr_at_1", "value": 20.025000000000002}, {"type": "mrr_at_10", "value": 27.643}, {"type": "mrr_at_100", "value": 28.499999999999996}, {"type": "mrr_at_1000", "value": 28.582}, {"type": "mrr_at_3", "value": 25.083}, {"type": "mrr_at_5", "value": 26.544}, {"type": "ndcg_at_1", "value": 20.025000000000002}, {"type": "ndcg_at_10", "value": 28.272000000000002}, {"type": "ndcg_at_100", "value": 33.353}, {"type": "ndcg_at_1000", "value": 36.454}, {"type": "ndcg_at_3", "value": 23.579}, {"type": "ndcg_at_5", "value": 25.685000000000002}, {"type": "precision_at_1", "value": 20.025000000000002}, {"type": "precision_at_10", "value": 5.187}, {"type": "precision_at_100", "value": 0.897}, {"type": "precision_at_1000", "value": 0.13}, {"type": "precision_at_3", "value": 10.987}, {"type": "precision_at_5", "value": 8.06}, {"type": "recall_at_1", "value": 16.663}, {"type": "recall_at_10", "value": 38.808}, {"type": "recall_at_100", "value": 61.305}, {"type": "recall_at_1000", "value": 83.571}, {"type": "recall_at_3", "value": 25.907999999999998}, {"type": "recall_at_5", "value": 31.214}, {"type": "map_at_1", "value": 27.695999999999998}, {"type": "map_at_10", "value": 37.018}, {"type": "map_at_100", "value": 38.263000000000005}, {"type": "map_at_1000", "value": 38.371}, {"type": "map_at_3", "value": 34.226}, {"type": "map_at_5", "value": 35.809999999999995}, {"type": "mrr_at_1", "value": 32.916000000000004}, {"type": "mrr_at_10", "value": 42.067}, {"type": "mrr_at_100", "value": 42.925000000000004}, {"type": "mrr_at_1000", "value": 42.978}, {"type": "mrr_at_3", "value": 39.637}, {"type": "mrr_at_5", "value": 41.134}, {"type": "ndcg_at_1", "value": 32.916000000000004}, {"type": "ndcg_at_10", "value": 42.539}, {"type": "ndcg_at_100", "value": 47.873}, {"type": "ndcg_at_1000", "value": 50.08200000000001}, {"type": "ndcg_at_3", "value": 37.852999999999994}, {"type": "ndcg_at_5", "value": 40.201}, {"type": "precision_at_1", "value": 32.916000000000004}, {"type": "precision_at_10", "value": 7.5840000000000005}, {"type": "precision_at_100", "value": 1.199}, {"type": "precision_at_1000", "value": 0.155}, {"type": "precision_at_3", "value": 17.485}, {"type": "precision_at_5", "value": 12.512}, {"type": "recall_at_1", "value": 27.695999999999998}, {"type": "recall_at_10", "value": 53.638}, {"type": "recall_at_100", "value": 76.116}, {"type": "recall_at_1000", "value": 91.069}, {"type": "recall_at_3", "value": 41.13}, {"type": "recall_at_5", "value": 46.872}, {"type": "map_at_1", "value": 24.108}, {"type": "map_at_10", "value": 33.372}, {"type": "map_at_100", "value": 34.656}, {"type": "map_at_1000", "value": 34.768}, {"type": "map_at_3", "value": 30.830999999999996}, {"type": "map_at_5", "value": 32.204}, {"type": "mrr_at_1", "value": 29.110000000000003}, {"type": "mrr_at_10", "value": 37.979}, {"type": "mrr_at_100", "value": 38.933}, {"type": "mrr_at_1000", "value": 38.988}, {"type": "mrr_at_3", "value": 35.731}, {"type": "mrr_at_5", "value": 36.963}, {"type": "ndcg_at_1", "value": 29.110000000000003}, {"type": "ndcg_at_10", "value": 38.635000000000005}, {"type": "ndcg_at_100", "value": 44.324999999999996}, {"type": "ndcg_at_1000", "value": 46.747}, {"type": "ndcg_at_3", "value": 34.37}, {"type": "ndcg_at_5", "value": 36.228}, {"type": "precision_at_1", "value": 29.110000000000003}, {"type": "precision_at_10", "value": 6.963}, {"type": "precision_at_100", "value": 1.146}, {"type": "precision_at_1000", "value": 0.152}, {"type": "precision_at_3", "value": 16.400000000000002}, {"type": "precision_at_5", "value": 11.552999999999999}, {"type": "recall_at_1", "value": 24.108}, {"type": "recall_at_10", "value": 49.597}, {"type": "recall_at_100", "value": 73.88900000000001}, {"type": "recall_at_1000", "value": 90.62400000000001}, {"type": "recall_at_3", "value": 37.662}, {"type": "recall_at_5", "value": 42.565}, {"type": "map_at_1", "value": 25.00791666666667}, {"type": "map_at_10", "value": 33.287749999999996}, {"type": "map_at_100", "value": 34.41141666666667}, {"type": "map_at_1000", "value": 34.52583333333333}, {"type": "map_at_3", "value": 30.734416666666668}, {"type": "map_at_5", "value": 32.137166666666666}, {"type": "mrr_at_1", "value": 29.305666666666664}, {"type": "mrr_at_10", "value": 37.22966666666666}, {"type": "mrr_at_100", "value": 38.066583333333334}, {"type": "mrr_at_1000", "value": 38.12616666666667}, {"type": "mrr_at_3", "value": 34.92275}, {"type": "mrr_at_5", "value": 36.23333333333334}, {"type": "ndcg_at_1", "value": 29.305666666666664}, {"type": "ndcg_at_10", "value": 38.25533333333333}, {"type": "ndcg_at_100", "value": 43.25266666666666}, {"type": "ndcg_at_1000", "value": 45.63583333333334}, {"type": "ndcg_at_3", "value": 33.777166666666666}, {"type": "ndcg_at_5", "value": 35.85}, {"type": "precision_at_1", "value": 29.305666666666664}, {"type": "precision_at_10", "value": 6.596416666666667}, {"type": "precision_at_100", "value": 1.0784166666666668}, {"type": "precision_at_1000", "value": 0.14666666666666664}, {"type": "precision_at_3", "value": 15.31075}, {"type": "precision_at_5", "value": 10.830916666666667}, {"type": "recall_at_1", "value": 25.00791666666667}, {"type": "recall_at_10", "value": 49.10933333333333}, {"type": "recall_at_100", "value": 71.09216666666667}, {"type": "recall_at_1000", "value": 87.77725000000001}, {"type": "recall_at_3", "value": 36.660916666666665}, {"type": "recall_at_5", "value": 41.94149999999999}, {"type": "map_at_1", "value": 23.521}, {"type": "map_at_10", "value": 30.043}, {"type": "map_at_100", "value": 30.936000000000003}, {"type": "map_at_1000", "value": 31.022}, {"type": "map_at_3", "value": 27.926000000000002}, {"type": "map_at_5", "value": 29.076999999999998}, {"type": "mrr_at_1", "value": 26.227}, {"type": "mrr_at_10", "value": 32.822}, {"type": "mrr_at_100", "value": 33.61}, {"type": "mrr_at_1000", "value": 33.672000000000004}, {"type": "mrr_at_3", "value": 30.776999999999997}, {"type": "mrr_at_5", "value": 31.866}, {"type": "ndcg_at_1", "value": 26.227}, {"type": "ndcg_at_10", "value": 34.041}, {"type": "ndcg_at_100", "value": 38.394}, {"type": "ndcg_at_1000", "value": 40.732}, {"type": "ndcg_at_3", "value": 30.037999999999997}, {"type": "ndcg_at_5", "value": 31.845000000000002}, {"type": "precision_at_1", "value": 26.227}, {"type": "precision_at_10", "value": 5.244999999999999}, {"type": "precision_at_100", "value": 0.808}, {"type": "precision_at_1000", "value": 0.107}, {"type": "precision_at_3", "value": 12.679000000000002}, {"type": "precision_at_5", "value": 8.773}, {"type": "recall_at_1", "value": 23.521}, {"type": "recall_at_10", "value": 43.633}, {"type": "recall_at_100", "value": 63.126000000000005}, {"type": "recall_at_1000", "value": 80.765}, {"type": "recall_at_3", "value": 32.614}, {"type": "recall_at_5", "value": 37.15}, {"type": "map_at_1", "value": 16.236}, {"type": "map_at_10", "value": 22.898}, {"type": "map_at_100", "value": 23.878}, {"type": "map_at_1000", "value": 24.009}, {"type": "map_at_3", "value": 20.87}, {"type": "map_at_5", "value": 22.025}, {"type": "mrr_at_1", "value": 19.339000000000002}, {"type": "mrr_at_10", "value": 26.382}, {"type": "mrr_at_100", "value": 27.245}, {"type": "mrr_at_1000", "value": 27.33}, {"type": "mrr_at_3", "value": 24.386}, {"type": "mrr_at_5", "value": 25.496000000000002}, {"type": "ndcg_at_1", "value": 19.339000000000002}, {"type": "ndcg_at_10", "value": 27.139999999999997}, {"type": "ndcg_at_100", "value": 31.944}, {"type": "ndcg_at_1000", "value": 35.077999999999996}, {"type": "ndcg_at_3", "value": 23.424}, {"type": "ndcg_at_5", "value": 25.188}, {"type": "precision_at_1", "value": 19.339000000000002}, {"type": "precision_at_10", "value": 4.8309999999999995}, {"type": "precision_at_100", "value": 0.845}, {"type": "precision_at_1000", "value": 0.128}, {"type": "precision_at_3", "value": 10.874}, {"type": "precision_at_5", "value": 7.825}, {"type": "recall_at_1", "value": 16.236}, {"type": "recall_at_10", "value": 36.513}, {"type": "recall_at_100", "value": 57.999}, {"type": "recall_at_1000", "value": 80.512}, {"type": "recall_at_3", "value": 26.179999999999996}, {"type": "recall_at_5", "value": 30.712}, {"type": "map_at_1", "value": 24.11}, {"type": "map_at_10", "value": 31.566}, {"type": "map_at_100", "value": 32.647}, {"type": "map_at_1000", "value": 32.753}, {"type": "map_at_3", "value": 29.24}, {"type": "map_at_5", "value": 30.564999999999998}, {"type": "mrr_at_1", "value": 28.265}, {"type": "mrr_at_10", "value": 35.504000000000005}, {"type": "mrr_at_100", "value": 36.436}, {"type": "mrr_at_1000", "value": 36.503}, {"type": "mrr_at_3", "value": 33.349000000000004}, {"type": "mrr_at_5", "value": 34.622}, {"type": "ndcg_at_1", "value": 28.265}, {"type": "ndcg_at_10", "value": 36.192}, {"type": "ndcg_at_100", "value": 41.388000000000005}, {"type": "ndcg_at_1000", "value": 43.948}, {"type": "ndcg_at_3", "value": 31.959}, {"type": "ndcg_at_5", "value": 33.998}, {"type": "precision_at_1", "value": 28.265}, {"type": "precision_at_10", "value": 5.989}, {"type": "precision_at_100", "value": 0.9650000000000001}, {"type": "precision_at_1000", "value": 0.13}, {"type": "precision_at_3", "value": 14.335}, {"type": "precision_at_5", "value": 10.112}, {"type": "recall_at_1", "value": 24.11}, {"type": "recall_at_10", "value": 46.418}, {"type": "recall_at_100", "value": 69.314}, {"type": "recall_at_1000", "value": 87.397}, {"type": "recall_at_3", "value": 34.724}, {"type": "recall_at_5", "value": 39.925}, {"type": "map_at_1", "value": 22.091}, {"type": "map_at_10", "value": 29.948999999999998}, {"type": "map_at_100", "value": 31.502000000000002}, {"type": "map_at_1000", "value": 31.713}, {"type": "map_at_3", "value": 27.464}, {"type": "map_at_5", "value": 28.968}, {"type": "mrr_at_1", "value": 26.482}, {"type": "mrr_at_10", "value": 34.009}, {"type": "mrr_at_100", "value": 35.081}, {"type": "mrr_at_1000", "value": 35.138000000000005}, {"type": "mrr_at_3", "value": 31.785000000000004}, {"type": "mrr_at_5", "value": 33.178999999999995}, {"type": "ndcg_at_1", "value": 26.482}, {"type": "ndcg_at_10", "value": 35.008}, {"type": "ndcg_at_100", "value": 41.272999999999996}, {"type": "ndcg_at_1000", "value": 43.972}, {"type": "ndcg_at_3", "value": 30.804}, {"type": "ndcg_at_5", "value": 33.046}, {"type": "precision_at_1", "value": 26.482}, {"type": "precision_at_10", "value": 6.462}, {"type": "precision_at_100", "value": 1.431}, {"type": "precision_at_1000", "value": 0.22899999999999998}, {"type": "precision_at_3", "value": 14.360999999999999}, {"type": "precision_at_5", "value": 10.474}, {"type": "recall_at_1", "value": 22.091}, {"type": "recall_at_10", "value": 45.125}, {"type": "recall_at_100", "value": 72.313}, {"type": "recall_at_1000", "value": 89.503}, {"type": "recall_at_3", "value": 33.158}, {"type": "recall_at_5", "value": 39.086999999999996}, {"type": "map_at_1", "value": 19.883}, {"type": "map_at_10", "value": 26.951000000000004}, {"type": "map_at_100", "value": 27.927999999999997}, {"type": "map_at_1000", "value": 28.022000000000002}, {"type": "map_at_3", "value": 24.616}, {"type": "map_at_5", "value": 25.917}, {"type": "mrr_at_1", "value": 21.996}, {"type": "mrr_at_10", "value": 29.221000000000004}, {"type": "mrr_at_100", "value": 30.024}, {"type": "mrr_at_1000", "value": 30.095}, {"type": "mrr_at_3", "value": 26.833000000000002}, {"type": "mrr_at_5", "value": 28.155}, {"type": "ndcg_at_1", "value": 21.996}, {"type": "ndcg_at_10", "value": 31.421}, {"type": "ndcg_at_100", "value": 36.237}, {"type": "ndcg_at_1000", "value": 38.744}, {"type": "ndcg_at_3", "value": 26.671}, {"type": "ndcg_at_5", "value": 28.907}, {"type": "precision_at_1", "value": 21.996}, {"type": "precision_at_10", "value": 5.009}, {"type": "precision_at_100", "value": 0.799}, {"type": "precision_at_1000", "value": 0.11199999999999999}, {"type": "precision_at_3", "value": 11.275}, {"type": "precision_at_5", "value": 8.059}, {"type": "recall_at_1", "value": 19.883}, {"type": "recall_at_10", "value": 43.132999999999996}, {"type": "recall_at_100", "value": 65.654}, {"type": "recall_at_1000", "value": 84.492}, {"type": "recall_at_3", "value": 30.209000000000003}, {"type": "recall_at_5", "value": 35.616}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ClimateFEVER", "type": "climate-fever", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 17.756}, {"type": "map_at_10", "value": 30.378}, {"type": "map_at_100", "value": 32.537}, {"type": "map_at_1000", "value": 32.717}, {"type": "map_at_3", "value": 25.599}, {"type": "map_at_5", "value": 28.372999999999998}, {"type": "mrr_at_1", "value": 41.303}, {"type": "mrr_at_10", "value": 53.483999999999995}, {"type": "mrr_at_100", "value": 54.106}, {"type": "mrr_at_1000", "value": 54.127}, {"type": "mrr_at_3", "value": 50.315}, {"type": "mrr_at_5", "value": 52.396}, {"type": "ndcg_at_1", "value": 41.303}, {"type": "ndcg_at_10", "value": 40.503}, {"type": "ndcg_at_100", "value": 47.821000000000005}, {"type": "ndcg_at_1000", "value": 50.788}, {"type": "ndcg_at_3", "value": 34.364}, {"type": "ndcg_at_5", "value": 36.818}, {"type": "precision_at_1", "value": 41.303}, {"type": "precision_at_10", "value": 12.463000000000001}, {"type": "precision_at_100", "value": 2.037}, {"type": "precision_at_1000", "value": 0.26}, {"type": "precision_at_3", "value": 25.798}, {"type": "precision_at_5", "value": 19.896}, {"type": "recall_at_1", "value": 17.756}, {"type": "recall_at_10", "value": 46.102}, {"type": "recall_at_100", "value": 70.819}, {"type": "recall_at_1000", "value": 87.21799999999999}, {"type": "recall_at_3", "value": 30.646}, {"type": "recall_at_5", "value": 38.022}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB DBPedia", "type": "dbpedia-entity", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 9.033}, {"type": "map_at_10", "value": 20.584}, {"type": "map_at_100", "value": 29.518}, {"type": "map_at_1000", "value": 31.186000000000003}, {"type": "map_at_3", "value": 14.468}, {"type": "map_at_5", "value": 17.177}, {"type": "mrr_at_1", "value": 69.75}, {"type": "mrr_at_10", "value": 77.025}, {"type": "mrr_at_100", "value": 77.36699999999999}, {"type": "mrr_at_1000", "value": 77.373}, {"type": "mrr_at_3", "value": 75.583}, {"type": "mrr_at_5", "value": 76.396}, {"type": "ndcg_at_1", "value": 58.5}, {"type": "ndcg_at_10", "value": 45.033}, {"type": "ndcg_at_100", "value": 49.071}, {"type": "ndcg_at_1000", "value": 56.056}, {"type": "ndcg_at_3", "value": 49.936}, {"type": "ndcg_at_5", "value": 47.471999999999994}, {"type": "precision_at_1", "value": 69.75}, {"type": "precision_at_10", "value": 35.775}, {"type": "precision_at_100", "value": 11.594999999999999}, {"type": "precision_at_1000", "value": 2.062}, {"type": "precision_at_3", "value": 52.5}, {"type": "precision_at_5", "value": 45.300000000000004}, {"type": "recall_at_1", "value": 9.033}, {"type": "recall_at_10", "value": 26.596999999999998}, {"type": "recall_at_100", "value": 54.607000000000006}, {"type": "recall_at_1000", "value": 76.961}, {"type": "recall_at_3", "value": 15.754999999999999}, {"type": "recall_at_5", "value": 20.033}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB EmotionClassification", "type": "mteb/emotion", "config": "default", "split": "test", "revision": "4f58c6b202a23cf9a4da393831edf4f9183cad37"}, "metrics": [{"type": "accuracy", "value": 48.345000000000006}, {"type": "f1", "value": 43.4514918068706}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB FEVER", "type": "fever", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 71.29100000000001}, {"type": "map_at_10", "value": 81.059}, {"type": "map_at_100", "value": 81.341}, {"type": "map_at_1000", "value": 81.355}, {"type": "map_at_3", "value": 79.74799999999999}, {"type": "map_at_5", "value": 80.612}, {"type": "mrr_at_1", "value": 76.40299999999999}, {"type": "mrr_at_10", "value": 84.615}, {"type": "mrr_at_100", "value": 84.745}, {"type": "mrr_at_1000", "value": 84.748}, {"type": "mrr_at_3", "value": 83.776}, {"type": "mrr_at_5", "value": 84.343}, {"type": "ndcg_at_1", "value": 76.40299999999999}, {"type": "ndcg_at_10", "value": 84.981}, {"type": "ndcg_at_100", "value": 86.00999999999999}, {"type": "ndcg_at_1000", "value": 86.252}, {"type": "ndcg_at_3", "value": 82.97}, {"type": "ndcg_at_5", "value": 84.152}, {"type": "precision_at_1", "value": 76.40299999999999}, {"type": "precision_at_10", "value": 10.446}, {"type": "precision_at_100", "value": 1.1199999999999999}, {"type": "precision_at_1000", "value": 0.116}, {"type": "precision_at_3", "value": 32.147999999999996}, {"type": "precision_at_5", "value": 20.135}, {"type": "recall_at_1", "value": 71.29100000000001}, {"type": "recall_at_10", "value": 93.232}, {"type": "recall_at_100", "value": 97.363}, {"type": "recall_at_1000", "value": 98.905}, {"type": "recall_at_3", "value": 87.893}, {"type": "recall_at_5", "value": 90.804}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB FiQA2018", "type": "fiqa", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 18.667}, {"type": "map_at_10", "value": 30.853}, {"type": "map_at_100", "value": 32.494}, {"type": "map_at_1000", "value": 32.677}, {"type": "map_at_3", "value": 26.91}, {"type": "map_at_5", "value": 29.099000000000004}, {"type": "mrr_at_1", "value": 37.191}, {"type": "mrr_at_10", "value": 46.171}, {"type": "mrr_at_100", "value": 47.056}, {"type": "mrr_at_1000", "value": 47.099000000000004}, {"type": "mrr_at_3", "value": 44.059}, {"type": "mrr_at_5", "value": 45.147}, {"type": "ndcg_at_1", "value": 37.191}, {"type": "ndcg_at_10", "value": 38.437}, {"type": "ndcg_at_100", "value": 44.62}, {"type": "ndcg_at_1000", "value": 47.795}, {"type": "ndcg_at_3", "value": 35.003}, {"type": "ndcg_at_5", "value": 36.006}, {"type": "precision_at_1", "value": 37.191}, {"type": "precision_at_10", "value": 10.586}, {"type": "precision_at_100", "value": 1.688}, {"type": "precision_at_1000", "value": 0.22699999999999998}, {"type": "precision_at_3", "value": 23.302}, {"type": "precision_at_5", "value": 17.006}, {"type": "recall_at_1", "value": 18.667}, {"type": "recall_at_10", "value": 45.367000000000004}, {"type": "recall_at_100", "value": 68.207}, {"type": "recall_at_1000", "value": 87.072}, {"type": "recall_at_3", "value": 32.129000000000005}, {"type": "recall_at_5", "value": 37.719}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB HotpotQA", "type": "hotpotqa", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 39.494}, {"type": "map_at_10", "value": 66.223}, {"type": "map_at_100", "value": 67.062}, {"type": "map_at_1000", "value": 67.11500000000001}, {"type": "map_at_3", "value": 62.867}, {"type": "map_at_5", "value": 64.994}, {"type": "mrr_at_1", "value": 78.987}, {"type": "mrr_at_10", "value": 84.585}, {"type": "mrr_at_100", "value": 84.773}, {"type": "mrr_at_1000", "value": 84.77900000000001}, {"type": "mrr_at_3", "value": 83.592}, {"type": "mrr_at_5", "value": 84.235}, {"type": "ndcg_at_1", "value": 78.987}, {"type": "ndcg_at_10", "value": 73.64}, {"type": "ndcg_at_100", "value": 76.519}, {"type": "ndcg_at_1000", "value": 77.51}, {"type": "ndcg_at_3", "value": 68.893}, {"type": "ndcg_at_5", "value": 71.585}, {"type": "precision_at_1", "value": 78.987}, {"type": "precision_at_10", "value": 15.529000000000002}, {"type": "precision_at_100", "value": 1.7770000000000001}, {"type": "precision_at_1000", "value": 0.191}, {"type": "precision_at_3", "value": 44.808}, {"type": "precision_at_5", "value": 29.006999999999998}, {"type": "recall_at_1", "value": 39.494}, {"type": "recall_at_10", "value": 77.643}, {"type": "recall_at_100", "value": 88.825}, {"type": "recall_at_1000", "value": 95.321}, {"type": "recall_at_3", "value": 67.211}, {"type": "recall_at_5", "value": 72.519}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ImdbClassification", "type": "mteb/imdb", "config": "default", "split": "test", "revision": "3d86128a09e091d6018b6d26cad27f2739fc2db7"}, "metrics": [{"type": "accuracy", "value": 85.55959999999999}, {"type": "ap", "value": 80.7246500384617}, {"type": "f1", "value": 85.52336485065454}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB MSMARCO", "type": "msmarco", "config": "default", "split": "dev", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 23.631}, {"type": "map_at_10", "value": 36.264}, {"type": "map_at_100", "value": 37.428}, {"type": "map_at_1000", "value": 37.472}, {"type": "map_at_3", "value": 32.537}, {"type": "map_at_5", "value": 34.746}, {"type": "mrr_at_1", "value": 24.312}, {"type": "mrr_at_10", "value": 36.858000000000004}, {"type": "mrr_at_100", "value": 37.966}, {"type": "mrr_at_1000", "value": 38.004}, {"type": "mrr_at_3", "value": 33.188}, {"type": "mrr_at_5", "value": 35.367}, {"type": "ndcg_at_1", "value": 24.312}, {"type": "ndcg_at_10", "value": 43.126999999999995}, {"type": "ndcg_at_100", "value": 48.642}, {"type": "ndcg_at_1000", "value": 49.741}, {"type": "ndcg_at_3", "value": 35.589}, {"type": "ndcg_at_5", "value": 39.515}, {"type": "precision_at_1", "value": 24.312}, {"type": "precision_at_10", "value": 6.699}, {"type": "precision_at_100", "value": 0.9450000000000001}, {"type": "precision_at_1000", "value": 0.104}, {"type": "precision_at_3", "value": 15.153}, {"type": "precision_at_5", "value": 11.065999999999999}, {"type": "recall_at_1", "value": 23.631}, {"type": "recall_at_10", "value": 64.145}, {"type": "recall_at_100", "value": 89.41}, {"type": "recall_at_1000", "value": 97.83500000000001}, {"type": "recall_at_3", "value": 43.769000000000005}, {"type": "recall_at_5", "value": 53.169}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPDomainClassification (en)", "type": "mteb/mtop_domain", "config": "en", "split": "test", "revision": "d80d48c1eb48d3562165c59d59d0034df9fff0bf"}, "metrics": [{"type": "accuracy", "value": 93.4108527131783}, {"type": "f1", "value": 93.1415880261038}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPIntentClassification (en)", "type": "mteb/mtop_intent", "config": "en", "split": "test", "revision": "ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba"}, "metrics": [{"type": "accuracy", "value": 77.24806201550388}, {"type": "f1", "value": 60.531916308197175}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (en)", "type": "mteb/amazon_massive_intent", "config": "en", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 73.71553463349024}, {"type": "f1", "value": 71.70753174900791}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (en)", "type": "mteb/amazon_massive_scenario", "config": "en", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 77.79757901815736}, {"type": "f1", "value": 77.83719850433258}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringP2P", "type": "mteb/medrxiv-clustering-p2p", "config": "default", "split": "test", "revision": "e7a26af6f3ae46b30dde8737f02c07b1505bcc73"}, "metrics": [{"type": "v_measure", "value": 33.74193296622113}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringS2S", "type": "mteb/medrxiv-clustering-s2s", "config": "default", "split": "test", "revision": "35191c8c0dca72d8ff3efcd72aa802307d469663"}, "metrics": [{"type": "v_measure", "value": 30.64257594108566}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB MindSmallReranking", "type": "mteb/mind_small", "config": "default", "split": "test", "revision": "3bdac13927fdc888b903db93b2ffdbd90b295a69"}, "metrics": [{"type": "map", "value": 30.811018518883625}, {"type": "mrr", "value": 31.910376577445003}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB NFCorpus", "type": "nfcorpus", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 5.409}, {"type": "map_at_10", "value": 13.093}, {"type": "map_at_100", "value": 16.256999999999998}, {"type": "map_at_1000", "value": 17.617}, {"type": "map_at_3", "value": 9.555}, {"type": "map_at_5", "value": 11.428}, {"type": "mrr_at_1", "value": 45.201}, {"type": "mrr_at_10", "value": 54.179}, {"type": "mrr_at_100", "value": 54.812000000000005}, {"type": "mrr_at_1000", "value": 54.840999999999994}, {"type": "mrr_at_3", "value": 51.909000000000006}, {"type": "mrr_at_5", "value": 53.519000000000005}, {"type": "ndcg_at_1", "value": 43.189}, {"type": "ndcg_at_10", "value": 35.028}, {"type": "ndcg_at_100", "value": 31.226}, {"type": "ndcg_at_1000", "value": 39.678000000000004}, {"type": "ndcg_at_3", "value": 40.596}, {"type": "ndcg_at_5", "value": 38.75}, {"type": "precision_at_1", "value": 44.582}, {"type": "precision_at_10", "value": 25.974999999999998}, {"type": "precision_at_100", "value": 7.793}, {"type": "precision_at_1000", "value": 2.036}, {"type": "precision_at_3", "value": 38.493}, {"type": "precision_at_5", "value": 33.994}, {"type": "recall_at_1", "value": 5.409}, {"type": "recall_at_10", "value": 16.875999999999998}, {"type": "recall_at_100", "value": 30.316}, {"type": "recall_at_1000", "value": 60.891}, {"type": "recall_at_3", "value": 10.688}, {"type": "recall_at_5", "value": 13.832}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB NQ", "type": "nq", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 36.375}, {"type": "map_at_10", "value": 51.991}, {"type": "map_at_100", "value": 52.91400000000001}, {"type": "map_at_1000", "value": 52.93600000000001}, {"type": "map_at_3", "value": 48.014}, {"type": "map_at_5", "value": 50.381}, {"type": "mrr_at_1", "value": 40.759}, {"type": "mrr_at_10", "value": 54.617000000000004}, {"type": "mrr_at_100", "value": 55.301}, {"type": "mrr_at_1000", "value": 55.315000000000005}, {"type": "mrr_at_3", "value": 51.516}, {"type": "mrr_at_5", "value": 53.435}, {"type": "ndcg_at_1", "value": 40.759}, {"type": "ndcg_at_10", "value": 59.384}, {"type": "ndcg_at_100", "value": 63.157}, {"type": "ndcg_at_1000", "value": 63.654999999999994}, {"type": "ndcg_at_3", "value": 52.114000000000004}, {"type": "ndcg_at_5", "value": 55.986000000000004}, {"type": "precision_at_1", "value": 40.759}, {"type": "precision_at_10", "value": 9.411999999999999}, {"type": "precision_at_100", "value": 1.153}, {"type": "precision_at_1000", "value": 0.12}, {"type": "precision_at_3", "value": 23.329}, {"type": "precision_at_5", "value": 16.256999999999998}, {"type": "recall_at_1", "value": 36.375}, {"type": "recall_at_10", "value": 79.053}, {"type": "recall_at_100", "value": 95.167}, {"type": "recall_at_1000", "value": 98.82}, {"type": "recall_at_3", "value": 60.475}, {"type": "recall_at_5", "value": 69.327}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB QuoraRetrieval", "type": "quora", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 70.256}, {"type": "map_at_10", "value": 83.8}, {"type": "map_at_100", "value": 84.425}, {"type": "map_at_1000", "value": 84.444}, {"type": "map_at_3", "value": 80.906}, {"type": "map_at_5", "value": 82.717}, {"type": "mrr_at_1", "value": 80.97999999999999}, {"type": "mrr_at_10", "value": 87.161}, {"type": "mrr_at_100", "value": 87.262}, {"type": "mrr_at_1000", "value": 87.263}, {"type": "mrr_at_3", "value": 86.175}, {"type": "mrr_at_5", "value": 86.848}, {"type": "ndcg_at_1", "value": 80.97999999999999}, {"type": "ndcg_at_10", "value": 87.697}, {"type": "ndcg_at_100", "value": 88.959}, {"type": "ndcg_at_1000", "value": 89.09899999999999}, {"type": "ndcg_at_3", "value": 84.83800000000001}, {"type": "ndcg_at_5", "value": 86.401}, {"type": "precision_at_1", "value": 80.97999999999999}, {"type": "precision_at_10", "value": 13.261000000000001}, {"type": "precision_at_100", "value": 1.5150000000000001}, {"type": "precision_at_1000", "value": 0.156}, {"type": "precision_at_3", "value": 37.01}, {"type": "precision_at_5", "value": 24.298000000000002}, {"type": "recall_at_1", "value": 70.256}, {"type": "recall_at_10", "value": 94.935}, {"type": "recall_at_100", "value": 99.274}, {"type": "recall_at_1000", "value": 99.928}, {"type": "recall_at_3", "value": 86.602}, {"type": "recall_at_5", "value": 91.133}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClustering", "type": "mteb/reddit-clustering", "config": "default", "split": "test", "revision": "24640382cdbf8abc73003fb0fa6d111a705499eb"}, "metrics": [{"type": "v_measure", "value": 56.322692497613104}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClusteringP2P", "type": "mteb/reddit-clustering-p2p", "config": "default", "split": "test", "revision": "282350215ef01743dc01b456c7f5241fa8937f16"}, "metrics": [{"type": "v_measure", "value": 61.895813503775074}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB SCIDOCS", "type": "scidocs", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 4.338}, {"type": "map_at_10", "value": 10.767}, {"type": "map_at_100", "value": 12.537999999999998}, {"type": "map_at_1000", "value": 12.803999999999998}, {"type": "map_at_3", "value": 7.788}, {"type": "map_at_5", "value": 9.302000000000001}, {"type": "mrr_at_1", "value": 21.4}, {"type": "mrr_at_10", "value": 31.637999999999998}, {"type": "mrr_at_100", "value": 32.688}, {"type": "mrr_at_1000", "value": 32.756}, {"type": "mrr_at_3", "value": 28.433000000000003}, {"type": "mrr_at_5", "value": 30.178}, {"type": "ndcg_at_1", "value": 21.4}, {"type": "ndcg_at_10", "value": 18.293}, {"type": "ndcg_at_100", "value": 25.274}, {"type": "ndcg_at_1000", "value": 30.284}, {"type": "ndcg_at_3", "value": 17.391000000000002}, {"type": "ndcg_at_5", "value": 15.146999999999998}, {"type": "precision_at_1", "value": 21.4}, {"type": "precision_at_10", "value": 9.48}, {"type": "precision_at_100", "value": 1.949}, {"type": "precision_at_1000", "value": 0.316}, {"type": "precision_at_3", "value": 16.167}, {"type": "precision_at_5", "value": 13.22}, {"type": "recall_at_1", "value": 4.338}, {"type": "recall_at_10", "value": 19.213}, {"type": "recall_at_100", "value": 39.562999999999995}, {"type": "recall_at_1000", "value": 64.08}, {"type": "recall_at_3", "value": 9.828000000000001}, {"type": "recall_at_5", "value": 13.383000000000001}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB SICK-R", "type": "mteb/sickr-sts", "config": "default", "split": "test", "revision": "a6ea5a8cab320b040a23452cc28066d9beae2cee"}, "metrics": [{"type": "cos_sim_pearson", "value": 82.42568163642142}, {"type": "cos_sim_spearman", "value": 78.5797159641342}, {"type": "euclidean_pearson", "value": 80.22151260811604}, {"type": "euclidean_spearman", "value": 78.5797151953878}, {"type": "manhattan_pearson", "value": 80.21224215864788}, {"type": "manhattan_spearman", "value": 78.55641478381344}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS12", "type": "mteb/sts12-sts", "config": "default", "split": "test", "revision": "a0d554a64d88156834ff5ae9920b964011b16384"}, "metrics": [{"type": "cos_sim_pearson", "value": 85.44020710812569}, {"type": "cos_sim_spearman", "value": 78.91631735081286}, {"type": "euclidean_pearson", "value": 81.64188964182102}, {"type": "euclidean_spearman", "value": 78.91633286881678}, {"type": "manhattan_pearson", "value": 81.69294748512496}, {"type": "manhattan_spearman", "value": 78.93438558002656}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS13", "type": "mteb/sts13-sts", "config": "default", "split": "test", "revision": "7e90230a92c190f1bf69ae9002b8cea547a64cca"}, "metrics": [{"type": "cos_sim_pearson", "value": 84.27165426412311}, {"type": "cos_sim_spearman", "value": 85.40429140249618}, {"type": "euclidean_pearson", "value": 84.7509580724893}, {"type": "euclidean_spearman", "value": 85.40429140249618}, {"type": "manhattan_pearson", "value": 84.76488289321308}, {"type": "manhattan_spearman", "value": 85.4256793698708}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS14", "type": "mteb/sts14-sts", "config": "default", "split": "test", "revision": "6031580fec1f6af667f0bd2da0a551cf4f0b2375"}, "metrics": [{"type": "cos_sim_pearson", "value": 83.138851760732}, {"type": "cos_sim_spearman", "value": 81.64101363896586}, {"type": "euclidean_pearson", "value": 82.55165038934942}, {"type": "euclidean_spearman", "value": 81.64105257080502}, {"type": "manhattan_pearson", "value": 82.52802949883335}, {"type": "manhattan_spearman", "value": 81.61255430718158}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS15", "type": "mteb/sts15-sts", "config": "default", "split": "test", "revision": "ae752c7c21bf194d8b67fd573edf7ae58183cbe3"}, "metrics": [{"type": "cos_sim_pearson", "value": 86.0654695484029}, {"type": "cos_sim_spearman", "value": 87.20408521902229}, {"type": "euclidean_pearson", "value": 86.8110651362115}, {"type": "euclidean_spearman", "value": 87.20408521902229}, {"type": "manhattan_pearson", "value": 86.77984656478691}, {"type": "manhattan_spearman", "value": 87.1719947099227}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS16", "type": "mteb/sts16-sts", "config": "default", "split": "test", "revision": "4d8694f8f0e0100860b497b999b3dbed754a0513"}, "metrics": [{"type": "cos_sim_pearson", "value": 83.77823915496512}, {"type": "cos_sim_spearman", "value": 85.43566325729779}, {"type": "euclidean_pearson", "value": 84.5396956658821}, {"type": "euclidean_spearman", "value": 85.43566325729779}, {"type": "manhattan_pearson", "value": 84.5665398848169}, {"type": "manhattan_spearman", "value": 85.44375870303232}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS17 (en-en)", "type": "mteb/sts17-crosslingual-sts", "config": "en-en", "split": "test", "revision": "af5e6fb845001ecf41f4c1e033ce921939a2a68d"}, "metrics": [{"type": "cos_sim_pearson", "value": 87.20030208471798}, {"type": "cos_sim_spearman", "value": 87.20485505076539}, {"type": "euclidean_pearson", "value": 88.10588324368722}, {"type": "euclidean_spearman", "value": 87.20485505076539}, {"type": "manhattan_pearson", "value": 87.92324770415183}, {"type": "manhattan_spearman", "value": 87.0571314561877}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (en)", "type": "mteb/sts22-crosslingual-sts", "config": "en", "split": "test", "revision": "6d1ba47164174a496b7fa5d3569dae26a6813b80"}, "metrics": [{"type": "cos_sim_pearson", "value": 63.06093161604453}, {"type": "cos_sim_spearman", "value": 64.2163140357722}, {"type": "euclidean_pearson", "value": 65.27589680994006}, {"type": "euclidean_spearman", "value": 64.2163140357722}, {"type": "manhattan_pearson", "value": 65.45904383711101}, {"type": "manhattan_spearman", "value": 64.55404716679305}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STSBenchmark", "type": "mteb/stsbenchmark-sts", "config": "default", "split": "test", "revision": "b0fddb56ed78048fa8b90373c8a3cfc37b684831"}, "metrics": [{"type": "cos_sim_pearson", "value": 84.32976164578706}, {"type": "cos_sim_spearman", "value": 85.54302197678368}, {"type": "euclidean_pearson", "value": 85.26307149193056}, {"type": "euclidean_spearman", "value": 85.54302197678368}, {"type": "manhattan_pearson", "value": 85.26647282029371}, {"type": "manhattan_spearman", "value": 85.5316135265568}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB SciDocsRR", "type": "mteb/scidocs-reranking", "config": "default", "split": "test", "revision": "d3c5e1fc0b855ab6097bf1cda04dd73947d7caab"}, "metrics": [{"type": "map", "value": 81.44675968318754}, {"type": "mrr", "value": 94.92741826075158}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB SciFact", "type": "scifact", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 56.34400000000001}, {"type": "map_at_10", "value": 65.927}, {"type": "map_at_100", "value": 66.431}, {"type": "map_at_1000", "value": 66.461}, {"type": "map_at_3", "value": 63.529}, {"type": "map_at_5", "value": 64.818}, {"type": "mrr_at_1", "value": 59.333000000000006}, {"type": "mrr_at_10", "value": 67.54599999999999}, {"type": "mrr_at_100", "value": 67.892}, {"type": "mrr_at_1000", "value": 67.917}, {"type": "mrr_at_3", "value": 65.778}, {"type": "mrr_at_5", "value": 66.794}, {"type": "ndcg_at_1", "value": 59.333000000000006}, {"type": "ndcg_at_10", "value": 70.5}, {"type": "ndcg_at_100", "value": 72.688}, {"type": "ndcg_at_1000", "value": 73.483}, {"type": "ndcg_at_3", "value": 66.338}, {"type": "ndcg_at_5", "value": 68.265}, {"type": "precision_at_1", "value": 59.333000000000006}, {"type": "precision_at_10", "value": 9.3}, {"type": "precision_at_100", "value": 1.053}, {"type": "precision_at_1000", "value": 0.11199999999999999}, {"type": "precision_at_3", "value": 25.889}, {"type": "precision_at_5", "value": 16.866999999999997}, {"type": "recall_at_1", "value": 56.34400000000001}, {"type": "recall_at_10", "value": 82.789}, {"type": "recall_at_100", "value": 92.767}, {"type": "recall_at_1000", "value": 99}, {"type": "recall_at_3", "value": 71.64399999999999}, {"type": "recall_at_5", "value": 76.322}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB SprintDuplicateQuestions", "type": "mteb/sprintduplicatequestions-pairclassification", "config": "default", "split": "test", "revision": "d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46"}, "metrics": [{"type": "cos_sim_accuracy", "value": 99.75742574257426}, {"type": "cos_sim_ap", "value": 93.52081548447406}, {"type": "cos_sim_f1", "value": 87.33850129198966}, {"type": "cos_sim_precision", "value": 90.37433155080214}, {"type": "cos_sim_recall", "value": 84.5}, {"type": "dot_accuracy", "value": 99.75742574257426}, {"type": "dot_ap", "value": 93.52081548447406}, {"type": "dot_f1", "value": 87.33850129198966}, {"type": "dot_precision", "value": 90.37433155080214}, {"type": "dot_recall", "value": 84.5}, {"type": "euclidean_accuracy", "value": 99.75742574257426}, {"type": "euclidean_ap", "value": 93.52081548447406}, {"type": "euclidean_f1", "value": 87.33850129198966}, {"type": "euclidean_precision", "value": 90.37433155080214}, {"type": "euclidean_recall", "value": 84.5}, {"type": "manhattan_accuracy", "value": 99.75841584158415}, {"type": "manhattan_ap", "value": 93.4975678585854}, {"type": "manhattan_f1", "value": 87.26708074534162}, {"type": "manhattan_precision", "value": 90.45064377682404}, {"type": "manhattan_recall", "value": 84.3}, {"type": "max_accuracy", "value": 99.75841584158415}, {"type": "max_ap", "value": 93.52081548447406}, {"type": "max_f1", "value": 87.33850129198966}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClustering", "type": "mteb/stackexchange-clustering", "config": "default", "split": "test", "revision": "6cbc1f7b2bc0622f2e39d2c77fa502909748c259"}, "metrics": [{"type": "v_measure", "value": 64.31437036686651}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClusteringP2P", "type": "mteb/stackexchange-clustering-p2p", "config": "default", "split": "test", "revision": "815ca46b2622cec33ccafc3735d572c266efdb44"}, "metrics": [{"type": "v_measure", "value": 33.25569319007206}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB StackOverflowDupQuestions", "type": "mteb/stackoverflowdupquestions-reranking", "config": "default", "split": "test", "revision": "e185fbe320c72810689fc5848eb6114e1ef5ec69"}, "metrics": [{"type": "map", "value": 49.90474939720706}, {"type": "mrr", "value": 50.568115503777264}]}, {"task": {"type": "Summarization"}, "dataset": {"name": "MTEB SummEval", "type": "mteb/summeval", "config": "default", "split": "test", "revision": "cda12ad7615edc362dbf25a00fdd61d3b1eaf93c"}, "metrics": [{"type": "cos_sim_pearson", "value": 29.866828641244712}, {"type": "cos_sim_spearman", "value": 30.077555055873866}, {"type": "dot_pearson", "value": 29.866832988572266}, {"type": "dot_spearman", "value": 30.077555055873866}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB TRECCOVID", "type": "trec-covid", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 0.232}, {"type": "map_at_10", "value": 2.094}, {"type": "map_at_100", "value": 11.971}, {"type": "map_at_1000", "value": 28.158}, {"type": "map_at_3", "value": 0.688}, {"type": "map_at_5", "value": 1.114}, {"type": "mrr_at_1", "value": 88}, {"type": "mrr_at_10", "value": 93.4}, {"type": "mrr_at_100", "value": 93.4}, {"type": "mrr_at_1000", "value": 93.4}, {"type": "mrr_at_3", "value": 93}, {"type": "mrr_at_5", "value": 93.4}, {"type": "ndcg_at_1", "value": 84}, {"type": "ndcg_at_10", "value": 79.923}, {"type": "ndcg_at_100", "value": 61.17}, {"type": "ndcg_at_1000", "value": 53.03}, {"type": "ndcg_at_3", "value": 84.592}, {"type": "ndcg_at_5", "value": 82.821}, {"type": "precision_at_1", "value": 88}, {"type": "precision_at_10", "value": 85}, {"type": "precision_at_100", "value": 63.019999999999996}, {"type": "precision_at_1000", "value": 23.554}, {"type": "precision_at_3", "value": 89.333}, {"type": "precision_at_5", "value": 87.2}, {"type": "recall_at_1", "value": 0.232}, {"type": "recall_at_10", "value": 2.255}, {"type": "recall_at_100", "value": 14.823}, {"type": "recall_at_1000", "value": 49.456}, {"type": "recall_at_3", "value": 0.718}, {"type": "recall_at_5", "value": 1.175}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB Touche2020", "type": "webis-touche2020", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 2.547}, {"type": "map_at_10", "value": 11.375}, {"type": "map_at_100", "value": 18.194}, {"type": "map_at_1000", "value": 19.749}, {"type": "map_at_3", "value": 5.825}, {"type": "map_at_5", "value": 8.581}, {"type": "mrr_at_1", "value": 32.653}, {"type": "mrr_at_10", "value": 51.32}, {"type": "mrr_at_100", "value": 51.747}, {"type": "mrr_at_1000", "value": 51.747}, {"type": "mrr_at_3", "value": 47.278999999999996}, {"type": "mrr_at_5", "value": 48.605}, {"type": "ndcg_at_1", "value": 29.592000000000002}, {"type": "ndcg_at_10", "value": 28.151}, {"type": "ndcg_at_100", "value": 39.438}, {"type": "ndcg_at_1000", "value": 50.769}, {"type": "ndcg_at_3", "value": 30.758999999999997}, {"type": "ndcg_at_5", "value": 30.366}, {"type": "precision_at_1", "value": 32.653}, {"type": "precision_at_10", "value": 25.714}, {"type": "precision_at_100", "value": 8.041}, {"type": "precision_at_1000", "value": 1.555}, {"type": "precision_at_3", "value": 33.333}, {"type": "precision_at_5", "value": 31.837}, {"type": "recall_at_1", "value": 2.547}, {"type": "recall_at_10", "value": 18.19}, {"type": "recall_at_100", "value": 49.538}, {"type": "recall_at_1000", "value": 83.86}, {"type": "recall_at_3", "value": 7.329}, {"type": "recall_at_5", "value": 11.532}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ToxicConversationsClassification", "type": "mteb/toxic_conversations_50k", "config": "default", "split": "test", "revision": "d7c0de2777da35d6aae2200a62c6e0e5af397c4c"}, "metrics": [{"type": "accuracy", "value": 71.4952}, {"type": "ap", "value": 14.793362635531409}, {"type": "f1", "value": 55.204635551516915}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB TweetSentimentExtractionClassification", "type": "mteb/tweet_sentiment_extraction", "config": "default", "split": "test", "revision": "d604517c81ca91fe16a244d1248fc021f9ecee7a"}, "metrics": [{"type": "accuracy", "value": 61.5365025466893}, {"type": "f1", "value": 61.81742556334845}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB TwentyNewsgroupsClustering", "type": "mteb/twentynewsgroups-clustering", "config": "default", "split": "test", "revision": "6125ec4e24fa026cec8a478383ee943acfbd5449"}, "metrics": [{"type": "v_measure", "value": 49.05531070301185}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterSemEval2015", "type": "mteb/twittersemeval2015-pairclassification", "config": "default", "split": "test", "revision": "70970daeab8776df92f5ea462b6173c0b46fd2d1"}, "metrics": [{"type": "cos_sim_accuracy", "value": 86.51725576682364}, {"type": "cos_sim_ap", "value": 75.2292304265163}, {"type": "cos_sim_f1", "value": 69.54022988505749}, {"type": "cos_sim_precision", "value": 63.65629110039457}, {"type": "cos_sim_recall", "value": 76.62269129287598}, {"type": "dot_accuracy", "value": 86.51725576682364}, {"type": "dot_ap", "value": 75.22922386081054}, {"type": "dot_f1", "value": 69.54022988505749}, {"type": "dot_precision", "value": 63.65629110039457}, {"type": "dot_recall", "value": 76.62269129287598}, {"type": "euclidean_accuracy", "value": 86.51725576682364}, {"type": "euclidean_ap", "value": 75.22925730473472}, {"type": "euclidean_f1", "value": 69.54022988505749}, {"type": "euclidean_precision", "value": 63.65629110039457}, {"type": "euclidean_recall", "value": 76.62269129287598}, {"type": "manhattan_accuracy", "value": 86.52321630804077}, {"type": "manhattan_ap", "value": 75.20608115037336}, {"type": "manhattan_f1", "value": 69.60000000000001}, {"type": "manhattan_precision", "value": 64.37219730941705}, {"type": "manhattan_recall", "value": 75.75197889182058}, {"type": "max_accuracy", "value": 86.52321630804077}, {"type": "max_ap", "value": 75.22925730473472}, {"type": "max_f1", "value": 69.60000000000001}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterURLCorpus", "type": "mteb/twitterurlcorpus-pairclassification", "config": "default", "split": "test", "revision": "8b6510b0b1fa4e4c4f879467980e9be563ec1cdf"}, "metrics": [{"type": "cos_sim_accuracy", "value": 89.34877944657896}, {"type": "cos_sim_ap", "value": 86.71257569277373}, {"type": "cos_sim_f1", "value": 79.10386355986088}, {"type": "cos_sim_precision", "value": 76.91468470434214}, {"type": "cos_sim_recall", "value": 81.4213119802895}, {"type": "dot_accuracy", "value": 89.34877944657896}, {"type": "dot_ap", "value": 86.71257133133368}, {"type": "dot_f1", "value": 79.10386355986088}, {"type": "dot_precision", "value": 76.91468470434214}, {"type": "dot_recall", "value": 81.4213119802895}, {"type": "euclidean_accuracy", "value": 89.34877944657896}, {"type": "euclidean_ap", "value": 86.71257651501476}, {"type": "euclidean_f1", "value": 79.10386355986088}, {"type": "euclidean_precision", "value": 76.91468470434214}, {"type": "euclidean_recall", "value": 81.4213119802895}, {"type": "manhattan_accuracy", "value": 89.35848177901967}, {"type": "manhattan_ap", "value": 86.69330615469126}, {"type": "manhattan_f1", "value": 79.13867741453949}, {"type": "manhattan_precision", "value": 76.78881807647741}, {"type": "manhattan_recall", "value": 81.63689559593472}, {"type": "max_accuracy", "value": 89.35848177901967}, {"type": "max_ap", "value": 86.71257651501476}, {"type": "max_f1", "value": 79.13867741453949}]}]}]}
Muennighoff/SGPT-2.7B-weightedmean-msmarco-specb-bitfit
Muennighoff
sentence-similarity
[ "sentence-transformers", "pytorch", "gpt_neo", "feature-extraction", "sentence-similarity", "mteb", "arxiv:2202.08904", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04
2023-03-27T22:24:48
30
3
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - mteb model-index: - name: SGPT-2.7B-weightedmean-msmarco-specb-bitfit results: - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: mteb/amazon_counterfactual config: en split: test revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996 metrics: - type: accuracy value: 67.56716417910448 - type: ap value: 30.75574629595259 - type: f1 value: 61.805121301858655 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification type: mteb/amazon_polarity config: default split: test revision: 80714f8dcf8cefc218ef4f8c5a966dd83f75a0e1 metrics: - type: accuracy value: 71.439575 - type: ap value: 65.91341330532453 - type: f1 value: 70.90561852619555 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: mteb/amazon_reviews_multi config: en split: test revision: c379a6705fec24a2493fa68e011692605f44e119 metrics: - type: accuracy value: 35.748000000000005 - type: f1 value: 35.48576287186347 - task: type: Retrieval dataset: name: MTEB ArguAna type: arguana config: default split: test revision: 5b3e3697907184a9b77a3c99ee9ea1a9cbb1e4e3 metrics: - type: map_at_1 value: 25.96 - type: map_at_10 value: 41.619 - type: map_at_100 value: 42.673 - type: map_at_1000 value: 42.684 - type: map_at_3 value: 36.569 - type: map_at_5 value: 39.397 - type: mrr_at_1 value: 26.316 - type: mrr_at_10 value: 41.772 - type: mrr_at_100 value: 42.82 - type: mrr_at_1000 value: 42.83 - type: mrr_at_3 value: 36.724000000000004 - type: mrr_at_5 value: 39.528999999999996 - type: ndcg_at_1 value: 25.96 - type: ndcg_at_10 value: 50.491 - type: ndcg_at_100 value: 54.864999999999995 - type: ndcg_at_1000 value: 55.10699999999999 - type: ndcg_at_3 value: 40.053 - type: ndcg_at_5 value: 45.134 - type: precision_at_1 value: 25.96 - type: precision_at_10 value: 7.8950000000000005 - type: precision_at_100 value: 0.9780000000000001 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 16.714000000000002 - type: precision_at_5 value: 12.489 - type: recall_at_1 value: 25.96 - type: recall_at_10 value: 78.947 - type: recall_at_100 value: 97.795 - type: recall_at_1000 value: 99.644 - type: recall_at_3 value: 50.141999999999996 - type: recall_at_5 value: 62.446999999999996 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P type: mteb/arxiv-clustering-p2p config: default split: test revision: 0bbdb47bcbe3a90093699aefeed338a0f28a7ee8 metrics: - type: v_measure value: 44.72125714642202 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S type: mteb/arxiv-clustering-s2s config: default split: test revision: b73bd54100e5abfa6e3a23dcafb46fe4d2438dc3 metrics: - type: v_measure value: 35.081451519142064 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions type: mteb/askubuntudupquestions-reranking config: default split: test revision: 4d853f94cd57d85ec13805aeeac3ae3e5eb4c49c metrics: - type: map value: 59.634661990392054 - type: mrr value: 73.6813525040672 - task: type: STS dataset: name: MTEB BIOSSES type: mteb/biosses-sts config: default split: test revision: 9ee918f184421b6bd48b78f6c714d86546106103 metrics: - type: cos_sim_pearson value: 87.42754550496836 - type: cos_sim_spearman value: 84.84289705838664 - type: euclidean_pearson value: 85.59331970450859 - type: euclidean_spearman value: 85.8525586184271 - type: manhattan_pearson value: 85.41233134466698 - type: manhattan_spearman value: 85.52303303767404 - task: type: Classification dataset: name: MTEB Banking77Classification type: mteb/banking77 config: default split: test revision: 44fa15921b4c889113cc5df03dd4901b49161ab7 metrics: - type: accuracy value: 83.21753246753246 - type: f1 value: 83.15394543120915 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P type: mteb/biorxiv-clustering-p2p config: default split: test revision: 11d0121201d1f1f280e8cc8f3d98fb9c4d9f9c55 metrics: - type: v_measure value: 34.41414219680629 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S type: mteb/biorxiv-clustering-s2s config: default split: test revision: c0fab014e1bcb8d3a5e31b2088972a1e01547dc1 metrics: - type: v_measure value: 30.533275862270028 - task: type: Retrieval dataset: name: MTEB CQADupstackAndroidRetrieval type: BeIR/cqadupstack config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 30.808999999999997 - type: map_at_10 value: 40.617 - type: map_at_100 value: 41.894999999999996 - type: map_at_1000 value: 42.025 - type: map_at_3 value: 37.0 - type: map_at_5 value: 38.993 - type: mrr_at_1 value: 37.482 - type: mrr_at_10 value: 46.497 - type: mrr_at_100 value: 47.144000000000005 - type: mrr_at_1000 value: 47.189 - type: mrr_at_3 value: 43.705 - type: mrr_at_5 value: 45.193 - type: ndcg_at_1 value: 37.482 - type: ndcg_at_10 value: 46.688 - type: ndcg_at_100 value: 51.726000000000006 - type: ndcg_at_1000 value: 53.825 - type: ndcg_at_3 value: 41.242000000000004 - type: ndcg_at_5 value: 43.657000000000004 - type: precision_at_1 value: 37.482 - type: precision_at_10 value: 8.827 - type: precision_at_100 value: 1.393 - type: precision_at_1000 value: 0.186 - type: precision_at_3 value: 19.361 - type: precision_at_5 value: 14.106 - type: recall_at_1 value: 30.808999999999997 - type: recall_at_10 value: 58.47 - type: recall_at_100 value: 80.51899999999999 - type: recall_at_1000 value: 93.809 - type: recall_at_3 value: 42.462 - type: recall_at_5 value: 49.385 - type: map_at_1 value: 26.962000000000003 - type: map_at_10 value: 36.93 - type: map_at_100 value: 38.102000000000004 - type: map_at_1000 value: 38.22 - type: map_at_3 value: 34.065 - type: map_at_5 value: 35.72 - type: mrr_at_1 value: 33.567 - type: mrr_at_10 value: 42.269 - type: mrr_at_100 value: 42.99 - type: mrr_at_1000 value: 43.033 - type: mrr_at_3 value: 40.064 - type: mrr_at_5 value: 41.258 - type: ndcg_at_1 value: 33.567 - type: ndcg_at_10 value: 42.405 - type: ndcg_at_100 value: 46.847 - type: ndcg_at_1000 value: 48.951 - type: ndcg_at_3 value: 38.312000000000005 - type: ndcg_at_5 value: 40.242 - type: precision_at_1 value: 33.567 - type: precision_at_10 value: 8.032 - type: precision_at_100 value: 1.295 - type: precision_at_1000 value: 0.17600000000000002 - type: precision_at_3 value: 18.662 - type: precision_at_5 value: 13.299 - type: recall_at_1 value: 26.962000000000003 - type: recall_at_10 value: 52.489 - type: recall_at_100 value: 71.635 - type: recall_at_1000 value: 85.141 - type: recall_at_3 value: 40.28 - type: recall_at_5 value: 45.757 - type: map_at_1 value: 36.318 - type: map_at_10 value: 47.97 - type: map_at_100 value: 49.003 - type: map_at_1000 value: 49.065999999999995 - type: map_at_3 value: 45.031 - type: map_at_5 value: 46.633 - type: mrr_at_1 value: 41.504999999999995 - type: mrr_at_10 value: 51.431000000000004 - type: mrr_at_100 value: 52.129000000000005 - type: mrr_at_1000 value: 52.161 - type: mrr_at_3 value: 48.934 - type: mrr_at_5 value: 50.42 - type: ndcg_at_1 value: 41.504999999999995 - type: ndcg_at_10 value: 53.676 - type: ndcg_at_100 value: 57.867000000000004 - type: ndcg_at_1000 value: 59.166 - type: ndcg_at_3 value: 48.516 - type: ndcg_at_5 value: 50.983999999999995 - type: precision_at_1 value: 41.504999999999995 - type: precision_at_10 value: 8.608 - type: precision_at_100 value: 1.1560000000000001 - type: precision_at_1000 value: 0.133 - type: precision_at_3 value: 21.462999999999997 - type: precision_at_5 value: 14.721 - type: recall_at_1 value: 36.318 - type: recall_at_10 value: 67.066 - type: recall_at_100 value: 85.34 - type: recall_at_1000 value: 94.491 - type: recall_at_3 value: 53.215999999999994 - type: recall_at_5 value: 59.214 - type: map_at_1 value: 22.167 - type: map_at_10 value: 29.543999999999997 - type: map_at_100 value: 30.579 - type: map_at_1000 value: 30.669999999999998 - type: map_at_3 value: 26.982 - type: map_at_5 value: 28.474 - type: mrr_at_1 value: 24.068 - type: mrr_at_10 value: 31.237 - type: mrr_at_100 value: 32.222 - type: mrr_at_1000 value: 32.292 - type: mrr_at_3 value: 28.776000000000003 - type: mrr_at_5 value: 30.233999999999998 - type: ndcg_at_1 value: 24.068 - type: ndcg_at_10 value: 33.973 - type: ndcg_at_100 value: 39.135 - type: ndcg_at_1000 value: 41.443999999999996 - type: ndcg_at_3 value: 29.018 - type: ndcg_at_5 value: 31.558999999999997 - type: precision_at_1 value: 24.068 - type: precision_at_10 value: 5.299 - type: precision_at_100 value: 0.823 - type: precision_at_1000 value: 0.106 - type: precision_at_3 value: 12.166 - type: precision_at_5 value: 8.767999999999999 - type: recall_at_1 value: 22.167 - type: recall_at_10 value: 46.115 - type: recall_at_100 value: 69.867 - type: recall_at_1000 value: 87.234 - type: recall_at_3 value: 32.798 - type: recall_at_5 value: 38.951 - type: map_at_1 value: 12.033000000000001 - type: map_at_10 value: 19.314 - type: map_at_100 value: 20.562 - type: map_at_1000 value: 20.695 - type: map_at_3 value: 16.946 - type: map_at_5 value: 18.076999999999998 - type: mrr_at_1 value: 14.801 - type: mrr_at_10 value: 22.74 - type: mrr_at_100 value: 23.876 - type: mrr_at_1000 value: 23.949 - type: mrr_at_3 value: 20.211000000000002 - type: mrr_at_5 value: 21.573 - type: ndcg_at_1 value: 14.801 - type: ndcg_at_10 value: 24.038 - type: ndcg_at_100 value: 30.186 - type: ndcg_at_1000 value: 33.321 - type: ndcg_at_3 value: 19.431 - type: ndcg_at_5 value: 21.34 - type: precision_at_1 value: 14.801 - type: precision_at_10 value: 4.776 - type: precision_at_100 value: 0.897 - type: precision_at_1000 value: 0.133 - type: precision_at_3 value: 9.66 - type: precision_at_5 value: 7.239 - type: recall_at_1 value: 12.033000000000001 - type: recall_at_10 value: 35.098 - type: recall_at_100 value: 62.175000000000004 - type: recall_at_1000 value: 84.17099999999999 - type: recall_at_3 value: 22.61 - type: recall_at_5 value: 27.278999999999996 - type: map_at_1 value: 26.651000000000003 - type: map_at_10 value: 36.901 - type: map_at_100 value: 38.249 - type: map_at_1000 value: 38.361000000000004 - type: map_at_3 value: 33.891 - type: map_at_5 value: 35.439 - type: mrr_at_1 value: 32.724 - type: mrr_at_10 value: 42.504 - type: mrr_at_100 value: 43.391999999999996 - type: mrr_at_1000 value: 43.436 - type: mrr_at_3 value: 39.989999999999995 - type: mrr_at_5 value: 41.347 - type: ndcg_at_1 value: 32.724 - type: ndcg_at_10 value: 43.007 - type: ndcg_at_100 value: 48.601 - type: ndcg_at_1000 value: 50.697 - type: ndcg_at_3 value: 37.99 - type: ndcg_at_5 value: 40.083999999999996 - type: precision_at_1 value: 32.724 - type: precision_at_10 value: 7.872999999999999 - type: precision_at_100 value: 1.247 - type: precision_at_1000 value: 0.16199999999999998 - type: precision_at_3 value: 18.062 - type: precision_at_5 value: 12.666 - type: recall_at_1 value: 26.651000000000003 - type: recall_at_10 value: 55.674 - type: recall_at_100 value: 78.904 - type: recall_at_1000 value: 92.55799999999999 - type: recall_at_3 value: 41.36 - type: recall_at_5 value: 46.983999999999995 - type: map_at_1 value: 22.589000000000002 - type: map_at_10 value: 32.244 - type: map_at_100 value: 33.46 - type: map_at_1000 value: 33.593 - type: map_at_3 value: 29.21 - type: map_at_5 value: 31.019999999999996 - type: mrr_at_1 value: 28.425 - type: mrr_at_10 value: 37.282 - type: mrr_at_100 value: 38.187 - type: mrr_at_1000 value: 38.248 - type: mrr_at_3 value: 34.684 - type: mrr_at_5 value: 36.123 - type: ndcg_at_1 value: 28.425 - type: ndcg_at_10 value: 37.942 - type: ndcg_at_100 value: 43.443 - type: ndcg_at_1000 value: 45.995999999999995 - type: ndcg_at_3 value: 32.873999999999995 - type: ndcg_at_5 value: 35.325 - type: precision_at_1 value: 28.425 - type: precision_at_10 value: 7.1 - type: precision_at_100 value: 1.166 - type: precision_at_1000 value: 0.158 - type: precision_at_3 value: 16.02 - type: precision_at_5 value: 11.644 - type: recall_at_1 value: 22.589000000000002 - type: recall_at_10 value: 50.03999999999999 - type: recall_at_100 value: 73.973 - type: recall_at_1000 value: 91.128 - type: recall_at_3 value: 35.882999999999996 - type: recall_at_5 value: 42.187999999999995 - type: map_at_1 value: 23.190833333333334 - type: map_at_10 value: 31.504916666666666 - type: map_at_100 value: 32.64908333333334 - type: map_at_1000 value: 32.77075 - type: map_at_3 value: 28.82575 - type: map_at_5 value: 30.2755 - type: mrr_at_1 value: 27.427499999999995 - type: mrr_at_10 value: 35.36483333333334 - type: mrr_at_100 value: 36.23441666666666 - type: mrr_at_1000 value: 36.297583333333336 - type: mrr_at_3 value: 32.97966666666667 - type: mrr_at_5 value: 34.294583333333335 - type: ndcg_at_1 value: 27.427499999999995 - type: ndcg_at_10 value: 36.53358333333333 - type: ndcg_at_100 value: 41.64508333333333 - type: ndcg_at_1000 value: 44.14499999999999 - type: ndcg_at_3 value: 31.88908333333333 - type: ndcg_at_5 value: 33.98433333333333 - type: precision_at_1 value: 27.427499999999995 - type: precision_at_10 value: 6.481083333333333 - type: precision_at_100 value: 1.0610833333333334 - type: precision_at_1000 value: 0.14691666666666667 - type: precision_at_3 value: 14.656749999999999 - type: precision_at_5 value: 10.493583333333332 - type: recall_at_1 value: 23.190833333333334 - type: recall_at_10 value: 47.65175 - type: recall_at_100 value: 70.41016666666667 - type: recall_at_1000 value: 87.82708333333332 - type: recall_at_3 value: 34.637583333333325 - type: recall_at_5 value: 40.05008333333333 - type: map_at_1 value: 20.409 - type: map_at_10 value: 26.794 - type: map_at_100 value: 27.682000000000002 - type: map_at_1000 value: 27.783 - type: map_at_3 value: 24.461 - type: map_at_5 value: 25.668000000000003 - type: mrr_at_1 value: 22.853 - type: mrr_at_10 value: 29.296 - type: mrr_at_100 value: 30.103 - type: mrr_at_1000 value: 30.179000000000002 - type: mrr_at_3 value: 27.173000000000002 - type: mrr_at_5 value: 28.223 - type: ndcg_at_1 value: 22.853 - type: ndcg_at_10 value: 31.007 - type: ndcg_at_100 value: 35.581 - type: ndcg_at_1000 value: 38.147 - type: ndcg_at_3 value: 26.590999999999998 - type: ndcg_at_5 value: 28.43 - type: precision_at_1 value: 22.853 - type: precision_at_10 value: 5.031 - type: precision_at_100 value: 0.7939999999999999 - type: precision_at_1000 value: 0.11 - type: precision_at_3 value: 11.401 - type: precision_at_5 value: 8.16 - type: recall_at_1 value: 20.409 - type: recall_at_10 value: 41.766 - type: recall_at_100 value: 62.964 - type: recall_at_1000 value: 81.682 - type: recall_at_3 value: 29.281000000000002 - type: recall_at_5 value: 33.83 - type: map_at_1 value: 14.549000000000001 - type: map_at_10 value: 20.315 - type: map_at_100 value: 21.301000000000002 - type: map_at_1000 value: 21.425 - type: map_at_3 value: 18.132 - type: map_at_5 value: 19.429 - type: mrr_at_1 value: 17.86 - type: mrr_at_10 value: 23.860999999999997 - type: mrr_at_100 value: 24.737000000000002 - type: mrr_at_1000 value: 24.82 - type: mrr_at_3 value: 21.685 - type: mrr_at_5 value: 23.008 - type: ndcg_at_1 value: 17.86 - type: ndcg_at_10 value: 24.396 - type: ndcg_at_100 value: 29.328 - type: ndcg_at_1000 value: 32.486 - type: ndcg_at_3 value: 20.375 - type: ndcg_at_5 value: 22.411 - type: precision_at_1 value: 17.86 - type: precision_at_10 value: 4.47 - type: precision_at_100 value: 0.8099999999999999 - type: precision_at_1000 value: 0.125 - type: precision_at_3 value: 9.475 - type: precision_at_5 value: 7.170999999999999 - type: recall_at_1 value: 14.549000000000001 - type: recall_at_10 value: 33.365 - type: recall_at_100 value: 55.797 - type: recall_at_1000 value: 78.632 - type: recall_at_3 value: 22.229 - type: recall_at_5 value: 27.339000000000002 - type: map_at_1 value: 23.286 - type: map_at_10 value: 30.728 - type: map_at_100 value: 31.840000000000003 - type: map_at_1000 value: 31.953 - type: map_at_3 value: 28.302 - type: map_at_5 value: 29.615000000000002 - type: mrr_at_1 value: 27.239 - type: mrr_at_10 value: 34.408 - type: mrr_at_100 value: 35.335 - type: mrr_at_1000 value: 35.405 - type: mrr_at_3 value: 32.151999999999994 - type: mrr_at_5 value: 33.355000000000004 - type: ndcg_at_1 value: 27.239 - type: ndcg_at_10 value: 35.324 - type: ndcg_at_100 value: 40.866 - type: ndcg_at_1000 value: 43.584 - type: ndcg_at_3 value: 30.898999999999997 - type: ndcg_at_5 value: 32.812999999999995 - type: precision_at_1 value: 27.239 - type: precision_at_10 value: 5.896 - type: precision_at_100 value: 0.979 - type: precision_at_1000 value: 0.133 - type: precision_at_3 value: 13.713000000000001 - type: precision_at_5 value: 9.683 - type: recall_at_1 value: 23.286 - type: recall_at_10 value: 45.711 - type: recall_at_100 value: 70.611 - type: recall_at_1000 value: 90.029 - type: recall_at_3 value: 33.615 - type: recall_at_5 value: 38.41 - type: map_at_1 value: 23.962 - type: map_at_10 value: 31.942999999999998 - type: map_at_100 value: 33.384 - type: map_at_1000 value: 33.611000000000004 - type: map_at_3 value: 29.243000000000002 - type: map_at_5 value: 30.446 - type: mrr_at_1 value: 28.458 - type: mrr_at_10 value: 36.157000000000004 - type: mrr_at_100 value: 37.092999999999996 - type: mrr_at_1000 value: 37.163000000000004 - type: mrr_at_3 value: 33.86 - type: mrr_at_5 value: 35.086 - type: ndcg_at_1 value: 28.458 - type: ndcg_at_10 value: 37.201 - type: ndcg_at_100 value: 42.591 - type: ndcg_at_1000 value: 45.539 - type: ndcg_at_3 value: 32.889 - type: ndcg_at_5 value: 34.483000000000004 - type: precision_at_1 value: 28.458 - type: precision_at_10 value: 7.332 - type: precision_at_100 value: 1.437 - type: precision_at_1000 value: 0.233 - type: precision_at_3 value: 15.547 - type: precision_at_5 value: 11.146 - type: recall_at_1 value: 23.962 - type: recall_at_10 value: 46.751 - type: recall_at_100 value: 71.626 - type: recall_at_1000 value: 90.93900000000001 - type: recall_at_3 value: 34.138000000000005 - type: recall_at_5 value: 38.673 - type: map_at_1 value: 18.555 - type: map_at_10 value: 24.759 - type: map_at_100 value: 25.732 - type: map_at_1000 value: 25.846999999999998 - type: map_at_3 value: 22.646 - type: map_at_5 value: 23.791999999999998 - type: mrr_at_1 value: 20.148 - type: mrr_at_10 value: 26.695999999999998 - type: mrr_at_100 value: 27.605 - type: mrr_at_1000 value: 27.695999999999998 - type: mrr_at_3 value: 24.522 - type: mrr_at_5 value: 25.715 - type: ndcg_at_1 value: 20.148 - type: ndcg_at_10 value: 28.746 - type: ndcg_at_100 value: 33.57 - type: ndcg_at_1000 value: 36.584 - type: ndcg_at_3 value: 24.532 - type: ndcg_at_5 value: 26.484 - type: precision_at_1 value: 20.148 - type: precision_at_10 value: 4.529 - type: precision_at_100 value: 0.736 - type: precision_at_1000 value: 0.108 - type: precision_at_3 value: 10.351 - type: precision_at_5 value: 7.32 - type: recall_at_1 value: 18.555 - type: recall_at_10 value: 39.275999999999996 - type: recall_at_100 value: 61.511 - type: recall_at_1000 value: 84.111 - type: recall_at_3 value: 27.778999999999996 - type: recall_at_5 value: 32.591 - task: type: Retrieval dataset: name: MTEB ClimateFEVER type: climate-fever config: default split: test revision: 392b78eb68c07badcd7c2cd8f39af108375dfcce metrics: - type: map_at_1 value: 10.366999999999999 - type: map_at_10 value: 18.953999999999997 - type: map_at_100 value: 20.674999999999997 - type: map_at_1000 value: 20.868000000000002 - type: map_at_3 value: 15.486 - type: map_at_5 value: 17.347 - type: mrr_at_1 value: 23.257 - type: mrr_at_10 value: 35.419 - type: mrr_at_100 value: 36.361 - type: mrr_at_1000 value: 36.403 - type: mrr_at_3 value: 31.747999999999998 - type: mrr_at_5 value: 34.077 - type: ndcg_at_1 value: 23.257 - type: ndcg_at_10 value: 27.11 - type: ndcg_at_100 value: 33.981 - type: ndcg_at_1000 value: 37.444 - type: ndcg_at_3 value: 21.471999999999998 - type: ndcg_at_5 value: 23.769000000000002 - type: precision_at_1 value: 23.257 - type: precision_at_10 value: 8.704 - type: precision_at_100 value: 1.606 - type: precision_at_1000 value: 0.22499999999999998 - type: precision_at_3 value: 16.287 - type: precision_at_5 value: 13.068 - type: recall_at_1 value: 10.366999999999999 - type: recall_at_10 value: 33.706 - type: recall_at_100 value: 57.375 - type: recall_at_1000 value: 76.79 - type: recall_at_3 value: 20.18 - type: recall_at_5 value: 26.215 - task: type: Retrieval dataset: name: MTEB DBPedia type: dbpedia-entity config: default split: test revision: f097057d03ed98220bc7309ddb10b71a54d667d6 metrics: - type: map_at_1 value: 8.246 - type: map_at_10 value: 15.979 - type: map_at_100 value: 21.025 - type: map_at_1000 value: 22.189999999999998 - type: map_at_3 value: 11.997 - type: map_at_5 value: 13.697000000000001 - type: mrr_at_1 value: 60.75000000000001 - type: mrr_at_10 value: 68.70100000000001 - type: mrr_at_100 value: 69.1 - type: mrr_at_1000 value: 69.111 - type: mrr_at_3 value: 66.583 - type: mrr_at_5 value: 67.87100000000001 - type: ndcg_at_1 value: 49.75 - type: ndcg_at_10 value: 34.702 - type: ndcg_at_100 value: 37.607 - type: ndcg_at_1000 value: 44.322 - type: ndcg_at_3 value: 39.555 - type: ndcg_at_5 value: 36.684 - type: precision_at_1 value: 60.75000000000001 - type: precision_at_10 value: 26.625 - type: precision_at_100 value: 7.969999999999999 - type: precision_at_1000 value: 1.678 - type: precision_at_3 value: 41.833 - type: precision_at_5 value: 34.5 - type: recall_at_1 value: 8.246 - type: recall_at_10 value: 20.968 - type: recall_at_100 value: 42.065000000000005 - type: recall_at_1000 value: 63.671 - type: recall_at_3 value: 13.039000000000001 - type: recall_at_5 value: 16.042 - task: type: Classification dataset: name: MTEB EmotionClassification type: mteb/emotion config: default split: test revision: 829147f8f75a25f005913200eb5ed41fae320aa1 metrics: - type: accuracy value: 49.214999999999996 - type: f1 value: 44.85952451163755 - task: type: Retrieval dataset: name: MTEB FEVER type: fever config: default split: test revision: 1429cf27e393599b8b359b9b72c666f96b2525f9 metrics: - type: map_at_1 value: 56.769000000000005 - type: map_at_10 value: 67.30199999999999 - type: map_at_100 value: 67.692 - type: map_at_1000 value: 67.712 - type: map_at_3 value: 65.346 - type: map_at_5 value: 66.574 - type: mrr_at_1 value: 61.370999999999995 - type: mrr_at_10 value: 71.875 - type: mrr_at_100 value: 72.195 - type: mrr_at_1000 value: 72.206 - type: mrr_at_3 value: 70.04 - type: mrr_at_5 value: 71.224 - type: ndcg_at_1 value: 61.370999999999995 - type: ndcg_at_10 value: 72.731 - type: ndcg_at_100 value: 74.468 - type: ndcg_at_1000 value: 74.91600000000001 - type: ndcg_at_3 value: 69.077 - type: ndcg_at_5 value: 71.111 - type: precision_at_1 value: 61.370999999999995 - type: precision_at_10 value: 9.325999999999999 - type: precision_at_100 value: 1.03 - type: precision_at_1000 value: 0.108 - type: precision_at_3 value: 27.303 - type: precision_at_5 value: 17.525 - type: recall_at_1 value: 56.769000000000005 - type: recall_at_10 value: 85.06 - type: recall_at_100 value: 92.767 - type: recall_at_1000 value: 95.933 - type: recall_at_3 value: 75.131 - type: recall_at_5 value: 80.17 - task: type: Retrieval dataset: name: MTEB FiQA2018 type: fiqa config: default split: test revision: 41b686a7f28c59bcaaa5791efd47c67c8ebe28be metrics: - type: map_at_1 value: 15.753 - type: map_at_10 value: 25.875999999999998 - type: map_at_100 value: 27.415 - type: map_at_1000 value: 27.590999999999998 - type: map_at_3 value: 22.17 - type: map_at_5 value: 24.236 - type: mrr_at_1 value: 31.019000000000002 - type: mrr_at_10 value: 39.977000000000004 - type: mrr_at_100 value: 40.788999999999994 - type: mrr_at_1000 value: 40.832 - type: mrr_at_3 value: 37.088 - type: mrr_at_5 value: 38.655 - type: ndcg_at_1 value: 31.019000000000002 - type: ndcg_at_10 value: 33.286 - type: ndcg_at_100 value: 39.528999999999996 - type: ndcg_at_1000 value: 42.934 - type: ndcg_at_3 value: 29.29 - type: ndcg_at_5 value: 30.615 - type: precision_at_1 value: 31.019000000000002 - type: precision_at_10 value: 9.383 - type: precision_at_100 value: 1.6019999999999999 - type: precision_at_1000 value: 0.22200000000000003 - type: precision_at_3 value: 19.753 - type: precision_at_5 value: 14.815000000000001 - type: recall_at_1 value: 15.753 - type: recall_at_10 value: 40.896 - type: recall_at_100 value: 64.443 - type: recall_at_1000 value: 85.218 - type: recall_at_3 value: 26.526 - type: recall_at_5 value: 32.452999999999996 - task: type: Retrieval dataset: name: MTEB HotpotQA type: hotpotqa config: default split: test revision: 766870b35a1b9ca65e67a0d1913899973551fc6c metrics: - type: map_at_1 value: 32.153999999999996 - type: map_at_10 value: 43.651 - type: map_at_100 value: 44.41 - type: map_at_1000 value: 44.487 - type: map_at_3 value: 41.239 - type: map_at_5 value: 42.659000000000006 - type: mrr_at_1 value: 64.30799999999999 - type: mrr_at_10 value: 71.22500000000001 - type: mrr_at_100 value: 71.57 - type: mrr_at_1000 value: 71.59100000000001 - type: mrr_at_3 value: 69.95 - type: mrr_at_5 value: 70.738 - type: ndcg_at_1 value: 64.30799999999999 - type: ndcg_at_10 value: 52.835 - type: ndcg_at_100 value: 55.840999999999994 - type: ndcg_at_1000 value: 57.484 - type: ndcg_at_3 value: 49.014 - type: ndcg_at_5 value: 51.01599999999999 - type: precision_at_1 value: 64.30799999999999 - type: precision_at_10 value: 10.77 - type: precision_at_100 value: 1.315 - type: precision_at_1000 value: 0.153 - type: precision_at_3 value: 30.223 - type: precision_at_5 value: 19.716 - type: recall_at_1 value: 32.153999999999996 - type: recall_at_10 value: 53.849000000000004 - type: recall_at_100 value: 65.75999999999999 - type: recall_at_1000 value: 76.705 - type: recall_at_3 value: 45.334 - type: recall_at_5 value: 49.291000000000004 - task: type: Classification dataset: name: MTEB ImdbClassification type: mteb/imdb config: default split: test revision: 8d743909f834c38949e8323a8a6ce8721ea6c7f4 metrics: - type: accuracy value: 63.5316 - type: ap value: 58.90084300359825 - type: f1 value: 63.35727889030892 - task: type: Retrieval dataset: name: MTEB MSMARCO type: msmarco config: default split: validation revision: e6838a846e2408f22cf5cc337ebc83e0bcf77849 metrics: - type: map_at_1 value: 20.566000000000003 - type: map_at_10 value: 32.229 - type: map_at_100 value: 33.445 - type: map_at_1000 value: 33.501 - type: map_at_3 value: 28.504 - type: map_at_5 value: 30.681000000000004 - type: mrr_at_1 value: 21.218 - type: mrr_at_10 value: 32.816 - type: mrr_at_100 value: 33.986 - type: mrr_at_1000 value: 34.035 - type: mrr_at_3 value: 29.15 - type: mrr_at_5 value: 31.290000000000003 - type: ndcg_at_1 value: 21.218 - type: ndcg_at_10 value: 38.832 - type: ndcg_at_100 value: 44.743 - type: ndcg_at_1000 value: 46.138 - type: ndcg_at_3 value: 31.232 - type: ndcg_at_5 value: 35.099999999999994 - type: precision_at_1 value: 21.218 - type: precision_at_10 value: 6.186 - type: precision_at_100 value: 0.914 - type: precision_at_1000 value: 0.10300000000000001 - type: precision_at_3 value: 13.314 - type: precision_at_5 value: 9.943 - type: recall_at_1 value: 20.566000000000003 - type: recall_at_10 value: 59.192 - type: recall_at_100 value: 86.626 - type: recall_at_1000 value: 97.283 - type: recall_at_3 value: 38.492 - type: recall_at_5 value: 47.760000000000005 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: mteb/mtop_domain config: en split: test revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3 metrics: - type: accuracy value: 92.56269949840402 - type: f1 value: 92.1020975473988 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: mteb/mtop_intent config: en split: test revision: 6299947a7777084cc2d4b64235bf7190381ce755 metrics: - type: accuracy value: 71.8467852257182 - type: f1 value: 53.652719348592015 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: mteb/amazon_massive_intent config: en split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 69.00806993947546 - type: f1 value: 67.41429618885515 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: mteb/amazon_massive_scenario config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 75.90114324142569 - type: f1 value: 76.25183590651454 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P type: mteb/medrxiv-clustering-p2p config: default split: test revision: dcefc037ef84348e49b0d29109e891c01067226b metrics: - type: v_measure value: 31.350109978273395 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S type: mteb/medrxiv-clustering-s2s config: default split: test revision: 3cd0e71dfbe09d4de0f9e5ecba43e7ce280959dc metrics: - type: v_measure value: 28.768923695767327 - task: type: Reranking dataset: name: MTEB MindSmallReranking type: mteb/mind_small config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 31.716396735210754 - type: mrr value: 32.88970538547634 - task: type: Retrieval dataset: name: MTEB NFCorpus type: nfcorpus config: default split: test revision: 7eb63cc0c1eb59324d709ebed25fcab851fa7610 metrics: - type: map_at_1 value: 5.604 - type: map_at_10 value: 12.379999999999999 - type: map_at_100 value: 15.791 - type: map_at_1000 value: 17.327 - type: map_at_3 value: 9.15 - type: map_at_5 value: 10.599 - type: mrr_at_1 value: 45.201 - type: mrr_at_10 value: 53.374 - type: mrr_at_100 value: 54.089 - type: mrr_at_1000 value: 54.123 - type: mrr_at_3 value: 51.44499999999999 - type: mrr_at_5 value: 52.59 - type: ndcg_at_1 value: 42.879 - type: ndcg_at_10 value: 33.891 - type: ndcg_at_100 value: 31.391999999999996 - type: ndcg_at_1000 value: 40.36 - type: ndcg_at_3 value: 39.076 - type: ndcg_at_5 value: 37.047000000000004 - type: precision_at_1 value: 44.582 - type: precision_at_10 value: 25.294 - type: precision_at_100 value: 8.285 - type: precision_at_1000 value: 2.1479999999999997 - type: precision_at_3 value: 36.120000000000005 - type: precision_at_5 value: 31.95 - type: recall_at_1 value: 5.604 - type: recall_at_10 value: 16.239 - type: recall_at_100 value: 32.16 - type: recall_at_1000 value: 64.513 - type: recall_at_3 value: 10.406 - type: recall_at_5 value: 12.684999999999999 - task: type: Retrieval dataset: name: MTEB NQ type: nq config: default split: test revision: 6062aefc120bfe8ece5897809fb2e53bfe0d128c metrics: - type: map_at_1 value: 25.881 - type: map_at_10 value: 39.501 - type: map_at_100 value: 40.615 - type: map_at_1000 value: 40.661 - type: map_at_3 value: 35.559000000000005 - type: map_at_5 value: 37.773 - type: mrr_at_1 value: 29.229 - type: mrr_at_10 value: 41.955999999999996 - type: mrr_at_100 value: 42.86 - type: mrr_at_1000 value: 42.893 - type: mrr_at_3 value: 38.562000000000005 - type: mrr_at_5 value: 40.542 - type: ndcg_at_1 value: 29.2 - type: ndcg_at_10 value: 46.703 - type: ndcg_at_100 value: 51.644 - type: ndcg_at_1000 value: 52.771 - type: ndcg_at_3 value: 39.141999999999996 - type: ndcg_at_5 value: 42.892 - type: precision_at_1 value: 29.2 - type: precision_at_10 value: 7.920000000000001 - type: precision_at_100 value: 1.0659999999999998 - type: precision_at_1000 value: 0.117 - type: precision_at_3 value: 18.105 - type: precision_at_5 value: 13.036 - type: recall_at_1 value: 25.881 - type: recall_at_10 value: 66.266 - type: recall_at_100 value: 88.116 - type: recall_at_1000 value: 96.58200000000001 - type: recall_at_3 value: 46.526 - type: recall_at_5 value: 55.154 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval type: quora config: default split: test revision: 6205996560df11e3a3da9ab4f926788fc30a7db4 metrics: - type: map_at_1 value: 67.553 - type: map_at_10 value: 81.34 - type: map_at_100 value: 82.002 - type: map_at_1000 value: 82.027 - type: map_at_3 value: 78.281 - type: map_at_5 value: 80.149 - type: mrr_at_1 value: 77.72 - type: mrr_at_10 value: 84.733 - type: mrr_at_100 value: 84.878 - type: mrr_at_1000 value: 84.879 - type: mrr_at_3 value: 83.587 - type: mrr_at_5 value: 84.32600000000001 - type: ndcg_at_1 value: 77.75 - type: ndcg_at_10 value: 85.603 - type: ndcg_at_100 value: 87.069 - type: ndcg_at_1000 value: 87.25 - type: ndcg_at_3 value: 82.303 - type: ndcg_at_5 value: 84.03699999999999 - type: precision_at_1 value: 77.75 - type: precision_at_10 value: 13.04 - type: precision_at_100 value: 1.5070000000000001 - type: precision_at_1000 value: 0.156 - type: precision_at_3 value: 35.903 - type: precision_at_5 value: 23.738 - type: recall_at_1 value: 67.553 - type: recall_at_10 value: 93.903 - type: recall_at_100 value: 99.062 - type: recall_at_1000 value: 99.935 - type: recall_at_3 value: 84.58099999999999 - type: recall_at_5 value: 89.316 - task: type: Clustering dataset: name: MTEB RedditClustering type: mteb/reddit-clustering config: default split: test revision: b2805658ae38990172679479369a78b86de8c390 metrics: - type: v_measure value: 46.46887711230235 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P type: mteb/reddit-clustering-p2p config: default split: test revision: 385e3cb46b4cfa89021f56c4380204149d0efe33 metrics: - type: v_measure value: 54.166876298246926 - task: type: Retrieval dataset: name: MTEB SCIDOCS type: scidocs config: default split: test revision: 5c59ef3e437a0a9651c8fe6fde943e7dce59fba5 metrics: - type: map_at_1 value: 4.053 - type: map_at_10 value: 9.693999999999999 - type: map_at_100 value: 11.387 - type: map_at_1000 value: 11.654 - type: map_at_3 value: 7.053 - type: map_at_5 value: 8.439 - type: mrr_at_1 value: 19.900000000000002 - type: mrr_at_10 value: 29.359 - type: mrr_at_100 value: 30.484 - type: mrr_at_1000 value: 30.553 - type: mrr_at_3 value: 26.200000000000003 - type: mrr_at_5 value: 28.115000000000002 - type: ndcg_at_1 value: 19.900000000000002 - type: ndcg_at_10 value: 16.575 - type: ndcg_at_100 value: 23.655 - type: ndcg_at_1000 value: 28.853 - type: ndcg_at_3 value: 15.848 - type: ndcg_at_5 value: 14.026 - type: precision_at_1 value: 19.900000000000002 - type: precision_at_10 value: 8.450000000000001 - type: precision_at_100 value: 1.872 - type: precision_at_1000 value: 0.313 - type: precision_at_3 value: 14.667 - type: precision_at_5 value: 12.32 - type: recall_at_1 value: 4.053 - type: recall_at_10 value: 17.169999999999998 - type: recall_at_100 value: 38.025 - type: recall_at_1000 value: 63.571999999999996 - type: recall_at_3 value: 8.903 - type: recall_at_5 value: 12.477 - task: type: STS dataset: name: MTEB SICK-R type: mteb/sickr-sts config: default split: test revision: 20a6d6f312dd54037fe07a32d58e5e168867909d metrics: - type: cos_sim_pearson value: 77.7548748519677 - type: cos_sim_spearman value: 68.19926431966059 - type: euclidean_pearson value: 71.69016204991725 - type: euclidean_spearman value: 66.98099673026834 - type: manhattan_pearson value: 71.62994072488664 - type: manhattan_spearman value: 67.03435950744577 - task: type: STS dataset: name: MTEB STS12 type: mteb/sts12-sts config: default split: test revision: fdf84275bb8ce4b49c971d02e84dd1abc677a50f metrics: - type: cos_sim_pearson value: 75.91051402657887 - type: cos_sim_spearman value: 66.99390786191645 - type: euclidean_pearson value: 71.54128036454578 - type: euclidean_spearman value: 69.25605675649068 - type: manhattan_pearson value: 71.60981030780171 - type: manhattan_spearman value: 69.27513670128046 - task: type: STS dataset: name: MTEB STS13 type: mteb/sts13-sts config: default split: test revision: 1591bfcbe8c69d4bf7fe2a16e2451017832cafb9 metrics: - type: cos_sim_pearson value: 77.23835466417793 - type: cos_sim_spearman value: 77.57623085766706 - type: euclidean_pearson value: 77.5090992200725 - type: euclidean_spearman value: 77.88601688144924 - type: manhattan_pearson value: 77.39045060647423 - type: manhattan_spearman value: 77.77552718279098 - task: type: STS dataset: name: MTEB STS14 type: mteb/sts14-sts config: default split: test revision: e2125984e7df8b7871f6ae9949cf6b6795e7c54b metrics: - type: cos_sim_pearson value: 77.91692485139602 - type: cos_sim_spearman value: 72.78258293483495 - type: euclidean_pearson value: 74.64773017077789 - type: euclidean_spearman value: 71.81662299104619 - type: manhattan_pearson value: 74.71043337995533 - type: manhattan_spearman value: 71.83960860845646 - task: type: STS dataset: name: MTEB STS15 type: mteb/sts15-sts config: default split: test revision: 1cd7298cac12a96a373b6a2f18738bb3e739a9b6 metrics: - type: cos_sim_pearson value: 82.13422113617578 - type: cos_sim_spearman value: 82.61707296911949 - type: euclidean_pearson value: 81.42487480400861 - type: euclidean_spearman value: 82.17970991273835 - type: manhattan_pearson value: 81.41985055477845 - type: manhattan_spearman value: 82.15823204362937 - task: type: STS dataset: name: MTEB STS16 type: mteb/sts16-sts config: default split: test revision: 360a0b2dff98700d09e634a01e1cc1624d3e42cd metrics: - type: cos_sim_pearson value: 79.07989542843826 - type: cos_sim_spearman value: 80.09839524406284 - type: euclidean_pearson value: 76.43186028364195 - type: euclidean_spearman value: 76.76720323266471 - type: manhattan_pearson value: 76.4674747409161 - type: manhattan_spearman value: 76.81797407068667 - task: type: STS dataset: name: MTEB STS17 (en-en) type: mteb/sts17-crosslingual-sts config: en-en split: test revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 metrics: - type: cos_sim_pearson value: 87.0420983224933 - type: cos_sim_spearman value: 87.25017540413702 - type: euclidean_pearson value: 84.56384596473421 - type: euclidean_spearman value: 84.72557417564886 - type: manhattan_pearson value: 84.7329954474549 - type: manhattan_spearman value: 84.75071371008909 - task: type: STS dataset: name: MTEB STS22 (en) type: mteb/sts22-crosslingual-sts config: en split: test revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 metrics: - type: cos_sim_pearson value: 68.47031320016424 - type: cos_sim_spearman value: 68.7486910762485 - type: euclidean_pearson value: 71.30330985913915 - type: euclidean_spearman value: 71.59666258520735 - type: manhattan_pearson value: 71.4423884279027 - type: manhattan_spearman value: 71.67460706861044 - task: type: STS dataset: name: MTEB STSBenchmark type: mteb/stsbenchmark-sts config: default split: test revision: 8913289635987208e6e7c72789e4be2fe94b6abd metrics: - type: cos_sim_pearson value: 80.79514366062675 - type: cos_sim_spearman value: 79.20585637461048 - type: euclidean_pearson value: 78.6591557395699 - type: euclidean_spearman value: 77.86455794285718 - type: manhattan_pearson value: 78.67754806486865 - type: manhattan_spearman value: 77.88178687200732 - task: type: Reranking dataset: name: MTEB SciDocsRR type: mteb/scidocs-reranking config: default split: test revision: 56a6d0140cf6356659e2a7c1413286a774468d44 metrics: - type: map value: 77.71580844366375 - type: mrr value: 93.04215845882513 - task: type: Retrieval dataset: name: MTEB SciFact type: scifact config: default split: test revision: a75ae049398addde9b70f6b268875f5cbce99089 metrics: - type: map_at_1 value: 56.39999999999999 - type: map_at_10 value: 65.701 - type: map_at_100 value: 66.32000000000001 - type: map_at_1000 value: 66.34100000000001 - type: map_at_3 value: 62.641999999999996 - type: map_at_5 value: 64.342 - type: mrr_at_1 value: 58.667 - type: mrr_at_10 value: 66.45299999999999 - type: mrr_at_100 value: 66.967 - type: mrr_at_1000 value: 66.988 - type: mrr_at_3 value: 64.11099999999999 - type: mrr_at_5 value: 65.411 - type: ndcg_at_1 value: 58.667 - type: ndcg_at_10 value: 70.165 - type: ndcg_at_100 value: 72.938 - type: ndcg_at_1000 value: 73.456 - type: ndcg_at_3 value: 64.79 - type: ndcg_at_5 value: 67.28 - type: precision_at_1 value: 58.667 - type: precision_at_10 value: 9.4 - type: precision_at_100 value: 1.087 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 24.889 - type: precision_at_5 value: 16.667 - type: recall_at_1 value: 56.39999999999999 - type: recall_at_10 value: 83.122 - type: recall_at_100 value: 95.667 - type: recall_at_1000 value: 99.667 - type: recall_at_3 value: 68.378 - type: recall_at_5 value: 74.68299999999999 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions type: mteb/sprintduplicatequestions-pairclassification config: default split: test revision: 5a8256d0dff9c4bd3be3ba3e67e4e70173f802ea metrics: - type: cos_sim_accuracy value: 99.76831683168317 - type: cos_sim_ap value: 93.47124923047998 - type: cos_sim_f1 value: 88.06122448979592 - type: cos_sim_precision value: 89.89583333333333 - type: cos_sim_recall value: 86.3 - type: dot_accuracy value: 99.57326732673268 - type: dot_ap value: 84.06577868167207 - type: dot_f1 value: 77.82629791363416 - type: dot_precision value: 75.58906691800189 - type: dot_recall value: 80.2 - type: euclidean_accuracy value: 99.74257425742574 - type: euclidean_ap value: 92.1904681653555 - type: euclidean_f1 value: 86.74821610601427 - type: euclidean_precision value: 88.46153846153845 - type: euclidean_recall value: 85.1 - type: manhattan_accuracy value: 99.74554455445545 - type: manhattan_ap value: 92.4337790809948 - type: manhattan_f1 value: 86.86765457332653 - type: manhattan_precision value: 88.81922675026124 - type: manhattan_recall value: 85.0 - type: max_accuracy value: 99.76831683168317 - type: max_ap value: 93.47124923047998 - type: max_f1 value: 88.06122448979592 - task: type: Clustering dataset: name: MTEB StackExchangeClustering type: mteb/stackexchange-clustering config: default split: test revision: 70a89468f6dccacc6aa2b12a6eac54e74328f235 metrics: - type: v_measure value: 59.194098673976484 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P type: mteb/stackexchange-clustering-p2p config: default split: test revision: d88009ab563dd0b16cfaf4436abaf97fa3550cf0 metrics: - type: v_measure value: 32.5744032578115 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions type: mteb/stackoverflowdupquestions-reranking config: default split: test revision: ef807ea29a75ec4f91b50fd4191cb4ee4589a9f9 metrics: - type: map value: 49.61186384154483 - type: mrr value: 50.55424253034547 - task: type: Summarization dataset: name: MTEB SummEval type: mteb/summeval config: default split: test revision: 8753c2788d36c01fc6f05d03fe3f7268d63f9122 metrics: - type: cos_sim_pearson value: 30.027210161713946 - type: cos_sim_spearman value: 31.030178065751734 - type: dot_pearson value: 30.09179785685587 - type: dot_spearman value: 30.408303252207812 - task: type: Retrieval dataset: name: MTEB TRECCOVID type: trec-covid config: default split: test revision: 2c8041b2c07a79b6f7ba8fe6acc72e5d9f92d217 metrics: - type: map_at_1 value: 0.22300000000000003 - type: map_at_10 value: 1.762 - type: map_at_100 value: 9.984 - type: map_at_1000 value: 24.265 - type: map_at_3 value: 0.631 - type: map_at_5 value: 0.9950000000000001 - type: mrr_at_1 value: 88.0 - type: mrr_at_10 value: 92.833 - type: mrr_at_100 value: 92.833 - type: mrr_at_1000 value: 92.833 - type: mrr_at_3 value: 92.333 - type: mrr_at_5 value: 92.833 - type: ndcg_at_1 value: 83.0 - type: ndcg_at_10 value: 75.17 - type: ndcg_at_100 value: 55.432 - type: ndcg_at_1000 value: 49.482 - type: ndcg_at_3 value: 82.184 - type: ndcg_at_5 value: 79.712 - type: precision_at_1 value: 88.0 - type: precision_at_10 value: 78.60000000000001 - type: precision_at_100 value: 56.56 - type: precision_at_1000 value: 22.334 - type: precision_at_3 value: 86.667 - type: precision_at_5 value: 83.6 - type: recall_at_1 value: 0.22300000000000003 - type: recall_at_10 value: 1.9879999999999998 - type: recall_at_100 value: 13.300999999999998 - type: recall_at_1000 value: 46.587 - type: recall_at_3 value: 0.6629999999999999 - type: recall_at_5 value: 1.079 - task: type: Retrieval dataset: name: MTEB Touche2020 type: webis-touche2020 config: default split: test revision: 527b7d77e16e343303e68cb6af11d6e18b9f7b3b metrics: - type: map_at_1 value: 3.047 - type: map_at_10 value: 8.792 - type: map_at_100 value: 14.631 - type: map_at_1000 value: 16.127 - type: map_at_3 value: 4.673 - type: map_at_5 value: 5.897 - type: mrr_at_1 value: 38.775999999999996 - type: mrr_at_10 value: 49.271 - type: mrr_at_100 value: 50.181 - type: mrr_at_1000 value: 50.2 - type: mrr_at_3 value: 44.558 - type: mrr_at_5 value: 47.925000000000004 - type: ndcg_at_1 value: 35.714 - type: ndcg_at_10 value: 23.44 - type: ndcg_at_100 value: 35.345 - type: ndcg_at_1000 value: 46.495 - type: ndcg_at_3 value: 26.146 - type: ndcg_at_5 value: 24.878 - type: precision_at_1 value: 38.775999999999996 - type: precision_at_10 value: 20.816000000000003 - type: precision_at_100 value: 7.428999999999999 - type: precision_at_1000 value: 1.494 - type: precision_at_3 value: 25.85 - type: precision_at_5 value: 24.082 - type: recall_at_1 value: 3.047 - type: recall_at_10 value: 14.975 - type: recall_at_100 value: 45.943 - type: recall_at_1000 value: 80.31099999999999 - type: recall_at_3 value: 5.478000000000001 - type: recall_at_5 value: 8.294 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification type: mteb/toxic_conversations_50k config: default split: test revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de metrics: - type: accuracy value: 68.84080000000002 - type: ap value: 13.135219251019848 - type: f1 value: 52.849999421995506 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification type: mteb/tweet_sentiment_extraction config: default split: test revision: 62146448f05be9e52a36b8ee9936447ea787eede metrics: - type: accuracy value: 56.68647425014149 - type: f1 value: 56.97981427365949 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering type: mteb/twentynewsgroups-clustering config: default split: test revision: 091a54f9a36281ce7d6590ec8c75dd485e7e01d4 metrics: - type: v_measure value: 40.8911707239219 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 type: mteb/twittersemeval2015-pairclassification config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 83.04226023722954 - type: cos_sim_ap value: 63.681339908301325 - type: cos_sim_f1 value: 60.349184470480125 - type: cos_sim_precision value: 53.437754271765655 - type: cos_sim_recall value: 69.31398416886545 - type: dot_accuracy value: 81.46271681468677 - type: dot_ap value: 57.78072296265885 - type: dot_f1 value: 56.28769265132901 - type: dot_precision value: 48.7993803253292 - type: dot_recall value: 66.49076517150397 - type: euclidean_accuracy value: 82.16606067830959 - type: euclidean_ap value: 59.974530371203514 - type: euclidean_f1 value: 56.856023506366306 - type: euclidean_precision value: 53.037916857012334 - type: euclidean_recall value: 61.2664907651715 - type: manhattan_accuracy value: 82.16606067830959 - type: manhattan_ap value: 59.98962379571767 - type: manhattan_f1 value: 56.98153158451947 - type: manhattan_precision value: 51.41158989598811 - type: manhattan_recall value: 63.90501319261214 - type: max_accuracy value: 83.04226023722954 - type: max_ap value: 63.681339908301325 - type: max_f1 value: 60.349184470480125 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus type: mteb/twitterurlcorpus-pairclassification config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.56871191834517 - type: cos_sim_ap value: 84.80240716354544 - type: cos_sim_f1 value: 77.07765285922385 - type: cos_sim_precision value: 74.84947406601378 - type: cos_sim_recall value: 79.44256236526024 - type: dot_accuracy value: 86.00923662048356 - type: dot_ap value: 78.6556459012073 - type: dot_f1 value: 72.7583749109052 - type: dot_precision value: 67.72823779193206 - type: dot_recall value: 78.59562673236834 - type: euclidean_accuracy value: 87.84103698529127 - type: euclidean_ap value: 83.50424424952834 - type: euclidean_f1 value: 75.74496544549307 - type: euclidean_precision value: 73.19402556369381 - type: euclidean_recall value: 78.48013550970127 - type: manhattan_accuracy value: 87.9225365777933 - type: manhattan_ap value: 83.49479248597825 - type: manhattan_f1 value: 75.67748162447101 - type: manhattan_precision value: 73.06810035842294 - type: manhattan_recall value: 78.48013550970127 - type: max_accuracy value: 88.56871191834517 - type: max_ap value: 84.80240716354544 - type: max_f1 value: 77.07765285922385 --- # SGPT-2.7B-weightedmean-msmarco-specb-bitfit ## Usage For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt ## Evaluation Results For eval results, refer to the eval folder or our paper: https://arxiv.org/abs/2202.08904 ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 124796 with parameters: ``` {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 7.5e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 300, 'do_lower_case': False}) with Transformer model: GPTNeoModel (1): Pooling({'word_embedding_dimension': 2560, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors ```bibtex @article{muennighoff2022sgpt, title={SGPT: GPT Sentence Embeddings for Semantic Search}, author={Muennighoff, Niklas}, journal={arXiv preprint arXiv:2202.08904}, year={2022} } ```
[ "SUMMARIZATION" ]
[ "BIOSSES", "SCIFACT" ]
Non_BioNLP
# SGPT-2.7B-weightedmean-msmarco-specb-bitfit ## Usage For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt ## Evaluation Results For eval results, refer to the eval folder or our paper: https://arxiv.org/abs/2202.08904 ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 124796 with parameters: ``` {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 7.5e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 300, 'do_lower_case': False}) with Transformer model: GPTNeoModel (1): Pooling({'word_embedding_dimension': 2560, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors ```bibtex @article{muennighoff2022sgpt, title={SGPT: GPT Sentence Embeddings for Semantic Search}, author={Muennighoff, Niklas}, journal={arXiv preprint arXiv:2202.08904}, year={2022} } ```
{"pipeline_tag": "sentence-similarity", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "mteb"], "model-index": [{"name": "SGPT-2.7B-weightedmean-msmarco-specb-bitfit", "results": [{"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonCounterfactualClassification (en)", "type": "mteb/amazon_counterfactual", "config": "en", "split": "test", "revision": "2d8a100785abf0ae21420d2a55b0c56e3e1ea996"}, "metrics": [{"type": "accuracy", "value": 67.56716417910448}, {"type": "ap", "value": 30.75574629595259}, {"type": "f1", "value": 61.805121301858655}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonPolarityClassification", "type": "mteb/amazon_polarity", "config": "default", "split": "test", "revision": "80714f8dcf8cefc218ef4f8c5a966dd83f75a0e1"}, "metrics": [{"type": "accuracy", "value": 71.439575}, {"type": "ap", "value": 65.91341330532453}, {"type": "f1", "value": 70.90561852619555}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonReviewsClassification (en)", "type": "mteb/amazon_reviews_multi", "config": "en", "split": "test", "revision": "c379a6705fec24a2493fa68e011692605f44e119"}, "metrics": [{"type": "accuracy", "value": 35.748000000000005}, {"type": "f1", "value": 35.48576287186347}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ArguAna", "type": "arguana", "config": "default", "split": "test", "revision": "5b3e3697907184a9b77a3c99ee9ea1a9cbb1e4e3"}, "metrics": [{"type": "map_at_1", "value": 25.96}, {"type": "map_at_10", "value": 41.619}, {"type": "map_at_100", "value": 42.673}, {"type": "map_at_1000", "value": 42.684}, {"type": "map_at_3", "value": 36.569}, {"type": "map_at_5", "value": 39.397}, {"type": "mrr_at_1", "value": 26.316}, {"type": "mrr_at_10", "value": 41.772}, {"type": "mrr_at_100", "value": 42.82}, {"type": "mrr_at_1000", "value": 42.83}, {"type": "mrr_at_3", "value": 36.724000000000004}, {"type": "mrr_at_5", "value": 39.528999999999996}, {"type": "ndcg_at_1", "value": 25.96}, {"type": "ndcg_at_10", "value": 50.491}, {"type": "ndcg_at_100", "value": 54.864999999999995}, {"type": "ndcg_at_1000", "value": 55.10699999999999}, {"type": "ndcg_at_3", "value": 40.053}, {"type": "ndcg_at_5", "value": 45.134}, {"type": "precision_at_1", "value": 25.96}, {"type": "precision_at_10", "value": 7.8950000000000005}, {"type": "precision_at_100", "value": 0.9780000000000001}, {"type": "precision_at_1000", "value": 0.1}, {"type": "precision_at_3", "value": 16.714000000000002}, {"type": "precision_at_5", "value": 12.489}, {"type": "recall_at_1", "value": 25.96}, {"type": "recall_at_10", "value": 78.947}, {"type": "recall_at_100", "value": 97.795}, {"type": "recall_at_1000", "value": 99.644}, {"type": "recall_at_3", "value": 50.141999999999996}, {"type": "recall_at_5", "value": 62.446999999999996}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringP2P", "type": "mteb/arxiv-clustering-p2p", "config": "default", "split": "test", "revision": "0bbdb47bcbe3a90093699aefeed338a0f28a7ee8"}, "metrics": [{"type": "v_measure", "value": 44.72125714642202}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringS2S", "type": "mteb/arxiv-clustering-s2s", "config": "default", "split": "test", "revision": "b73bd54100e5abfa6e3a23dcafb46fe4d2438dc3"}, "metrics": [{"type": "v_measure", "value": 35.081451519142064}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB AskUbuntuDupQuestions", "type": "mteb/askubuntudupquestions-reranking", "config": "default", "split": "test", "revision": "4d853f94cd57d85ec13805aeeac3ae3e5eb4c49c"}, "metrics": [{"type": "map", "value": 59.634661990392054}, {"type": "mrr", "value": 73.6813525040672}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB BIOSSES", "type": "mteb/biosses-sts", "config": "default", "split": "test", "revision": "9ee918f184421b6bd48b78f6c714d86546106103"}, "metrics": [{"type": "cos_sim_pearson", "value": 87.42754550496836}, {"type": "cos_sim_spearman", "value": 84.84289705838664}, {"type": "euclidean_pearson", "value": 85.59331970450859}, {"type": "euclidean_spearman", "value": 85.8525586184271}, {"type": "manhattan_pearson", "value": 85.41233134466698}, {"type": "manhattan_spearman", "value": 85.52303303767404}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB Banking77Classification", "type": "mteb/banking77", "config": "default", "split": "test", "revision": "44fa15921b4c889113cc5df03dd4901b49161ab7"}, "metrics": [{"type": "accuracy", "value": 83.21753246753246}, {"type": "f1", "value": 83.15394543120915}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringP2P", "type": "mteb/biorxiv-clustering-p2p", "config": "default", "split": "test", "revision": "11d0121201d1f1f280e8cc8f3d98fb9c4d9f9c55"}, "metrics": [{"type": "v_measure", "value": 34.41414219680629}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringS2S", "type": "mteb/biorxiv-clustering-s2s", "config": "default", "split": "test", "revision": "c0fab014e1bcb8d3a5e31b2088972a1e01547dc1"}, "metrics": [{"type": "v_measure", "value": 30.533275862270028}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackAndroidRetrieval", "type": "BeIR/cqadupstack", "config": "default", "split": "test", "revision": "2b9f5791698b5be7bc5e10535c8690f20043c3db"}, "metrics": [{"type": "map_at_1", "value": 30.808999999999997}, {"type": "map_at_10", "value": 40.617}, {"type": "map_at_100", "value": 41.894999999999996}, {"type": "map_at_1000", "value": 42.025}, {"type": "map_at_3", "value": 37.0}, {"type": "map_at_5", "value": 38.993}, {"type": "mrr_at_1", "value": 37.482}, {"type": "mrr_at_10", "value": 46.497}, {"type": "mrr_at_100", "value": 47.144000000000005}, {"type": "mrr_at_1000", "value": 47.189}, {"type": "mrr_at_3", "value": 43.705}, {"type": "mrr_at_5", "value": 45.193}, {"type": "ndcg_at_1", "value": 37.482}, {"type": "ndcg_at_10", "value": 46.688}, {"type": "ndcg_at_100", "value": 51.726000000000006}, {"type": "ndcg_at_1000", "value": 53.825}, {"type": "ndcg_at_3", "value": 41.242000000000004}, {"type": "ndcg_at_5", "value": 43.657000000000004}, {"type": "precision_at_1", "value": 37.482}, {"type": "precision_at_10", "value": 8.827}, {"type": "precision_at_100", "value": 1.393}, {"type": "precision_at_1000", "value": 0.186}, {"type": "precision_at_3", "value": 19.361}, {"type": "precision_at_5", "value": 14.106}, {"type": "recall_at_1", "value": 30.808999999999997}, {"type": "recall_at_10", "value": 58.47}, {"type": "recall_at_100", "value": 80.51899999999999}, {"type": "recall_at_1000", "value": 93.809}, {"type": "recall_at_3", "value": 42.462}, {"type": "recall_at_5", "value": 49.385}, {"type": "map_at_1", "value": 26.962000000000003}, {"type": "map_at_10", "value": 36.93}, {"type": "map_at_100", "value": 38.102000000000004}, {"type": "map_at_1000", "value": 38.22}, {"type": "map_at_3", "value": 34.065}, {"type": "map_at_5", "value": 35.72}, {"type": "mrr_at_1", "value": 33.567}, {"type": "mrr_at_10", "value": 42.269}, {"type": "mrr_at_100", "value": 42.99}, {"type": "mrr_at_1000", "value": 43.033}, {"type": "mrr_at_3", "value": 40.064}, {"type": "mrr_at_5", "value": 41.258}, {"type": "ndcg_at_1", "value": 33.567}, {"type": "ndcg_at_10", "value": 42.405}, {"type": "ndcg_at_100", "value": 46.847}, {"type": "ndcg_at_1000", "value": 48.951}, {"type": "ndcg_at_3", "value": 38.312000000000005}, {"type": "ndcg_at_5", "value": 40.242}, {"type": "precision_at_1", "value": 33.567}, {"type": "precision_at_10", "value": 8.032}, {"type": "precision_at_100", "value": 1.295}, {"type": "precision_at_1000", "value": 0.17600000000000002}, {"type": "precision_at_3", "value": 18.662}, {"type": "precision_at_5", "value": 13.299}, {"type": "recall_at_1", "value": 26.962000000000003}, {"type": "recall_at_10", "value": 52.489}, {"type": "recall_at_100", "value": 71.635}, {"type": "recall_at_1000", "value": 85.141}, {"type": "recall_at_3", "value": 40.28}, {"type": "recall_at_5", "value": 45.757}, {"type": "map_at_1", "value": 36.318}, {"type": "map_at_10", "value": 47.97}, {"type": "map_at_100", "value": 49.003}, {"type": "map_at_1000", "value": 49.065999999999995}, {"type": "map_at_3", "value": 45.031}, {"type": "map_at_5", "value": 46.633}, {"type": "mrr_at_1", "value": 41.504999999999995}, {"type": "mrr_at_10", "value": 51.431000000000004}, {"type": "mrr_at_100", "value": 52.129000000000005}, {"type": "mrr_at_1000", "value": 52.161}, {"type": "mrr_at_3", "value": 48.934}, {"type": "mrr_at_5", "value": 50.42}, {"type": "ndcg_at_1", "value": 41.504999999999995}, {"type": "ndcg_at_10", "value": 53.676}, {"type": "ndcg_at_100", "value": 57.867000000000004}, {"type": "ndcg_at_1000", "value": 59.166}, {"type": "ndcg_at_3", "value": 48.516}, {"type": "ndcg_at_5", "value": 50.983999999999995}, {"type": "precision_at_1", "value": 41.504999999999995}, {"type": "precision_at_10", "value": 8.608}, {"type": "precision_at_100", "value": 1.1560000000000001}, {"type": "precision_at_1000", "value": 0.133}, {"type": "precision_at_3", "value": 21.462999999999997}, {"type": "precision_at_5", "value": 14.721}, {"type": "recall_at_1", "value": 36.318}, {"type": "recall_at_10", "value": 67.066}, {"type": "recall_at_100", "value": 85.34}, {"type": "recall_at_1000", "value": 94.491}, {"type": "recall_at_3", "value": 53.215999999999994}, {"type": "recall_at_5", "value": 59.214}, {"type": "map_at_1", "value": 22.167}, {"type": "map_at_10", "value": 29.543999999999997}, {"type": "map_at_100", "value": 30.579}, {"type": "map_at_1000", "value": 30.669999999999998}, {"type": "map_at_3", "value": 26.982}, {"type": "map_at_5", "value": 28.474}, {"type": "mrr_at_1", "value": 24.068}, {"type": "mrr_at_10", "value": 31.237}, {"type": "mrr_at_100", "value": 32.222}, {"type": "mrr_at_1000", "value": 32.292}, {"type": "mrr_at_3", "value": 28.776000000000003}, {"type": "mrr_at_5", "value": 30.233999999999998}, {"type": "ndcg_at_1", "value": 24.068}, {"type": "ndcg_at_10", "value": 33.973}, {"type": "ndcg_at_100", "value": 39.135}, {"type": "ndcg_at_1000", "value": 41.443999999999996}, {"type": "ndcg_at_3", "value": 29.018}, {"type": "ndcg_at_5", "value": 31.558999999999997}, {"type": "precision_at_1", "value": 24.068}, {"type": "precision_at_10", "value": 5.299}, {"type": "precision_at_100", "value": 0.823}, {"type": "precision_at_1000", "value": 0.106}, {"type": "precision_at_3", "value": 12.166}, {"type": "precision_at_5", "value": 8.767999999999999}, {"type": "recall_at_1", "value": 22.167}, {"type": "recall_at_10", "value": 46.115}, {"type": "recall_at_100", "value": 69.867}, {"type": "recall_at_1000", "value": 87.234}, {"type": "recall_at_3", "value": 32.798}, {"type": "recall_at_5", "value": 38.951}, {"type": "map_at_1", "value": 12.033000000000001}, {"type": "map_at_10", "value": 19.314}, {"type": "map_at_100", "value": 20.562}, {"type": "map_at_1000", "value": 20.695}, {"type": "map_at_3", "value": 16.946}, {"type": "map_at_5", "value": 18.076999999999998}, {"type": "mrr_at_1", "value": 14.801}, {"type": "mrr_at_10", "value": 22.74}, {"type": "mrr_at_100", "value": 23.876}, {"type": "mrr_at_1000", "value": 23.949}, {"type": "mrr_at_3", "value": 20.211000000000002}, {"type": "mrr_at_5", "value": 21.573}, {"type": "ndcg_at_1", "value": 14.801}, {"type": "ndcg_at_10", "value": 24.038}, {"type": "ndcg_at_100", "value": 30.186}, {"type": "ndcg_at_1000", "value": 33.321}, {"type": "ndcg_at_3", "value": 19.431}, {"type": "ndcg_at_5", "value": 21.34}, {"type": "precision_at_1", "value": 14.801}, {"type": "precision_at_10", "value": 4.776}, {"type": "precision_at_100", "value": 0.897}, {"type": "precision_at_1000", "value": 0.133}, {"type": "precision_at_3", "value": 9.66}, {"type": "precision_at_5", "value": 7.239}, {"type": "recall_at_1", "value": 12.033000000000001}, {"type": "recall_at_10", "value": 35.098}, {"type": "recall_at_100", "value": 62.175000000000004}, {"type": "recall_at_1000", "value": 84.17099999999999}, {"type": "recall_at_3", "value": 22.61}, {"type": "recall_at_5", "value": 27.278999999999996}, {"type": "map_at_1", "value": 26.651000000000003}, {"type": "map_at_10", "value": 36.901}, {"type": "map_at_100", "value": 38.249}, {"type": "map_at_1000", "value": 38.361000000000004}, {"type": "map_at_3", "value": 33.891}, {"type": "map_at_5", "value": 35.439}, {"type": "mrr_at_1", "value": 32.724}, {"type": "mrr_at_10", "value": 42.504}, {"type": "mrr_at_100", "value": 43.391999999999996}, {"type": "mrr_at_1000", "value": 43.436}, {"type": "mrr_at_3", "value": 39.989999999999995}, {"type": "mrr_at_5", "value": 41.347}, {"type": "ndcg_at_1", "value": 32.724}, {"type": "ndcg_at_10", "value": 43.007}, {"type": "ndcg_at_100", "value": 48.601}, {"type": "ndcg_at_1000", "value": 50.697}, {"type": "ndcg_at_3", "value": 37.99}, {"type": "ndcg_at_5", "value": 40.083999999999996}, {"type": "precision_at_1", "value": 32.724}, {"type": "precision_at_10", "value": 7.872999999999999}, {"type": "precision_at_100", "value": 1.247}, {"type": "precision_at_1000", "value": 0.16199999999999998}, {"type": "precision_at_3", "value": 18.062}, {"type": "precision_at_5", "value": 12.666}, {"type": "recall_at_1", "value": 26.651000000000003}, {"type": "recall_at_10", "value": 55.674}, {"type": "recall_at_100", "value": 78.904}, {"type": "recall_at_1000", "value": 92.55799999999999}, {"type": "recall_at_3", "value": 41.36}, {"type": "recall_at_5", "value": 46.983999999999995}, {"type": "map_at_1", "value": 22.589000000000002}, {"type": "map_at_10", "value": 32.244}, {"type": "map_at_100", "value": 33.46}, {"type": "map_at_1000", "value": 33.593}, {"type": "map_at_3", "value": 29.21}, {"type": "map_at_5", "value": 31.019999999999996}, {"type": "mrr_at_1", "value": 28.425}, {"type": "mrr_at_10", "value": 37.282}, {"type": "mrr_at_100", "value": 38.187}, {"type": "mrr_at_1000", "value": 38.248}, {"type": "mrr_at_3", "value": 34.684}, {"type": "mrr_at_5", "value": 36.123}, {"type": "ndcg_at_1", "value": 28.425}, {"type": "ndcg_at_10", "value": 37.942}, {"type": "ndcg_at_100", "value": 43.443}, {"type": "ndcg_at_1000", "value": 45.995999999999995}, {"type": "ndcg_at_3", "value": 32.873999999999995}, {"type": "ndcg_at_5", "value": 35.325}, {"type": "precision_at_1", "value": 28.425}, {"type": "precision_at_10", "value": 7.1}, {"type": "precision_at_100", "value": 1.166}, {"type": "precision_at_1000", "value": 0.158}, {"type": "precision_at_3", "value": 16.02}, {"type": "precision_at_5", "value": 11.644}, {"type": "recall_at_1", "value": 22.589000000000002}, {"type": "recall_at_10", "value": 50.03999999999999}, {"type": "recall_at_100", "value": 73.973}, {"type": "recall_at_1000", "value": 91.128}, {"type": "recall_at_3", "value": 35.882999999999996}, {"type": "recall_at_5", "value": 42.187999999999995}, {"type": "map_at_1", "value": 23.190833333333334}, {"type": "map_at_10", "value": 31.504916666666666}, {"type": "map_at_100", "value": 32.64908333333334}, {"type": "map_at_1000", "value": 32.77075}, {"type": "map_at_3", "value": 28.82575}, {"type": "map_at_5", "value": 30.2755}, {"type": "mrr_at_1", "value": 27.427499999999995}, {"type": "mrr_at_10", "value": 35.36483333333334}, {"type": "mrr_at_100", "value": 36.23441666666666}, {"type": "mrr_at_1000", "value": 36.297583333333336}, {"type": "mrr_at_3", "value": 32.97966666666667}, {"type": "mrr_at_5", "value": 34.294583333333335}, {"type": "ndcg_at_1", "value": 27.427499999999995}, {"type": "ndcg_at_10", "value": 36.53358333333333}, {"type": "ndcg_at_100", "value": 41.64508333333333}, {"type": "ndcg_at_1000", "value": 44.14499999999999}, {"type": "ndcg_at_3", "value": 31.88908333333333}, {"type": "ndcg_at_5", "value": 33.98433333333333}, {"type": "precision_at_1", "value": 27.427499999999995}, {"type": "precision_at_10", "value": 6.481083333333333}, {"type": "precision_at_100", "value": 1.0610833333333334}, {"type": "precision_at_1000", "value": 0.14691666666666667}, {"type": "precision_at_3", "value": 14.656749999999999}, {"type": "precision_at_5", "value": 10.493583333333332}, {"type": "recall_at_1", "value": 23.190833333333334}, {"type": "recall_at_10", "value": 47.65175}, {"type": "recall_at_100", "value": 70.41016666666667}, {"type": "recall_at_1000", "value": 87.82708333333332}, {"type": "recall_at_3", "value": 34.637583333333325}, {"type": "recall_at_5", "value": 40.05008333333333}, {"type": "map_at_1", "value": 20.409}, {"type": "map_at_10", "value": 26.794}, {"type": "map_at_100", "value": 27.682000000000002}, {"type": "map_at_1000", "value": 27.783}, {"type": "map_at_3", "value": 24.461}, {"type": "map_at_5", "value": 25.668000000000003}, {"type": "mrr_at_1", "value": 22.853}, {"type": "mrr_at_10", "value": 29.296}, {"type": "mrr_at_100", "value": 30.103}, {"type": "mrr_at_1000", "value": 30.179000000000002}, {"type": "mrr_at_3", "value": 27.173000000000002}, {"type": "mrr_at_5", "value": 28.223}, {"type": "ndcg_at_1", "value": 22.853}, {"type": "ndcg_at_10", "value": 31.007}, {"type": "ndcg_at_100", "value": 35.581}, {"type": "ndcg_at_1000", "value": 38.147}, {"type": "ndcg_at_3", "value": 26.590999999999998}, {"type": "ndcg_at_5", "value": 28.43}, {"type": "precision_at_1", "value": 22.853}, {"type": "precision_at_10", "value": 5.031}, {"type": "precision_at_100", "value": 0.7939999999999999}, {"type": "precision_at_1000", "value": 0.11}, {"type": "precision_at_3", "value": 11.401}, {"type": "precision_at_5", "value": 8.16}, {"type": "recall_at_1", "value": 20.409}, {"type": "recall_at_10", "value": 41.766}, {"type": "recall_at_100", "value": 62.964}, {"type": "recall_at_1000", "value": 81.682}, {"type": "recall_at_3", "value": 29.281000000000002}, {"type": "recall_at_5", "value": 33.83}, {"type": "map_at_1", "value": 14.549000000000001}, {"type": "map_at_10", "value": 20.315}, {"type": "map_at_100", "value": 21.301000000000002}, {"type": "map_at_1000", "value": 21.425}, {"type": "map_at_3", "value": 18.132}, {"type": "map_at_5", "value": 19.429}, {"type": "mrr_at_1", "value": 17.86}, {"type": "mrr_at_10", "value": 23.860999999999997}, {"type": "mrr_at_100", "value": 24.737000000000002}, {"type": "mrr_at_1000", "value": 24.82}, {"type": "mrr_at_3", "value": 21.685}, {"type": "mrr_at_5", "value": 23.008}, {"type": "ndcg_at_1", "value": 17.86}, {"type": "ndcg_at_10", "value": 24.396}, {"type": "ndcg_at_100", "value": 29.328}, {"type": "ndcg_at_1000", "value": 32.486}, {"type": "ndcg_at_3", "value": 20.375}, {"type": "ndcg_at_5", "value": 22.411}, {"type": "precision_at_1", "value": 17.86}, {"type": "precision_at_10", "value": 4.47}, {"type": "precision_at_100", "value": 0.8099999999999999}, {"type": "precision_at_1000", "value": 0.125}, {"type": "precision_at_3", "value": 9.475}, {"type": "precision_at_5", "value": 7.170999999999999}, {"type": "recall_at_1", "value": 14.549000000000001}, {"type": "recall_at_10", "value": 33.365}, {"type": "recall_at_100", "value": 55.797}, {"type": "recall_at_1000", "value": 78.632}, {"type": "recall_at_3", "value": 22.229}, {"type": "recall_at_5", "value": 27.339000000000002}, {"type": "map_at_1", "value": 23.286}, {"type": "map_at_10", "value": 30.728}, {"type": "map_at_100", "value": 31.840000000000003}, {"type": "map_at_1000", "value": 31.953}, {"type": "map_at_3", "value": 28.302}, {"type": "map_at_5", "value": 29.615000000000002}, {"type": "mrr_at_1", "value": 27.239}, {"type": "mrr_at_10", "value": 34.408}, {"type": "mrr_at_100", "value": 35.335}, {"type": "mrr_at_1000", "value": 35.405}, {"type": "mrr_at_3", "value": 32.151999999999994}, {"type": "mrr_at_5", "value": 33.355000000000004}, {"type": "ndcg_at_1", "value": 27.239}, {"type": "ndcg_at_10", "value": 35.324}, {"type": "ndcg_at_100", "value": 40.866}, {"type": "ndcg_at_1000", "value": 43.584}, {"type": "ndcg_at_3", "value": 30.898999999999997}, {"type": "ndcg_at_5", "value": 32.812999999999995}, {"type": "precision_at_1", "value": 27.239}, {"type": "precision_at_10", "value": 5.896}, {"type": "precision_at_100", "value": 0.979}, {"type": "precision_at_1000", "value": 0.133}, {"type": "precision_at_3", "value": 13.713000000000001}, {"type": "precision_at_5", "value": 9.683}, {"type": "recall_at_1", "value": 23.286}, {"type": "recall_at_10", "value": 45.711}, {"type": "recall_at_100", "value": 70.611}, {"type": "recall_at_1000", "value": 90.029}, {"type": "recall_at_3", "value": 33.615}, {"type": "recall_at_5", "value": 38.41}, {"type": "map_at_1", "value": 23.962}, {"type": "map_at_10", "value": 31.942999999999998}, {"type": "map_at_100", "value": 33.384}, {"type": "map_at_1000", "value": 33.611000000000004}, {"type": "map_at_3", "value": 29.243000000000002}, {"type": "map_at_5", "value": 30.446}, {"type": "mrr_at_1", "value": 28.458}, {"type": "mrr_at_10", "value": 36.157000000000004}, {"type": "mrr_at_100", "value": 37.092999999999996}, {"type": "mrr_at_1000", "value": 37.163000000000004}, {"type": "mrr_at_3", "value": 33.86}, {"type": "mrr_at_5", "value": 35.086}, {"type": "ndcg_at_1", "value": 28.458}, {"type": "ndcg_at_10", "value": 37.201}, {"type": "ndcg_at_100", "value": 42.591}, {"type": "ndcg_at_1000", "value": 45.539}, {"type": "ndcg_at_3", "value": 32.889}, {"type": "ndcg_at_5", "value": 34.483000000000004}, {"type": "precision_at_1", "value": 28.458}, {"type": "precision_at_10", "value": 7.332}, {"type": "precision_at_100", "value": 1.437}, {"type": "precision_at_1000", "value": 0.233}, {"type": "precision_at_3", "value": 15.547}, {"type": "precision_at_5", "value": 11.146}, {"type": "recall_at_1", "value": 23.962}, {"type": "recall_at_10", "value": 46.751}, {"type": "recall_at_100", "value": 71.626}, {"type": "recall_at_1000", "value": 90.93900000000001}, {"type": "recall_at_3", "value": 34.138000000000005}, {"type": "recall_at_5", "value": 38.673}, {"type": "map_at_1", "value": 18.555}, {"type": "map_at_10", "value": 24.759}, {"type": "map_at_100", "value": 25.732}, {"type": "map_at_1000", "value": 25.846999999999998}, {"type": "map_at_3", "value": 22.646}, {"type": "map_at_5", "value": 23.791999999999998}, {"type": "mrr_at_1", "value": 20.148}, {"type": "mrr_at_10", "value": 26.695999999999998}, {"type": "mrr_at_100", "value": 27.605}, {"type": "mrr_at_1000", "value": 27.695999999999998}, {"type": "mrr_at_3", "value": 24.522}, {"type": "mrr_at_5", "value": 25.715}, {"type": "ndcg_at_1", "value": 20.148}, {"type": "ndcg_at_10", "value": 28.746}, {"type": "ndcg_at_100", "value": 33.57}, {"type": "ndcg_at_1000", "value": 36.584}, {"type": "ndcg_at_3", "value": 24.532}, {"type": "ndcg_at_5", "value": 26.484}, {"type": "precision_at_1", "value": 20.148}, {"type": "precision_at_10", "value": 4.529}, {"type": "precision_at_100", "value": 0.736}, {"type": "precision_at_1000", "value": 0.108}, {"type": "precision_at_3", "value": 10.351}, {"type": "precision_at_5", "value": 7.32}, {"type": "recall_at_1", "value": 18.555}, {"type": "recall_at_10", "value": 39.275999999999996}, {"type": "recall_at_100", "value": 61.511}, {"type": "recall_at_1000", "value": 84.111}, {"type": "recall_at_3", "value": 27.778999999999996}, {"type": "recall_at_5", "value": 32.591}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ClimateFEVER", "type": "climate-fever", "config": "default", "split": "test", "revision": "392b78eb68c07badcd7c2cd8f39af108375dfcce"}, "metrics": [{"type": "map_at_1", "value": 10.366999999999999}, {"type": "map_at_10", "value": 18.953999999999997}, {"type": "map_at_100", "value": 20.674999999999997}, {"type": "map_at_1000", "value": 20.868000000000002}, {"type": "map_at_3", "value": 15.486}, {"type": "map_at_5", "value": 17.347}, {"type": "mrr_at_1", "value": 23.257}, {"type": "mrr_at_10", "value": 35.419}, {"type": "mrr_at_100", "value": 36.361}, {"type": "mrr_at_1000", "value": 36.403}, {"type": "mrr_at_3", "value": 31.747999999999998}, {"type": "mrr_at_5", "value": 34.077}, {"type": "ndcg_at_1", "value": 23.257}, {"type": "ndcg_at_10", "value": 27.11}, {"type": "ndcg_at_100", "value": 33.981}, {"type": "ndcg_at_1000", "value": 37.444}, {"type": "ndcg_at_3", "value": 21.471999999999998}, {"type": "ndcg_at_5", "value": 23.769000000000002}, {"type": "precision_at_1", "value": 23.257}, {"type": "precision_at_10", "value": 8.704}, {"type": "precision_at_100", "value": 1.606}, {"type": "precision_at_1000", "value": 0.22499999999999998}, {"type": "precision_at_3", "value": 16.287}, {"type": "precision_at_5", "value": 13.068}, {"type": "recall_at_1", "value": 10.366999999999999}, {"type": "recall_at_10", "value": 33.706}, {"type": "recall_at_100", "value": 57.375}, {"type": "recall_at_1000", "value": 76.79}, {"type": "recall_at_3", "value": 20.18}, {"type": "recall_at_5", "value": 26.215}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB DBPedia", "type": "dbpedia-entity", "config": "default", "split": "test", "revision": "f097057d03ed98220bc7309ddb10b71a54d667d6"}, "metrics": [{"type": "map_at_1", "value": 8.246}, {"type": "map_at_10", "value": 15.979}, {"type": "map_at_100", "value": 21.025}, {"type": "map_at_1000", "value": 22.189999999999998}, {"type": "map_at_3", "value": 11.997}, {"type": "map_at_5", "value": 13.697000000000001}, {"type": "mrr_at_1", "value": 60.75000000000001}, {"type": "mrr_at_10", "value": 68.70100000000001}, {"type": "mrr_at_100", "value": 69.1}, {"type": "mrr_at_1000", "value": 69.111}, {"type": "mrr_at_3", "value": 66.583}, {"type": "mrr_at_5", "value": 67.87100000000001}, {"type": "ndcg_at_1", "value": 49.75}, {"type": "ndcg_at_10", "value": 34.702}, {"type": "ndcg_at_100", "value": 37.607}, {"type": "ndcg_at_1000", "value": 44.322}, {"type": "ndcg_at_3", "value": 39.555}, {"type": "ndcg_at_5", "value": 36.684}, {"type": "precision_at_1", "value": 60.75000000000001}, {"type": "precision_at_10", "value": 26.625}, {"type": "precision_at_100", "value": 7.969999999999999}, {"type": "precision_at_1000", "value": 1.678}, {"type": "precision_at_3", "value": 41.833}, {"type": "precision_at_5", "value": 34.5}, {"type": "recall_at_1", "value": 8.246}, {"type": "recall_at_10", "value": 20.968}, {"type": "recall_at_100", "value": 42.065000000000005}, {"type": "recall_at_1000", "value": 63.671}, {"type": "recall_at_3", "value": 13.039000000000001}, {"type": "recall_at_5", "value": 16.042}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB EmotionClassification", "type": "mteb/emotion", "config": "default", "split": "test", "revision": "829147f8f75a25f005913200eb5ed41fae320aa1"}, "metrics": [{"type": "accuracy", "value": 49.214999999999996}, {"type": "f1", "value": 44.85952451163755}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB FEVER", "type": "fever", "config": "default", "split": "test", "revision": "1429cf27e393599b8b359b9b72c666f96b2525f9"}, "metrics": [{"type": "map_at_1", "value": 56.769000000000005}, {"type": "map_at_10", "value": 67.30199999999999}, {"type": "map_at_100", "value": 67.692}, {"type": "map_at_1000", "value": 67.712}, {"type": "map_at_3", "value": 65.346}, {"type": "map_at_5", "value": 66.574}, {"type": "mrr_at_1", "value": 61.370999999999995}, {"type": "mrr_at_10", "value": 71.875}, {"type": "mrr_at_100", "value": 72.195}, {"type": "mrr_at_1000", "value": 72.206}, {"type": "mrr_at_3", "value": 70.04}, {"type": "mrr_at_5", "value": 71.224}, {"type": "ndcg_at_1", "value": 61.370999999999995}, {"type": "ndcg_at_10", "value": 72.731}, {"type": "ndcg_at_100", "value": 74.468}, {"type": "ndcg_at_1000", "value": 74.91600000000001}, {"type": "ndcg_at_3", "value": 69.077}, {"type": "ndcg_at_5", "value": 71.111}, {"type": "precision_at_1", "value": 61.370999999999995}, {"type": "precision_at_10", "value": 9.325999999999999}, {"type": "precision_at_100", "value": 1.03}, {"type": "precision_at_1000", "value": 0.108}, {"type": "precision_at_3", "value": 27.303}, {"type": "precision_at_5", "value": 17.525}, {"type": "recall_at_1", "value": 56.769000000000005}, {"type": "recall_at_10", "value": 85.06}, {"type": "recall_at_100", "value": 92.767}, {"type": "recall_at_1000", "value": 95.933}, {"type": "recall_at_3", "value": 75.131}, {"type": "recall_at_5", "value": 80.17}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB FiQA2018", "type": "fiqa", "config": "default", "split": "test", "revision": "41b686a7f28c59bcaaa5791efd47c67c8ebe28be"}, "metrics": [{"type": "map_at_1", "value": 15.753}, {"type": "map_at_10", "value": 25.875999999999998}, {"type": "map_at_100", "value": 27.415}, {"type": "map_at_1000", "value": 27.590999999999998}, {"type": "map_at_3", "value": 22.17}, {"type": "map_at_5", "value": 24.236}, {"type": "mrr_at_1", "value": 31.019000000000002}, {"type": "mrr_at_10", "value": 39.977000000000004}, {"type": "mrr_at_100", "value": 40.788999999999994}, {"type": "mrr_at_1000", "value": 40.832}, {"type": "mrr_at_3", "value": 37.088}, {"type": "mrr_at_5", "value": 38.655}, {"type": "ndcg_at_1", "value": 31.019000000000002}, {"type": "ndcg_at_10", "value": 33.286}, {"type": "ndcg_at_100", "value": 39.528999999999996}, {"type": "ndcg_at_1000", "value": 42.934}, {"type": "ndcg_at_3", "value": 29.29}, {"type": "ndcg_at_5", "value": 30.615}, {"type": "precision_at_1", "value": 31.019000000000002}, {"type": "precision_at_10", "value": 9.383}, {"type": "precision_at_100", "value": 1.6019999999999999}, {"type": "precision_at_1000", "value": 0.22200000000000003}, {"type": "precision_at_3", "value": 19.753}, {"type": "precision_at_5", "value": 14.815000000000001}, {"type": "recall_at_1", "value": 15.753}, {"type": "recall_at_10", "value": 40.896}, {"type": "recall_at_100", "value": 64.443}, {"type": "recall_at_1000", "value": 85.218}, {"type": "recall_at_3", "value": 26.526}, {"type": "recall_at_5", "value": 32.452999999999996}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB HotpotQA", "type": "hotpotqa", "config": "default", "split": "test", "revision": "766870b35a1b9ca65e67a0d1913899973551fc6c"}, "metrics": [{"type": "map_at_1", "value": 32.153999999999996}, {"type": "map_at_10", "value": 43.651}, {"type": "map_at_100", "value": 44.41}, {"type": "map_at_1000", "value": 44.487}, {"type": "map_at_3", "value": 41.239}, {"type": "map_at_5", "value": 42.659000000000006}, {"type": "mrr_at_1", "value": 64.30799999999999}, {"type": "mrr_at_10", "value": 71.22500000000001}, {"type": "mrr_at_100", "value": 71.57}, {"type": "mrr_at_1000", "value": 71.59100000000001}, {"type": "mrr_at_3", "value": 69.95}, {"type": "mrr_at_5", "value": 70.738}, {"type": "ndcg_at_1", "value": 64.30799999999999}, {"type": "ndcg_at_10", "value": 52.835}, {"type": "ndcg_at_100", "value": 55.840999999999994}, {"type": "ndcg_at_1000", "value": 57.484}, {"type": "ndcg_at_3", "value": 49.014}, {"type": "ndcg_at_5", "value": 51.01599999999999}, {"type": "precision_at_1", "value": 64.30799999999999}, {"type": "precision_at_10", "value": 10.77}, {"type": "precision_at_100", "value": 1.315}, {"type": "precision_at_1000", "value": 0.153}, {"type": "precision_at_3", "value": 30.223}, {"type": "precision_at_5", "value": 19.716}, {"type": "recall_at_1", "value": 32.153999999999996}, {"type": "recall_at_10", "value": 53.849000000000004}, {"type": "recall_at_100", "value": 65.75999999999999}, {"type": "recall_at_1000", "value": 76.705}, {"type": "recall_at_3", "value": 45.334}, {"type": "recall_at_5", "value": 49.291000000000004}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ImdbClassification", "type": "mteb/imdb", "config": "default", "split": "test", "revision": "8d743909f834c38949e8323a8a6ce8721ea6c7f4"}, "metrics": [{"type": "accuracy", "value": 63.5316}, {"type": "ap", "value": 58.90084300359825}, {"type": "f1", "value": 63.35727889030892}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB MSMARCO", "type": "msmarco", "config": "default", "split": "validation", "revision": "e6838a846e2408f22cf5cc337ebc83e0bcf77849"}, "metrics": [{"type": "map_at_1", "value": 20.566000000000003}, {"type": "map_at_10", "value": 32.229}, {"type": "map_at_100", "value": 33.445}, {"type": "map_at_1000", "value": 33.501}, {"type": "map_at_3", "value": 28.504}, {"type": "map_at_5", "value": 30.681000000000004}, {"type": "mrr_at_1", "value": 21.218}, {"type": "mrr_at_10", "value": 32.816}, {"type": "mrr_at_100", "value": 33.986}, {"type": "mrr_at_1000", "value": 34.035}, {"type": "mrr_at_3", "value": 29.15}, {"type": "mrr_at_5", "value": 31.290000000000003}, {"type": "ndcg_at_1", "value": 21.218}, {"type": "ndcg_at_10", "value": 38.832}, {"type": "ndcg_at_100", "value": 44.743}, {"type": "ndcg_at_1000", "value": 46.138}, {"type": "ndcg_at_3", "value": 31.232}, {"type": "ndcg_at_5", "value": 35.099999999999994}, {"type": "precision_at_1", "value": 21.218}, {"type": "precision_at_10", "value": 6.186}, {"type": "precision_at_100", "value": 0.914}, {"type": "precision_at_1000", "value": 0.10300000000000001}, {"type": "precision_at_3", "value": 13.314}, {"type": "precision_at_5", "value": 9.943}, {"type": "recall_at_1", "value": 20.566000000000003}, {"type": "recall_at_10", "value": 59.192}, {"type": "recall_at_100", "value": 86.626}, {"type": "recall_at_1000", "value": 97.283}, {"type": "recall_at_3", "value": 38.492}, {"type": "recall_at_5", "value": 47.760000000000005}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPDomainClassification (en)", "type": "mteb/mtop_domain", "config": "en", "split": "test", "revision": "a7e2a951126a26fc8c6a69f835f33a346ba259e3"}, "metrics": [{"type": "accuracy", "value": 92.56269949840402}, {"type": "f1", "value": 92.1020975473988}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPIntentClassification (en)", "type": "mteb/mtop_intent", "config": "en", "split": "test", "revision": "6299947a7777084cc2d4b64235bf7190381ce755"}, "metrics": [{"type": "accuracy", "value": 71.8467852257182}, {"type": "f1", "value": 53.652719348592015}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (en)", "type": "mteb/amazon_massive_intent", "config": "en", "split": "test", "revision": "072a486a144adf7f4479a4a0dddb2152e161e1ea"}, "metrics": [{"type": "accuracy", "value": 69.00806993947546}, {"type": "f1", "value": 67.41429618885515}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (en)", "type": "mteb/amazon_massive_scenario", "config": "en", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 75.90114324142569}, {"type": "f1", "value": 76.25183590651454}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringP2P", "type": "mteb/medrxiv-clustering-p2p", "config": "default", "split": "test", "revision": "dcefc037ef84348e49b0d29109e891c01067226b"}, "metrics": [{"type": "v_measure", "value": 31.350109978273395}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringS2S", "type": "mteb/medrxiv-clustering-s2s", "config": "default", "split": "test", "revision": "3cd0e71dfbe09d4de0f9e5ecba43e7ce280959dc"}, "metrics": [{"type": "v_measure", "value": 28.768923695767327}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB MindSmallReranking", "type": "mteb/mind_small", "config": "default", "split": "test", "revision": "3bdac13927fdc888b903db93b2ffdbd90b295a69"}, "metrics": [{"type": "map", "value": 31.716396735210754}, {"type": "mrr", "value": 32.88970538547634}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB NFCorpus", "type": "nfcorpus", "config": "default", "split": "test", "revision": "7eb63cc0c1eb59324d709ebed25fcab851fa7610"}, "metrics": [{"type": "map_at_1", "value": 5.604}, {"type": "map_at_10", "value": 12.379999999999999}, {"type": "map_at_100", "value": 15.791}, {"type": "map_at_1000", "value": 17.327}, {"type": "map_at_3", "value": 9.15}, {"type": "map_at_5", "value": 10.599}, {"type": "mrr_at_1", "value": 45.201}, {"type": "mrr_at_10", "value": 53.374}, {"type": "mrr_at_100", "value": 54.089}, {"type": "mrr_at_1000", "value": 54.123}, {"type": "mrr_at_3", "value": 51.44499999999999}, {"type": "mrr_at_5", "value": 52.59}, {"type": "ndcg_at_1", "value": 42.879}, {"type": "ndcg_at_10", "value": 33.891}, {"type": "ndcg_at_100", "value": 31.391999999999996}, {"type": "ndcg_at_1000", "value": 40.36}, {"type": "ndcg_at_3", "value": 39.076}, {"type": "ndcg_at_5", "value": 37.047000000000004}, {"type": "precision_at_1", "value": 44.582}, {"type": "precision_at_10", "value": 25.294}, {"type": "precision_at_100", "value": 8.285}, {"type": "precision_at_1000", "value": 2.1479999999999997}, {"type": "precision_at_3", "value": 36.120000000000005}, {"type": "precision_at_5", "value": 31.95}, {"type": "recall_at_1", "value": 5.604}, {"type": "recall_at_10", "value": 16.239}, {"type": "recall_at_100", "value": 32.16}, {"type": "recall_at_1000", "value": 64.513}, {"type": "recall_at_3", "value": 10.406}, {"type": "recall_at_5", "value": 12.684999999999999}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB NQ", "type": "nq", "config": "default", "split": "test", "revision": "6062aefc120bfe8ece5897809fb2e53bfe0d128c"}, "metrics": [{"type": "map_at_1", "value": 25.881}, {"type": "map_at_10", "value": 39.501}, {"type": "map_at_100", "value": 40.615}, {"type": "map_at_1000", "value": 40.661}, {"type": "map_at_3", "value": 35.559000000000005}, {"type": "map_at_5", "value": 37.773}, {"type": "mrr_at_1", "value": 29.229}, {"type": "mrr_at_10", "value": 41.955999999999996}, {"type": "mrr_at_100", "value": 42.86}, {"type": "mrr_at_1000", "value": 42.893}, {"type": "mrr_at_3", "value": 38.562000000000005}, {"type": "mrr_at_5", "value": 40.542}, {"type": "ndcg_at_1", "value": 29.2}, {"type": "ndcg_at_10", "value": 46.703}, {"type": "ndcg_at_100", "value": 51.644}, {"type": "ndcg_at_1000", "value": 52.771}, {"type": "ndcg_at_3", "value": 39.141999999999996}, {"type": "ndcg_at_5", "value": 42.892}, {"type": "precision_at_1", "value": 29.2}, {"type": "precision_at_10", "value": 7.920000000000001}, {"type": "precision_at_100", "value": 1.0659999999999998}, {"type": "precision_at_1000", "value": 0.117}, {"type": "precision_at_3", "value": 18.105}, {"type": "precision_at_5", "value": 13.036}, {"type": "recall_at_1", "value": 25.881}, {"type": "recall_at_10", "value": 66.266}, {"type": "recall_at_100", "value": 88.116}, {"type": "recall_at_1000", "value": 96.58200000000001}, {"type": "recall_at_3", "value": 46.526}, {"type": "recall_at_5", "value": 55.154}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB QuoraRetrieval", "type": "quora", "config": "default", "split": "test", "revision": "6205996560df11e3a3da9ab4f926788fc30a7db4"}, "metrics": [{"type": "map_at_1", "value": 67.553}, {"type": "map_at_10", "value": 81.34}, {"type": "map_at_100", "value": 82.002}, {"type": "map_at_1000", "value": 82.027}, {"type": "map_at_3", "value": 78.281}, {"type": "map_at_5", "value": 80.149}, {"type": "mrr_at_1", "value": 77.72}, {"type": "mrr_at_10", "value": 84.733}, {"type": "mrr_at_100", "value": 84.878}, {"type": "mrr_at_1000", "value": 84.879}, {"type": "mrr_at_3", "value": 83.587}, {"type": "mrr_at_5", "value": 84.32600000000001}, {"type": "ndcg_at_1", "value": 77.75}, {"type": "ndcg_at_10", "value": 85.603}, {"type": "ndcg_at_100", "value": 87.069}, {"type": "ndcg_at_1000", "value": 87.25}, {"type": "ndcg_at_3", "value": 82.303}, {"type": "ndcg_at_5", "value": 84.03699999999999}, {"type": "precision_at_1", "value": 77.75}, {"type": "precision_at_10", "value": 13.04}, {"type": "precision_at_100", "value": 1.5070000000000001}, {"type": "precision_at_1000", "value": 0.156}, {"type": "precision_at_3", "value": 35.903}, {"type": "precision_at_5", "value": 23.738}, {"type": "recall_at_1", "value": 67.553}, {"type": "recall_at_10", "value": 93.903}, {"type": "recall_at_100", "value": 99.062}, {"type": "recall_at_1000", "value": 99.935}, {"type": "recall_at_3", "value": 84.58099999999999}, {"type": "recall_at_5", "value": 89.316}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClustering", "type": "mteb/reddit-clustering", "config": "default", "split": "test", "revision": "b2805658ae38990172679479369a78b86de8c390"}, "metrics": [{"type": "v_measure", "value": 46.46887711230235}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClusteringP2P", "type": "mteb/reddit-clustering-p2p", "config": "default", "split": "test", "revision": "385e3cb46b4cfa89021f56c4380204149d0efe33"}, "metrics": [{"type": "v_measure", "value": 54.166876298246926}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB SCIDOCS", "type": "scidocs", "config": "default", "split": "test", "revision": "5c59ef3e437a0a9651c8fe6fde943e7dce59fba5"}, "metrics": [{"type": "map_at_1", "value": 4.053}, {"type": "map_at_10", "value": 9.693999999999999}, {"type": "map_at_100", "value": 11.387}, {"type": "map_at_1000", "value": 11.654}, {"type": "map_at_3", "value": 7.053}, {"type": "map_at_5", "value": 8.439}, {"type": "mrr_at_1", "value": 19.900000000000002}, {"type": "mrr_at_10", "value": 29.359}, {"type": "mrr_at_100", "value": 30.484}, {"type": "mrr_at_1000", "value": 30.553}, {"type": "mrr_at_3", "value": 26.200000000000003}, {"type": "mrr_at_5", "value": 28.115000000000002}, {"type": "ndcg_at_1", "value": 19.900000000000002}, {"type": "ndcg_at_10", "value": 16.575}, {"type": "ndcg_at_100", "value": 23.655}, {"type": "ndcg_at_1000", "value": 28.853}, {"type": "ndcg_at_3", "value": 15.848}, {"type": "ndcg_at_5", "value": 14.026}, {"type": "precision_at_1", "value": 19.900000000000002}, {"type": "precision_at_10", "value": 8.450000000000001}, {"type": "precision_at_100", "value": 1.872}, {"type": "precision_at_1000", "value": 0.313}, {"type": "precision_at_3", "value": 14.667}, {"type": "precision_at_5", "value": 12.32}, {"type": "recall_at_1", "value": 4.053}, {"type": "recall_at_10", "value": 17.169999999999998}, {"type": "recall_at_100", "value": 38.025}, {"type": "recall_at_1000", "value": 63.571999999999996}, {"type": "recall_at_3", "value": 8.903}, {"type": "recall_at_5", "value": 12.477}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB SICK-R", "type": "mteb/sickr-sts", "config": "default", "split": "test", "revision": "20a6d6f312dd54037fe07a32d58e5e168867909d"}, "metrics": [{"type": "cos_sim_pearson", "value": 77.7548748519677}, {"type": "cos_sim_spearman", "value": 68.19926431966059}, {"type": "euclidean_pearson", "value": 71.69016204991725}, {"type": "euclidean_spearman", "value": 66.98099673026834}, {"type": "manhattan_pearson", "value": 71.62994072488664}, {"type": "manhattan_spearman", "value": 67.03435950744577}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS12", "type": "mteb/sts12-sts", "config": "default", "split": "test", "revision": "fdf84275bb8ce4b49c971d02e84dd1abc677a50f"}, "metrics": [{"type": "cos_sim_pearson", "value": 75.91051402657887}, {"type": "cos_sim_spearman", "value": 66.99390786191645}, {"type": "euclidean_pearson", "value": 71.54128036454578}, {"type": "euclidean_spearman", "value": 69.25605675649068}, {"type": "manhattan_pearson", "value": 71.60981030780171}, {"type": "manhattan_spearman", "value": 69.27513670128046}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS13", "type": "mteb/sts13-sts", "config": "default", "split": "test", "revision": "1591bfcbe8c69d4bf7fe2a16e2451017832cafb9"}, "metrics": [{"type": "cos_sim_pearson", "value": 77.23835466417793}, {"type": "cos_sim_spearman", "value": 77.57623085766706}, {"type": "euclidean_pearson", "value": 77.5090992200725}, {"type": "euclidean_spearman", "value": 77.88601688144924}, {"type": "manhattan_pearson", "value": 77.39045060647423}, {"type": "manhattan_spearman", "value": 77.77552718279098}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS14", "type": "mteb/sts14-sts", "config": "default", "split": "test", "revision": "e2125984e7df8b7871f6ae9949cf6b6795e7c54b"}, "metrics": [{"type": "cos_sim_pearson", "value": 77.91692485139602}, {"type": "cos_sim_spearman", "value": 72.78258293483495}, {"type": "euclidean_pearson", "value": 74.64773017077789}, {"type": "euclidean_spearman", "value": 71.81662299104619}, {"type": "manhattan_pearson", "value": 74.71043337995533}, {"type": "manhattan_spearman", "value": 71.83960860845646}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS15", "type": "mteb/sts15-sts", "config": "default", "split": "test", "revision": "1cd7298cac12a96a373b6a2f18738bb3e739a9b6"}, "metrics": [{"type": "cos_sim_pearson", "value": 82.13422113617578}, {"type": "cos_sim_spearman", "value": 82.61707296911949}, {"type": "euclidean_pearson", "value": 81.42487480400861}, {"type": "euclidean_spearman", "value": 82.17970991273835}, {"type": "manhattan_pearson", "value": 81.41985055477845}, {"type": "manhattan_spearman", "value": 82.15823204362937}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS16", "type": "mteb/sts16-sts", "config": "default", "split": "test", "revision": "360a0b2dff98700d09e634a01e1cc1624d3e42cd"}, "metrics": [{"type": "cos_sim_pearson", "value": 79.07989542843826}, {"type": "cos_sim_spearman", "value": 80.09839524406284}, {"type": "euclidean_pearson", "value": 76.43186028364195}, {"type": "euclidean_spearman", "value": 76.76720323266471}, {"type": "manhattan_pearson", "value": 76.4674747409161}, {"type": "manhattan_spearman", "value": 76.81797407068667}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS17 (en-en)", "type": "mteb/sts17-crosslingual-sts", "config": "en-en", "split": "test", "revision": "9fc37e8c632af1c87a3d23e685d49552a02582a0"}, "metrics": [{"type": "cos_sim_pearson", "value": 87.0420983224933}, {"type": "cos_sim_spearman", "value": 87.25017540413702}, {"type": "euclidean_pearson", "value": 84.56384596473421}, {"type": "euclidean_spearman", "value": 84.72557417564886}, {"type": "manhattan_pearson", "value": 84.7329954474549}, {"type": "manhattan_spearman", "value": 84.75071371008909}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (en)", "type": "mteb/sts22-crosslingual-sts", "config": "en", "split": "test", "revision": "2de6ce8c1921b71a755b262c6b57fef195dd7906"}, "metrics": [{"type": "cos_sim_pearson", "value": 68.47031320016424}, {"type": "cos_sim_spearman", "value": 68.7486910762485}, {"type": "euclidean_pearson", "value": 71.30330985913915}, {"type": "euclidean_spearman", "value": 71.59666258520735}, {"type": "manhattan_pearson", "value": 71.4423884279027}, {"type": "manhattan_spearman", "value": 71.67460706861044}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STSBenchmark", "type": "mteb/stsbenchmark-sts", "config": "default", "split": "test", "revision": "8913289635987208e6e7c72789e4be2fe94b6abd"}, "metrics": [{"type": "cos_sim_pearson", "value": 80.79514366062675}, {"type": "cos_sim_spearman", "value": 79.20585637461048}, {"type": "euclidean_pearson", "value": 78.6591557395699}, {"type": "euclidean_spearman", "value": 77.86455794285718}, {"type": "manhattan_pearson", "value": 78.67754806486865}, {"type": "manhattan_spearman", "value": 77.88178687200732}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB SciDocsRR", "type": "mteb/scidocs-reranking", "config": "default", "split": "test", "revision": "56a6d0140cf6356659e2a7c1413286a774468d44"}, "metrics": [{"type": "map", "value": 77.71580844366375}, {"type": "mrr", "value": 93.04215845882513}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB SciFact", "type": "scifact", "config": "default", "split": "test", "revision": "a75ae049398addde9b70f6b268875f5cbce99089"}, "metrics": [{"type": "map_at_1", "value": 56.39999999999999}, {"type": "map_at_10", "value": 65.701}, {"type": "map_at_100", "value": 66.32000000000001}, {"type": "map_at_1000", "value": 66.34100000000001}, {"type": "map_at_3", "value": 62.641999999999996}, {"type": "map_at_5", "value": 64.342}, {"type": "mrr_at_1", "value": 58.667}, {"type": "mrr_at_10", "value": 66.45299999999999}, {"type": "mrr_at_100", "value": 66.967}, {"type": "mrr_at_1000", "value": 66.988}, {"type": "mrr_at_3", "value": 64.11099999999999}, {"type": "mrr_at_5", "value": 65.411}, {"type": "ndcg_at_1", "value": 58.667}, {"type": "ndcg_at_10", "value": 70.165}, {"type": "ndcg_at_100", "value": 72.938}, {"type": "ndcg_at_1000", "value": 73.456}, {"type": "ndcg_at_3", "value": 64.79}, {"type": "ndcg_at_5", "value": 67.28}, {"type": "precision_at_1", "value": 58.667}, {"type": "precision_at_10", "value": 9.4}, {"type": "precision_at_100", "value": 1.087}, {"type": "precision_at_1000", "value": 0.11299999999999999}, {"type": "precision_at_3", "value": 24.889}, {"type": "precision_at_5", "value": 16.667}, {"type": "recall_at_1", "value": 56.39999999999999}, {"type": "recall_at_10", "value": 83.122}, {"type": "recall_at_100", "value": 95.667}, {"type": "recall_at_1000", "value": 99.667}, {"type": "recall_at_3", "value": 68.378}, {"type": "recall_at_5", "value": 74.68299999999999}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB SprintDuplicateQuestions", "type": "mteb/sprintduplicatequestions-pairclassification", "config": "default", "split": "test", "revision": "5a8256d0dff9c4bd3be3ba3e67e4e70173f802ea"}, "metrics": [{"type": "cos_sim_accuracy", "value": 99.76831683168317}, {"type": "cos_sim_ap", "value": 93.47124923047998}, {"type": "cos_sim_f1", "value": 88.06122448979592}, {"type": "cos_sim_precision", "value": 89.89583333333333}, {"type": "cos_sim_recall", "value": 86.3}, {"type": "dot_accuracy", "value": 99.57326732673268}, {"type": "dot_ap", "value": 84.06577868167207}, {"type": "dot_f1", "value": 77.82629791363416}, {"type": "dot_precision", "value": 75.58906691800189}, {"type": "dot_recall", "value": 80.2}, {"type": "euclidean_accuracy", "value": 99.74257425742574}, {"type": "euclidean_ap", "value": 92.1904681653555}, {"type": "euclidean_f1", "value": 86.74821610601427}, {"type": "euclidean_precision", "value": 88.46153846153845}, {"type": "euclidean_recall", "value": 85.1}, {"type": "manhattan_accuracy", "value": 99.74554455445545}, {"type": "manhattan_ap", "value": 92.4337790809948}, {"type": "manhattan_f1", "value": 86.86765457332653}, {"type": "manhattan_precision", "value": 88.81922675026124}, {"type": "manhattan_recall", "value": 85.0}, {"type": "max_accuracy", "value": 99.76831683168317}, {"type": "max_ap", "value": 93.47124923047998}, {"type": "max_f1", "value": 88.06122448979592}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClustering", "type": "mteb/stackexchange-clustering", "config": "default", "split": "test", "revision": "70a89468f6dccacc6aa2b12a6eac54e74328f235"}, "metrics": [{"type": "v_measure", "value": 59.194098673976484}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClusteringP2P", "type": "mteb/stackexchange-clustering-p2p", "config": "default", "split": "test", "revision": "d88009ab563dd0b16cfaf4436abaf97fa3550cf0"}, "metrics": [{"type": "v_measure", "value": 32.5744032578115}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB StackOverflowDupQuestions", "type": "mteb/stackoverflowdupquestions-reranking", "config": "default", "split": "test", "revision": "ef807ea29a75ec4f91b50fd4191cb4ee4589a9f9"}, "metrics": [{"type": "map", "value": 49.61186384154483}, {"type": "mrr", "value": 50.55424253034547}]}, {"task": {"type": "Summarization"}, "dataset": {"name": "MTEB SummEval", "type": "mteb/summeval", "config": "default", "split": "test", "revision": "8753c2788d36c01fc6f05d03fe3f7268d63f9122"}, "metrics": [{"type": "cos_sim_pearson", "value": 30.027210161713946}, {"type": "cos_sim_spearman", "value": 31.030178065751734}, {"type": "dot_pearson", "value": 30.09179785685587}, {"type": "dot_spearman", "value": 30.408303252207812}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB TRECCOVID", "type": "trec-covid", "config": "default", "split": "test", "revision": "2c8041b2c07a79b6f7ba8fe6acc72e5d9f92d217"}, "metrics": [{"type": "map_at_1", "value": 0.22300000000000003}, {"type": "map_at_10", "value": 1.762}, {"type": "map_at_100", "value": 9.984}, {"type": "map_at_1000", "value": 24.265}, {"type": "map_at_3", "value": 0.631}, {"type": "map_at_5", "value": 0.9950000000000001}, {"type": "mrr_at_1", "value": 88.0}, {"type": "mrr_at_10", "value": 92.833}, {"type": "mrr_at_100", "value": 92.833}, {"type": "mrr_at_1000", "value": 92.833}, {"type": "mrr_at_3", "value": 92.333}, {"type": "mrr_at_5", "value": 92.833}, {"type": "ndcg_at_1", "value": 83.0}, {"type": "ndcg_at_10", "value": 75.17}, {"type": "ndcg_at_100", "value": 55.432}, {"type": "ndcg_at_1000", "value": 49.482}, {"type": "ndcg_at_3", "value": 82.184}, {"type": "ndcg_at_5", "value": 79.712}, {"type": "precision_at_1", "value": 88.0}, {"type": "precision_at_10", "value": 78.60000000000001}, {"type": "precision_at_100", "value": 56.56}, {"type": "precision_at_1000", "value": 22.334}, {"type": "precision_at_3", "value": 86.667}, {"type": "precision_at_5", "value": 83.6}, {"type": "recall_at_1", "value": 0.22300000000000003}, {"type": "recall_at_10", "value": 1.9879999999999998}, {"type": "recall_at_100", "value": 13.300999999999998}, {"type": "recall_at_1000", "value": 46.587}, {"type": "recall_at_3", "value": 0.6629999999999999}, {"type": "recall_at_5", "value": 1.079}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB Touche2020", "type": "webis-touche2020", "config": "default", "split": "test", "revision": "527b7d77e16e343303e68cb6af11d6e18b9f7b3b"}, "metrics": [{"type": "map_at_1", "value": 3.047}, {"type": "map_at_10", "value": 8.792}, {"type": "map_at_100", "value": 14.631}, {"type": "map_at_1000", "value": 16.127}, {"type": "map_at_3", "value": 4.673}, {"type": "map_at_5", "value": 5.897}, {"type": "mrr_at_1", "value": 38.775999999999996}, {"type": "mrr_at_10", "value": 49.271}, {"type": "mrr_at_100", "value": 50.181}, {"type": "mrr_at_1000", "value": 50.2}, {"type": "mrr_at_3", "value": 44.558}, {"type": "mrr_at_5", "value": 47.925000000000004}, {"type": "ndcg_at_1", "value": 35.714}, {"type": "ndcg_at_10", "value": 23.44}, {"type": "ndcg_at_100", "value": 35.345}, {"type": "ndcg_at_1000", "value": 46.495}, {"type": "ndcg_at_3", "value": 26.146}, {"type": "ndcg_at_5", "value": 24.878}, {"type": "precision_at_1", "value": 38.775999999999996}, {"type": "precision_at_10", "value": 20.816000000000003}, {"type": "precision_at_100", "value": 7.428999999999999}, {"type": "precision_at_1000", "value": 1.494}, {"type": "precision_at_3", "value": 25.85}, {"type": "precision_at_5", "value": 24.082}, {"type": "recall_at_1", "value": 3.047}, {"type": "recall_at_10", "value": 14.975}, {"type": "recall_at_100", "value": 45.943}, {"type": "recall_at_1000", "value": 80.31099999999999}, {"type": "recall_at_3", "value": 5.478000000000001}, {"type": "recall_at_5", "value": 8.294}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ToxicConversationsClassification", "type": "mteb/toxic_conversations_50k", "config": "default", "split": "test", "revision": "edfaf9da55d3dd50d43143d90c1ac476895ae6de"}, "metrics": [{"type": "accuracy", "value": 68.84080000000002}, {"type": "ap", "value": 13.135219251019848}, {"type": "f1", "value": 52.849999421995506}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB TweetSentimentExtractionClassification", "type": "mteb/tweet_sentiment_extraction", "config": "default", "split": "test", "revision": "62146448f05be9e52a36b8ee9936447ea787eede"}, "metrics": [{"type": "accuracy", "value": 56.68647425014149}, {"type": "f1", "value": 56.97981427365949}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB TwentyNewsgroupsClustering", "type": "mteb/twentynewsgroups-clustering", "config": "default", "split": "test", "revision": "091a54f9a36281ce7d6590ec8c75dd485e7e01d4"}, "metrics": [{"type": "v_measure", "value": 40.8911707239219}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterSemEval2015", "type": "mteb/twittersemeval2015-pairclassification", "config": "default", "split": "test", "revision": "70970daeab8776df92f5ea462b6173c0b46fd2d1"}, "metrics": [{"type": "cos_sim_accuracy", "value": 83.04226023722954}, {"type": "cos_sim_ap", "value": 63.681339908301325}, {"type": "cos_sim_f1", "value": 60.349184470480125}, {"type": "cos_sim_precision", "value": 53.437754271765655}, {"type": "cos_sim_recall", "value": 69.31398416886545}, {"type": "dot_accuracy", "value": 81.46271681468677}, {"type": "dot_ap", "value": 57.78072296265885}, {"type": "dot_f1", "value": 56.28769265132901}, {"type": "dot_precision", "value": 48.7993803253292}, {"type": "dot_recall", "value": 66.49076517150397}, {"type": "euclidean_accuracy", "value": 82.16606067830959}, {"type": "euclidean_ap", "value": 59.974530371203514}, {"type": "euclidean_f1", "value": 56.856023506366306}, {"type": "euclidean_precision", "value": 53.037916857012334}, {"type": "euclidean_recall", "value": 61.2664907651715}, {"type": "manhattan_accuracy", "value": 82.16606067830959}, {"type": "manhattan_ap", "value": 59.98962379571767}, {"type": "manhattan_f1", "value": 56.98153158451947}, {"type": "manhattan_precision", "value": 51.41158989598811}, {"type": "manhattan_recall", "value": 63.90501319261214}, {"type": "max_accuracy", "value": 83.04226023722954}, {"type": "max_ap", "value": 63.681339908301325}, {"type": "max_f1", "value": 60.349184470480125}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterURLCorpus", "type": "mteb/twitterurlcorpus-pairclassification", "config": "default", "split": "test", "revision": "8b6510b0b1fa4e4c4f879467980e9be563ec1cdf"}, "metrics": [{"type": "cos_sim_accuracy", "value": 88.56871191834517}, {"type": "cos_sim_ap", "value": 84.80240716354544}, {"type": "cos_sim_f1", "value": 77.07765285922385}, {"type": "cos_sim_precision", "value": 74.84947406601378}, {"type": "cos_sim_recall", "value": 79.44256236526024}, {"type": "dot_accuracy", "value": 86.00923662048356}, {"type": "dot_ap", "value": 78.6556459012073}, {"type": "dot_f1", "value": 72.7583749109052}, {"type": "dot_precision", "value": 67.72823779193206}, {"type": "dot_recall", "value": 78.59562673236834}, {"type": "euclidean_accuracy", "value": 87.84103698529127}, {"type": "euclidean_ap", "value": 83.50424424952834}, {"type": "euclidean_f1", "value": 75.74496544549307}, {"type": "euclidean_precision", "value": 73.19402556369381}, {"type": "euclidean_recall", "value": 78.48013550970127}, {"type": "manhattan_accuracy", "value": 87.9225365777933}, {"type": "manhattan_ap", "value": 83.49479248597825}, {"type": "manhattan_f1", "value": 75.67748162447101}, {"type": "manhattan_precision", "value": 73.06810035842294}, {"type": "manhattan_recall", "value": 78.48013550970127}, {"type": "max_accuracy", "value": 88.56871191834517}, {"type": "max_ap", "value": 84.80240716354544}, {"type": "max_f1", "value": 77.07765285922385}]}]}]}
Severian/nomic
Severian
feature-extraction
[ "sentence-transformers", "nomic_bert", "feature-extraction", "sentence-similarity", "mteb", "transformers", "transformers.js", "custom_code", "en", "arxiv:2402.01613", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-08T11:07:27
2024-02-08T11:08:45
9
0
--- language: - en library_name: sentence-transformers license: apache-2.0 pipeline_tag: feature-extraction tags: - feature-extraction - sentence-similarity - mteb - transformers - transformers.js model-index: - name: epoch_0_model results: - task: type: Classification dataset: name: MTEB AmazonCounterfactualClassification (en) type: mteb/amazon_counterfactual config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 76.8507462686567 - type: ap value: 40.592189159090495 - type: f1 value: 71.01634655512476 - task: type: Classification dataset: name: MTEB AmazonPolarityClassification type: mteb/amazon_polarity config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 91.51892500000001 - type: ap value: 88.50346762975335 - type: f1 value: 91.50342077459624 - task: type: Classification dataset: name: MTEB AmazonReviewsClassification (en) type: mteb/amazon_reviews_multi config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 47.364 - type: f1 value: 46.72708080922794 - task: type: Retrieval dataset: name: MTEB ArguAna type: arguana config: default split: test revision: None metrics: - type: map_at_1 value: 25.178 - type: map_at_10 value: 40.244 - type: map_at_100 value: 41.321999999999996 - type: map_at_1000 value: 41.331 - type: map_at_3 value: 35.016999999999996 - type: map_at_5 value: 37.99 - type: mrr_at_1 value: 25.605 - type: mrr_at_10 value: 40.422000000000004 - type: mrr_at_100 value: 41.507 - type: mrr_at_1000 value: 41.516 - type: mrr_at_3 value: 35.23 - type: mrr_at_5 value: 38.15 - type: ndcg_at_1 value: 25.178 - type: ndcg_at_10 value: 49.258 - type: ndcg_at_100 value: 53.776 - type: ndcg_at_1000 value: 53.995000000000005 - type: ndcg_at_3 value: 38.429 - type: ndcg_at_5 value: 43.803 - type: precision_at_1 value: 25.178 - type: precision_at_10 value: 7.831 - type: precision_at_100 value: 0.979 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 16.121 - type: precision_at_5 value: 12.29 - type: recall_at_1 value: 25.178 - type: recall_at_10 value: 78.307 - type: recall_at_100 value: 97.866 - type: recall_at_1000 value: 99.57300000000001 - type: recall_at_3 value: 48.364000000000004 - type: recall_at_5 value: 61.451 - task: type: Clustering dataset: name: MTEB ArxivClusteringP2P type: mteb/arxiv-clustering-p2p config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 45.93034494751465 - task: type: Clustering dataset: name: MTEB ArxivClusteringS2S type: mteb/arxiv-clustering-s2s config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 36.64579480054327 - task: type: Reranking dataset: name: MTEB AskUbuntuDupQuestions type: mteb/askubuntudupquestions-reranking config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 60.601310529222054 - type: mrr value: 75.04484896451656 - task: type: STS dataset: name: MTEB BIOSSES type: mteb/biosses-sts config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 88.57797718095814 - type: cos_sim_spearman value: 86.47064499110101 - type: euclidean_pearson value: 87.4559602783142 - type: euclidean_spearman value: 86.47064499110101 - type: manhattan_pearson value: 87.7232764230245 - type: manhattan_spearman value: 86.91222131777742 - task: type: Classification dataset: name: MTEB Banking77Classification type: mteb/banking77 config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 84.5422077922078 - type: f1 value: 84.47657456950589 - task: type: Clustering dataset: name: MTEB BiorxivClusteringP2P type: mteb/biorxiv-clustering-p2p config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 38.48953561974464 - task: type: Clustering dataset: name: MTEB BiorxivClusteringS2S type: mteb/biorxiv-clustering-s2s config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 32.75995857510105 - task: type: Retrieval dataset: name: MTEB CQADupstackAndroidRetrieval type: BeIR/cqadupstack config: default split: test revision: None metrics: - type: map_at_1 value: 30.008000000000003 - type: map_at_10 value: 39.51 - type: map_at_100 value: 40.841 - type: map_at_1000 value: 40.973 - type: map_at_3 value: 36.248999999999995 - type: map_at_5 value: 38.096999999999994 - type: mrr_at_1 value: 36.481 - type: mrr_at_10 value: 44.818000000000005 - type: mrr_at_100 value: 45.64 - type: mrr_at_1000 value: 45.687 - type: mrr_at_3 value: 42.036 - type: mrr_at_5 value: 43.782 - type: ndcg_at_1 value: 36.481 - type: ndcg_at_10 value: 45.152 - type: ndcg_at_100 value: 50.449 - type: ndcg_at_1000 value: 52.76499999999999 - type: ndcg_at_3 value: 40.161 - type: ndcg_at_5 value: 42.577999999999996 - type: precision_at_1 value: 36.481 - type: precision_at_10 value: 8.369 - type: precision_at_100 value: 1.373 - type: precision_at_1000 value: 0.186 - type: precision_at_3 value: 18.693 - type: precision_at_5 value: 13.533999999999999 - type: recall_at_1 value: 30.008000000000003 - type: recall_at_10 value: 56.108999999999995 - type: recall_at_100 value: 78.55499999999999 - type: recall_at_1000 value: 93.659 - type: recall_at_3 value: 41.754999999999995 - type: recall_at_5 value: 48.296 - type: map_at_1 value: 30.262 - type: map_at_10 value: 40.139 - type: map_at_100 value: 41.394 - type: map_at_1000 value: 41.526 - type: map_at_3 value: 37.155 - type: map_at_5 value: 38.785 - type: mrr_at_1 value: 38.153 - type: mrr_at_10 value: 46.369 - type: mrr_at_100 value: 47.072 - type: mrr_at_1000 value: 47.111999999999995 - type: mrr_at_3 value: 44.268 - type: mrr_at_5 value: 45.389 - type: ndcg_at_1 value: 38.153 - type: ndcg_at_10 value: 45.925 - type: ndcg_at_100 value: 50.394000000000005 - type: ndcg_at_1000 value: 52.37500000000001 - type: ndcg_at_3 value: 41.754000000000005 - type: ndcg_at_5 value: 43.574 - type: precision_at_1 value: 38.153 - type: precision_at_10 value: 8.796 - type: precision_at_100 value: 1.432 - type: precision_at_1000 value: 0.189 - type: precision_at_3 value: 20.318 - type: precision_at_5 value: 14.395 - type: recall_at_1 value: 30.262 - type: recall_at_10 value: 55.72200000000001 - type: recall_at_100 value: 74.97500000000001 - type: recall_at_1000 value: 87.342 - type: recall_at_3 value: 43.129 - type: recall_at_5 value: 48.336 - type: map_at_1 value: 39.951 - type: map_at_10 value: 51.248000000000005 - type: map_at_100 value: 52.188 - type: map_at_1000 value: 52.247 - type: map_at_3 value: 48.211 - type: map_at_5 value: 49.797000000000004 - type: mrr_at_1 value: 45.329 - type: mrr_at_10 value: 54.749 - type: mrr_at_100 value: 55.367999999999995 - type: mrr_at_1000 value: 55.400000000000006 - type: mrr_at_3 value: 52.382 - type: mrr_at_5 value: 53.649 - type: ndcg_at_1 value: 45.329 - type: ndcg_at_10 value: 56.847 - type: ndcg_at_100 value: 60.738 - type: ndcg_at_1000 value: 61.976 - type: ndcg_at_3 value: 51.59 - type: ndcg_at_5 value: 53.915 - type: precision_at_1 value: 45.329 - type: precision_at_10 value: 8.959 - type: precision_at_100 value: 1.187 - type: precision_at_1000 value: 0.134 - type: precision_at_3 value: 22.612 - type: precision_at_5 value: 15.273 - type: recall_at_1 value: 39.951 - type: recall_at_10 value: 70.053 - type: recall_at_100 value: 86.996 - type: recall_at_1000 value: 95.707 - type: recall_at_3 value: 56.032000000000004 - type: recall_at_5 value: 61.629999999999995 - type: map_at_1 value: 25.566 - type: map_at_10 value: 33.207 - type: map_at_100 value: 34.166000000000004 - type: map_at_1000 value: 34.245 - type: map_at_3 value: 30.94 - type: map_at_5 value: 32.01 - type: mrr_at_1 value: 27.345000000000002 - type: mrr_at_10 value: 35.193000000000005 - type: mrr_at_100 value: 35.965 - type: mrr_at_1000 value: 36.028999999999996 - type: mrr_at_3 value: 32.806000000000004 - type: mrr_at_5 value: 34.021 - type: ndcg_at_1 value: 27.345000000000002 - type: ndcg_at_10 value: 37.891999999999996 - type: ndcg_at_100 value: 42.664 - type: ndcg_at_1000 value: 44.757000000000005 - type: ndcg_at_3 value: 33.123000000000005 - type: ndcg_at_5 value: 35.035 - type: precision_at_1 value: 27.345000000000002 - type: precision_at_10 value: 5.763 - type: precision_at_100 value: 0.859 - type: precision_at_1000 value: 0.108 - type: precision_at_3 value: 13.71 - type: precision_at_5 value: 9.401 - type: recall_at_1 value: 25.566 - type: recall_at_10 value: 50.563 - type: recall_at_100 value: 72.86399999999999 - type: recall_at_1000 value: 88.68599999999999 - type: recall_at_3 value: 37.43 - type: recall_at_5 value: 41.894999999999996 - type: map_at_1 value: 16.663 - type: map_at_10 value: 23.552 - type: map_at_100 value: 24.538 - type: map_at_1000 value: 24.661 - type: map_at_3 value: 21.085 - type: map_at_5 value: 22.391 - type: mrr_at_1 value: 20.025000000000002 - type: mrr_at_10 value: 27.643 - type: mrr_at_100 value: 28.499999999999996 - type: mrr_at_1000 value: 28.582 - type: mrr_at_3 value: 25.083 - type: mrr_at_5 value: 26.544 - type: ndcg_at_1 value: 20.025000000000002 - type: ndcg_at_10 value: 28.272000000000002 - type: ndcg_at_100 value: 33.353 - type: ndcg_at_1000 value: 36.454 - type: ndcg_at_3 value: 23.579 - type: ndcg_at_5 value: 25.685000000000002 - type: precision_at_1 value: 20.025000000000002 - type: precision_at_10 value: 5.187 - type: precision_at_100 value: 0.897 - type: precision_at_1000 value: 0.13 - type: precision_at_3 value: 10.987 - type: precision_at_5 value: 8.06 - type: recall_at_1 value: 16.663 - type: recall_at_10 value: 38.808 - type: recall_at_100 value: 61.305 - type: recall_at_1000 value: 83.571 - type: recall_at_3 value: 25.907999999999998 - type: recall_at_5 value: 31.214 - type: map_at_1 value: 27.695999999999998 - type: map_at_10 value: 37.018 - type: map_at_100 value: 38.263000000000005 - type: map_at_1000 value: 38.371 - type: map_at_3 value: 34.226 - type: map_at_5 value: 35.809999999999995 - type: mrr_at_1 value: 32.916000000000004 - type: mrr_at_10 value: 42.067 - type: mrr_at_100 value: 42.925000000000004 - type: mrr_at_1000 value: 42.978 - type: mrr_at_3 value: 39.637 - type: mrr_at_5 value: 41.134 - type: ndcg_at_1 value: 32.916000000000004 - type: ndcg_at_10 value: 42.539 - type: ndcg_at_100 value: 47.873 - type: ndcg_at_1000 value: 50.08200000000001 - type: ndcg_at_3 value: 37.852999999999994 - type: ndcg_at_5 value: 40.201 - type: precision_at_1 value: 32.916000000000004 - type: precision_at_10 value: 7.5840000000000005 - type: precision_at_100 value: 1.199 - type: precision_at_1000 value: 0.155 - type: precision_at_3 value: 17.485 - type: precision_at_5 value: 12.512 - type: recall_at_1 value: 27.695999999999998 - type: recall_at_10 value: 53.638 - type: recall_at_100 value: 76.116 - type: recall_at_1000 value: 91.069 - type: recall_at_3 value: 41.13 - type: recall_at_5 value: 46.872 - type: map_at_1 value: 24.108 - type: map_at_10 value: 33.372 - type: map_at_100 value: 34.656 - type: map_at_1000 value: 34.768 - type: map_at_3 value: 30.830999999999996 - type: map_at_5 value: 32.204 - type: mrr_at_1 value: 29.110000000000003 - type: mrr_at_10 value: 37.979 - type: mrr_at_100 value: 38.933 - type: mrr_at_1000 value: 38.988 - type: mrr_at_3 value: 35.731 - type: mrr_at_5 value: 36.963 - type: ndcg_at_1 value: 29.110000000000003 - type: ndcg_at_10 value: 38.635000000000005 - type: ndcg_at_100 value: 44.324999999999996 - type: ndcg_at_1000 value: 46.747 - type: ndcg_at_3 value: 34.37 - type: ndcg_at_5 value: 36.228 - type: precision_at_1 value: 29.110000000000003 - type: precision_at_10 value: 6.963 - type: precision_at_100 value: 1.146 - type: precision_at_1000 value: 0.152 - type: precision_at_3 value: 16.400000000000002 - type: precision_at_5 value: 11.552999999999999 - type: recall_at_1 value: 24.108 - type: recall_at_10 value: 49.597 - type: recall_at_100 value: 73.88900000000001 - type: recall_at_1000 value: 90.62400000000001 - type: recall_at_3 value: 37.662 - type: recall_at_5 value: 42.565 - type: map_at_1 value: 25.00791666666667 - type: map_at_10 value: 33.287749999999996 - type: map_at_100 value: 34.41141666666667 - type: map_at_1000 value: 34.52583333333333 - type: map_at_3 value: 30.734416666666668 - type: map_at_5 value: 32.137166666666666 - type: mrr_at_1 value: 29.305666666666664 - type: mrr_at_10 value: 37.22966666666666 - type: mrr_at_100 value: 38.066583333333334 - type: mrr_at_1000 value: 38.12616666666667 - type: mrr_at_3 value: 34.92275 - type: mrr_at_5 value: 36.23333333333334 - type: ndcg_at_1 value: 29.305666666666664 - type: ndcg_at_10 value: 38.25533333333333 - type: ndcg_at_100 value: 43.25266666666666 - type: ndcg_at_1000 value: 45.63583333333334 - type: ndcg_at_3 value: 33.777166666666666 - type: ndcg_at_5 value: 35.85 - type: precision_at_1 value: 29.305666666666664 - type: precision_at_10 value: 6.596416666666667 - type: precision_at_100 value: 1.0784166666666668 - type: precision_at_1000 value: 0.14666666666666664 - type: precision_at_3 value: 15.31075 - type: precision_at_5 value: 10.830916666666667 - type: recall_at_1 value: 25.00791666666667 - type: recall_at_10 value: 49.10933333333333 - type: recall_at_100 value: 71.09216666666667 - type: recall_at_1000 value: 87.77725000000001 - type: recall_at_3 value: 36.660916666666665 - type: recall_at_5 value: 41.94149999999999 - type: map_at_1 value: 23.521 - type: map_at_10 value: 30.043 - type: map_at_100 value: 30.936000000000003 - type: map_at_1000 value: 31.022 - type: map_at_3 value: 27.926000000000002 - type: map_at_5 value: 29.076999999999998 - type: mrr_at_1 value: 26.227 - type: mrr_at_10 value: 32.822 - type: mrr_at_100 value: 33.61 - type: mrr_at_1000 value: 33.672000000000004 - type: mrr_at_3 value: 30.776999999999997 - type: mrr_at_5 value: 31.866 - type: ndcg_at_1 value: 26.227 - type: ndcg_at_10 value: 34.041 - type: ndcg_at_100 value: 38.394 - type: ndcg_at_1000 value: 40.732 - type: ndcg_at_3 value: 30.037999999999997 - type: ndcg_at_5 value: 31.845000000000002 - type: precision_at_1 value: 26.227 - type: precision_at_10 value: 5.244999999999999 - type: precision_at_100 value: 0.808 - type: precision_at_1000 value: 0.107 - type: precision_at_3 value: 12.679000000000002 - type: precision_at_5 value: 8.773 - type: recall_at_1 value: 23.521 - type: recall_at_10 value: 43.633 - type: recall_at_100 value: 63.126000000000005 - type: recall_at_1000 value: 80.765 - type: recall_at_3 value: 32.614 - type: recall_at_5 value: 37.15 - type: map_at_1 value: 16.236 - type: map_at_10 value: 22.898 - type: map_at_100 value: 23.878 - type: map_at_1000 value: 24.009 - type: map_at_3 value: 20.87 - type: map_at_5 value: 22.025 - type: mrr_at_1 value: 19.339000000000002 - type: mrr_at_10 value: 26.382 - type: mrr_at_100 value: 27.245 - type: mrr_at_1000 value: 27.33 - type: mrr_at_3 value: 24.386 - type: mrr_at_5 value: 25.496000000000002 - type: ndcg_at_1 value: 19.339000000000002 - type: ndcg_at_10 value: 27.139999999999997 - type: ndcg_at_100 value: 31.944 - type: ndcg_at_1000 value: 35.077999999999996 - type: ndcg_at_3 value: 23.424 - type: ndcg_at_5 value: 25.188 - type: precision_at_1 value: 19.339000000000002 - type: precision_at_10 value: 4.8309999999999995 - type: precision_at_100 value: 0.845 - type: precision_at_1000 value: 0.128 - type: precision_at_3 value: 10.874 - type: precision_at_5 value: 7.825 - type: recall_at_1 value: 16.236 - type: recall_at_10 value: 36.513 - type: recall_at_100 value: 57.999 - type: recall_at_1000 value: 80.512 - type: recall_at_3 value: 26.179999999999996 - type: recall_at_5 value: 30.712 - type: map_at_1 value: 24.11 - type: map_at_10 value: 31.566 - type: map_at_100 value: 32.647 - type: map_at_1000 value: 32.753 - type: map_at_3 value: 29.24 - type: map_at_5 value: 30.564999999999998 - type: mrr_at_1 value: 28.265 - type: mrr_at_10 value: 35.504000000000005 - type: mrr_at_100 value: 36.436 - type: mrr_at_1000 value: 36.503 - type: mrr_at_3 value: 33.349000000000004 - type: mrr_at_5 value: 34.622 - type: ndcg_at_1 value: 28.265 - type: ndcg_at_10 value: 36.192 - type: ndcg_at_100 value: 41.388000000000005 - type: ndcg_at_1000 value: 43.948 - type: ndcg_at_3 value: 31.959 - type: ndcg_at_5 value: 33.998 - type: precision_at_1 value: 28.265 - type: precision_at_10 value: 5.989 - type: precision_at_100 value: 0.9650000000000001 - type: precision_at_1000 value: 0.13 - type: precision_at_3 value: 14.335 - type: precision_at_5 value: 10.112 - type: recall_at_1 value: 24.11 - type: recall_at_10 value: 46.418 - type: recall_at_100 value: 69.314 - type: recall_at_1000 value: 87.397 - type: recall_at_3 value: 34.724 - type: recall_at_5 value: 39.925 - type: map_at_1 value: 22.091 - type: map_at_10 value: 29.948999999999998 - type: map_at_100 value: 31.502000000000002 - type: map_at_1000 value: 31.713 - type: map_at_3 value: 27.464 - type: map_at_5 value: 28.968 - type: mrr_at_1 value: 26.482 - type: mrr_at_10 value: 34.009 - type: mrr_at_100 value: 35.081 - type: mrr_at_1000 value: 35.138000000000005 - type: mrr_at_3 value: 31.785000000000004 - type: mrr_at_5 value: 33.178999999999995 - type: ndcg_at_1 value: 26.482 - type: ndcg_at_10 value: 35.008 - type: ndcg_at_100 value: 41.272999999999996 - type: ndcg_at_1000 value: 43.972 - type: ndcg_at_3 value: 30.804 - type: ndcg_at_5 value: 33.046 - type: precision_at_1 value: 26.482 - type: precision_at_10 value: 6.462 - type: precision_at_100 value: 1.431 - type: precision_at_1000 value: 0.22899999999999998 - type: precision_at_3 value: 14.360999999999999 - type: precision_at_5 value: 10.474 - type: recall_at_1 value: 22.091 - type: recall_at_10 value: 45.125 - type: recall_at_100 value: 72.313 - type: recall_at_1000 value: 89.503 - type: recall_at_3 value: 33.158 - type: recall_at_5 value: 39.086999999999996 - type: map_at_1 value: 19.883 - type: map_at_10 value: 26.951000000000004 - type: map_at_100 value: 27.927999999999997 - type: map_at_1000 value: 28.022000000000002 - type: map_at_3 value: 24.616 - type: map_at_5 value: 25.917 - type: mrr_at_1 value: 21.996 - type: mrr_at_10 value: 29.221000000000004 - type: mrr_at_100 value: 30.024 - type: mrr_at_1000 value: 30.095 - type: mrr_at_3 value: 26.833000000000002 - type: mrr_at_5 value: 28.155 - type: ndcg_at_1 value: 21.996 - type: ndcg_at_10 value: 31.421 - type: ndcg_at_100 value: 36.237 - type: ndcg_at_1000 value: 38.744 - type: ndcg_at_3 value: 26.671 - type: ndcg_at_5 value: 28.907 - type: precision_at_1 value: 21.996 - type: precision_at_10 value: 5.009 - type: precision_at_100 value: 0.799 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 11.275 - type: precision_at_5 value: 8.059 - type: recall_at_1 value: 19.883 - type: recall_at_10 value: 43.132999999999996 - type: recall_at_100 value: 65.654 - type: recall_at_1000 value: 84.492 - type: recall_at_3 value: 30.209000000000003 - type: recall_at_5 value: 35.616 - task: type: Retrieval dataset: name: MTEB ClimateFEVER type: climate-fever config: default split: test revision: None metrics: - type: map_at_1 value: 17.756 - type: map_at_10 value: 30.378 - type: map_at_100 value: 32.537 - type: map_at_1000 value: 32.717 - type: map_at_3 value: 25.599 - type: map_at_5 value: 28.372999999999998 - type: mrr_at_1 value: 41.303 - type: mrr_at_10 value: 53.483999999999995 - type: mrr_at_100 value: 54.106 - type: mrr_at_1000 value: 54.127 - type: mrr_at_3 value: 50.315 - type: mrr_at_5 value: 52.396 - type: ndcg_at_1 value: 41.303 - type: ndcg_at_10 value: 40.503 - type: ndcg_at_100 value: 47.821000000000005 - type: ndcg_at_1000 value: 50.788 - type: ndcg_at_3 value: 34.364 - type: ndcg_at_5 value: 36.818 - type: precision_at_1 value: 41.303 - type: precision_at_10 value: 12.463000000000001 - type: precision_at_100 value: 2.037 - type: precision_at_1000 value: 0.26 - type: precision_at_3 value: 25.798 - type: precision_at_5 value: 19.896 - type: recall_at_1 value: 17.756 - type: recall_at_10 value: 46.102 - type: recall_at_100 value: 70.819 - type: recall_at_1000 value: 87.21799999999999 - type: recall_at_3 value: 30.646 - type: recall_at_5 value: 38.022 - task: type: Retrieval dataset: name: MTEB DBPedia type: dbpedia-entity config: default split: test revision: None metrics: - type: map_at_1 value: 9.033 - type: map_at_10 value: 20.584 - type: map_at_100 value: 29.518 - type: map_at_1000 value: 31.186000000000003 - type: map_at_3 value: 14.468 - type: map_at_5 value: 17.177 - type: mrr_at_1 value: 69.75 - type: mrr_at_10 value: 77.025 - type: mrr_at_100 value: 77.36699999999999 - type: mrr_at_1000 value: 77.373 - type: mrr_at_3 value: 75.583 - type: mrr_at_5 value: 76.396 - type: ndcg_at_1 value: 58.5 - type: ndcg_at_10 value: 45.033 - type: ndcg_at_100 value: 49.071 - type: ndcg_at_1000 value: 56.056 - type: ndcg_at_3 value: 49.936 - type: ndcg_at_5 value: 47.471999999999994 - type: precision_at_1 value: 69.75 - type: precision_at_10 value: 35.775 - type: precision_at_100 value: 11.594999999999999 - type: precision_at_1000 value: 2.062 - type: precision_at_3 value: 52.5 - type: precision_at_5 value: 45.300000000000004 - type: recall_at_1 value: 9.033 - type: recall_at_10 value: 26.596999999999998 - type: recall_at_100 value: 54.607000000000006 - type: recall_at_1000 value: 76.961 - type: recall_at_3 value: 15.754999999999999 - type: recall_at_5 value: 20.033 - task: type: Classification dataset: name: MTEB EmotionClassification type: mteb/emotion config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 48.345000000000006 - type: f1 value: 43.4514918068706 - task: type: Retrieval dataset: name: MTEB FEVER type: fever config: default split: test revision: None metrics: - type: map_at_1 value: 71.29100000000001 - type: map_at_10 value: 81.059 - type: map_at_100 value: 81.341 - type: map_at_1000 value: 81.355 - type: map_at_3 value: 79.74799999999999 - type: map_at_5 value: 80.612 - type: mrr_at_1 value: 76.40299999999999 - type: mrr_at_10 value: 84.615 - type: mrr_at_100 value: 84.745 - type: mrr_at_1000 value: 84.748 - type: mrr_at_3 value: 83.776 - type: mrr_at_5 value: 84.343 - type: ndcg_at_1 value: 76.40299999999999 - type: ndcg_at_10 value: 84.981 - type: ndcg_at_100 value: 86.00999999999999 - type: ndcg_at_1000 value: 86.252 - type: ndcg_at_3 value: 82.97 - type: ndcg_at_5 value: 84.152 - type: precision_at_1 value: 76.40299999999999 - type: precision_at_10 value: 10.446 - type: precision_at_100 value: 1.1199999999999999 - type: precision_at_1000 value: 0.116 - type: precision_at_3 value: 32.147999999999996 - type: precision_at_5 value: 20.135 - type: recall_at_1 value: 71.29100000000001 - type: recall_at_10 value: 93.232 - type: recall_at_100 value: 97.363 - type: recall_at_1000 value: 98.905 - type: recall_at_3 value: 87.893 - type: recall_at_5 value: 90.804 - task: type: Retrieval dataset: name: MTEB FiQA2018 type: fiqa config: default split: test revision: None metrics: - type: map_at_1 value: 18.667 - type: map_at_10 value: 30.853 - type: map_at_100 value: 32.494 - type: map_at_1000 value: 32.677 - type: map_at_3 value: 26.91 - type: map_at_5 value: 29.099000000000004 - type: mrr_at_1 value: 37.191 - type: mrr_at_10 value: 46.171 - type: mrr_at_100 value: 47.056 - type: mrr_at_1000 value: 47.099000000000004 - type: mrr_at_3 value: 44.059 - type: mrr_at_5 value: 45.147 - type: ndcg_at_1 value: 37.191 - type: ndcg_at_10 value: 38.437 - type: ndcg_at_100 value: 44.62 - type: ndcg_at_1000 value: 47.795 - type: ndcg_at_3 value: 35.003 - type: ndcg_at_5 value: 36.006 - type: precision_at_1 value: 37.191 - type: precision_at_10 value: 10.586 - type: precision_at_100 value: 1.688 - type: precision_at_1000 value: 0.22699999999999998 - type: precision_at_3 value: 23.302 - type: precision_at_5 value: 17.006 - type: recall_at_1 value: 18.667 - type: recall_at_10 value: 45.367000000000004 - type: recall_at_100 value: 68.207 - type: recall_at_1000 value: 87.072 - type: recall_at_3 value: 32.129000000000005 - type: recall_at_5 value: 37.719 - task: type: Retrieval dataset: name: MTEB HotpotQA type: hotpotqa config: default split: test revision: None metrics: - type: map_at_1 value: 39.494 - type: map_at_10 value: 66.223 - type: map_at_100 value: 67.062 - type: map_at_1000 value: 67.11500000000001 - type: map_at_3 value: 62.867 - type: map_at_5 value: 64.994 - type: mrr_at_1 value: 78.987 - type: mrr_at_10 value: 84.585 - type: mrr_at_100 value: 84.773 - type: mrr_at_1000 value: 84.77900000000001 - type: mrr_at_3 value: 83.592 - type: mrr_at_5 value: 84.235 - type: ndcg_at_1 value: 78.987 - type: ndcg_at_10 value: 73.64 - type: ndcg_at_100 value: 76.519 - type: ndcg_at_1000 value: 77.51 - type: ndcg_at_3 value: 68.893 - type: ndcg_at_5 value: 71.585 - type: precision_at_1 value: 78.987 - type: precision_at_10 value: 15.529000000000002 - type: precision_at_100 value: 1.7770000000000001 - type: precision_at_1000 value: 0.191 - type: precision_at_3 value: 44.808 - type: precision_at_5 value: 29.006999999999998 - type: recall_at_1 value: 39.494 - type: recall_at_10 value: 77.643 - type: recall_at_100 value: 88.825 - type: recall_at_1000 value: 95.321 - type: recall_at_3 value: 67.211 - type: recall_at_5 value: 72.519 - task: type: Classification dataset: name: MTEB ImdbClassification type: mteb/imdb config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 85.55959999999999 - type: ap value: 80.7246500384617 - type: f1 value: 85.52336485065454 - task: type: Retrieval dataset: name: MTEB MSMARCO type: msmarco config: default split: dev revision: None metrics: - type: map_at_1 value: 23.631 - type: map_at_10 value: 36.264 - type: map_at_100 value: 37.428 - type: map_at_1000 value: 37.472 - type: map_at_3 value: 32.537 - type: map_at_5 value: 34.746 - type: mrr_at_1 value: 24.312 - type: mrr_at_10 value: 36.858000000000004 - type: mrr_at_100 value: 37.966 - type: mrr_at_1000 value: 38.004 - type: mrr_at_3 value: 33.188 - type: mrr_at_5 value: 35.367 - type: ndcg_at_1 value: 24.312 - type: ndcg_at_10 value: 43.126999999999995 - type: ndcg_at_100 value: 48.642 - type: ndcg_at_1000 value: 49.741 - type: ndcg_at_3 value: 35.589 - type: ndcg_at_5 value: 39.515 - type: precision_at_1 value: 24.312 - type: precision_at_10 value: 6.699 - type: precision_at_100 value: 0.9450000000000001 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 15.153 - type: precision_at_5 value: 11.065999999999999 - type: recall_at_1 value: 23.631 - type: recall_at_10 value: 64.145 - type: recall_at_100 value: 89.41 - type: recall_at_1000 value: 97.83500000000001 - type: recall_at_3 value: 43.769000000000005 - type: recall_at_5 value: 53.169 - task: type: Classification dataset: name: MTEB MTOPDomainClassification (en) type: mteb/mtop_domain config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 93.4108527131783 - type: f1 value: 93.1415880261038 - task: type: Classification dataset: name: MTEB MTOPIntentClassification (en) type: mteb/mtop_intent config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 77.24806201550388 - type: f1 value: 60.531916308197175 - task: type: Classification dataset: name: MTEB MassiveIntentClassification (en) type: mteb/amazon_massive_intent config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 73.71553463349024 - type: f1 value: 71.70753174900791 - task: type: Classification dataset: name: MTEB MassiveScenarioClassification (en) type: mteb/amazon_massive_scenario config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 77.79757901815736 - type: f1 value: 77.83719850433258 - task: type: Clustering dataset: name: MTEB MedrxivClusteringP2P type: mteb/medrxiv-clustering-p2p config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 33.74193296622113 - task: type: Clustering dataset: name: MTEB MedrxivClusteringS2S type: mteb/medrxiv-clustering-s2s config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 30.64257594108566 - task: type: Reranking dataset: name: MTEB MindSmallReranking type: mteb/mind_small config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 30.811018518883625 - type: mrr value: 31.910376577445003 - task: type: Retrieval dataset: name: MTEB NFCorpus type: nfcorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.409 - type: map_at_10 value: 13.093 - type: map_at_100 value: 16.256999999999998 - type: map_at_1000 value: 17.617 - type: map_at_3 value: 9.555 - type: map_at_5 value: 11.428 - type: mrr_at_1 value: 45.201 - type: mrr_at_10 value: 54.179 - type: mrr_at_100 value: 54.812000000000005 - type: mrr_at_1000 value: 54.840999999999994 - type: mrr_at_3 value: 51.909000000000006 - type: mrr_at_5 value: 53.519000000000005 - type: ndcg_at_1 value: 43.189 - type: ndcg_at_10 value: 35.028 - type: ndcg_at_100 value: 31.226 - type: ndcg_at_1000 value: 39.678000000000004 - type: ndcg_at_3 value: 40.596 - type: ndcg_at_5 value: 38.75 - type: precision_at_1 value: 44.582 - type: precision_at_10 value: 25.974999999999998 - type: precision_at_100 value: 7.793 - type: precision_at_1000 value: 2.036 - type: precision_at_3 value: 38.493 - type: precision_at_5 value: 33.994 - type: recall_at_1 value: 5.409 - type: recall_at_10 value: 16.875999999999998 - type: recall_at_100 value: 30.316 - type: recall_at_1000 value: 60.891 - type: recall_at_3 value: 10.688 - type: recall_at_5 value: 13.832 - task: type: Retrieval dataset: name: MTEB NQ type: nq config: default split: test revision: None metrics: - type: map_at_1 value: 36.375 - type: map_at_10 value: 51.991 - type: map_at_100 value: 52.91400000000001 - type: map_at_1000 value: 52.93600000000001 - type: map_at_3 value: 48.014 - type: map_at_5 value: 50.381 - type: mrr_at_1 value: 40.759 - type: mrr_at_10 value: 54.617000000000004 - type: mrr_at_100 value: 55.301 - type: mrr_at_1000 value: 55.315000000000005 - type: mrr_at_3 value: 51.516 - type: mrr_at_5 value: 53.435 - type: ndcg_at_1 value: 40.759 - type: ndcg_at_10 value: 59.384 - type: ndcg_at_100 value: 63.157 - type: ndcg_at_1000 value: 63.654999999999994 - type: ndcg_at_3 value: 52.114000000000004 - type: ndcg_at_5 value: 55.986000000000004 - type: precision_at_1 value: 40.759 - type: precision_at_10 value: 9.411999999999999 - type: precision_at_100 value: 1.153 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 23.329 - type: precision_at_5 value: 16.256999999999998 - type: recall_at_1 value: 36.375 - type: recall_at_10 value: 79.053 - type: recall_at_100 value: 95.167 - type: recall_at_1000 value: 98.82 - type: recall_at_3 value: 60.475 - type: recall_at_5 value: 69.327 - task: type: Retrieval dataset: name: MTEB QuoraRetrieval type: quora config: default split: test revision: None metrics: - type: map_at_1 value: 70.256 - type: map_at_10 value: 83.8 - type: map_at_100 value: 84.425 - type: map_at_1000 value: 84.444 - type: map_at_3 value: 80.906 - type: map_at_5 value: 82.717 - type: mrr_at_1 value: 80.97999999999999 - type: mrr_at_10 value: 87.161 - type: mrr_at_100 value: 87.262 - type: mrr_at_1000 value: 87.263 - type: mrr_at_3 value: 86.175 - type: mrr_at_5 value: 86.848 - type: ndcg_at_1 value: 80.97999999999999 - type: ndcg_at_10 value: 87.697 - type: ndcg_at_100 value: 88.959 - type: ndcg_at_1000 value: 89.09899999999999 - type: ndcg_at_3 value: 84.83800000000001 - type: ndcg_at_5 value: 86.401 - type: precision_at_1 value: 80.97999999999999 - type: precision_at_10 value: 13.261000000000001 - type: precision_at_100 value: 1.5150000000000001 - type: precision_at_1000 value: 0.156 - type: precision_at_3 value: 37.01 - type: precision_at_5 value: 24.298000000000002 - type: recall_at_1 value: 70.256 - type: recall_at_10 value: 94.935 - type: recall_at_100 value: 99.274 - type: recall_at_1000 value: 99.928 - type: recall_at_3 value: 86.602 - type: recall_at_5 value: 91.133 - task: type: Clustering dataset: name: MTEB RedditClustering type: mteb/reddit-clustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 56.322692497613104 - task: type: Clustering dataset: name: MTEB RedditClusteringP2P type: mteb/reddit-clustering-p2p config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 61.895813503775074 - task: type: Retrieval dataset: name: MTEB SCIDOCS type: scidocs config: default split: test revision: None metrics: - type: map_at_1 value: 4.338 - type: map_at_10 value: 10.767 - type: map_at_100 value: 12.537999999999998 - type: map_at_1000 value: 12.803999999999998 - type: map_at_3 value: 7.788 - type: map_at_5 value: 9.302000000000001 - type: mrr_at_1 value: 21.4 - type: mrr_at_10 value: 31.637999999999998 - type: mrr_at_100 value: 32.688 - type: mrr_at_1000 value: 32.756 - type: mrr_at_3 value: 28.433000000000003 - type: mrr_at_5 value: 30.178 - type: ndcg_at_1 value: 21.4 - type: ndcg_at_10 value: 18.293 - type: ndcg_at_100 value: 25.274 - type: ndcg_at_1000 value: 30.284 - type: ndcg_at_3 value: 17.391000000000002 - type: ndcg_at_5 value: 15.146999999999998 - type: precision_at_1 value: 21.4 - type: precision_at_10 value: 9.48 - type: precision_at_100 value: 1.949 - type: precision_at_1000 value: 0.316 - type: precision_at_3 value: 16.167 - type: precision_at_5 value: 13.22 - type: recall_at_1 value: 4.338 - type: recall_at_10 value: 19.213 - type: recall_at_100 value: 39.562999999999995 - type: recall_at_1000 value: 64.08 - type: recall_at_3 value: 9.828000000000001 - type: recall_at_5 value: 13.383000000000001 - task: type: STS dataset: name: MTEB SICK-R type: mteb/sickr-sts config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 82.42568163642142 - type: cos_sim_spearman value: 78.5797159641342 - type: euclidean_pearson value: 80.22151260811604 - type: euclidean_spearman value: 78.5797151953878 - type: manhattan_pearson value: 80.21224215864788 - type: manhattan_spearman value: 78.55641478381344 - task: type: STS dataset: name: MTEB STS12 type: mteb/sts12-sts config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 85.44020710812569 - type: cos_sim_spearman value: 78.91631735081286 - type: euclidean_pearson value: 81.64188964182102 - type: euclidean_spearman value: 78.91633286881678 - type: manhattan_pearson value: 81.69294748512496 - type: manhattan_spearman value: 78.93438558002656 - task: type: STS dataset: name: MTEB STS13 type: mteb/sts13-sts config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 84.27165426412311 - type: cos_sim_spearman value: 85.40429140249618 - type: euclidean_pearson value: 84.7509580724893 - type: euclidean_spearman value: 85.40429140249618 - type: manhattan_pearson value: 84.76488289321308 - type: manhattan_spearman value: 85.4256793698708 - task: type: STS dataset: name: MTEB STS14 type: mteb/sts14-sts config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 83.138851760732 - type: cos_sim_spearman value: 81.64101363896586 - type: euclidean_pearson value: 82.55165038934942 - type: euclidean_spearman value: 81.64105257080502 - type: manhattan_pearson value: 82.52802949883335 - type: manhattan_spearman value: 81.61255430718158 - task: type: STS dataset: name: MTEB STS15 type: mteb/sts15-sts config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 86.0654695484029 - type: cos_sim_spearman value: 87.20408521902229 - type: euclidean_pearson value: 86.8110651362115 - type: euclidean_spearman value: 87.20408521902229 - type: manhattan_pearson value: 86.77984656478691 - type: manhattan_spearman value: 87.1719947099227 - task: type: STS dataset: name: MTEB STS16 type: mteb/sts16-sts config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 83.77823915496512 - type: cos_sim_spearman value: 85.43566325729779 - type: euclidean_pearson value: 84.5396956658821 - type: euclidean_spearman value: 85.43566325729779 - type: manhattan_pearson value: 84.5665398848169 - type: manhattan_spearman value: 85.44375870303232 - task: type: STS dataset: name: MTEB STS17 (en-en) type: mteb/sts17-crosslingual-sts config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 87.20030208471798 - type: cos_sim_spearman value: 87.20485505076539 - type: euclidean_pearson value: 88.10588324368722 - type: euclidean_spearman value: 87.20485505076539 - type: manhattan_pearson value: 87.92324770415183 - type: manhattan_spearman value: 87.0571314561877 - task: type: STS dataset: name: MTEB STS22 (en) type: mteb/sts22-crosslingual-sts config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 63.06093161604453 - type: cos_sim_spearman value: 64.2163140357722 - type: euclidean_pearson value: 65.27589680994006 - type: euclidean_spearman value: 64.2163140357722 - type: manhattan_pearson value: 65.45904383711101 - type: manhattan_spearman value: 64.55404716679305 - task: type: STS dataset: name: MTEB STSBenchmark type: mteb/stsbenchmark-sts config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 84.32976164578706 - type: cos_sim_spearman value: 85.54302197678368 - type: euclidean_pearson value: 85.26307149193056 - type: euclidean_spearman value: 85.54302197678368 - type: manhattan_pearson value: 85.26647282029371 - type: manhattan_spearman value: 85.5316135265568 - task: type: Reranking dataset: name: MTEB SciDocsRR type: mteb/scidocs-reranking config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 81.44675968318754 - type: mrr value: 94.92741826075158 - task: type: Retrieval dataset: name: MTEB SciFact type: scifact config: default split: test revision: None metrics: - type: map_at_1 value: 56.34400000000001 - type: map_at_10 value: 65.927 - type: map_at_100 value: 66.431 - type: map_at_1000 value: 66.461 - type: map_at_3 value: 63.529 - type: map_at_5 value: 64.818 - type: mrr_at_1 value: 59.333000000000006 - type: mrr_at_10 value: 67.54599999999999 - type: mrr_at_100 value: 67.892 - type: mrr_at_1000 value: 67.917 - type: mrr_at_3 value: 65.778 - type: mrr_at_5 value: 66.794 - type: ndcg_at_1 value: 59.333000000000006 - type: ndcg_at_10 value: 70.5 - type: ndcg_at_100 value: 72.688 - type: ndcg_at_1000 value: 73.483 - type: ndcg_at_3 value: 66.338 - type: ndcg_at_5 value: 68.265 - type: precision_at_1 value: 59.333000000000006 - type: precision_at_10 value: 9.3 - type: precision_at_100 value: 1.053 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 25.889 - type: precision_at_5 value: 16.866999999999997 - type: recall_at_1 value: 56.34400000000001 - type: recall_at_10 value: 82.789 - type: recall_at_100 value: 92.767 - type: recall_at_1000 value: 99 - type: recall_at_3 value: 71.64399999999999 - type: recall_at_5 value: 76.322 - task: type: PairClassification dataset: name: MTEB SprintDuplicateQuestions type: mteb/sprintduplicatequestions-pairclassification config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.75742574257426 - type: cos_sim_ap value: 93.52081548447406 - type: cos_sim_f1 value: 87.33850129198966 - type: cos_sim_precision value: 90.37433155080214 - type: cos_sim_recall value: 84.5 - type: dot_accuracy value: 99.75742574257426 - type: dot_ap value: 93.52081548447406 - type: dot_f1 value: 87.33850129198966 - type: dot_precision value: 90.37433155080214 - type: dot_recall value: 84.5 - type: euclidean_accuracy value: 99.75742574257426 - type: euclidean_ap value: 93.52081548447406 - type: euclidean_f1 value: 87.33850129198966 - type: euclidean_precision value: 90.37433155080214 - type: euclidean_recall value: 84.5 - type: manhattan_accuracy value: 99.75841584158415 - type: manhattan_ap value: 93.4975678585854 - type: manhattan_f1 value: 87.26708074534162 - type: manhattan_precision value: 90.45064377682404 - type: manhattan_recall value: 84.3 - type: max_accuracy value: 99.75841584158415 - type: max_ap value: 93.52081548447406 - type: max_f1 value: 87.33850129198966 - task: type: Clustering dataset: name: MTEB StackExchangeClustering type: mteb/stackexchange-clustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 64.31437036686651 - task: type: Clustering dataset: name: MTEB StackExchangeClusteringP2P type: mteb/stackexchange-clustering-p2p config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 33.25569319007206 - task: type: Reranking dataset: name: MTEB StackOverflowDupQuestions type: mteb/stackoverflowdupquestions-reranking config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 49.90474939720706 - type: mrr value: 50.568115503777264 - task: type: Summarization dataset: name: MTEB SummEval type: mteb/summeval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 29.866828641244712 - type: cos_sim_spearman value: 30.077555055873866 - type: dot_pearson value: 29.866832988572266 - type: dot_spearman value: 30.077555055873866 - task: type: Retrieval dataset: name: MTEB TRECCOVID type: trec-covid config: default split: test revision: None metrics: - type: map_at_1 value: 0.232 - type: map_at_10 value: 2.094 - type: map_at_100 value: 11.971 - type: map_at_1000 value: 28.158 - type: map_at_3 value: 0.688 - type: map_at_5 value: 1.114 - type: mrr_at_1 value: 88 - type: mrr_at_10 value: 93.4 - type: mrr_at_100 value: 93.4 - type: mrr_at_1000 value: 93.4 - type: mrr_at_3 value: 93 - type: mrr_at_5 value: 93.4 - type: ndcg_at_1 value: 84 - type: ndcg_at_10 value: 79.923 - type: ndcg_at_100 value: 61.17 - type: ndcg_at_1000 value: 53.03 - type: ndcg_at_3 value: 84.592 - type: ndcg_at_5 value: 82.821 - type: precision_at_1 value: 88 - type: precision_at_10 value: 85 - type: precision_at_100 value: 63.019999999999996 - type: precision_at_1000 value: 23.554 - type: precision_at_3 value: 89.333 - type: precision_at_5 value: 87.2 - type: recall_at_1 value: 0.232 - type: recall_at_10 value: 2.255 - type: recall_at_100 value: 14.823 - type: recall_at_1000 value: 49.456 - type: recall_at_3 value: 0.718 - type: recall_at_5 value: 1.175 - task: type: Retrieval dataset: name: MTEB Touche2020 type: webis-touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 2.547 - type: map_at_10 value: 11.375 - type: map_at_100 value: 18.194 - type: map_at_1000 value: 19.749 - type: map_at_3 value: 5.825 - type: map_at_5 value: 8.581 - type: mrr_at_1 value: 32.653 - type: mrr_at_10 value: 51.32 - type: mrr_at_100 value: 51.747 - type: mrr_at_1000 value: 51.747 - type: mrr_at_3 value: 47.278999999999996 - type: mrr_at_5 value: 48.605 - type: ndcg_at_1 value: 29.592000000000002 - type: ndcg_at_10 value: 28.151 - type: ndcg_at_100 value: 39.438 - type: ndcg_at_1000 value: 50.769 - type: ndcg_at_3 value: 30.758999999999997 - type: ndcg_at_5 value: 30.366 - type: precision_at_1 value: 32.653 - type: precision_at_10 value: 25.714 - type: precision_at_100 value: 8.041 - type: precision_at_1000 value: 1.555 - type: precision_at_3 value: 33.333 - type: precision_at_5 value: 31.837 - type: recall_at_1 value: 2.547 - type: recall_at_10 value: 18.19 - type: recall_at_100 value: 49.538 - type: recall_at_1000 value: 83.86 - type: recall_at_3 value: 7.329 - type: recall_at_5 value: 11.532 - task: type: Classification dataset: name: MTEB ToxicConversationsClassification type: mteb/toxic_conversations_50k config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 71.4952 - type: ap value: 14.793362635531409 - type: f1 value: 55.204635551516915 - task: type: Classification dataset: name: MTEB TweetSentimentExtractionClassification type: mteb/tweet_sentiment_extraction config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 61.5365025466893 - type: f1 value: 61.81742556334845 - task: type: Clustering dataset: name: MTEB TwentyNewsgroupsClustering type: mteb/twentynewsgroups-clustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 49.05531070301185 - task: type: PairClassification dataset: name: MTEB TwitterSemEval2015 type: mteb/twittersemeval2015-pairclassification config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 86.51725576682364 - type: cos_sim_ap value: 75.2292304265163 - type: cos_sim_f1 value: 69.54022988505749 - type: cos_sim_precision value: 63.65629110039457 - type: cos_sim_recall value: 76.62269129287598 - type: dot_accuracy value: 86.51725576682364 - type: dot_ap value: 75.22922386081054 - type: dot_f1 value: 69.54022988505749 - type: dot_precision value: 63.65629110039457 - type: dot_recall value: 76.62269129287598 - type: euclidean_accuracy value: 86.51725576682364 - type: euclidean_ap value: 75.22925730473472 - type: euclidean_f1 value: 69.54022988505749 - type: euclidean_precision value: 63.65629110039457 - type: euclidean_recall value: 76.62269129287598 - type: manhattan_accuracy value: 86.52321630804077 - type: manhattan_ap value: 75.20608115037336 - type: manhattan_f1 value: 69.60000000000001 - type: manhattan_precision value: 64.37219730941705 - type: manhattan_recall value: 75.75197889182058 - type: max_accuracy value: 86.52321630804077 - type: max_ap value: 75.22925730473472 - type: max_f1 value: 69.60000000000001 - task: type: PairClassification dataset: name: MTEB TwitterURLCorpus type: mteb/twitterurlcorpus-pairclassification config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 89.34877944657896 - type: cos_sim_ap value: 86.71257569277373 - type: cos_sim_f1 value: 79.10386355986088 - type: cos_sim_precision value: 76.91468470434214 - type: cos_sim_recall value: 81.4213119802895 - type: dot_accuracy value: 89.34877944657896 - type: dot_ap value: 86.71257133133368 - type: dot_f1 value: 79.10386355986088 - type: dot_precision value: 76.91468470434214 - type: dot_recall value: 81.4213119802895 - type: euclidean_accuracy value: 89.34877944657896 - type: euclidean_ap value: 86.71257651501476 - type: euclidean_f1 value: 79.10386355986088 - type: euclidean_precision value: 76.91468470434214 - type: euclidean_recall value: 81.4213119802895 - type: manhattan_accuracy value: 89.35848177901967 - type: manhattan_ap value: 86.69330615469126 - type: manhattan_f1 value: 79.13867741453949 - type: manhattan_precision value: 76.78881807647741 - type: manhattan_recall value: 81.63689559593472 - type: max_accuracy value: 89.35848177901967 - type: max_ap value: 86.71257651501476 - type: max_f1 value: 79.13867741453949 --- # nomic-embed-text-v1: A Reproducible Long Context (8192) Text Embedder `nomic-embed-text-v1` is 8192 context length text encoder that surpasses OpenAI text-embedding-ada-002 and text-embedding-3-small performance on short and long context tasks. | Name | SeqLen | MTEB | LoCo | Jina Long Context | Open Weights | Open Training Code | Open Data | | :-------------------------------:| :----- | :-------- | :------: | :---------------: | :-----------: | :----------------: | :---------- | | nomic-embed-text-v1 | 8192 | **62.39** |**85.53** | 54.16 | ✅ | ✅ | ✅ | | jina-embeddings-v2-base-en | 8192 | 60.39 | 85.45 | 51.90 | ✅ | ❌ | ❌ | | text-embedding-3-small | 8191 | 62.26 | 82.40 | **58.20** | ❌ | ❌ | ❌ | | text-embedding-ada-002 | 8191 | 60.99 | 52.7 | 55.25 | ❌ | ❌ | ❌ | ## Hosted Inference API The easiest way to get started with Nomic Embed is through the Nomic Embedding API. Generating embeddings with the `nomic` Python client is as easy as ```python from nomic import embed output = embed.text( texts=['Nomic Embedding API', '#keepAIOpen'], model='nomic-embed-text-v1', task_type='search_document' ) print(output) ``` For more information, see the [API reference](https://docs.nomic.ai/reference/endpoints/nomic-embed-text) ## Data Visualization Click the Nomic Atlas map below to visualize a 5M sample of our contrastive pretraining data! [![image/webp](https://cdn-uploads.huggingface.co/production/uploads/607997c83a565c15675055b3/pjhJhuNyRfPagRd_c_iUz.webp)](https://atlas.nomic.ai/map/nomic-text-embed-v1-5m-sample) ## Training Details We train our embedder using a multi-stage training pipeline. Starting from a long-context [BERT model](https://huggingface.co/nomic-ai/nomic-bert-2048), the first unsupervised contrastive stage trains on a dataset generated from weakly related text pairs, such as question-answer pairs from forums like StackExchange and Quora, title-body pairs from Amazon reviews, and summarizations from news articles. In the second finetuning stage, higher quality labeled datasets such as search queries and answers from web searches are leveraged. Data curation and hard-example mining is crucial in this stage. For more details, see the Nomic Embed [Technical Report](https://static.nomic.ai/reports/2024_Nomic_Embed_Text_Technical_Report.pdf) and corresponding [blog post](https://blog.nomic.ai/posts/nomic-embed-text-v1). Training data to train the models is released in its entirety. For more details, see the `contrastors` [repository](https://github.com/nomic-ai/contrastors) ## Usage Note `nomic-embed-text` requires prefixes! We support the prefixes `[search_query, search_document, classification, clustering]`. For retrieval applications, you should prepend `search_document` for all your documents and `search_query` for your queries. ### Sentence Transformers ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True) sentences = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?'] embeddings = model.encode(sentences) print(embeddings) ``` ### Transformers ```python import torch import torch.nn.functional as F from transformers import AutoTokenizer, AutoModel def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) sentences = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?'] tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True) model.eval() encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') with torch.no_grad(): model_output = model(**encoded_input) embeddings = mean_pooling(model_output, encoded_input['attention_mask']) embeddings = F.normalize(embeddings, p=2, dim=1) print(embeddings) ``` The model natively supports scaling of the sequence length past 2048 tokens. To do so, ```diff - tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') + tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased', model_max_length=8192) - model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True) + model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True, rotary_scaling_factor=2) ``` ### Transformers.js ```js import { pipeline } from '@xenova/transformers'; // Create a feature extraction pipeline const extractor = await pipeline('feature-extraction', 'nomic-ai/nomic-embed-text-v1', { quantized: false, // Comment out this line to use the quantized version }); // Compute sentence embeddings const texts = ['What is TSNE?', 'Who is Laurens van der Maaten?']; const embeddings = await extractor(texts, { pooling: 'mean', normalize: true }); console.log(embeddings); ``` # Join the Nomic Community - Nomic: [https://nomic.ai](https://nomic.ai) - Discord: [https://discord.gg/myY5YDR8z8](https://discord.gg/myY5YDR8z8) - Twitter: [https://twitter.com/nomic_ai](https://twitter.com/nomic_ai) # Citation If you find the model, dataset, or training code useful, please cite our work ```bibtex @misc{nussbaum2024nomic, title={Nomic Embed: Training a Reproducible Long Context Text Embedder}, author={Zach Nussbaum and John X. Morris and Brandon Duderstadt and Andriy Mulyar}, year={2024}, eprint={2402.01613}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
[ "SUMMARIZATION" ]
[ "BIOSSES", "SCIFACT" ]
Non_BioNLP
# nomic-embed-text-v1: A Reproducible Long Context (8192) Text Embedder `nomic-embed-text-v1` is 8192 context length text encoder that surpasses OpenAI text-embedding-ada-002 and text-embedding-3-small performance on short and long context tasks. | Name | SeqLen | MTEB | LoCo | Jina Long Context | Open Weights | Open Training Code | Open Data | | :-------------------------------:| :----- | :-------- | :------: | :---------------: | :-----------: | :----------------: | :---------- | | nomic-embed-text-v1 | 8192 | **62.39** |**85.53** | 54.16 | ✅ | ✅ | ✅ | | jina-embeddings-v2-base-en | 8192 | 60.39 | 85.45 | 51.90 | ✅ | ❌ | ❌ | | text-embedding-3-small | 8191 | 62.26 | 82.40 | **58.20** | ❌ | ❌ | ❌ | | text-embedding-ada-002 | 8191 | 60.99 | 52.7 | 55.25 | ❌ | ❌ | ❌ | ## Hosted Inference API The easiest way to get started with Nomic Embed is through the Nomic Embedding API. Generating embeddings with the `nomic` Python client is as easy as ```python from nomic import embed output = embed.text( texts=['Nomic Embedding API', '#keepAIOpen'], model='nomic-embed-text-v1', task_type='search_document' ) print(output) ``` For more information, see the [API reference](https://docs.nomic.ai/reference/endpoints/nomic-embed-text) ## Data Visualization Click the Nomic Atlas map below to visualize a 5M sample of our contrastive pretraining data! [![image/webp](https://cdn-uploads.huggingface.co/production/uploads/607997c83a565c15675055b3/pjhJhuNyRfPagRd_c_iUz.webp)](https://atlas.nomic.ai/map/nomic-text-embed-v1-5m-sample) ## Training Details We train our embedder using a multi-stage training pipeline. Starting from a long-context [BERT model](https://huggingface.co/nomic-ai/nomic-bert-2048), the first unsupervised contrastive stage trains on a dataset generated from weakly related text pairs, such as question-answer pairs from forums like StackExchange and Quora, title-body pairs from Amazon reviews, and summarizations from news articles. In the second finetuning stage, higher quality labeled datasets such as search queries and answers from web searches are leveraged. Data curation and hard-example mining is crucial in this stage. For more details, see the Nomic Embed [Technical Report](https://static.nomic.ai/reports/2024_Nomic_Embed_Text_Technical_Report.pdf) and corresponding [blog post](https://blog.nomic.ai/posts/nomic-embed-text-v1). Training data to train the models is released in its entirety. For more details, see the `contrastors` [repository](https://github.com/nomic-ai/contrastors) ## Usage Note `nomic-embed-text` requires prefixes! We support the prefixes `[search_query, search_document, classification, clustering]`. For retrieval applications, you should prepend `search_document` for all your documents and `search_query` for your queries. ### Sentence Transformers ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True) sentences = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?'] embeddings = model.encode(sentences) print(embeddings) ``` ### Transformers ```python import torch import torch.nn.functional as F from transformers import AutoTokenizer, AutoModel def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) sentences = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?'] tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True) model.eval() encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') with torch.no_grad(): model_output = model(**encoded_input) embeddings = mean_pooling(model_output, encoded_input['attention_mask']) embeddings = F.normalize(embeddings, p=2, dim=1) print(embeddings) ``` The model natively supports scaling of the sequence length past 2048 tokens. To do so, ```diff - tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') + tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased', model_max_length=8192) - model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True) + model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True, rotary_scaling_factor=2) ``` ### Transformers.js ```js import { pipeline } from '@xenova/transformers'; // Create a feature extraction pipeline const extractor = await pipeline('feature-extraction', 'nomic-ai/nomic-embed-text-v1', { quantized: false, // Comment out this line to use the quantized version }); // Compute sentence embeddings const texts = ['What is TSNE?', 'Who is Laurens van der Maaten?']; const embeddings = await extractor(texts, { pooling: 'mean', normalize: true }); console.log(embeddings); ``` # Join the Nomic Community - Nomic: [https://nomic.ai](https://nomic.ai) - Discord: [https://discord.gg/myY5YDR8z8](https://discord.gg/myY5YDR8z8) - Twitter: [https://twitter.com/nomic_ai](https://twitter.com/nomic_ai) # Citation If you find the model, dataset, or training code useful, please cite our work ```bibtex @misc{nussbaum2024nomic, title={Nomic Embed: Training a Reproducible Long Context Text Embedder}, author={Zach Nussbaum and John X. Morris and Brandon Duderstadt and Andriy Mulyar}, year={2024}, eprint={2402.01613}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": ["en"], "library_name": "sentence-transformers", "license": "apache-2.0", "pipeline_tag": "feature-extraction", "tags": ["feature-extraction", "sentence-similarity", "mteb", "transformers", "transformers.js"], "model-index": [{"name": "epoch_0_model", "results": [{"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonCounterfactualClassification (en)", "type": "mteb/amazon_counterfactual", "config": "en", "split": "test", "revision": "e8379541af4e31359cca9fbcf4b00f2671dba205"}, "metrics": [{"type": "accuracy", "value": 76.8507462686567}, {"type": "ap", "value": 40.592189159090495}, {"type": "f1", "value": 71.01634655512476}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonPolarityClassification", "type": "mteb/amazon_polarity", "config": "default", "split": "test", "revision": "e2d317d38cd51312af73b3d32a06d1a08b442046"}, "metrics": [{"type": "accuracy", "value": 91.51892500000001}, {"type": "ap", "value": 88.50346762975335}, {"type": "f1", "value": 91.50342077459624}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonReviewsClassification (en)", "type": "mteb/amazon_reviews_multi", "config": "en", "split": "test", "revision": "1399c76144fd37290681b995c656ef9b2e06e26d"}, "metrics": [{"type": "accuracy", "value": 47.364}, {"type": "f1", "value": 46.72708080922794}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ArguAna", "type": "arguana", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 25.178}, {"type": "map_at_10", "value": 40.244}, {"type": "map_at_100", "value": 41.321999999999996}, {"type": "map_at_1000", "value": 41.331}, {"type": "map_at_3", "value": 35.016999999999996}, {"type": "map_at_5", "value": 37.99}, {"type": "mrr_at_1", "value": 25.605}, {"type": "mrr_at_10", "value": 40.422000000000004}, {"type": "mrr_at_100", "value": 41.507}, {"type": "mrr_at_1000", "value": 41.516}, {"type": "mrr_at_3", "value": 35.23}, {"type": "mrr_at_5", "value": 38.15}, {"type": "ndcg_at_1", "value": 25.178}, {"type": "ndcg_at_10", "value": 49.258}, {"type": "ndcg_at_100", "value": 53.776}, {"type": "ndcg_at_1000", "value": 53.995000000000005}, {"type": "ndcg_at_3", "value": 38.429}, {"type": "ndcg_at_5", "value": 43.803}, {"type": "precision_at_1", "value": 25.178}, {"type": "precision_at_10", "value": 7.831}, {"type": "precision_at_100", "value": 0.979}, {"type": "precision_at_1000", "value": 0.1}, {"type": "precision_at_3", "value": 16.121}, {"type": "precision_at_5", "value": 12.29}, {"type": "recall_at_1", "value": 25.178}, {"type": "recall_at_10", "value": 78.307}, {"type": "recall_at_100", "value": 97.866}, {"type": "recall_at_1000", "value": 99.57300000000001}, {"type": "recall_at_3", "value": 48.364000000000004}, {"type": "recall_at_5", "value": 61.451}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringP2P", "type": "mteb/arxiv-clustering-p2p", "config": "default", "split": "test", "revision": "a122ad7f3f0291bf49cc6f4d32aa80929df69d5d"}, "metrics": [{"type": "v_measure", "value": 45.93034494751465}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringS2S", "type": "mteb/arxiv-clustering-s2s", "config": "default", "split": "test", "revision": "f910caf1a6075f7329cdf8c1a6135696f37dbd53"}, "metrics": [{"type": "v_measure", "value": 36.64579480054327}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB AskUbuntuDupQuestions", "type": "mteb/askubuntudupquestions-reranking", "config": "default", "split": "test", "revision": "2000358ca161889fa9c082cb41daa8dcfb161a54"}, "metrics": [{"type": "map", "value": 60.601310529222054}, {"type": "mrr", "value": 75.04484896451656}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB BIOSSES", "type": "mteb/biosses-sts", "config": "default", "split": "test", "revision": "d3fb88f8f02e40887cd149695127462bbcf29b4a"}, "metrics": [{"type": "cos_sim_pearson", "value": 88.57797718095814}, {"type": "cos_sim_spearman", "value": 86.47064499110101}, {"type": "euclidean_pearson", "value": 87.4559602783142}, {"type": "euclidean_spearman", "value": 86.47064499110101}, {"type": "manhattan_pearson", "value": 87.7232764230245}, {"type": "manhattan_spearman", "value": 86.91222131777742}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB Banking77Classification", "type": "mteb/banking77", "config": "default", "split": "test", "revision": "0fd18e25b25c072e09e0d92ab615fda904d66300"}, "metrics": [{"type": "accuracy", "value": 84.5422077922078}, {"type": "f1", "value": 84.47657456950589}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringP2P", "type": "mteb/biorxiv-clustering-p2p", "config": "default", "split": "test", "revision": "65b79d1d13f80053f67aca9498d9402c2d9f1f40"}, "metrics": [{"type": "v_measure", "value": 38.48953561974464}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringS2S", "type": "mteb/biorxiv-clustering-s2s", "config": "default", "split": "test", "revision": "258694dd0231531bc1fd9de6ceb52a0853c6d908"}, "metrics": [{"type": "v_measure", "value": 32.75995857510105}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackAndroidRetrieval", "type": "BeIR/cqadupstack", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 30.008000000000003}, {"type": "map_at_10", "value": 39.51}, {"type": "map_at_100", "value": 40.841}, {"type": "map_at_1000", "value": 40.973}, {"type": "map_at_3", "value": 36.248999999999995}, {"type": "map_at_5", "value": 38.096999999999994}, {"type": "mrr_at_1", "value": 36.481}, {"type": "mrr_at_10", "value": 44.818000000000005}, {"type": "mrr_at_100", "value": 45.64}, {"type": "mrr_at_1000", "value": 45.687}, {"type": "mrr_at_3", "value": 42.036}, {"type": "mrr_at_5", "value": 43.782}, {"type": "ndcg_at_1", "value": 36.481}, {"type": "ndcg_at_10", "value": 45.152}, {"type": "ndcg_at_100", "value": 50.449}, {"type": "ndcg_at_1000", "value": 52.76499999999999}, {"type": "ndcg_at_3", "value": 40.161}, {"type": "ndcg_at_5", "value": 42.577999999999996}, {"type": "precision_at_1", "value": 36.481}, {"type": "precision_at_10", "value": 8.369}, {"type": "precision_at_100", "value": 1.373}, {"type": "precision_at_1000", "value": 0.186}, {"type": "precision_at_3", "value": 18.693}, {"type": "precision_at_5", "value": 13.533999999999999}, {"type": "recall_at_1", "value": 30.008000000000003}, {"type": "recall_at_10", "value": 56.108999999999995}, {"type": "recall_at_100", "value": 78.55499999999999}, {"type": "recall_at_1000", "value": 93.659}, {"type": "recall_at_3", "value": 41.754999999999995}, {"type": "recall_at_5", "value": 48.296}, {"type": "map_at_1", "value": 30.262}, {"type": "map_at_10", "value": 40.139}, {"type": "map_at_100", "value": 41.394}, {"type": "map_at_1000", "value": 41.526}, {"type": "map_at_3", "value": 37.155}, {"type": "map_at_5", "value": 38.785}, {"type": "mrr_at_1", "value": 38.153}, {"type": "mrr_at_10", "value": 46.369}, {"type": "mrr_at_100", "value": 47.072}, {"type": "mrr_at_1000", "value": 47.111999999999995}, {"type": "mrr_at_3", "value": 44.268}, {"type": "mrr_at_5", "value": 45.389}, {"type": "ndcg_at_1", "value": 38.153}, {"type": "ndcg_at_10", "value": 45.925}, {"type": "ndcg_at_100", "value": 50.394000000000005}, {"type": "ndcg_at_1000", "value": 52.37500000000001}, {"type": "ndcg_at_3", "value": 41.754000000000005}, {"type": "ndcg_at_5", "value": 43.574}, {"type": "precision_at_1", "value": 38.153}, {"type": "precision_at_10", "value": 8.796}, {"type": "precision_at_100", "value": 1.432}, {"type": "precision_at_1000", "value": 0.189}, {"type": "precision_at_3", "value": 20.318}, {"type": "precision_at_5", "value": 14.395}, {"type": "recall_at_1", "value": 30.262}, {"type": "recall_at_10", "value": 55.72200000000001}, {"type": "recall_at_100", "value": 74.97500000000001}, {"type": "recall_at_1000", "value": 87.342}, {"type": "recall_at_3", "value": 43.129}, {"type": "recall_at_5", "value": 48.336}, {"type": "map_at_1", "value": 39.951}, {"type": "map_at_10", "value": 51.248000000000005}, {"type": "map_at_100", "value": 52.188}, {"type": "map_at_1000", "value": 52.247}, {"type": "map_at_3", "value": 48.211}, {"type": "map_at_5", "value": 49.797000000000004}, {"type": "mrr_at_1", "value": 45.329}, {"type": "mrr_at_10", "value": 54.749}, {"type": "mrr_at_100", "value": 55.367999999999995}, {"type": "mrr_at_1000", "value": 55.400000000000006}, {"type": "mrr_at_3", "value": 52.382}, {"type": "mrr_at_5", "value": 53.649}, {"type": "ndcg_at_1", "value": 45.329}, {"type": "ndcg_at_10", "value": 56.847}, {"type": "ndcg_at_100", "value": 60.738}, {"type": "ndcg_at_1000", "value": 61.976}, {"type": "ndcg_at_3", "value": 51.59}, {"type": "ndcg_at_5", "value": 53.915}, {"type": "precision_at_1", "value": 45.329}, {"type": "precision_at_10", "value": 8.959}, {"type": "precision_at_100", "value": 1.187}, {"type": "precision_at_1000", "value": 0.134}, {"type": "precision_at_3", "value": 22.612}, {"type": "precision_at_5", "value": 15.273}, {"type": "recall_at_1", "value": 39.951}, {"type": "recall_at_10", "value": 70.053}, {"type": "recall_at_100", "value": 86.996}, {"type": "recall_at_1000", "value": 95.707}, {"type": "recall_at_3", "value": 56.032000000000004}, {"type": "recall_at_5", "value": 61.629999999999995}, {"type": "map_at_1", "value": 25.566}, {"type": "map_at_10", "value": 33.207}, {"type": "map_at_100", "value": 34.166000000000004}, {"type": "map_at_1000", "value": 34.245}, {"type": "map_at_3", "value": 30.94}, {"type": "map_at_5", "value": 32.01}, {"type": "mrr_at_1", "value": 27.345000000000002}, {"type": "mrr_at_10", "value": 35.193000000000005}, {"type": "mrr_at_100", "value": 35.965}, {"type": "mrr_at_1000", "value": 36.028999999999996}, {"type": "mrr_at_3", "value": 32.806000000000004}, {"type": "mrr_at_5", "value": 34.021}, {"type": "ndcg_at_1", "value": 27.345000000000002}, {"type": "ndcg_at_10", "value": 37.891999999999996}, {"type": "ndcg_at_100", "value": 42.664}, {"type": "ndcg_at_1000", "value": 44.757000000000005}, {"type": "ndcg_at_3", "value": 33.123000000000005}, {"type": "ndcg_at_5", "value": 35.035}, {"type": "precision_at_1", "value": 27.345000000000002}, {"type": "precision_at_10", "value": 5.763}, {"type": "precision_at_100", "value": 0.859}, {"type": "precision_at_1000", "value": 0.108}, {"type": "precision_at_3", "value": 13.71}, {"type": "precision_at_5", "value": 9.401}, {"type": "recall_at_1", "value": 25.566}, {"type": "recall_at_10", "value": 50.563}, {"type": "recall_at_100", "value": 72.86399999999999}, {"type": "recall_at_1000", "value": 88.68599999999999}, {"type": "recall_at_3", "value": 37.43}, {"type": "recall_at_5", "value": 41.894999999999996}, {"type": "map_at_1", "value": 16.663}, {"type": "map_at_10", "value": 23.552}, {"type": "map_at_100", "value": 24.538}, {"type": "map_at_1000", "value": 24.661}, {"type": "map_at_3", "value": 21.085}, {"type": "map_at_5", "value": 22.391}, {"type": "mrr_at_1", "value": 20.025000000000002}, {"type": "mrr_at_10", "value": 27.643}, {"type": "mrr_at_100", "value": 28.499999999999996}, {"type": "mrr_at_1000", "value": 28.582}, {"type": "mrr_at_3", "value": 25.083}, {"type": "mrr_at_5", "value": 26.544}, {"type": "ndcg_at_1", "value": 20.025000000000002}, {"type": "ndcg_at_10", "value": 28.272000000000002}, {"type": "ndcg_at_100", "value": 33.353}, {"type": "ndcg_at_1000", "value": 36.454}, {"type": "ndcg_at_3", "value": 23.579}, {"type": "ndcg_at_5", "value": 25.685000000000002}, {"type": "precision_at_1", "value": 20.025000000000002}, {"type": "precision_at_10", "value": 5.187}, {"type": "precision_at_100", "value": 0.897}, {"type": "precision_at_1000", "value": 0.13}, {"type": "precision_at_3", "value": 10.987}, {"type": "precision_at_5", "value": 8.06}, {"type": "recall_at_1", "value": 16.663}, {"type": "recall_at_10", "value": 38.808}, {"type": "recall_at_100", "value": 61.305}, {"type": "recall_at_1000", "value": 83.571}, {"type": "recall_at_3", "value": 25.907999999999998}, {"type": "recall_at_5", "value": 31.214}, {"type": "map_at_1", "value": 27.695999999999998}, {"type": "map_at_10", "value": 37.018}, {"type": "map_at_100", "value": 38.263000000000005}, {"type": "map_at_1000", "value": 38.371}, {"type": "map_at_3", "value": 34.226}, {"type": "map_at_5", "value": 35.809999999999995}, {"type": "mrr_at_1", "value": 32.916000000000004}, {"type": "mrr_at_10", "value": 42.067}, {"type": "mrr_at_100", "value": 42.925000000000004}, {"type": "mrr_at_1000", "value": 42.978}, {"type": "mrr_at_3", "value": 39.637}, {"type": "mrr_at_5", "value": 41.134}, {"type": "ndcg_at_1", "value": 32.916000000000004}, {"type": "ndcg_at_10", "value": 42.539}, {"type": "ndcg_at_100", "value": 47.873}, {"type": "ndcg_at_1000", "value": 50.08200000000001}, {"type": "ndcg_at_3", "value": 37.852999999999994}, {"type": "ndcg_at_5", "value": 40.201}, {"type": "precision_at_1", "value": 32.916000000000004}, {"type": "precision_at_10", "value": 7.5840000000000005}, {"type": "precision_at_100", "value": 1.199}, {"type": "precision_at_1000", "value": 0.155}, {"type": "precision_at_3", "value": 17.485}, {"type": "precision_at_5", "value": 12.512}, {"type": "recall_at_1", "value": 27.695999999999998}, {"type": "recall_at_10", "value": 53.638}, {"type": "recall_at_100", "value": 76.116}, {"type": "recall_at_1000", "value": 91.069}, {"type": "recall_at_3", "value": 41.13}, {"type": "recall_at_5", "value": 46.872}, {"type": "map_at_1", "value": 24.108}, {"type": "map_at_10", "value": 33.372}, {"type": "map_at_100", "value": 34.656}, {"type": "map_at_1000", "value": 34.768}, {"type": "map_at_3", "value": 30.830999999999996}, {"type": "map_at_5", "value": 32.204}, {"type": "mrr_at_1", "value": 29.110000000000003}, {"type": "mrr_at_10", "value": 37.979}, {"type": "mrr_at_100", "value": 38.933}, {"type": "mrr_at_1000", "value": 38.988}, {"type": "mrr_at_3", "value": 35.731}, {"type": "mrr_at_5", "value": 36.963}, {"type": "ndcg_at_1", "value": 29.110000000000003}, {"type": "ndcg_at_10", "value": 38.635000000000005}, {"type": "ndcg_at_100", "value": 44.324999999999996}, {"type": "ndcg_at_1000", "value": 46.747}, {"type": "ndcg_at_3", "value": 34.37}, {"type": "ndcg_at_5", "value": 36.228}, {"type": "precision_at_1", "value": 29.110000000000003}, {"type": "precision_at_10", "value": 6.963}, {"type": "precision_at_100", "value": 1.146}, {"type": "precision_at_1000", "value": 0.152}, {"type": "precision_at_3", "value": 16.400000000000002}, {"type": "precision_at_5", "value": 11.552999999999999}, {"type": "recall_at_1", "value": 24.108}, {"type": "recall_at_10", "value": 49.597}, {"type": "recall_at_100", "value": 73.88900000000001}, {"type": "recall_at_1000", "value": 90.62400000000001}, {"type": "recall_at_3", "value": 37.662}, {"type": "recall_at_5", "value": 42.565}, {"type": "map_at_1", "value": 25.00791666666667}, {"type": "map_at_10", "value": 33.287749999999996}, {"type": "map_at_100", "value": 34.41141666666667}, {"type": "map_at_1000", "value": 34.52583333333333}, {"type": "map_at_3", "value": 30.734416666666668}, {"type": "map_at_5", "value": 32.137166666666666}, {"type": "mrr_at_1", "value": 29.305666666666664}, {"type": "mrr_at_10", "value": 37.22966666666666}, {"type": "mrr_at_100", "value": 38.066583333333334}, {"type": "mrr_at_1000", "value": 38.12616666666667}, {"type": "mrr_at_3", "value": 34.92275}, {"type": "mrr_at_5", "value": 36.23333333333334}, {"type": "ndcg_at_1", "value": 29.305666666666664}, {"type": "ndcg_at_10", "value": 38.25533333333333}, {"type": "ndcg_at_100", "value": 43.25266666666666}, {"type": "ndcg_at_1000", "value": 45.63583333333334}, {"type": "ndcg_at_3", "value": 33.777166666666666}, {"type": "ndcg_at_5", "value": 35.85}, {"type": "precision_at_1", "value": 29.305666666666664}, {"type": "precision_at_10", "value": 6.596416666666667}, {"type": "precision_at_100", "value": 1.0784166666666668}, {"type": "precision_at_1000", "value": 0.14666666666666664}, {"type": "precision_at_3", "value": 15.31075}, {"type": "precision_at_5", "value": 10.830916666666667}, {"type": "recall_at_1", "value": 25.00791666666667}, {"type": "recall_at_10", "value": 49.10933333333333}, {"type": "recall_at_100", "value": 71.09216666666667}, {"type": "recall_at_1000", "value": 87.77725000000001}, {"type": "recall_at_3", "value": 36.660916666666665}, {"type": "recall_at_5", "value": 41.94149999999999}, {"type": "map_at_1", "value": 23.521}, {"type": "map_at_10", "value": 30.043}, {"type": "map_at_100", "value": 30.936000000000003}, {"type": "map_at_1000", "value": 31.022}, {"type": "map_at_3", "value": 27.926000000000002}, {"type": "map_at_5", "value": 29.076999999999998}, {"type": "mrr_at_1", "value": 26.227}, {"type": "mrr_at_10", "value": 32.822}, {"type": "mrr_at_100", "value": 33.61}, {"type": "mrr_at_1000", "value": 33.672000000000004}, {"type": "mrr_at_3", "value": 30.776999999999997}, {"type": "mrr_at_5", "value": 31.866}, {"type": "ndcg_at_1", "value": 26.227}, {"type": "ndcg_at_10", "value": 34.041}, {"type": "ndcg_at_100", "value": 38.394}, {"type": "ndcg_at_1000", "value": 40.732}, {"type": "ndcg_at_3", "value": 30.037999999999997}, {"type": "ndcg_at_5", "value": 31.845000000000002}, {"type": "precision_at_1", "value": 26.227}, {"type": "precision_at_10", "value": 5.244999999999999}, {"type": "precision_at_100", "value": 0.808}, {"type": "precision_at_1000", "value": 0.107}, {"type": "precision_at_3", "value": 12.679000000000002}, {"type": "precision_at_5", "value": 8.773}, {"type": "recall_at_1", "value": 23.521}, {"type": "recall_at_10", "value": 43.633}, {"type": "recall_at_100", "value": 63.126000000000005}, {"type": "recall_at_1000", "value": 80.765}, {"type": "recall_at_3", "value": 32.614}, {"type": "recall_at_5", "value": 37.15}, {"type": "map_at_1", "value": 16.236}, {"type": "map_at_10", "value": 22.898}, {"type": "map_at_100", "value": 23.878}, {"type": "map_at_1000", "value": 24.009}, {"type": "map_at_3", "value": 20.87}, {"type": "map_at_5", "value": 22.025}, {"type": "mrr_at_1", "value": 19.339000000000002}, {"type": "mrr_at_10", "value": 26.382}, {"type": "mrr_at_100", "value": 27.245}, {"type": "mrr_at_1000", "value": 27.33}, {"type": "mrr_at_3", "value": 24.386}, {"type": "mrr_at_5", "value": 25.496000000000002}, {"type": "ndcg_at_1", "value": 19.339000000000002}, {"type": "ndcg_at_10", "value": 27.139999999999997}, {"type": "ndcg_at_100", "value": 31.944}, {"type": "ndcg_at_1000", "value": 35.077999999999996}, {"type": "ndcg_at_3", "value": 23.424}, {"type": "ndcg_at_5", "value": 25.188}, {"type": "precision_at_1", "value": 19.339000000000002}, {"type": "precision_at_10", "value": 4.8309999999999995}, {"type": "precision_at_100", "value": 0.845}, {"type": "precision_at_1000", "value": 0.128}, {"type": "precision_at_3", "value": 10.874}, {"type": "precision_at_5", "value": 7.825}, {"type": "recall_at_1", "value": 16.236}, {"type": "recall_at_10", "value": 36.513}, {"type": "recall_at_100", "value": 57.999}, {"type": "recall_at_1000", "value": 80.512}, {"type": "recall_at_3", "value": 26.179999999999996}, {"type": "recall_at_5", "value": 30.712}, {"type": "map_at_1", "value": 24.11}, {"type": "map_at_10", "value": 31.566}, {"type": "map_at_100", "value": 32.647}, {"type": "map_at_1000", "value": 32.753}, {"type": "map_at_3", "value": 29.24}, {"type": "map_at_5", "value": 30.564999999999998}, {"type": "mrr_at_1", "value": 28.265}, {"type": "mrr_at_10", "value": 35.504000000000005}, {"type": "mrr_at_100", "value": 36.436}, {"type": "mrr_at_1000", "value": 36.503}, {"type": "mrr_at_3", "value": 33.349000000000004}, {"type": "mrr_at_5", "value": 34.622}, {"type": "ndcg_at_1", "value": 28.265}, {"type": "ndcg_at_10", "value": 36.192}, {"type": "ndcg_at_100", "value": 41.388000000000005}, {"type": "ndcg_at_1000", "value": 43.948}, {"type": "ndcg_at_3", "value": 31.959}, {"type": "ndcg_at_5", "value": 33.998}, {"type": "precision_at_1", "value": 28.265}, {"type": "precision_at_10", "value": 5.989}, {"type": "precision_at_100", "value": 0.9650000000000001}, {"type": "precision_at_1000", "value": 0.13}, {"type": "precision_at_3", "value": 14.335}, {"type": "precision_at_5", "value": 10.112}, {"type": "recall_at_1", "value": 24.11}, {"type": "recall_at_10", "value": 46.418}, {"type": "recall_at_100", "value": 69.314}, {"type": "recall_at_1000", "value": 87.397}, {"type": "recall_at_3", "value": 34.724}, {"type": "recall_at_5", "value": 39.925}, {"type": "map_at_1", "value": 22.091}, {"type": "map_at_10", "value": 29.948999999999998}, {"type": "map_at_100", "value": 31.502000000000002}, {"type": "map_at_1000", "value": 31.713}, {"type": "map_at_3", "value": 27.464}, {"type": "map_at_5", "value": 28.968}, {"type": "mrr_at_1", "value": 26.482}, {"type": "mrr_at_10", "value": 34.009}, {"type": "mrr_at_100", "value": 35.081}, {"type": "mrr_at_1000", "value": 35.138000000000005}, {"type": "mrr_at_3", "value": 31.785000000000004}, {"type": "mrr_at_5", "value": 33.178999999999995}, {"type": "ndcg_at_1", "value": 26.482}, {"type": "ndcg_at_10", "value": 35.008}, {"type": "ndcg_at_100", "value": 41.272999999999996}, {"type": "ndcg_at_1000", "value": 43.972}, {"type": "ndcg_at_3", "value": 30.804}, {"type": "ndcg_at_5", "value": 33.046}, {"type": "precision_at_1", "value": 26.482}, {"type": "precision_at_10", "value": 6.462}, {"type": "precision_at_100", "value": 1.431}, {"type": "precision_at_1000", "value": 0.22899999999999998}, {"type": "precision_at_3", "value": 14.360999999999999}, {"type": "precision_at_5", "value": 10.474}, {"type": "recall_at_1", "value": 22.091}, {"type": "recall_at_10", "value": 45.125}, {"type": "recall_at_100", "value": 72.313}, {"type": "recall_at_1000", "value": 89.503}, {"type": "recall_at_3", "value": 33.158}, {"type": "recall_at_5", "value": 39.086999999999996}, {"type": "map_at_1", "value": 19.883}, {"type": "map_at_10", "value": 26.951000000000004}, {"type": "map_at_100", "value": 27.927999999999997}, {"type": "map_at_1000", "value": 28.022000000000002}, {"type": "map_at_3", "value": 24.616}, {"type": "map_at_5", "value": 25.917}, {"type": "mrr_at_1", "value": 21.996}, {"type": "mrr_at_10", "value": 29.221000000000004}, {"type": "mrr_at_100", "value": 30.024}, {"type": "mrr_at_1000", "value": 30.095}, {"type": "mrr_at_3", "value": 26.833000000000002}, {"type": "mrr_at_5", "value": 28.155}, {"type": "ndcg_at_1", "value": 21.996}, {"type": "ndcg_at_10", "value": 31.421}, {"type": "ndcg_at_100", "value": 36.237}, {"type": "ndcg_at_1000", "value": 38.744}, {"type": "ndcg_at_3", "value": 26.671}, {"type": "ndcg_at_5", "value": 28.907}, {"type": "precision_at_1", "value": 21.996}, {"type": "precision_at_10", "value": 5.009}, {"type": "precision_at_100", "value": 0.799}, {"type": "precision_at_1000", "value": 0.11199999999999999}, {"type": "precision_at_3", "value": 11.275}, {"type": "precision_at_5", "value": 8.059}, {"type": "recall_at_1", "value": 19.883}, {"type": "recall_at_10", "value": 43.132999999999996}, {"type": "recall_at_100", "value": 65.654}, {"type": "recall_at_1000", "value": 84.492}, {"type": "recall_at_3", "value": 30.209000000000003}, {"type": "recall_at_5", "value": 35.616}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ClimateFEVER", "type": "climate-fever", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 17.756}, {"type": "map_at_10", "value": 30.378}, {"type": "map_at_100", "value": 32.537}, {"type": "map_at_1000", "value": 32.717}, {"type": "map_at_3", "value": 25.599}, {"type": "map_at_5", "value": 28.372999999999998}, {"type": "mrr_at_1", "value": 41.303}, {"type": "mrr_at_10", "value": 53.483999999999995}, {"type": "mrr_at_100", "value": 54.106}, {"type": "mrr_at_1000", "value": 54.127}, {"type": "mrr_at_3", "value": 50.315}, {"type": "mrr_at_5", "value": 52.396}, {"type": "ndcg_at_1", "value": 41.303}, {"type": "ndcg_at_10", "value": 40.503}, {"type": "ndcg_at_100", "value": 47.821000000000005}, {"type": "ndcg_at_1000", "value": 50.788}, {"type": "ndcg_at_3", "value": 34.364}, {"type": "ndcg_at_5", "value": 36.818}, {"type": "precision_at_1", "value": 41.303}, {"type": "precision_at_10", "value": 12.463000000000001}, {"type": "precision_at_100", "value": 2.037}, {"type": "precision_at_1000", "value": 0.26}, {"type": "precision_at_3", "value": 25.798}, {"type": "precision_at_5", "value": 19.896}, {"type": "recall_at_1", "value": 17.756}, {"type": "recall_at_10", "value": 46.102}, {"type": "recall_at_100", "value": 70.819}, {"type": "recall_at_1000", "value": 87.21799999999999}, {"type": "recall_at_3", "value": 30.646}, {"type": "recall_at_5", "value": 38.022}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB DBPedia", "type": "dbpedia-entity", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 9.033}, {"type": "map_at_10", "value": 20.584}, {"type": "map_at_100", "value": 29.518}, {"type": "map_at_1000", "value": 31.186000000000003}, {"type": "map_at_3", "value": 14.468}, {"type": "map_at_5", "value": 17.177}, {"type": "mrr_at_1", "value": 69.75}, {"type": "mrr_at_10", "value": 77.025}, {"type": "mrr_at_100", "value": 77.36699999999999}, {"type": "mrr_at_1000", "value": 77.373}, {"type": "mrr_at_3", "value": 75.583}, {"type": "mrr_at_5", "value": 76.396}, {"type": "ndcg_at_1", "value": 58.5}, {"type": "ndcg_at_10", "value": 45.033}, {"type": "ndcg_at_100", "value": 49.071}, {"type": "ndcg_at_1000", "value": 56.056}, {"type": "ndcg_at_3", "value": 49.936}, {"type": "ndcg_at_5", "value": 47.471999999999994}, {"type": "precision_at_1", "value": 69.75}, {"type": "precision_at_10", "value": 35.775}, {"type": "precision_at_100", "value": 11.594999999999999}, {"type": "precision_at_1000", "value": 2.062}, {"type": "precision_at_3", "value": 52.5}, {"type": "precision_at_5", "value": 45.300000000000004}, {"type": "recall_at_1", "value": 9.033}, {"type": "recall_at_10", "value": 26.596999999999998}, {"type": "recall_at_100", "value": 54.607000000000006}, {"type": "recall_at_1000", "value": 76.961}, {"type": "recall_at_3", "value": 15.754999999999999}, {"type": "recall_at_5", "value": 20.033}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB EmotionClassification", "type": "mteb/emotion", "config": "default", "split": "test", "revision": "4f58c6b202a23cf9a4da393831edf4f9183cad37"}, "metrics": [{"type": "accuracy", "value": 48.345000000000006}, {"type": "f1", "value": 43.4514918068706}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB FEVER", "type": "fever", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 71.29100000000001}, {"type": "map_at_10", "value": 81.059}, {"type": "map_at_100", "value": 81.341}, {"type": "map_at_1000", "value": 81.355}, {"type": "map_at_3", "value": 79.74799999999999}, {"type": "map_at_5", "value": 80.612}, {"type": "mrr_at_1", "value": 76.40299999999999}, {"type": "mrr_at_10", "value": 84.615}, {"type": "mrr_at_100", "value": 84.745}, {"type": "mrr_at_1000", "value": 84.748}, {"type": "mrr_at_3", "value": 83.776}, {"type": "mrr_at_5", "value": 84.343}, {"type": "ndcg_at_1", "value": 76.40299999999999}, {"type": "ndcg_at_10", "value": 84.981}, {"type": "ndcg_at_100", "value": 86.00999999999999}, {"type": "ndcg_at_1000", "value": 86.252}, {"type": "ndcg_at_3", "value": 82.97}, {"type": "ndcg_at_5", "value": 84.152}, {"type": "precision_at_1", "value": 76.40299999999999}, {"type": "precision_at_10", "value": 10.446}, {"type": "precision_at_100", "value": 1.1199999999999999}, {"type": "precision_at_1000", "value": 0.116}, {"type": "precision_at_3", "value": 32.147999999999996}, {"type": "precision_at_5", "value": 20.135}, {"type": "recall_at_1", "value": 71.29100000000001}, {"type": "recall_at_10", "value": 93.232}, {"type": "recall_at_100", "value": 97.363}, {"type": "recall_at_1000", "value": 98.905}, {"type": "recall_at_3", "value": 87.893}, {"type": "recall_at_5", "value": 90.804}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB FiQA2018", "type": "fiqa", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 18.667}, {"type": "map_at_10", "value": 30.853}, {"type": "map_at_100", "value": 32.494}, {"type": "map_at_1000", "value": 32.677}, {"type": "map_at_3", "value": 26.91}, {"type": "map_at_5", "value": 29.099000000000004}, {"type": "mrr_at_1", "value": 37.191}, {"type": "mrr_at_10", "value": 46.171}, {"type": "mrr_at_100", "value": 47.056}, {"type": "mrr_at_1000", "value": 47.099000000000004}, {"type": "mrr_at_3", "value": 44.059}, {"type": "mrr_at_5", "value": 45.147}, {"type": "ndcg_at_1", "value": 37.191}, {"type": "ndcg_at_10", "value": 38.437}, {"type": "ndcg_at_100", "value": 44.62}, {"type": "ndcg_at_1000", "value": 47.795}, {"type": "ndcg_at_3", "value": 35.003}, {"type": "ndcg_at_5", "value": 36.006}, {"type": "precision_at_1", "value": 37.191}, {"type": "precision_at_10", "value": 10.586}, {"type": "precision_at_100", "value": 1.688}, {"type": "precision_at_1000", "value": 0.22699999999999998}, {"type": "precision_at_3", "value": 23.302}, {"type": "precision_at_5", "value": 17.006}, {"type": "recall_at_1", "value": 18.667}, {"type": "recall_at_10", "value": 45.367000000000004}, {"type": "recall_at_100", "value": 68.207}, {"type": "recall_at_1000", "value": 87.072}, {"type": "recall_at_3", "value": 32.129000000000005}, {"type": "recall_at_5", "value": 37.719}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB HotpotQA", "type": "hotpotqa", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 39.494}, {"type": "map_at_10", "value": 66.223}, {"type": "map_at_100", "value": 67.062}, {"type": "map_at_1000", "value": 67.11500000000001}, {"type": "map_at_3", "value": 62.867}, {"type": "map_at_5", "value": 64.994}, {"type": "mrr_at_1", "value": 78.987}, {"type": "mrr_at_10", "value": 84.585}, {"type": "mrr_at_100", "value": 84.773}, {"type": "mrr_at_1000", "value": 84.77900000000001}, {"type": "mrr_at_3", "value": 83.592}, {"type": "mrr_at_5", "value": 84.235}, {"type": "ndcg_at_1", "value": 78.987}, {"type": "ndcg_at_10", "value": 73.64}, {"type": "ndcg_at_100", "value": 76.519}, {"type": "ndcg_at_1000", "value": 77.51}, {"type": "ndcg_at_3", "value": 68.893}, {"type": "ndcg_at_5", "value": 71.585}, {"type": "precision_at_1", "value": 78.987}, {"type": "precision_at_10", "value": 15.529000000000002}, {"type": "precision_at_100", "value": 1.7770000000000001}, {"type": "precision_at_1000", "value": 0.191}, {"type": "precision_at_3", "value": 44.808}, {"type": "precision_at_5", "value": 29.006999999999998}, {"type": "recall_at_1", "value": 39.494}, {"type": "recall_at_10", "value": 77.643}, {"type": "recall_at_100", "value": 88.825}, {"type": "recall_at_1000", "value": 95.321}, {"type": "recall_at_3", "value": 67.211}, {"type": "recall_at_5", "value": 72.519}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ImdbClassification", "type": "mteb/imdb", "config": "default", "split": "test", "revision": "3d86128a09e091d6018b6d26cad27f2739fc2db7"}, "metrics": [{"type": "accuracy", "value": 85.55959999999999}, {"type": "ap", "value": 80.7246500384617}, {"type": "f1", "value": 85.52336485065454}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB MSMARCO", "type": "msmarco", "config": "default", "split": "dev", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 23.631}, {"type": "map_at_10", "value": 36.264}, {"type": "map_at_100", "value": 37.428}, {"type": "map_at_1000", "value": 37.472}, {"type": "map_at_3", "value": 32.537}, {"type": "map_at_5", "value": 34.746}, {"type": "mrr_at_1", "value": 24.312}, {"type": "mrr_at_10", "value": 36.858000000000004}, {"type": "mrr_at_100", "value": 37.966}, {"type": "mrr_at_1000", "value": 38.004}, {"type": "mrr_at_3", "value": 33.188}, {"type": "mrr_at_5", "value": 35.367}, {"type": "ndcg_at_1", "value": 24.312}, {"type": "ndcg_at_10", "value": 43.126999999999995}, {"type": "ndcg_at_100", "value": 48.642}, {"type": "ndcg_at_1000", "value": 49.741}, {"type": "ndcg_at_3", "value": 35.589}, {"type": "ndcg_at_5", "value": 39.515}, {"type": "precision_at_1", "value": 24.312}, {"type": "precision_at_10", "value": 6.699}, {"type": "precision_at_100", "value": 0.9450000000000001}, {"type": "precision_at_1000", "value": 0.104}, {"type": "precision_at_3", "value": 15.153}, {"type": "precision_at_5", "value": 11.065999999999999}, {"type": "recall_at_1", "value": 23.631}, {"type": "recall_at_10", "value": 64.145}, {"type": "recall_at_100", "value": 89.41}, {"type": "recall_at_1000", "value": 97.83500000000001}, {"type": "recall_at_3", "value": 43.769000000000005}, {"type": "recall_at_5", "value": 53.169}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPDomainClassification (en)", "type": "mteb/mtop_domain", "config": "en", "split": "test", "revision": "d80d48c1eb48d3562165c59d59d0034df9fff0bf"}, "metrics": [{"type": "accuracy", "value": 93.4108527131783}, {"type": "f1", "value": 93.1415880261038}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPIntentClassification (en)", "type": "mteb/mtop_intent", "config": "en", "split": "test", "revision": "ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba"}, "metrics": [{"type": "accuracy", "value": 77.24806201550388}, {"type": "f1", "value": 60.531916308197175}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (en)", "type": "mteb/amazon_massive_intent", "config": "en", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 73.71553463349024}, {"type": "f1", "value": 71.70753174900791}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (en)", "type": "mteb/amazon_massive_scenario", "config": "en", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 77.79757901815736}, {"type": "f1", "value": 77.83719850433258}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringP2P", "type": "mteb/medrxiv-clustering-p2p", "config": "default", "split": "test", "revision": "e7a26af6f3ae46b30dde8737f02c07b1505bcc73"}, "metrics": [{"type": "v_measure", "value": 33.74193296622113}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringS2S", "type": "mteb/medrxiv-clustering-s2s", "config": "default", "split": "test", "revision": "35191c8c0dca72d8ff3efcd72aa802307d469663"}, "metrics": [{"type": "v_measure", "value": 30.64257594108566}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB MindSmallReranking", "type": "mteb/mind_small", "config": "default", "split": "test", "revision": "3bdac13927fdc888b903db93b2ffdbd90b295a69"}, "metrics": [{"type": "map", "value": 30.811018518883625}, {"type": "mrr", "value": 31.910376577445003}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB NFCorpus", "type": "nfcorpus", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 5.409}, {"type": "map_at_10", "value": 13.093}, {"type": "map_at_100", "value": 16.256999999999998}, {"type": "map_at_1000", "value": 17.617}, {"type": "map_at_3", "value": 9.555}, {"type": "map_at_5", "value": 11.428}, {"type": "mrr_at_1", "value": 45.201}, {"type": "mrr_at_10", "value": 54.179}, {"type": "mrr_at_100", "value": 54.812000000000005}, {"type": "mrr_at_1000", "value": 54.840999999999994}, {"type": "mrr_at_3", "value": 51.909000000000006}, {"type": "mrr_at_5", "value": 53.519000000000005}, {"type": "ndcg_at_1", "value": 43.189}, {"type": "ndcg_at_10", "value": 35.028}, {"type": "ndcg_at_100", "value": 31.226}, {"type": "ndcg_at_1000", "value": 39.678000000000004}, {"type": "ndcg_at_3", "value": 40.596}, {"type": "ndcg_at_5", "value": 38.75}, {"type": "precision_at_1", "value": 44.582}, {"type": "precision_at_10", "value": 25.974999999999998}, {"type": "precision_at_100", "value": 7.793}, {"type": "precision_at_1000", "value": 2.036}, {"type": "precision_at_3", "value": 38.493}, {"type": "precision_at_5", "value": 33.994}, {"type": "recall_at_1", "value": 5.409}, {"type": "recall_at_10", "value": 16.875999999999998}, {"type": "recall_at_100", "value": 30.316}, {"type": "recall_at_1000", "value": 60.891}, {"type": "recall_at_3", "value": 10.688}, {"type": "recall_at_5", "value": 13.832}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB NQ", "type": "nq", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 36.375}, {"type": "map_at_10", "value": 51.991}, {"type": "map_at_100", "value": 52.91400000000001}, {"type": "map_at_1000", "value": 52.93600000000001}, {"type": "map_at_3", "value": 48.014}, {"type": "map_at_5", "value": 50.381}, {"type": "mrr_at_1", "value": 40.759}, {"type": "mrr_at_10", "value": 54.617000000000004}, {"type": "mrr_at_100", "value": 55.301}, {"type": "mrr_at_1000", "value": 55.315000000000005}, {"type": "mrr_at_3", "value": 51.516}, {"type": "mrr_at_5", "value": 53.435}, {"type": "ndcg_at_1", "value": 40.759}, {"type": "ndcg_at_10", "value": 59.384}, {"type": "ndcg_at_100", "value": 63.157}, {"type": "ndcg_at_1000", "value": 63.654999999999994}, {"type": "ndcg_at_3", "value": 52.114000000000004}, {"type": "ndcg_at_5", "value": 55.986000000000004}, {"type": "precision_at_1", "value": 40.759}, {"type": "precision_at_10", "value": 9.411999999999999}, {"type": "precision_at_100", "value": 1.153}, {"type": "precision_at_1000", "value": 0.12}, {"type": "precision_at_3", "value": 23.329}, {"type": "precision_at_5", "value": 16.256999999999998}, {"type": "recall_at_1", "value": 36.375}, {"type": "recall_at_10", "value": 79.053}, {"type": "recall_at_100", "value": 95.167}, {"type": "recall_at_1000", "value": 98.82}, {"type": "recall_at_3", "value": 60.475}, {"type": "recall_at_5", "value": 69.327}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB QuoraRetrieval", "type": "quora", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 70.256}, {"type": "map_at_10", "value": 83.8}, {"type": "map_at_100", "value": 84.425}, {"type": "map_at_1000", "value": 84.444}, {"type": "map_at_3", "value": 80.906}, {"type": "map_at_5", "value": 82.717}, {"type": "mrr_at_1", "value": 80.97999999999999}, {"type": "mrr_at_10", "value": 87.161}, {"type": "mrr_at_100", "value": 87.262}, {"type": "mrr_at_1000", "value": 87.263}, {"type": "mrr_at_3", "value": 86.175}, {"type": "mrr_at_5", "value": 86.848}, {"type": "ndcg_at_1", "value": 80.97999999999999}, {"type": "ndcg_at_10", "value": 87.697}, {"type": "ndcg_at_100", "value": 88.959}, {"type": "ndcg_at_1000", "value": 89.09899999999999}, {"type": "ndcg_at_3", "value": 84.83800000000001}, {"type": "ndcg_at_5", "value": 86.401}, {"type": "precision_at_1", "value": 80.97999999999999}, {"type": "precision_at_10", "value": 13.261000000000001}, {"type": "precision_at_100", "value": 1.5150000000000001}, {"type": "precision_at_1000", "value": 0.156}, {"type": "precision_at_3", "value": 37.01}, {"type": "precision_at_5", "value": 24.298000000000002}, {"type": "recall_at_1", "value": 70.256}, {"type": "recall_at_10", "value": 94.935}, {"type": "recall_at_100", "value": 99.274}, {"type": "recall_at_1000", "value": 99.928}, {"type": "recall_at_3", "value": 86.602}, {"type": "recall_at_5", "value": 91.133}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClustering", "type": "mteb/reddit-clustering", "config": "default", "split": "test", "revision": "24640382cdbf8abc73003fb0fa6d111a705499eb"}, "metrics": [{"type": "v_measure", "value": 56.322692497613104}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClusteringP2P", "type": "mteb/reddit-clustering-p2p", "config": "default", "split": "test", "revision": "282350215ef01743dc01b456c7f5241fa8937f16"}, "metrics": [{"type": "v_measure", "value": 61.895813503775074}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB SCIDOCS", "type": "scidocs", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 4.338}, {"type": "map_at_10", "value": 10.767}, {"type": "map_at_100", "value": 12.537999999999998}, {"type": "map_at_1000", "value": 12.803999999999998}, {"type": "map_at_3", "value": 7.788}, {"type": "map_at_5", "value": 9.302000000000001}, {"type": "mrr_at_1", "value": 21.4}, {"type": "mrr_at_10", "value": 31.637999999999998}, {"type": "mrr_at_100", "value": 32.688}, {"type": "mrr_at_1000", "value": 32.756}, {"type": "mrr_at_3", "value": 28.433000000000003}, {"type": "mrr_at_5", "value": 30.178}, {"type": "ndcg_at_1", "value": 21.4}, {"type": "ndcg_at_10", "value": 18.293}, {"type": "ndcg_at_100", "value": 25.274}, {"type": "ndcg_at_1000", "value": 30.284}, {"type": "ndcg_at_3", "value": 17.391000000000002}, {"type": "ndcg_at_5", "value": 15.146999999999998}, {"type": "precision_at_1", "value": 21.4}, {"type": "precision_at_10", "value": 9.48}, {"type": "precision_at_100", "value": 1.949}, {"type": "precision_at_1000", "value": 0.316}, {"type": "precision_at_3", "value": 16.167}, {"type": "precision_at_5", "value": 13.22}, {"type": "recall_at_1", "value": 4.338}, {"type": "recall_at_10", "value": 19.213}, {"type": "recall_at_100", "value": 39.562999999999995}, {"type": "recall_at_1000", "value": 64.08}, {"type": "recall_at_3", "value": 9.828000000000001}, {"type": "recall_at_5", "value": 13.383000000000001}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB SICK-R", "type": "mteb/sickr-sts", "config": "default", "split": "test", "revision": "a6ea5a8cab320b040a23452cc28066d9beae2cee"}, "metrics": [{"type": "cos_sim_pearson", "value": 82.42568163642142}, {"type": "cos_sim_spearman", "value": 78.5797159641342}, {"type": "euclidean_pearson", "value": 80.22151260811604}, {"type": "euclidean_spearman", "value": 78.5797151953878}, {"type": "manhattan_pearson", "value": 80.21224215864788}, {"type": "manhattan_spearman", "value": 78.55641478381344}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS12", "type": "mteb/sts12-sts", "config": "default", "split": "test", "revision": "a0d554a64d88156834ff5ae9920b964011b16384"}, "metrics": [{"type": "cos_sim_pearson", "value": 85.44020710812569}, {"type": "cos_sim_spearman", "value": 78.91631735081286}, {"type": "euclidean_pearson", "value": 81.64188964182102}, {"type": "euclidean_spearman", "value": 78.91633286881678}, {"type": "manhattan_pearson", "value": 81.69294748512496}, {"type": "manhattan_spearman", "value": 78.93438558002656}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS13", "type": "mteb/sts13-sts", "config": "default", "split": "test", "revision": "7e90230a92c190f1bf69ae9002b8cea547a64cca"}, "metrics": [{"type": "cos_sim_pearson", "value": 84.27165426412311}, {"type": "cos_sim_spearman", "value": 85.40429140249618}, {"type": "euclidean_pearson", "value": 84.7509580724893}, {"type": "euclidean_spearman", "value": 85.40429140249618}, {"type": "manhattan_pearson", "value": 84.76488289321308}, {"type": "manhattan_spearman", "value": 85.4256793698708}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS14", "type": "mteb/sts14-sts", "config": "default", "split": "test", "revision": "6031580fec1f6af667f0bd2da0a551cf4f0b2375"}, "metrics": [{"type": "cos_sim_pearson", "value": 83.138851760732}, {"type": "cos_sim_spearman", "value": 81.64101363896586}, {"type": "euclidean_pearson", "value": 82.55165038934942}, {"type": "euclidean_spearman", "value": 81.64105257080502}, {"type": "manhattan_pearson", "value": 82.52802949883335}, {"type": "manhattan_spearman", "value": 81.61255430718158}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS15", "type": "mteb/sts15-sts", "config": "default", "split": "test", "revision": "ae752c7c21bf194d8b67fd573edf7ae58183cbe3"}, "metrics": [{"type": "cos_sim_pearson", "value": 86.0654695484029}, {"type": "cos_sim_spearman", "value": 87.20408521902229}, {"type": "euclidean_pearson", "value": 86.8110651362115}, {"type": "euclidean_spearman", "value": 87.20408521902229}, {"type": "manhattan_pearson", "value": 86.77984656478691}, {"type": "manhattan_spearman", "value": 87.1719947099227}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS16", "type": "mteb/sts16-sts", "config": "default", "split": "test", "revision": "4d8694f8f0e0100860b497b999b3dbed754a0513"}, "metrics": [{"type": "cos_sim_pearson", "value": 83.77823915496512}, {"type": "cos_sim_spearman", "value": 85.43566325729779}, {"type": "euclidean_pearson", "value": 84.5396956658821}, {"type": "euclidean_spearman", "value": 85.43566325729779}, {"type": "manhattan_pearson", "value": 84.5665398848169}, {"type": "manhattan_spearman", "value": 85.44375870303232}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS17 (en-en)", "type": "mteb/sts17-crosslingual-sts", "config": "en-en", "split": "test", "revision": "af5e6fb845001ecf41f4c1e033ce921939a2a68d"}, "metrics": [{"type": "cos_sim_pearson", "value": 87.20030208471798}, {"type": "cos_sim_spearman", "value": 87.20485505076539}, {"type": "euclidean_pearson", "value": 88.10588324368722}, {"type": "euclidean_spearman", "value": 87.20485505076539}, {"type": "manhattan_pearson", "value": 87.92324770415183}, {"type": "manhattan_spearman", "value": 87.0571314561877}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (en)", "type": "mteb/sts22-crosslingual-sts", "config": "en", "split": "test", "revision": "6d1ba47164174a496b7fa5d3569dae26a6813b80"}, "metrics": [{"type": "cos_sim_pearson", "value": 63.06093161604453}, {"type": "cos_sim_spearman", "value": 64.2163140357722}, {"type": "euclidean_pearson", "value": 65.27589680994006}, {"type": "euclidean_spearman", "value": 64.2163140357722}, {"type": "manhattan_pearson", "value": 65.45904383711101}, {"type": "manhattan_spearman", "value": 64.55404716679305}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STSBenchmark", "type": "mteb/stsbenchmark-sts", "config": "default", "split": "test", "revision": "b0fddb56ed78048fa8b90373c8a3cfc37b684831"}, "metrics": [{"type": "cos_sim_pearson", "value": 84.32976164578706}, {"type": "cos_sim_spearman", "value": 85.54302197678368}, {"type": "euclidean_pearson", "value": 85.26307149193056}, {"type": "euclidean_spearman", "value": 85.54302197678368}, {"type": "manhattan_pearson", "value": 85.26647282029371}, {"type": "manhattan_spearman", "value": 85.5316135265568}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB SciDocsRR", "type": "mteb/scidocs-reranking", "config": "default", "split": "test", "revision": "d3c5e1fc0b855ab6097bf1cda04dd73947d7caab"}, "metrics": [{"type": "map", "value": 81.44675968318754}, {"type": "mrr", "value": 94.92741826075158}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB SciFact", "type": "scifact", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 56.34400000000001}, {"type": "map_at_10", "value": 65.927}, {"type": "map_at_100", "value": 66.431}, {"type": "map_at_1000", "value": 66.461}, {"type": "map_at_3", "value": 63.529}, {"type": "map_at_5", "value": 64.818}, {"type": "mrr_at_1", "value": 59.333000000000006}, {"type": "mrr_at_10", "value": 67.54599999999999}, {"type": "mrr_at_100", "value": 67.892}, {"type": "mrr_at_1000", "value": 67.917}, {"type": "mrr_at_3", "value": 65.778}, {"type": "mrr_at_5", "value": 66.794}, {"type": "ndcg_at_1", "value": 59.333000000000006}, {"type": "ndcg_at_10", "value": 70.5}, {"type": "ndcg_at_100", "value": 72.688}, {"type": "ndcg_at_1000", "value": 73.483}, {"type": "ndcg_at_3", "value": 66.338}, {"type": "ndcg_at_5", "value": 68.265}, {"type": "precision_at_1", "value": 59.333000000000006}, {"type": "precision_at_10", "value": 9.3}, {"type": "precision_at_100", "value": 1.053}, {"type": "precision_at_1000", "value": 0.11199999999999999}, {"type": "precision_at_3", "value": 25.889}, {"type": "precision_at_5", "value": 16.866999999999997}, {"type": "recall_at_1", "value": 56.34400000000001}, {"type": "recall_at_10", "value": 82.789}, {"type": "recall_at_100", "value": 92.767}, {"type": "recall_at_1000", "value": 99}, {"type": "recall_at_3", "value": 71.64399999999999}, {"type": "recall_at_5", "value": 76.322}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB SprintDuplicateQuestions", "type": "mteb/sprintduplicatequestions-pairclassification", "config": "default", "split": "test", "revision": "d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46"}, "metrics": [{"type": "cos_sim_accuracy", "value": 99.75742574257426}, {"type": "cos_sim_ap", "value": 93.52081548447406}, {"type": "cos_sim_f1", "value": 87.33850129198966}, {"type": "cos_sim_precision", "value": 90.37433155080214}, {"type": "cos_sim_recall", "value": 84.5}, {"type": "dot_accuracy", "value": 99.75742574257426}, {"type": "dot_ap", "value": 93.52081548447406}, {"type": "dot_f1", "value": 87.33850129198966}, {"type": "dot_precision", "value": 90.37433155080214}, {"type": "dot_recall", "value": 84.5}, {"type": "euclidean_accuracy", "value": 99.75742574257426}, {"type": "euclidean_ap", "value": 93.52081548447406}, {"type": "euclidean_f1", "value": 87.33850129198966}, {"type": "euclidean_precision", "value": 90.37433155080214}, {"type": "euclidean_recall", "value": 84.5}, {"type": "manhattan_accuracy", "value": 99.75841584158415}, {"type": "manhattan_ap", "value": 93.4975678585854}, {"type": "manhattan_f1", "value": 87.26708074534162}, {"type": "manhattan_precision", "value": 90.45064377682404}, {"type": "manhattan_recall", "value": 84.3}, {"type": "max_accuracy", "value": 99.75841584158415}, {"type": "max_ap", "value": 93.52081548447406}, {"type": "max_f1", "value": 87.33850129198966}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClustering", "type": "mteb/stackexchange-clustering", "config": "default", "split": "test", "revision": "6cbc1f7b2bc0622f2e39d2c77fa502909748c259"}, "metrics": [{"type": "v_measure", "value": 64.31437036686651}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClusteringP2P", "type": "mteb/stackexchange-clustering-p2p", "config": "default", "split": "test", "revision": "815ca46b2622cec33ccafc3735d572c266efdb44"}, "metrics": [{"type": "v_measure", "value": 33.25569319007206}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB StackOverflowDupQuestions", "type": "mteb/stackoverflowdupquestions-reranking", "config": "default", "split": "test", "revision": "e185fbe320c72810689fc5848eb6114e1ef5ec69"}, "metrics": [{"type": "map", "value": 49.90474939720706}, {"type": "mrr", "value": 50.568115503777264}]}, {"task": {"type": "Summarization"}, "dataset": {"name": "MTEB SummEval", "type": "mteb/summeval", "config": "default", "split": "test", "revision": "cda12ad7615edc362dbf25a00fdd61d3b1eaf93c"}, "metrics": [{"type": "cos_sim_pearson", "value": 29.866828641244712}, {"type": "cos_sim_spearman", "value": 30.077555055873866}, {"type": "dot_pearson", "value": 29.866832988572266}, {"type": "dot_spearman", "value": 30.077555055873866}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB TRECCOVID", "type": "trec-covid", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 0.232}, {"type": "map_at_10", "value": 2.094}, {"type": "map_at_100", "value": 11.971}, {"type": "map_at_1000", "value": 28.158}, {"type": "map_at_3", "value": 0.688}, {"type": "map_at_5", "value": 1.114}, {"type": "mrr_at_1", "value": 88}, {"type": "mrr_at_10", "value": 93.4}, {"type": "mrr_at_100", "value": 93.4}, {"type": "mrr_at_1000", "value": 93.4}, {"type": "mrr_at_3", "value": 93}, {"type": "mrr_at_5", "value": 93.4}, {"type": "ndcg_at_1", "value": 84}, {"type": "ndcg_at_10", "value": 79.923}, {"type": "ndcg_at_100", "value": 61.17}, {"type": "ndcg_at_1000", "value": 53.03}, {"type": "ndcg_at_3", "value": 84.592}, {"type": "ndcg_at_5", "value": 82.821}, {"type": "precision_at_1", "value": 88}, {"type": "precision_at_10", "value": 85}, {"type": "precision_at_100", "value": 63.019999999999996}, {"type": "precision_at_1000", "value": 23.554}, {"type": "precision_at_3", "value": 89.333}, {"type": "precision_at_5", "value": 87.2}, {"type": "recall_at_1", "value": 0.232}, {"type": "recall_at_10", "value": 2.255}, {"type": "recall_at_100", "value": 14.823}, {"type": "recall_at_1000", "value": 49.456}, {"type": "recall_at_3", "value": 0.718}, {"type": "recall_at_5", "value": 1.175}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB Touche2020", "type": "webis-touche2020", "config": "default", "split": "test", "revision": "None"}, "metrics": [{"type": "map_at_1", "value": 2.547}, {"type": "map_at_10", "value": 11.375}, {"type": "map_at_100", "value": 18.194}, {"type": "map_at_1000", "value": 19.749}, {"type": "map_at_3", "value": 5.825}, {"type": "map_at_5", "value": 8.581}, {"type": "mrr_at_1", "value": 32.653}, {"type": "mrr_at_10", "value": 51.32}, {"type": "mrr_at_100", "value": 51.747}, {"type": "mrr_at_1000", "value": 51.747}, {"type": "mrr_at_3", "value": 47.278999999999996}, {"type": "mrr_at_5", "value": 48.605}, {"type": "ndcg_at_1", "value": 29.592000000000002}, {"type": "ndcg_at_10", "value": 28.151}, {"type": "ndcg_at_100", "value": 39.438}, {"type": "ndcg_at_1000", "value": 50.769}, {"type": "ndcg_at_3", "value": 30.758999999999997}, {"type": "ndcg_at_5", "value": 30.366}, {"type": "precision_at_1", "value": 32.653}, {"type": "precision_at_10", "value": 25.714}, {"type": "precision_at_100", "value": 8.041}, {"type": "precision_at_1000", "value": 1.555}, {"type": "precision_at_3", "value": 33.333}, {"type": "precision_at_5", "value": 31.837}, {"type": "recall_at_1", "value": 2.547}, {"type": "recall_at_10", "value": 18.19}, {"type": "recall_at_100", "value": 49.538}, {"type": "recall_at_1000", "value": 83.86}, {"type": "recall_at_3", "value": 7.329}, {"type": "recall_at_5", "value": 11.532}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ToxicConversationsClassification", "type": "mteb/toxic_conversations_50k", "config": "default", "split": "test", "revision": "d7c0de2777da35d6aae2200a62c6e0e5af397c4c"}, "metrics": [{"type": "accuracy", "value": 71.4952}, {"type": "ap", "value": 14.793362635531409}, {"type": "f1", "value": 55.204635551516915}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB TweetSentimentExtractionClassification", "type": "mteb/tweet_sentiment_extraction", "config": "default", "split": "test", "revision": "d604517c81ca91fe16a244d1248fc021f9ecee7a"}, "metrics": [{"type": "accuracy", "value": 61.5365025466893}, {"type": "f1", "value": 61.81742556334845}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB TwentyNewsgroupsClustering", "type": "mteb/twentynewsgroups-clustering", "config": "default", "split": "test", "revision": "6125ec4e24fa026cec8a478383ee943acfbd5449"}, "metrics": [{"type": "v_measure", "value": 49.05531070301185}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterSemEval2015", "type": "mteb/twittersemeval2015-pairclassification", "config": "default", "split": "test", "revision": "70970daeab8776df92f5ea462b6173c0b46fd2d1"}, "metrics": [{"type": "cos_sim_accuracy", "value": 86.51725576682364}, {"type": "cos_sim_ap", "value": 75.2292304265163}, {"type": "cos_sim_f1", "value": 69.54022988505749}, {"type": "cos_sim_precision", "value": 63.65629110039457}, {"type": "cos_sim_recall", "value": 76.62269129287598}, {"type": "dot_accuracy", "value": 86.51725576682364}, {"type": "dot_ap", "value": 75.22922386081054}, {"type": "dot_f1", "value": 69.54022988505749}, {"type": "dot_precision", "value": 63.65629110039457}, {"type": "dot_recall", "value": 76.62269129287598}, {"type": "euclidean_accuracy", "value": 86.51725576682364}, {"type": "euclidean_ap", "value": 75.22925730473472}, {"type": "euclidean_f1", "value": 69.54022988505749}, {"type": "euclidean_precision", "value": 63.65629110039457}, {"type": "euclidean_recall", "value": 76.62269129287598}, {"type": "manhattan_accuracy", "value": 86.52321630804077}, {"type": "manhattan_ap", "value": 75.20608115037336}, {"type": "manhattan_f1", "value": 69.60000000000001}, {"type": "manhattan_precision", "value": 64.37219730941705}, {"type": "manhattan_recall", "value": 75.75197889182058}, {"type": "max_accuracy", "value": 86.52321630804077}, {"type": "max_ap", "value": 75.22925730473472}, {"type": "max_f1", "value": 69.60000000000001}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterURLCorpus", "type": "mteb/twitterurlcorpus-pairclassification", "config": "default", "split": "test", "revision": "8b6510b0b1fa4e4c4f879467980e9be563ec1cdf"}, "metrics": [{"type": "cos_sim_accuracy", "value": 89.34877944657896}, {"type": "cos_sim_ap", "value": 86.71257569277373}, {"type": "cos_sim_f1", "value": 79.10386355986088}, {"type": "cos_sim_precision", "value": 76.91468470434214}, {"type": "cos_sim_recall", "value": 81.4213119802895}, {"type": "dot_accuracy", "value": 89.34877944657896}, {"type": "dot_ap", "value": 86.71257133133368}, {"type": "dot_f1", "value": 79.10386355986088}, {"type": "dot_precision", "value": 76.91468470434214}, {"type": "dot_recall", "value": 81.4213119802895}, {"type": "euclidean_accuracy", "value": 89.34877944657896}, {"type": "euclidean_ap", "value": 86.71257651501476}, {"type": "euclidean_f1", "value": 79.10386355986088}, {"type": "euclidean_precision", "value": 76.91468470434214}, {"type": "euclidean_recall", "value": 81.4213119802895}, {"type": "manhattan_accuracy", "value": 89.35848177901967}, {"type": "manhattan_ap", "value": 86.69330615469126}, {"type": "manhattan_f1", "value": 79.13867741453949}, {"type": "manhattan_precision", "value": 76.78881807647741}, {"type": "manhattan_recall", "value": 81.63689559593472}, {"type": "max_accuracy", "value": 89.35848177901967}, {"type": "max_ap", "value": 86.71257651501476}, {"type": "max_f1", "value": 79.13867741453949}]}]}]}
RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf
RichardErkhov
null
[ "gguf", "arxiv:2101.00027", "arxiv:2201.07311", "endpoints_compatible", "region:us" ]
2024-11-07T01:19:19
2024-11-07T01:30:18
103
0
--- {} --- Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) pythia-160m-v0 - GGUF - Model creator: https://huggingface.co/EleutherAI/ - Original model: https://huggingface.co/EleutherAI/pythia-160m-v0/ | Name | Quant method | Size | | ---- | ---- | ---- | | [pythia-160m-v0.Q2_K.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q2_K.gguf) | Q2_K | 0.07GB | | [pythia-160m-v0.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q3_K_S.gguf) | Q3_K_S | 0.08GB | | [pythia-160m-v0.Q3_K.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q3_K.gguf) | Q3_K | 0.09GB | | [pythia-160m-v0.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q3_K_M.gguf) | Q3_K_M | 0.09GB | | [pythia-160m-v0.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q3_K_L.gguf) | Q3_K_L | 0.09GB | | [pythia-160m-v0.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.IQ4_XS.gguf) | IQ4_XS | 0.09GB | | [pythia-160m-v0.Q4_0.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q4_0.gguf) | Q4_0 | 0.1GB | | [pythia-160m-v0.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.IQ4_NL.gguf) | IQ4_NL | 0.1GB | | [pythia-160m-v0.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q4_K_S.gguf) | Q4_K_S | 0.1GB | | [pythia-160m-v0.Q4_K.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q4_K.gguf) | Q4_K | 0.1GB | | [pythia-160m-v0.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q4_K_M.gguf) | Q4_K_M | 0.1GB | | [pythia-160m-v0.Q4_1.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q4_1.gguf) | Q4_1 | 0.1GB | | [pythia-160m-v0.Q5_0.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q5_0.gguf) | Q5_0 | 0.11GB | | [pythia-160m-v0.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q5_K_S.gguf) | Q5_K_S | 0.11GB | | [pythia-160m-v0.Q5_K.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q5_K.gguf) | Q5_K | 0.12GB | | [pythia-160m-v0.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q5_K_M.gguf) | Q5_K_M | 0.12GB | | [pythia-160m-v0.Q5_1.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q5_1.gguf) | Q5_1 | 0.12GB | | [pythia-160m-v0.Q6_K.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q6_K.gguf) | Q6_K | 0.13GB | | [pythia-160m-v0.Q8_0.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q8_0.gguf) | Q8_0 | 0.16GB | Original model description: --- language: - en tags: - pytorch - causal-lm - pythia - pythia_v0 license: apache-2.0 datasets: - the_pile --- The *Pythia Scaling Suite* is a collection of models developed to facilitate interpretability research. It contains two sets of eight models of sizes 70M, 160M, 410M, 1B, 1.4B, 2.8B, 6.9B, and 12B. For each size, there are two models: one trained on the Pile, and one trained on the Pile after the dataset has been globally deduplicated. All 8 model sizes are trained on the exact same data, in the exact same order. All Pythia models are available [on Hugging Face](https://huggingface.co/models?other=pythia). The Pythia model suite was deliberately designed to promote scientific research on large language models, especially interpretability research. Despite not centering downstream performance as a design goal, we find the models <a href="#evaluations">match or exceed</a> the performance of similar and same-sized models, such as those in the OPT and GPT-Neo suites. Please note that all models in the *Pythia* suite were renamed in January 2023. For clarity, a <a href="#naming-convention-and-parameter-count">table comparing the old and new names</a> is provided in this model card, together with exact parameter counts. ## Pythia-160M ### Model Details - Developed by: [EleutherAI](http://eleuther.ai) - Model type: Transformer-based Language Model - Language: English - Learn more: [Pythia's GitHub repository](https://github.com/EleutherAI/pythia) for training procedure, config files, and details on how to use. - Library: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) - License: Apache 2.0 - Contact: to ask questions about this model, join the [EleutherAI Discord](https://discord.gg/zBGx3azzUn), and post them in `#release-discussion`. Please read the existing *Pythia* documentation before asking about it in the EleutherAI Discord. For general correspondence: [contact@eleuther. ai](mailto:[email protected]). <figure> | Pythia model | Non-Embedding Params | Layers | Model Dim | Heads | Batch Size | Learning Rate | Equivalent Models | | -----------: | -------------------: | :----: | :-------: | :---: | :--------: | :-------------------: | :--------------------: | | 70M | 18,915,328 | 6 | 512 | 8 | 2M | 1.0 x 10<sup>-3</sup> | — | | 160M | 85,056,000 | 12 | 768 | 12 | 4M | 6.0 x 10<sup>-4</sup> | GPT-Neo 125M, OPT-125M | | 410M | 302,311,424 | 24 | 1024 | 16 | 4M | 3.0 x 10<sup>-4</sup> | OPT-350M | | 1.0B | 805,736,448 | 16 | 2048 | 8 | 2M | 3.0 x 10<sup>-4</sup> | — | | 1.4B | 1,208,602,624 | 24 | 2048 | 16 | 4M | 2.0 x 10<sup>-4</sup> | GPT-Neo 1.3B, OPT-1.3B | | 2.8B | 2,517,652,480 | 32 | 2560 | 32 | 2M | 1.6 x 10<sup>-4</sup> | GPT-Neo 2.7B, OPT-2.7B | | 6.9B | 6,444,163,072 | 32 | 4096 | 32 | 2M | 1.2 x 10<sup>-4</sup> | OPT-6.7B | | 12B | 11,327,027,200 | 36 | 5120 | 40 | 2M | 1.2 x 10<sup>-4</sup> | — | <figcaption>Engineering details for the <i>Pythia Suite</i>. Deduped and non-deduped models of a given size have the same hyperparameters. “Equivalent” models have <b>exactly</b> the same architecture, and the same number of non-embedding parameters.</figcaption> </figure> ### Uses and Limitations #### Intended Use The primary intended use of Pythia is research on the behavior, functionality, and limitations of large language models. This suite is intended to provide a controlled setting for performing scientific experiments. To enable the study of how language models change over the course of training, we provide 143 evenly spaced intermediate checkpoints per model. These checkpoints are hosted on Hugging Face as branches. Note that branch `143000` corresponds exactly to the model checkpoint on the `main` branch of each model. You may also further fine-tune and adapt Pythia-160M for deployment, as long as your use is in accordance with the Apache 2.0 license. Pythia models work with the Hugging Face [Transformers Library](https://huggingface.co/docs/transformers/index). If you decide to use pre-trained Pythia-160M as a basis for your fine-tuned model, please conduct your own risk and bias assessment. #### Out-of-scope use The Pythia Suite is **not** intended for deployment. It is not a in itself a product and cannot be used for human-facing interactions. Pythia models are English-language only, and are not suitable for translation or generating text in other languages. Pythia-160M has not been fine-tuned for downstream contexts in which language models are commonly deployed, such as writing genre prose, or commercial chatbots. This means Pythia-160M will **not** respond to a given prompt the way a product like ChatGPT does. This is because, unlike this model, ChatGPT was fine-tuned using methods such as Reinforcement Learning from Human Feedback (RLHF) to better “understand” human instructions. #### Limitations and biases The core functionality of a large language model is to take a string of text and predict the next token. The token deemed statistically most likely by the model need not produce the most “accurate” text. Never rely on Pythia-160M to produce factually accurate output. This model was trained on [the Pile](https://pile.eleuther.ai/), a dataset known to contain profanity and texts that are lewd or otherwise offensive. See [Section 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a discussion of documented biases with regards to gender, religion, and race. Pythia-160M may produce socially unacceptable or undesirable text, *even if* the prompt itself does not include anything explicitly offensive. If you plan on using text generated through, for example, the Hosted Inference API, we recommend having a human curate the outputs of this language model before presenting it to other people. Please inform your audience that the text was generated by Pythia-160M. ### Quickstart Pythia models can be loaded and used via the following code, demonstrated here for the third `pythia-70m-deduped` checkpoint: ```python from transformers import GPTNeoXForCausalLM, AutoTokenizer model = GPTNeoXForCausalLM.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) tokenizer = AutoTokenizer.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) inputs = tokenizer("Hello, I am", return_tensors="pt") tokens = model.generate(**inputs) tokenizer.decode(tokens[0]) ``` Revision/branch `step143000` corresponds exactly to the model checkpoint on the `main` branch of each model.<br> For more information on how to use all Pythia models, see [documentation on GitHub](https://github.com/EleutherAI/pythia). ### Training #### Training data [The Pile](https://pile.eleuther.ai/) is a 825GiB general-purpose dataset in English. It was created by EleutherAI specifically for training large language models. It contains texts from 22 diverse sources, roughly broken down into five categories: academic writing (e.g. arXiv), internet (e.g. CommonCrawl), prose (e.g. Project Gutenberg), dialogue (e.g. YouTube subtitles), and miscellaneous (e.g. GitHub, Enron Emails). See [the Pile paper](https://arxiv.org/abs/2101.00027) for a breakdown of all data sources, methodology, and a discussion of ethical implications. Consult [the datasheet](https://arxiv.org/abs/2201.07311) for more detailed documentation about the Pile and its component datasets. The Pile can be downloaded from the [official website](https://pile.eleuther.ai/), or from a [community mirror](https://the-eye.eu/public/AI/pile/).<br> The Pile was **not** deduplicated before being used to train Pythia-160M. #### Training procedure All models were trained on the exact same data, in the exact same order. Each model saw 299,892,736,000 tokens during training, and 143 checkpoints for each model are saved every 2,097,152,000 tokens, spaced evenly throughout training. This corresponds to training for just under 1 epoch on the Pile for non-deduplicated models, and about 1.5 epochs on the deduplicated Pile. All *Pythia* models trained for the equivalent of 143000 steps at a batch size of 2,097,152 tokens. Two batch sizes were used: 2M and 4M. Models with a batch size of 4M tokens listed were originally trained for 71500 steps instead, with checkpoints every 500 steps. The checkpoints on Hugging Face are renamed for consistency with all 2M batch models, so `step1000` is the first checkpoint for `pythia-1.4b` that was saved (corresponding to step 500 in training), and `step1000` is likewise the first `pythia-6.9b` checkpoint that was saved (corresponding to 1000 “actual” steps).<br> See [GitHub](https://github.com/EleutherAI/pythia) for more details on training procedure, including [how to reproduce it](https://github.com/EleutherAI/pythia/blob/main/README.md#reproducing-training).<br> Pythia uses the same tokenizer as [GPT-NeoX- 20B](https://huggingface.co/EleutherAI/gpt-neox-20b). ### Evaluations All 16 *Pythia* models were evaluated using the [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness). You can access the results by model and step at `results/json/*` in the [GitHub repository](https://github.com/EleutherAI/pythia/tree/main/results/json).<br> Expand the sections below to see plots of evaluation results for all Pythia and Pythia-deduped models compared with OPT and BLOOM. <details> <summary>LAMBADA – OpenAI</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/lambada_openai.png" style="width:auto"/> </details> <details> <summary>Physical Interaction: Question Answering (PIQA)</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/piqa.png" style="width:auto"/> </details> <details> <summary>WinoGrande</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/winogrande.png" style="width:auto"/> </details> <details> <summary>AI2 Reasoning Challenge—Challenge Set</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/arc_challenge.png" style="width:auto"/> </details> <details> <summary>SciQ</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/sciq.png" style="width:auto"/> </details> ### Naming convention and parameter count *Pythia* models were renamed in January 2023. It is possible that the old naming convention still persists in some documentation by accident. The current naming convention (70M, 160M, etc.) is based on total parameter count. <figure style="width:32em"> | current Pythia suffix | old suffix | total params | non-embedding params | | --------------------: | ---------: | -------------: | -------------------: | | 70M | 19M | 70,426,624 | 18,915,328 | | 160M | 125M | 162,322,944 | 85,056,000 | | 410M | 350M | 405,334,016 | 302,311,424 | | 1B | 800M | 1,011,781,632 | 805,736,448 | | 1.4B | 1.3B | 1,414,647,808 | 1,208,602,624 | | 2.8B | 2.7B | 2,775,208,960 | 2,517,652,480 | | 6.9B | 6.7B | 6,857,302,016 | 6,444,163,072 | | 12B | 13B | 11,846,072,320 | 11,327,027,200 | </figure>
[ "QUESTION_ANSWERING", "TRANSLATION" ]
[ "SCIQ" ]
Non_BioNLP
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) pythia-160m-v0 - GGUF - Model creator: https://huggingface.co/EleutherAI/ - Original model: https://huggingface.co/EleutherAI/pythia-160m-v0/ | Name | Quant method | Size | | ---- | ---- | ---- | | [pythia-160m-v0.Q2_K.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q2_K.gguf) | Q2_K | 0.07GB | | [pythia-160m-v0.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q3_K_S.gguf) | Q3_K_S | 0.08GB | | [pythia-160m-v0.Q3_K.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q3_K.gguf) | Q3_K | 0.09GB | | [pythia-160m-v0.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q3_K_M.gguf) | Q3_K_M | 0.09GB | | [pythia-160m-v0.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q3_K_L.gguf) | Q3_K_L | 0.09GB | | [pythia-160m-v0.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.IQ4_XS.gguf) | IQ4_XS | 0.09GB | | [pythia-160m-v0.Q4_0.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q4_0.gguf) | Q4_0 | 0.1GB | | [pythia-160m-v0.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.IQ4_NL.gguf) | IQ4_NL | 0.1GB | | [pythia-160m-v0.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q4_K_S.gguf) | Q4_K_S | 0.1GB | | [pythia-160m-v0.Q4_K.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q4_K.gguf) | Q4_K | 0.1GB | | [pythia-160m-v0.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q4_K_M.gguf) | Q4_K_M | 0.1GB | | [pythia-160m-v0.Q4_1.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q4_1.gguf) | Q4_1 | 0.1GB | | [pythia-160m-v0.Q5_0.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q5_0.gguf) | Q5_0 | 0.11GB | | [pythia-160m-v0.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q5_K_S.gguf) | Q5_K_S | 0.11GB | | [pythia-160m-v0.Q5_K.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q5_K.gguf) | Q5_K | 0.12GB | | [pythia-160m-v0.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q5_K_M.gguf) | Q5_K_M | 0.12GB | | [pythia-160m-v0.Q5_1.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q5_1.gguf) | Q5_1 | 0.12GB | | [pythia-160m-v0.Q6_K.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q6_K.gguf) | Q6_K | 0.13GB | | [pythia-160m-v0.Q8_0.gguf](https://huggingface.co/RichardErkhov/EleutherAI_-_pythia-160m-v0-gguf/blob/main/pythia-160m-v0.Q8_0.gguf) | Q8_0 | 0.16GB | Original model description: --- language: - en tags: - pytorch - causal-lm - pythia - pythia_v0 license: apache-2.0 datasets: - the_pile --- The *Pythia Scaling Suite* is a collection of models developed to facilitate interpretability research. It contains two sets of eight models of sizes 70M, 160M, 410M, 1B, 1.4B, 2.8B, 6.9B, and 12B. For each size, there are two models: one trained on the Pile, and one trained on the Pile after the dataset has been globally deduplicated. All 8 model sizes are trained on the exact same data, in the exact same order. All Pythia models are available [on Hugging Face](https://huggingface.co/models?other=pythia). The Pythia model suite was deliberately designed to promote scientific research on large language models, especially interpretability research. Despite not centering downstream performance as a design goal, we find the models <a href="#evaluations">match or exceed</a> the performance of similar and same-sized models, such as those in the OPT and GPT-Neo suites. Please note that all models in the *Pythia* suite were renamed in January 2023. For clarity, a <a href="#naming-convention-and-parameter-count">table comparing the old and new names</a> is provided in this model card, together with exact parameter counts. ## Pythia-160M ### Model Details - Developed by: [EleutherAI](http://eleuther.ai) - Model type: Transformer-based Language Model - Language: English - Learn more: [Pythia's GitHub repository](https://github.com/EleutherAI/pythia) for training procedure, config files, and details on how to use. - Library: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) - License: Apache 2.0 - Contact: to ask questions about this model, join the [EleutherAI Discord](https://discord.gg/zBGx3azzUn), and post them in `#release-discussion`. Please read the existing *Pythia* documentation before asking about it in the EleutherAI Discord. For general correspondence: [contact@eleuther. ai](mailto:[email protected]). <figure> | Pythia model | Non-Embedding Params | Layers | Model Dim | Heads | Batch Size | Learning Rate | Equivalent Models | | -----------: | -------------------: | :----: | :-------: | :---: | :--------: | :-------------------: | :--------------------: | | 70M | 18,915,328 | 6 | 512 | 8 | 2M | 1.0 x 10<sup>-3</sup> | — | | 160M | 85,056,000 | 12 | 768 | 12 | 4M | 6.0 x 10<sup>-4</sup> | GPT-Neo 125M, OPT-125M | | 410M | 302,311,424 | 24 | 1024 | 16 | 4M | 3.0 x 10<sup>-4</sup> | OPT-350M | | 1.0B | 805,736,448 | 16 | 2048 | 8 | 2M | 3.0 x 10<sup>-4</sup> | — | | 1.4B | 1,208,602,624 | 24 | 2048 | 16 | 4M | 2.0 x 10<sup>-4</sup> | GPT-Neo 1.3B, OPT-1.3B | | 2.8B | 2,517,652,480 | 32 | 2560 | 32 | 2M | 1.6 x 10<sup>-4</sup> | GPT-Neo 2.7B, OPT-2.7B | | 6.9B | 6,444,163,072 | 32 | 4096 | 32 | 2M | 1.2 x 10<sup>-4</sup> | OPT-6.7B | | 12B | 11,327,027,200 | 36 | 5120 | 40 | 2M | 1.2 x 10<sup>-4</sup> | — | <figcaption>Engineering details for the <i>Pythia Suite</i>. Deduped and non-deduped models of a given size have the same hyperparameters. “Equivalent” models have <b>exactly</b> the same architecture, and the same number of non-embedding parameters.</figcaption> </figure> ### Uses and Limitations #### Intended Use The primary intended use of Pythia is research on the behavior, functionality, and limitations of large language models. This suite is intended to provide a controlled setting for performing scientific experiments. To enable the study of how language models change over the course of training, we provide 143 evenly spaced intermediate checkpoints per model. These checkpoints are hosted on Hugging Face as branches. Note that branch `143000` corresponds exactly to the model checkpoint on the `main` branch of each model. You may also further fine-tune and adapt Pythia-160M for deployment, as long as your use is in accordance with the Apache 2.0 license. Pythia models work with the Hugging Face [Transformers Library](https://huggingface.co/docs/transformers/index). If you decide to use pre-trained Pythia-160M as a basis for your fine-tuned model, please conduct your own risk and bias assessment. #### Out-of-scope use The Pythia Suite is **not** intended for deployment. It is not a in itself a product and cannot be used for human-facing interactions. Pythia models are English-language only, and are not suitable for translation or generating text in other languages. Pythia-160M has not been fine-tuned for downstream contexts in which language models are commonly deployed, such as writing genre prose, or commercial chatbots. This means Pythia-160M will **not** respond to a given prompt the way a product like ChatGPT does. This is because, unlike this model, ChatGPT was fine-tuned using methods such as Reinforcement Learning from Human Feedback (RLHF) to better “understand” human instructions. #### Limitations and biases The core functionality of a large language model is to take a string of text and predict the next token. The token deemed statistically most likely by the model need not produce the most “accurate” text. Never rely on Pythia-160M to produce factually accurate output. This model was trained on [the Pile](https://pile.eleuther.ai/), a dataset known to contain profanity and texts that are lewd or otherwise offensive. See [Section 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a discussion of documented biases with regards to gender, religion, and race. Pythia-160M may produce socially unacceptable or undesirable text, *even if* the prompt itself does not include anything explicitly offensive. If you plan on using text generated through, for example, the Hosted Inference API, we recommend having a human curate the outputs of this language model before presenting it to other people. Please inform your audience that the text was generated by Pythia-160M. ### Quickstart Pythia models can be loaded and used via the following code, demonstrated here for the third `pythia-70m-deduped` checkpoint: ```python from transformers import GPTNeoXForCausalLM, AutoTokenizer model = GPTNeoXForCausalLM.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) tokenizer = AutoTokenizer.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) inputs = tokenizer("Hello, I am", return_tensors="pt") tokens = model.generate(**inputs) tokenizer.decode(tokens[0]) ``` Revision/branch `step143000` corresponds exactly to the model checkpoint on the `main` branch of each model.<br> For more information on how to use all Pythia models, see [documentation on GitHub](https://github.com/EleutherAI/pythia). ### Training #### Training data [The Pile](https://pile.eleuther.ai/) is a 825GiB general-purpose dataset in English. It was created by EleutherAI specifically for training large language models. It contains texts from 22 diverse sources, roughly broken down into five categories: academic writing (e.g. arXiv), internet (e.g. CommonCrawl), prose (e.g. Project Gutenberg), dialogue (e.g. YouTube subtitles), and miscellaneous (e.g. GitHub, Enron Emails). See [the Pile paper](https://arxiv.org/abs/2101.00027) for a breakdown of all data sources, methodology, and a discussion of ethical implications. Consult [the datasheet](https://arxiv.org/abs/2201.07311) for more detailed documentation about the Pile and its component datasets. The Pile can be downloaded from the [official website](https://pile.eleuther.ai/), or from a [community mirror](https://the-eye.eu/public/AI/pile/).<br> The Pile was **not** deduplicated before being used to train Pythia-160M. #### Training procedure All models were trained on the exact same data, in the exact same order. Each model saw 299,892,736,000 tokens during training, and 143 checkpoints for each model are saved every 2,097,152,000 tokens, spaced evenly throughout training. This corresponds to training for just under 1 epoch on the Pile for non-deduplicated models, and about 1.5 epochs on the deduplicated Pile. All *Pythia* models trained for the equivalent of 143000 steps at a batch size of 2,097,152 tokens. Two batch sizes were used: 2M and 4M. Models with a batch size of 4M tokens listed were originally trained for 71500 steps instead, with checkpoints every 500 steps. The checkpoints on Hugging Face are renamed for consistency with all 2M batch models, so `step1000` is the first checkpoint for `pythia-1.4b` that was saved (corresponding to step 500 in training), and `step1000` is likewise the first `pythia-6.9b` checkpoint that was saved (corresponding to 1000 “actual” steps).<br> See [GitHub](https://github.com/EleutherAI/pythia) for more details on training procedure, including [how to reproduce it](https://github.com/EleutherAI/pythia/blob/main/README.md#reproducing-training).<br> Pythia uses the same tokenizer as [GPT-NeoX- 20B](https://huggingface.co/EleutherAI/gpt-neox-20b). ### Evaluations All 16 *Pythia* models were evaluated using the [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness). You can access the results by model and step at `results/json/*` in the [GitHub repository](https://github.com/EleutherAI/pythia/tree/main/results/json).<br> Expand the sections below to see plots of evaluation results for all Pythia and Pythia-deduped models compared with OPT and BLOOM. <details> <summary>LAMBADA – OpenAI</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/lambada_openai.png" style="width:auto"/> </details> <details> <summary>Physical Interaction: Question Answering (PIQA)</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/piqa.png" style="width:auto"/> </details> <details> <summary>WinoGrande</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/winogrande.png" style="width:auto"/> </details> <details> <summary>AI2 Reasoning Challenge—Challenge Set</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/arc_challenge.png" style="width:auto"/> </details> <details> <summary>SciQ</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/sciq.png" style="width:auto"/> </details> ### Naming convention and parameter count *Pythia* models were renamed in January 2023. It is possible that the old naming convention still persists in some documentation by accident. The current naming convention (70M, 160M, etc.) is based on total parameter count. <figure style="width:32em"> | current Pythia suffix | old suffix | total params | non-embedding params | | --------------------: | ---------: | -------------: | -------------------: | | 70M | 19M | 70,426,624 | 18,915,328 | | 160M | 125M | 162,322,944 | 85,056,000 | | 410M | 350M | 405,334,016 | 302,311,424 | | 1B | 800M | 1,011,781,632 | 805,736,448 | | 1.4B | 1.3B | 1,414,647,808 | 1,208,602,624 | | 2.8B | 2.7B | 2,775,208,960 | 2,517,652,480 | | 6.9B | 6.7B | 6,857,302,016 | 6,444,163,072 | | 12B | 13B | 11,846,072,320 | 11,327,027,200 | </figure>
{}
medspaner/flair-clinical-trials-temp-ents
medspaner
null
[ "license:cc-by-nc-4.0", "region:us" ]
2023-09-28T17:54:55
2024-10-01T06:35:34
0
0
--- license: cc-by-nc-4.0 metrics: - precision - recall - f1 - accuracy model-index: - name: flair-clinical-trials-temp-ents results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flair-clinical-trials-temp-ents This named entity recognition model detects temporal expressions (TIMEX) according to the [TimeML scheme](https://en.wikipedia.org/wiki/ISO-TimeML) ([Pustejovsky et al. 2005](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5610&rep=rep1&type=pdf)), in addition to Age entities: - Age: e.g. *18 años* - Date: e.g. *2022*, *26 de noviembre* - Duration: e.g. *3 horas* - Frequency: e.g. *semanal* - Time: e.g. *noche* The model achieves the following results on the test set (results are averaged over 5 evaluation rounds): - Precision: 0.899 (±0.007) - Recall: 0.859 (±0.005) - F1: 0.879 (±0.006) - Accuracy: 0.808 (±0.007) ## Model description This model is fine-tuned to conduct medical named entity recognition on Spanish texts about clinical trials using the [CT-EBM-ES corpus (Campillos-Llanos et al. 2021)](https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-021-01395-z). If you use this model, please, cite as follows: ``` @article{campillosetal2024,         title = {{Hybrid tool for semantic annotation and concept extraction of medical texts in Spanish}},         author = {Campillos-Llanos, Leonardo and Valverde-Mateos, Ana and Capllonch-Carri{\'o}n, Adri{\'a}n},         journal = {BMC Bioinformatics}, year={2024}, publisher={BioMed Central} } ``` ## Intended uses & limitations **Disclosure**: *This model is under development and needs to be improved. It should not be used for medical decision making without human assistance and supervision* This model is intended for a generalist purpose, and may have bias and/or any other undesirable distortions. Third parties who deploy or provide systems and/or services using any of these models (or using systems based on these models) should note that it is their responsibility to mitigate the risks arising from their use. Third parties, in any event, need to comply with applicable regulations, including regulations concerning the use of artificial intelligence. The owner or creator of the models will in no event be liable for any results arising from the use made by third parties of these models. **Descargo de responsabilidad**: *Esta herramienta se encuentra en desarrollo y no debe ser empleada para la toma de decisiones médicas* La finalidad de este modelo es generalista, y se advierte que puede tener sesgos y/u otro tipo de distorsiones indeseables. Terceras partes que desplieguen o proporcionen sistemas y/o servicios usando alguno de estos modelos (o utilizando sistemas basados en estos modelos) han tener presente que es su responsabilidad abordar y minimizar los riesgos derivados de su uso. Las terceras partes, en cualquier circunstancia, deben cumplir con la normativa aplicable, incluyendo la normativa que concierne al uso de la inteligencia artificial. El propietario o creador de los modelos de ningún modo será responsable de los resultados derivados del uso que las terceras partes hagan de estos modelos. ## Training and evaluation data The data used for fine-tuning are the [Clinical Trials for Evidence-Based-Medicine in Spanish corpus](http://www.lllf.uam.es/ESP/nlpdata/wp2/). It is a collection of 1200 texts about clinical trials studies and clinical trials announcements: - 500 abstracts from journals published under a Creative Commons license, e.g. available in PubMed or the Scientific Electronic Library Online (SciELO) - 700 clinical trials announcements published in the European Clinical Trials Register and Repositorio Español de Estudios Clínicos If you use the CT-EBM-ES resource, please, cite as follows: ``` @article{campillosetal-midm2021,         title = {A clinical trials corpus annotated with UMLS© entities to enhance the access to Evidence-Based Medicine},         author = {Campillos-Llanos, Leonardo and Valverde-Mateos, Ana and Capllonch-Carri{\'o}n, Adri{\'a}n and Moreno-Sandoval, Antonio},         journal = {BMC Medical Informatics and Decision Making},         volume={21}, number={1}, pages={1--19}, year={2021}, publisher={BioMed Central} } ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.1 - train_batch_size: 16 - seed: we used different initializations for 5 evaluation rounds, and uploaded the model with the best results - num_epochs: average 68.2 epochs (±7.29); trained with early stopping if no improvement after 5 epochs (early stopping patience: 5) ### Training results (test set; average and standard deviation of 5 rounds) | Precision | Recall | F1 | Accuracy | |:--------------:|:--------------:|:--------------:|:--------------:| | 0.899 (±0.007) | 0.859 (±0.005) | 0.879 (±0.006) | 0.808 (±0.007) | ### Framework versions - FLAIR 0.12 - Pytorch 1.10.2+cu116
[ "NAMED_ENTITY_RECOGNITION" ]
[ "SCIELO" ]
BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flair-clinical-trials-temp-ents This named entity recognition model detects temporal expressions (TIMEX) according to the [TimeML scheme](https://en.wikipedia.org/wiki/ISO-TimeML) ([Pustejovsky et al. 2005](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.5610&rep=rep1&type=pdf)), in addition to Age entities: - Age: e.g. *18 años* - Date: e.g. *2022*, *26 de noviembre* - Duration: e.g. *3 horas* - Frequency: e.g. *semanal* - Time: e.g. *noche* The model achieves the following results on the test set (results are averaged over 5 evaluation rounds): - Precision: 0.899 (±0.007) - Recall: 0.859 (±0.005) - F1: 0.879 (±0.006) - Accuracy: 0.808 (±0.007) ## Model description This model is fine-tuned to conduct medical named entity recognition on Spanish texts about clinical trials using the [CT-EBM-ES corpus (Campillos-Llanos et al. 2021)](https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-021-01395-z). If you use this model, please, cite as follows: ``` @article{campillosetal2024,         title = {{Hybrid tool for semantic annotation and concept extraction of medical texts in Spanish}},         author = {Campillos-Llanos, Leonardo and Valverde-Mateos, Ana and Capllonch-Carri{\'o}n, Adri{\'a}n},         journal = {BMC Bioinformatics}, year={2024}, publisher={BioMed Central} } ``` ## Intended uses & limitations **Disclosure**: *This model is under development and needs to be improved. It should not be used for medical decision making without human assistance and supervision* This model is intended for a generalist purpose, and may have bias and/or any other undesirable distortions. Third parties who deploy or provide systems and/or services using any of these models (or using systems based on these models) should note that it is their responsibility to mitigate the risks arising from their use. Third parties, in any event, need to comply with applicable regulations, including regulations concerning the use of artificial intelligence. The owner or creator of the models will in no event be liable for any results arising from the use made by third parties of these models. **Descargo de responsabilidad**: *Esta herramienta se encuentra en desarrollo y no debe ser empleada para la toma de decisiones médicas* La finalidad de este modelo es generalista, y se advierte que puede tener sesgos y/u otro tipo de distorsiones indeseables. Terceras partes que desplieguen o proporcionen sistemas y/o servicios usando alguno de estos modelos (o utilizando sistemas basados en estos modelos) han tener presente que es su responsabilidad abordar y minimizar los riesgos derivados de su uso. Las terceras partes, en cualquier circunstancia, deben cumplir con la normativa aplicable, incluyendo la normativa que concierne al uso de la inteligencia artificial. El propietario o creador de los modelos de ningún modo será responsable de los resultados derivados del uso que las terceras partes hagan de estos modelos. ## Training and evaluation data The data used for fine-tuning are the [Clinical Trials for Evidence-Based-Medicine in Spanish corpus](http://www.lllf.uam.es/ESP/nlpdata/wp2/). It is a collection of 1200 texts about clinical trials studies and clinical trials announcements: - 500 abstracts from journals published under a Creative Commons license, e.g. available in PubMed or the Scientific Electronic Library Online (SciELO) - 700 clinical trials announcements published in the European Clinical Trials Register and Repositorio Español de Estudios Clínicos If you use the CT-EBM-ES resource, please, cite as follows: ``` @article{campillosetal-midm2021,         title = {A clinical trials corpus annotated with UMLS© entities to enhance the access to Evidence-Based Medicine},         author = {Campillos-Llanos, Leonardo and Valverde-Mateos, Ana and Capllonch-Carri{\'o}n, Adri{\'a}n and Moreno-Sandoval, Antonio},         journal = {BMC Medical Informatics and Decision Making},         volume={21}, number={1}, pages={1--19}, year={2021}, publisher={BioMed Central} } ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.1 - train_batch_size: 16 - seed: we used different initializations for 5 evaluation rounds, and uploaded the model with the best results - num_epochs: average 68.2 epochs (±7.29); trained with early stopping if no improvement after 5 epochs (early stopping patience: 5) ### Training results (test set; average and standard deviation of 5 rounds) | Precision | Recall | F1 | Accuracy | |:--------------:|:--------------:|:--------------:|:--------------:| | 0.899 (±0.007) | 0.859 (±0.005) | 0.879 (±0.006) | 0.808 (±0.007) | ### Framework versions - FLAIR 0.12 - Pytorch 1.10.2+cu116
{"license": "cc-by-nc-4.0", "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "flair-clinical-trials-temp-ents", "results": []}]}